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Abstract

Generalized geometry is a new mathematical paradigm in which vectors and 1-forms are united and
investigated as single objects - generalized vectors. In this dissertation, we explore symmetries of
bosonic string theory and their relations with T-duality in the formalism of generalized geometry. The
generator of both diffeomorphisms and local gauge transformations is constructed and expressed as an
O(D,D) invariant inner product of two generalized vectors. In the same way that the Poisson bracket
algebra of generators of diffeomorphism gives rise to the Lie bracket, the algebra of the extended
generators gives rise to the Courant bracket. Taking into account the T-duality relation between two
string symmetries, we interpret the Courant bracket as the T-dual extension of the Lie bracket [1].

We then develop a simple procedure for twisting the Courant bracket with any O(D,D) transfor-
mation, allowing us to obtain Courant brackets deformed with different fluxes. The crux of this method
consists of expressing the generator in the basis of non-canonical currents, which are connected with
canonical variables via theO(D,D) transformation. We show that the Poisson bracket algebra of gen-
erators in the basis of currents closes on the appropriate twisted Courant bracket. We prove that there
is a natural way to define a Courant algebroid using these twisted Courant brackets. We provide many
examples of O(D,D) transformations and their corresponding twisted Courant brackets, including
the B-twisted Courant bracket and the θ-twisted Courant bracket. The B-twisted Courant bracket is
characterized by H flux appearing in the algebra of currents, while the θ-twisted Courant bracket is
characterized by the so-called non-geometric Q and R fluxes. It has been shown that these brackets
are mutually T-dual [2].

In addition, we construct the generator that produces the Courant bracket twisted simultaneously
byB and θ in its Poisson bracket algebra. This generator is expressed in terms of currents that contain
all string fluxes in their Poisson bracket relations. Moreover, we show that the Courant bracket twisted
simultaneously by B and θ is invariant under the T-duality [3]. We also demonstrate that all fluxes
can exist on the Dirac structures associated with the Courant algebroid for this bracket, without any
restrictions imposed on fluxes.

In the end, results are generalized to a double theory, in which variables depend on both initial and
T-dual coordinates. The algebra of generators that include both initial and T-dual diffeomorphisms
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closes on the double field extension of the Courant bracket called C-bracket. Following the same pro-
cedure as in the single theory, we obtained theB-twisted and θ-twistedC-brackets [4]. We demonstrate
that by projecting the twisted C-brackets to the initial and T-dual phase spaces, the mutually T-dual
twisted Courant brackets are obtained.

Key words: Bosonic string, T-duality, Generalized geometry
Scientific field: Physics
Research area: String theory
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Sažetak

Generalisana geometrija podrazumeva novu matematičku paradigmu u kojoj se vektori i 1-forme ob-
jedinjuju i razmatraju kao jedinstveni objekti - generalisani vektori. U ovoj disertaciji istražujemo
simetrije bozonske teorije struna i njihove veze sa T-dualnošću korišćenjem formalizma generalisane
geometrije. Konstruisan je jedinstven generator difeomorfizama i lokalnih gradijentnih transformacija
i predstavljen kao O(D,D) invarijantan skalarni proizvod između dva generalisana vektora. Na isti
način kao što u algebri Poasonovih zagrada generatora difeomorfizama nastaje Lijeva zagradi, alge-
bra proširenog generatora daje Kurantovu zagradu. Uzimajući u obzir T-dualne veze između ove dve
simetrije, Kurantova zagrada je interpretirana kao ekstenzija Lijeve zagrade invarijantna na T-dualnost
[1].

Zatim razvijamo jednostavnu proceduru za pronalaženje Kurantovih zagrada zavrnutih proizvoljnim
O(D,D) transformacijama, što nam omogućava da dobijemo Kurantove zagrade deformisane ra-
zličitim fluksevima. Osnova metode je predstavljanje generatora u bazisu nekanonskih struja, koje
su O(D,D) transformacijom povezane sa kanonskim promenljivama. Pokazano je da se algebra Poa-
sonovih zagrada između generatora izraženih preko struja zatvara na odgovarajućoj zavrnutoj Kuran-
tovoj zagradi. Dokazano je i da takva zavrnuta Kurantova zagrada definiše na prirodan način Kuran-
tov algebroid. Dali smo više primera O(D,D) transformacija i odredili njima odgovarajuće zavrnute
Kurantove zagrade, uključujući i B-zavrnutu i θ-zavrnutu Kurantovu zagradu. Kurantovu zagradu za-
vrnutu poljem B karakteriše pojavljivanje H fluksa u algebri struja, dok Kurantovu zagradu zavrnutu
poljem θ karakteriše pojavljivanje takozvanih negeometrijskih Q i R flukseva. Pokazano je da su ove
dve zagrade međusobno T-dualne [2].

Dodatno, konstruisan je i generator koji daje Kurantovu zagradu istovremeno zavrnutu poljima B
i θ. Ovaj generator izražen je preko pomoćnih struja u čijim algebarskim relacijama izraženim preko
Poasonovih zagrada se dobijaju svi fluksevi teorije struna. Dodatno, pokazali smo da je na ovakav način
zavrnuta Kurantova zagrada i invarijantna na T-dualnost [3]. Takođe smo pokazali da svi fluksevi mogu
postojati na Dirakovim strukturama Kurantovog algebroida definisanog ovom zagradom, bez ikakvih
ograničenja na tim fluksevima.

Na kraju, uopštili smo rezultate na duplu teoriju, u kojoj sve promenljive zavise i od početnih i
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od T-dualnih koordinata. Algebra generatora koji obuhvata difeomorfizme i T-dualne difeomorfizme
zatvara se na C-zagradi, što je generalizacija Kurantove zagrade na dupli fazni prostor. Koristeći
se istom procedurom kao i u nedupliranoj teoriji, dobili smo C-zagrade zavrnute poljima B i θ [4].
Projektujući ove zagrade na međusobno T-dualne fazne prostore, dobili smo međusobno T-dualne
zavrnute Kurantove zagrade.

Ključne reči: Bozonska struna, T-dualnost, Generalisana geometrija
Naučna oblast: Fizika
Uža naučna oblast: Teorija struna
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Chapter 1

Introduction

Relation between physics and mathematics is a long and close one. Since Newton’s publication of
Philosophiæ Naturalis Principia Mathematica, the accepted paradigm was that laws of physics should
have a precise mathematical formulation. Newton’s three laws of motion formulated in Principia re-
quire only a simple calculus. Physical properties of the system, such as momentum, energy or angular
momentum, are modeled by smooth functions. It was later demonstrated that the introduction of La-
grangian in configuration space is suitable for deriving equations of motions from the principle of
minimal action. Equivalently, everything could be derived from the Hamiltonian in the phase space,
obtained as a Legendre transformation of the Lagrangian. The need for more complex mathematical
formalism grew with the expansion of knowledge of physical phenomena. In the formulation of quan-
tum mechanics, physical variables are expressed as operators on the Hilbert space, and their values are
the eigenvalues of these operators. For the formulation of general relativity, physicists incorporated
Riemannian geometry.

Classical mechanics is able to predict the motion of many different objects, from billiard balls to
rocket ships. Given the initial conditions, i.e. initial coordinates and velocities, the motion of any
object is fully determined by the action of its forces. However, when it comes to the description
of objects on very short or very large scales, classical mechanics is unable to make any meaningful
predictions. It is important to point out that these extremes in scales brought fundamental changes in
our understanding of space-time and challenged intuitive but wrong premises about the world around
us.

Quantum theory is fundamentally predicated upon different premises than classical mechanics.
For instance, Heisenberg’s uncertainty principle disproves the assumption that coordinate and veloc-
ity can be simultaneously well-defined and expressed by single values. Waves and particles are not
seen as fundamentally different phenomena, but each particle has a wave property. The energy of light
is not continuous but is divided into a finite number of chunks of energy. These ideas were necessary
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to describe real physics phenomena, like the emission of electrons when metal is hit by light. What
followed was the development of the quantum field theory, where particles arise as excitations of the
fields, and their interactions are described by the coupling of their fields. This is all well combined
into the Standard Model, which adequately describes electromagnetic, weak, and strong nuclear in-
teraction, as was confirmed with a myriad of experiments on different energy scales with very high
precision [5]. Though impressive, the Standard Model has a major limitation: it does not include
gravity.

Gravity is best described by Einstein’s general theory of relativity. It is formulated in a curved
background, and gravity arises as a consequence of the space-time geometry. Many experiments con-
firmed Einstein’s theory [6], including the light bending and time dilatation near a massive body, as
well as recent observations of gravitational waves by LIGO [7, 8]. Gravity is a weak force, 25 orders
of magnitude weaker than weak nuclear interactions, and even more times weaker than strong nuclear
and electromagnet interactions. As such, on smaller scales, its effects are usually negligible. However,
on large scales, when we are considering massive objects such as galaxies and black holes, it is the
dominant force, due to its long range, and in these situations, the general theory of relativity applies.
However, some situations do not quite fit in either of the descriptions. On very large energies, in the
interior of black holes, or in the moments right after the Big Bang, we do not have a proper argument
to rule out either relativistic or quantum effects. Therefore, it is believed that quantum mechanics and
general relativity are effective theories of a more general quantum theory of gravity.

There is almost a universal belief that the quantum theory of gravity exists. The electromagnetic
and weak interactions are unified at larger energies, and by symmetry breaking mechanism they sepa-
rate. So the argument goes that on even higher energies all interactions should be unified. Moreover,
the quantum field theory is formulated in a fixed background, while the nature of general relativity is
that space-time itself is dynamic, so a more universal theory has to exist.

However, the formulation of this unified theory turned out to be challenging. If one proceeds with
the quantization of gravity in the framework of perturbative quantum field theory, the theory is not
renormalizable by the standard renormalization techniques. Moreover, the quantum effects of grav-
ity are expected to appear at energies of 1019GeV , which are inaccessible with current accelerators,
making experimental testing of quantum gravity very difficult. It can be argued that understanding
the quantum theory of gravity will bring a better understanding of space-time and the fundamental
properties of the world around us, in the same way as quantum field theory and general relativity did.
As it was historically true, we can expect that description of the theory of quantum gravity will also
require new areas of mathematics.
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1.1 String theory
String theory [9, 10, 11] is a theoretical framework that postulates that the basic elements of Na-
ture are one-dimensional strings, rather than point particles. Unlike Standard Model, which requires
nineteen parameters to be obtained experimentally and put into theory by hand, the string theory re-
quires only one dimensionless parameter, which is the fundamental string length. The quantized string
has a discrete spectrum of vibrating modes, with different modes appearing as different particles at
distances larger than the fundamental string length. The string propagating in space-time spans the
two-dimensional world-sheet parametrized with a time-like parameter τ and space-like parameter σ,
analogous to a relativistic point particle moving along the world-line. The world-sheet can either be a
torus, in which case we have a closed string, or a strip, in which case we have an open string. In the
former case, the periodic boundary conditions are imposed on the string target space. In the latter case,
we can impose either Neumann conditions, where end-points of an open string are fixed in space, or
Dirichlet boundary conditions, where they are on a dynamical object, called D-brane. While it might
appear as having odd assumptions, there are good reasons that make string theory the candidate for
the universal description of all interactions.

First of all, one of the string vibration modes produces a massless spin 2 particle, which has never
been observed. Though initially, this led to the abandonment of the theory, in 1974 it has been shown
that such a particle obeys the Ward identities and can be interpreted as graviton [12]. Formulation
of the quantum theory of gravity is arguably the biggest challenge in contemporary physics, and the
fact that string theory predicts a consistent quantum theory of gravity makes it appealing for research.
Moreover, for one-loop corrections, the gravity emerging from string theory is renormalizable [13]. In
particle physics, Feynman diagrams are webs of world lines that juxtapose in points, which are sources
of singularities. In string theory, Feynman diagrams are two-dimensional surfaces, that intersect on
smooth areas, and as such there are no local singularities. The divergences in string gravity cancel each
other out. The fundamental string length provides a natural ultraviolet cut-off for graviton scattering
amplitudes.

The first string theory that was developed is the bosonic string theory. Besides graviton, bosonic
string theory also includes gauge bosons. It is an incomplete theory since it does not include fermions.
Moreover, it predicts the existence of tachyons, particles of negative energy. These issues are resolved
with the introduction of supersymmetry, leading to the development of superstring theory. Given that
all particles appear in the spectrum of supersymmetric strings, the superstring theory is a promising
candidate for a unified theory of all fundamental interactions. There are five different superstring
theories that are anomaly free. These are type I, IIA, IIB, heterotic SO(32) and heterotic E8 × E8.

As was the case with previous breakthroughs in theoretical physics, string theory is also enriched
with more complicated mathematical apparatus. The world-sheet poses conformal symmetry. The
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conformal invariance on the quantum level imposes the number of dimensions of space-time. In
bosonic string theory, the critical number of dimensions of space-time is twenty-six, while for the
superstring theories, it is ten. From the optimistic perspective, one can claim that this is an advantage
of string theory because the number of dimensions is predicted by the theory. From the pessimistic
perspective, we do not observe ten dimensions and this is a challenge that the theory has to resolve.

Interestingly enough, the idea that all interactions can be unified in space-time with extra dimen-
sions is older than the string theory itself. Einstein’s general relativity and Maxwell equations were
derived from gravity action in five dimensions in the works of Kaluza and Klein [14, 15]. They pro-
posed that an additional dimension is compactified on a circle. This motivated the string theorists to
consider the approach where supplementary dimensions are compactified.

1.2 T-duality
The propagation of closed strings in space-time with one dimension being compactified to a circle
led to the discovery of T-duality, a striking feature unique to string theory. It was observed that two
string theories, one with a dimension compactified on a circle with radius R and the other one with a
dimension compactified on a circle with radius proportional to 1

R
have the same mass spectrum, and

therefore are physically indistinguishable. The winding number, that is to say, the number of times a
closed string winds around a compact dimension, in one theory represents the momentum number in
its T-dual theory, and vice versa. This is a simple example of a more general string phenomenon, that
two theories can be defined on backgrounds with different geometries, or even topologies, but still,
predict the same physics.

Dualities are relations between different actions that lead to the same observable quantities that are
an integral part of the string theory. For the closed string moving in the background characterized by
constant fields, the procedure of obtaining T-dual theory was developed by Buscher [16]. The open
string with Neumann boundary conditions is T-dual to open strings with Dirichlet boundary condi-
tions. Moreover, the T-duality connects IIA and IIB superstring theories, and two types of heterotic
string theories. Together with S-duality, which connects theories with a strong and weak coupling con-
stant, T-duality connects different supersymmetric string theories with a single, eleven-dimensional
M-theory. This was observed by Witten in 1995, marking the so-called second superstring revolution.
Before that, it was unclear which superstring theory is to be preferred.

As backgrounds become more complicated, obtaining the T-dualization procedure becomes more
challenging. After T-dualization one can obtain so-called non-geometric backgrounds, where back-
ground fields are non-local. Though many advances in understanding this intriguing feature, we still do
not have the universal procedure of obtaining T-duality for string moving in the arbitrary background.
Given its importance in relating different superstring theories, a better understanding of T-duality is
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one of the string theory priorities.
The T-duality gives rise to a plethora of geometries and topologies. Therefore, its universal for-

mulation requires a general mathematical framework, which can include these different spaces. The
promising candidate for such a framework is generalized geometry. It is the geometry of the general-
ized tangent bundle, which is just a direct sum of the tangent and cotangent bundle over a manifold.
Vectors and 1-forms are combined into single objects, called generalized vectors. On the space of gen-
eralized vectors, there is a natural way to define both a symmetric and antisymmetric inner product.
The former is invariant under the O(D,D) transformations, which are transformations that govern
T-duality.

Furthermore, the generalized tangent bundle is equipped with the Courant bracket. It can be under-
stood as a generalization of the Lie bracket on the generalized tangent bundle. Unlike the Lie bracket,
the Courant bracket does not satisfy the Leibniz rule and Jacobi identity, though there are sub-bundles
on which it does satisfy both of them and can be seen as the bracket of Lie algebra. Initially, the
Courant bracket was constructed as a double of Lie bialgebroid, which is just the ordered pair of two
Lie algebroids on mutually dual vector bundles. Soon after its construction, it was observed that one of
the Lie algebroids can be twisted by an exact 3-form, and a twisted Courant bracket was obtained. Sub-
sequently, Roytenberg showed that both Lie algebroids can be twisted, and constructed what is known
as the Roytenberg bracket. The additional terms that appeared due to twisting can be interpreted as
string theory fluxes.

Fluxes in string theory appear among others in the context of background compactification [17,
18, 19], and generalized geometry [20, 21, 22]. The vacuum in the compactification background is
degenerated. Different possible configurations are parametrized by moduli, that appear as massless
scalar fields in the lower dimensional theory. These fields are problematic from a phenomenological
point of view since they would carry long-range interactions that are unphysical. The problem can be
resolved by introducing fluxes to the background [23, 24, 25]. The fluxes generate the potential that
stabilizes the vacuum expectation value and gives mass to moduli.

1.3 Overview of the thesis
In this dissertation, we explore symmetries of bosonic string theory and their relations with T-duality
in the formalism of generalized geometry. The generator of both diffeomorphisms and local gauge
transformations is constructed and expressed as anO(D,D) invariant inner product of two generalized
vectors. In the same way that the Poisson bracket algebra of generators of diffeomorphism gives rise
to the Lie bracket, the algebra of the extended generators gives rise to the Courant bracket. Taking into
account the T-duality relation between two string symmetries, we interpret the Courant bracket as the
T-dual extension of the Lie bracket [1].

6



We then develop a simple procedure for twisting the Courant bracket with any O(D,D) transfor-
mation, allowing us to obtain Courant brackets deformed with different fluxes. The crux of this method
consists of expressing the generator in the basis of non-canonical currents, which are connected with
canonical variables via theO(D,D) transformation. We show that the Poisson bracket algebra of gen-
erators in the basis of currents closes on the appropriate twisted Courant bracket. We prove that there
is a natural way to define a Courant algebroid using these twisted Courant brackets. We provide many
examples of O(D,D) transformations and their corresponding twisted Courant brackets, including
the B-twisted Courant bracket and the θ-twisted Courant bracket. The B-twisted Courant bracket is
characterized by H flux appearing in the algebra of currents, while the θ-twisted Courant bracket is
characterized by the so-called non-geometric Q and R fluxes. It has been shown that these brackets
are mutually T-dual [2].

In addition, we construct the generator that produces the Courant bracket twisted simultaneously
byB and θ in its Poisson bracket algebra. This generator is expressed in terms of currents that contain
all string fluxes in their Poisson bracket relations. Moreover, we show that the Courant bracket twisted
simultaneously by B and θ is invariant under the T-duality [3]. We also demonstrate that all fluxes
can exist on the Dirac structures associated with the Courant algebroid for this bracket, without any
restrictions imposed on fluxes.

In the end, results are generalized to a double theory, in which variables depend on both initial and
T-dual coordinates. The algebra of generators that include both initial and T-dual diffeomorphisms
closes on the double field extension of the Courant bracket called C-bracket. Following the same pro-
cedure as in the single theory, we obtained theB-twisted and θ-twistedC-brackets [4]. We demonstrate
that by projecting the twisted C-brackets to the initial and T-dual phase spaces, the mutually T-dual
twisted Courant brackets are obtained.
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Chapter 2

Action for bosonic string

In this chapter, we will give a brief overview of the action for a relativistic particle, after which we will
by analogy, construct the first action for a bosonic string. We will then provide a non-linear σ-model,
that describes propagation of the closed bosonic string in coordinately dependent background fields.

2.1 Relativistic particle
Let us first consider a relativistic free particle, moving in a curved D-dimensional background. The
movement of the particle sweeps the one-dimensional world-line parametrized with a time-like pa-
rameter τ . The action of a relativistic particle is proportional to the invariant length of its trajectory

S0 = m

∫ √
Gµν ẋµẋνdτ , (2.1)

where Gµν is the metric of the background, xµ represent the coordinates of the particle, and ẋµ their
derivatives with respect to τ . The proportionality constantm is obtained from the dimensional analysis
and represents the mass of the particle. Under the reparametrization of the world-line τ ′ = f(τ) we
have

ẋµ =
∂xµ

∂τ ′
∂τ ′

∂τ
= ḟ

∂xµ

∂τ ′
, dτ ′ = ḟdτ , (2.2)

and therefore the action (2.1) remains invariant under the reparametrization of the world-line.
We are not quite satisfied with the action that features the square root, because it is impossible

to quantize it by Fenyman’s path integral formalism. Recall that in this formalism, the quantum me-
chanical propagator is obtained by integrating over different contributions of all paths in configuration
space, with weights being expressed as e−iS

h̄ . We can avoid integrating over square root by using an-
other linear action that is equivalent to the action (2.1) on the classical level. With the introduction of
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an independent auxiliary field e(τ) on the world-line, we define the action

S =
1

2

∫
dτ
(1
e
Gµν ẋ

µẋν +m2e
)
. (2.3)

The variation of the action along e produces the equations of motions

e =
1

m

√
Gµν ẋµẋν , (2.4)

on which the action (2.3) becomes (2.1). The variation of action along the coordinates xµ provides the
well-known equation of motion for a free relativistic particle along the geodesic, given by

ẍµ + Γµ
νρẋ

ν ẋρ = 0 , (2.5)

where Γρ
µν are Christoffel symbols, given by

Γρ
µν =

1

2
(G−1)ρσ

(
∂µGνσ + ∂νGµσ − ∂σGµν

)
. (2.6)

In case of a relativistic particle moving in the electromagnetic field, one should add the interacting
term to the action

Sint =

∫
dτqAµẋ

µ , (2.7)

where q is the electric charge of the particle, while Aµ is the vector potential. The action (2.7) is
invariant under gauge transformations

Aµ → Aµ + ∂µλ , (2.8)

due to ∫
dτq∂µλẋ

µ =

∫
dτqλ̇ = 0 . (2.9)

2.2 Action for non-interacting string
Now consider a one-dimensional string and suppose we want to introduce its action by analogy with
the relativistic particle. In the same way that the particle sweeps the world-line, a string sweeps the
world-sheet. The Nambu-Goto action [26] that describes the string is proportional to the area of the
worldsheet. It is given by

SNG = κ

∫
Σ

d2ξ

√
−det

(
∂αxµ∂βxνGµν

)
, d2ξ = dσdτ , (2.10)
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where κ = 1
2πl2s

, with ls being the string length scale. It is the only parameter in string theory. The
string is moving in aD-dimensional space-time characterized with a constant metricGµν , where µ, ν
are the coordinates of the space-time µ, ν ∈ 0, 1, ..., D− 1. The indices α, β = 0, 1 are coordinates
on the world-sheet Σ, parametrized with one time-like parameter ξ0 = τ and one space-like parameter
ξ1 = σ. For closed strings, the topology of world-sheet is a torus R× S1, where −∞ ≤ τ ≤ ∞ and
0 ≤ σ < 2π.

Obviously, the same problem as with the action for relativistic particle (2.1) persists - the Nambu-
Goto action cannot be quantized with the Feynman path integral procedure due to its nonlinearity. In
an analogous way, it is possible to introduce the world-sheet metric gαβ and construct the Polyakov
action

SP =
κ

2

∫
d2σ

√
−g gαβGµν∂αx

µ∂βx
ν , (2.11)

where gαβ is the inverse of the world-sheet metric gαγgγβ = δαβ , and g is determinant of the world-sheet
metric g = detgαβ . The Polyakov action is invariant under the global Poincaré transformations

xµ′(ξ) = Λµ
νx

ν(ξ) + aµ , g′αβ = gαβ , (2.12)

where aµ are translation parameters, and Λµ
ν are Lorentz transformations that satisfy ΛTηΛ = η,

for the Minkowski metric η. Additionally, the action is invariant under the reparametrization of the
world-sheet

ξα → ξα′(ξ) , xµ′(ξ′) = xµ(ξ) , g′αβ(ξ
′) =

∂ξγ

∂ξ′α
∂ξδ

∂ξ′β
gγδ , (2.13)

as well as under the Weyl transformations

g′αβ(ξ) = eϕ(ξ)gαβ(ξ) , xµ′(ξ) = xµ(ξ) . (2.14)

Reparametrization and Weyl transformations are local transformations and can be used to choose the
gauge. The theory invariant under the Weyl transformations is said to be conformally invariant. The
string theory is therefore the conformal field theory.

The variation of the Polyakov action (2.11) with respect to the worldsheet metric gives rise to the
equations of motions, on which the Nambu-Goto action (2.10) is obtained. To demonstrate this, we
will find useful the following relations

δg = −ggαβδgαβ , δ
√
−g = −1

2

√
−ggαβδgαβ , (2.15)

so that we can obtain the equations of motions by varying the Polyakov action with respect to the
worldsheet metric δSP

δgαβ

∂αx
µ∂βx

νGµν −
1

2
gαβg

γδ∂γx
µ∂δx

νGµν = 0 . (2.16)
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Its solution is in the form
gαβ = λ ∂αx

µ∂βx
νGµν , (2.17)

where λ is an arbitrary scalar, due to Weyl symmetry (2.14). Substituting (2.17) into the Polyakov
action (2.11), one obtains the Nambu-Goto action (2.10). The second set of equations of motion is
obtained from the action variation with respect to xµ, in which case the wave equations are obtained

∂α∂αx
µ = ẍµ − x′′µ = 0 . (2.18)

If we introduce the light-cone coordinates by

ξ± = τ ± σ , ∂± =
1

2
(∂τ ± ∂σ) , (2.19)

the equation of motion (2.18) can be rewritten as

∂+∂−x
µ = 0 . (2.20)

Now its general solution will have a decomposition to the left-movers xµL and right-movers xµR

xµ = xµL(ξ+) + xµR(ξ−) , (2.21)

which can be expanded in modes by

xµL =
1

2
xµ0 +

1

2
l2sp

µ(τ + σ) + i
ls
2

∑
n̸=0

1

n
αµ
ne

−2in(τ+σ) (2.22)

xµR =
1

2
xµ0 +

1

2
l2sp

µ(τ − σ) + i
ls
2

∑
n̸=0

1

n
α̃µ
ne

−2in(τ−σ) ,

where xµ0 is the center of mass position of a string, and pµ is total string momentum. The exponential
terms represent the string excitation modes, and αµ

n and α̃µ
n its coefficients.

2.3 Bosonic string σ-model
The Polyakov action can be quantized, in which case oscillatory modes αµ

n and α̃µ
n are promoted to op-

erators that satisfy the harmonic oscillator algebra relations, so that they can be interpreted as creation
and annihilation operators. The ground state is defined as the state annihilated by annihilation oper-
ators. Bosonic string theory also predicts the existence of negative norm states, which are removed
in case of strings moving in 26-dimensional space-time. This is what we call a critical bosonic string
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theory 1. In this case, the first excited state gives a set of 242 = 576 of the states that correspond
to the tensor products of two SO(24) representations. It includes the symmetric traceless part, the
antisymmetric part, and the trace.

The symmetric traceless part transforms as a massless particle of spin 2, and for that reason the
background field corresponding to it is space-time metric Gµν . The antisymmetric part is represented
by the Kalb-Ramond field Bµν , and the trace is represented with the scalar dilaton field Φ. The string
σ-model is described by the following action:

S = κ

∫
Σ

d2ξ
[1
2

√
−ggαβGµν(x)∂αx

µ∂βx
ν + ϵαβBµν(x)∂αx

µ∂βx
ν +

π

κ

√
−gΦ(x)R(2)

]
, (2.23)

where ϵαβ is the antisymmetric tensor density, with ϵ01 = 1, and R(2) is the scalar curvature of the
world-sheet metric g, given by

R(2) = gµνR
µν , Rµν = Rρ

µρν , Rρ
µσν = ∂σΓ

ρ
µν − ∂νΓ

ρ
µσ + Γτ

µνΓ
ρ
τσ − Γτ

µσΓ
ρ
τν , (2.24)

whereΓρ
µν are Christoffel symbols (2.6) of the world-sheet metric g. The coupling of the string with the

metric tensor is the same as in the case of Polyakov action. The Kalb-Ramond field is analogous to the
potential Aµ, and hence this term can be seen as the interacting term. The dilaton is a quantum effect,
that is added to preserve the conformal invariance on the quantum level. The conformal invariance on
the quantum level results in the space-time equations of motion for the background fields, that to the
lowest order in slope parameter α′ = 2π

κ
are [29]

Rµν −
1

4
BµρσB

ρσ
ν + 2DµDνΦ = 0 , (2.25)

DρB
ρ
µν − 2DρΦB

ρ
µν = 0 , (2.26)

4(DΦ)2 − 4DµD
µΦ +

1

12
BµνρB

µνρ −R = 0 , (2.27)

where Bµνρ is the Kalb-Ramond field strength, given by

Bµνρ = ∂µBνρ + ∂νBρµ + ∂ρBµν , (2.28)

R and Rµν are respectively the Ricci scalar and Ricci tensor (2.24) of the space-time metric Gµν , and
by Dµ we have marked the covariant derivative, which acts on a vector field Vµ by

DµVν = ∂µVν − Γσ
µνVσ , (2.29)

1It is possible to define non-critical bosonic string theory in a space-time with dimensions D < 26, provided that an
appropriate Liouville term is added to the action. This results in a Liouville field theory that is not linear and does not
possess the Weyl invariance but is classically integrable. For reviews of the Liouville field theory, see [27, 28].
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which is easily generalized to the terms appearing in the equations of motions

DµDνΦ = ∂µDνΦ− Γσ
µνDσΦ , (2.30)

DµB
ν
ρσ = ∂µB

ν
ρσ + Γν

µτB
τ
ρσ − Γτ

µρB
ν
τσ − Γτ

µσB
ν
ρτ .

The conformal symmetry allows us to chose the conformal gauge gαβ = e2φηαβ , where ηαβ is a
flat Minkowski metric. Furthermore, if we do not take into account quantum effects, the dilaton field
can be taken to be zero, in which case the action simplifies to

S =

∫
Σ

d2ξL = κ

∫
Σ

d2ξ
(1
2
ηαβGµν + ϵαβBµν

)
∂αx

µ∂βx
ν , (2.31)

which in the light-cone coordinates becomes

S = κ

∫
dξ2∂+x

µΠ+µν∂−x
ν , (2.32)

where Π±µν fields are given by

Π±µν = Bµν ±
1

2
Gµν . (2.33)

The action in the form (2.31) will mostly be used in this thesis. The symmetries of this action will be
analyzed in detail.

2.4 Canonical Hamiltonian
We finish this chapter with the derivation of the canonical Hamiltonian for string σ-model. The canon-
ical momenta corresponding to the coordinate xµ are obtained from variation of the Lagrangian (2.31)
with respect to coordinate time derivative

πµ =
∂L
∂ẋµ

= κGµν ẋ
ν − 2κBµνx

′ν . (2.34)

The canonical Hamiltonian is the Legendre transformation of the Lagrangian

HC = πµẋ
µ − L =

1

2κ
πµ(G

−1)µνπν +
κ

2
x′µGE

µνx
′ν − 2x′µBµρ(G

−1)ρνπν , (2.35)

where GE is the effective metric, given by

Gµν
E = Gµν − 4(BG−1B)µν . (2.36)

The effective metric is the open string metric. From the symmetric properties of the background fields
B and G, one easily shows that the effective metric is symmetric.

13



Often we will find convenient to express the Hamiltonian in matrix notation

HC =
1

2κ
(XT )MHMNX

N , (2.37)

where HMN is the generalized metric, given by

HMN =

(
GE

µν 2(BG−1) ν
µ

−2(G−1B)µν (G−1)µν

)
, (2.38)

and

XM =

(
κx′µ

πµ

)
. (2.39)

The indexM can take values from 0 to 2D− 1, and includes both covariant and contravariant indices.
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Chapter 3

T-duality

Dualities are well known to appear in physics. There is a unique form of duality that appears in string
theory and relates theories formulated in different geometries or topologies, called T-duality. In this
chapter, we will start with the presentation of the first emergence of T-duality, in the case of a string
moving in a background with one dimension compactified to a circle. Next, we will show how to obtain
the T-dual theory from the initial one by means of the Buscher procedure. Lastly, we will comment
on how the procedure can be generalized and what are the other important features of T-duality.

3.1 First appearance of T-duality
The most well-known example where T-duality emerges is a closed bosonic string in the space-time
with one dimension compactified to a circle of radius R. In that case, the space-time is the tensor
product of Minkowski space-time and a circle R1,24 × S1. The compactification on a circle has a
couple of peculiar consequences. Firstly, the generator of translation by a along the dimension x25
is proportional to the factor eip25a. The translation by 2πR should by design be the identity operator
eip25·2πR = 1, from which we obtain

p25 =
n

R
, n ∈ Z , (3.1)

where n are integers known as momentum numbers. Secondly, the string can wind around the compact
dimension, which we can express by

x25(σ + 2π) = x25(σ) + 2πmR , m ∈ Z , (3.2)

where m is the winding number, equals the number of times the string winds around the compact
dimension. The mass spectrum of particles can be obtained in the form

M2 =
n2

R2
+
m2R2

l4s
. (3.3)
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The spectrum remains invariant under the exchange of winding numbers m and momentum numbers
n, provided that one makes the transformation R ↔ l2s

R
.

The closed string moving on a dimension compactified on a radius R has the indistinguishable
physics from the string moving on a dimension compactified on a radius l2s

R
. Though two strings would

be described by different actions, the observable quantities would be the same. Moreover, the self
T-dual radius R = ls can be seen as the critical, or minimal radius. All theories with a dimension
compactified on radii lower than the critical one are in fact T-dual to theories with a dimension com-
pactified on a larger one.

In the case of a large radius R → ∞, winding modes become very heavy and hence require a lot
of energy to be created. As such, they become irrelevant for the dynamics of a string. The momentum
modes become very light, and the differences between two modes l2s

R
becomes very small, effectively

meaning that momenta are continuous. The large radius limit R → ∞ describes a string with no
winding and continuous momenta along that dimension, which is equivalent to that dimension being
effectively non-compactified. In its corresponding T-dual radius R → 0, we have the opposite case.
The momentum modes are very heavy, but the winding modes are very light and basically make the
continuum.

3.2 Buscher procedure
The Buscher procedure is the first formal method of obtaining T-dual theory from the closed string
σ-model. The procedure requires a shift of coordinate

δxµ = λµ = const , (3.4)

to be a global symmetry of the action (2.31), which corresponds to the case of constant background
fields

Bµν = const , Gµν = const . (3.5)

The first step in the procedure is a localization of the global symmetry. The partial derivative is
replaced with the covariant derivative

∂αx
µ → Dαx

µ = ∂αx
µ + vµα , (3.6)

where vµα are gauge fields. We will require the covariant derivatives to be gauge invariant

δDαx
µ = 0 , (3.7)

from which we can easily read the transformation laws for the gauge fields

δvµα = −∂αλµ . (3.8)
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Since the gauge fields are not physical, we will demand that their field strength is zero

F µ
αβ = ∂αv

µ
β − ∂βv

µ
α = 0 . (3.9)

This condition can be assured by adding the appropriate term with the Lagrangian multiplier yµ to the
action (2.31). The gauge action invariant under the localized symmetries is then given by

Sloc(x, y, v) = κ

∫
d2ξ
[
(
ηαβ

2
Gµν + ϵαβBµν)Dαx

µDβx
ν +

1

2
yµϵ

αβF µ
αβ

]
. (3.10)

In the second step, we will fix the gauge by demanding xµ(ξ) = xµ(ξ0), so the gauge fixed action
is

Sfix(y, v) = κ

∫
d2ξ
[
(
ηαβ

2
Gµν + ϵαβBµν)v

µ
αv

ν
β +

1

2
yµϵ

αβF µ
αβ

]
, (3.11)

or in the light-cone coordinates (2.19)

Sfix(y, v) = κ

∫
d2ξ
[
vµ+Π+µνv

ν
− +

1

2
yµ(∂+v

µ
− − ∂−v

µ
+)
]
. (3.12)

Equations of motions can be obtained from the variation principle. By varying with respect to the
Lagrange multiplier yµ, one obtains the condition (3.9), as required. Its solution is

vµ± = ∂±x
µ , (3.13)

which when substituted in the gauge fixed action (3.12) gives rise to the initial action (2.32). On the
other hand, the variation with respect to the gauge field produces another set of equations of motions

∂±yµ + 2Π∓µνv
ν
± = 0 . (3.14)

To find their solution, we introduce another set of fields by

Θµν
± = θµν ∓ 1

κ
(G−1

E )µν , (3.15)

where θµν is the non-commutativity parameter, given by

θµν = −2

κ
(G−1

E BG−1)µν , (3.16)

and G−1
E is the inverse of the effective metric (2.36). The non-commutativity parameter appears in

non-commutative relations on the open string endpoints, in the presence of non-zero Kalb-Ramond
field [30]. It is an antisymmetric tensor, while the inverse of the effective metric is symmetric, so one
easily proves that

Θµν
± = −Θνµ

∓ , (3.17)
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and moreover that
Π±µρΘ

ρν
∓ =

1

2κ
δνµ . (3.18)

We can multiply the equation of motion (3.14) with Θ± and obtain its solution

vµ± = −κΘµν
± ∂±yν . (3.19)

When substituted (3.19) in the gauge fixed action, the T-dual action is obtained

⋆S(y) =

∫
dξ2⋆L = κ

∫
dξ2∂+yµ

⋆Πµν
+ ∂−yν ,

⋆Πµν
+ =

κ

2
Θµν

− , (3.20)

where yµ is the T-dual coordinate, and the T-dual fields are given by

⋆Gµν = (G−1
E )µν , ⋆Bµν =

κ

2
θµν . (3.21)

By comparing (3.13) and (3.18), one obtains the T-duality relations between the coordinates

∂±x
µ ≃ −κΘµν

± ∂±yν , (3.22)

or

ẋµ ≃ −κθµν ẏν + (G−1
E )µνy′ν , (3.23)

x′µ ≃ (G−1
E )µν ẏν − κθµνy′ν .

When these transformations are applied to the coordinates in the initial Lagrangian, the T-dual La-
grangian is obtained, i.e.

κ∂+x
µΠ+µν∂−x

ν ≃ κ3Θµρ
+ ∂+yρΠ+µνΘ

νσ
− ∂−yσ = −κ3∂+yρΘρµ

− Π+µνΘ
νσ
− ∂−yσ (3.24)

= −κ
2

2
∂+yρΘ

ρσ
− ∂−yσ .

The Buscher procedure can be applied to the T-dual action (3.20) as well. We will not go into
details, as the procedure is exactly the same as when it is applied to the initial action. The T-duality
transformation laws on the T-dual coordinates are given by [16]

∂±yµ ≃ −2Π∓µν∂±x
ν . (3.25)

When these relations are applied to the T-dual action (3.20), the initial action is obtained (2.32).
The T-duality relations are as easily expressed in Hamiltonian formalism. The variation of the

T-dual Lagrangian with respect to the T-dual coordinate τ -derivative is equal to the T-dual canonical
momentum

⋆πµ =
∂ ⋆L
∂ẏµ

= κ(G−1
E )µν ẏν − κ2θµνy′ν . (3.26)
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Therefore, in terms of the canonical variables, T-dual relations (3.23) are

πµ ≃ κy′µ , κx′µ ≃ ⋆πµ . (3.27)

The T-duality transforms momenta into σ-derivatives of the T-dual coordinates, and vice versa. To
give a further interpretation of these relations, we notice that the integrals of the canonical momenta
produce the momentum numbers P µ, and the integrals of the σ-derivatives of the coordinates along
compact dimension produce the winding numbers W µ

P µ =

∫
dσπµ , W µ =

∫
dσκx′µ . (3.28)

The Buscher procedure demonstrates that the winding numbers of the initial theory are the momenta
in its T-dual theory, and vice versa.

3.3 Beyond Buscher procedure
Due to its requirement for global shift symmetry, the Buscher procedure cannot be applied in the
majority of cases. Let us consider a so-called weakly curved background, characterized by the con-
stant metric field Gµν = const and the Kalb-Ramond field only linearly dependent on coordinate
Bµν = bµν + 1

3
Bµνρx

ρ , bµν = const. If the field strength Bµνρ is taken to be infinitesimal and
its higher orders are neglected, it is straightforward to demonstrate the fields in weakly curved back-
ground satisfy equations of motion (2.25) - (2.27). In this case, it is possible to construct the adapted
Buscher procedure [31]. One introduces the gauge fields vµα and replaces the partial derivatives with
the covariant ones. This is insufficient, because the Kalb-Ramond field B depends on xµ, and the
coordinate xµ itself is not locally gauge invariant. This obstacle can be overcome by replacing the
coordinate with the line integral

V µ =

∫
P

dξαvµα =

∫
P

(dξ+vµ+ + dξ−vµ−) , (3.29)

where the integration is done along the path from the initial point ξα0 (τ0, σ0) to the final one ξα(τ, σ).
With this change in mind, one can follow Buscher’s ideas. On the equations of motions related to
the Lagrangian multiplier, the initial theory is obtained. On the equations of motions for the gauge
fields vµα, the T-dual theory is obtained. The background fields in the T-dual theory depend on the line
integral of T-dual coordinate yµ. The line integral is a non-local object, and we say that this theory is
non-geometric. The situation becomes even more complicated when other backgrounds are included,
where the metric also depends on coordinates [32].
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3.4 T-duality in superstring theories
Even though this thesis is primarily focused on bosonic strings, we are going to briefly touch on the
importance of T-duality in superstring theories. The bosonic string theory is incomplete because it
does not include fermions. They can be added to the theory with the introduction of supersymmetry.
We can require that the theory is either supersymmetric on the world-sheet, in which case we obtain the
Ramond-Neveu-Schwarz (RNS) strings, or that the theory is supersymmetric in the ten-dimensional
Minkowski space-time, in which case we obtain the Green-Schwarz (GS) strings.

The RNS formalism [33, 34] relies on adding the standard Dirac action for D massless fermions.
The action is invariant under the N = 2 supersymmetry group. The left and right moving ground
fermionic states can be chosen to have the same or the opposite chirality. The former case corresponds
to the type IIA superstring theory, while the latter case corresponds to the type IIB superstring theory.
These two superstring theories contain only closed strings.

The supersymmetric theory that contains both open and closed strings can be constructed with the
help of GS mechanism [35, 36, 37], where the action is constructed by requiring the manifest Poincaré
supersymmetry. This action can be only invariant under N = 1 supersymmetry, in which case we
obtain type I superstring theory.

Heterotic string theories [38] can be constructed by combining the left movers of the 26-dimensional
bosonic string theory, with the right movers of the ten-dimensional superstring theory. The spectrum
contains Yang-Mills multiplets that are either based on SO(32) or E8 × E8 gauge symmetry.

The fact that we are able to construct five different but self-consistent superstring theories was
initially seen as a weakness of string theory since there was no obvious choice of which one should be
preferable. However, these theories are mutually related by dualities. Specifically, T-duality connects
IIA and IIB superstring theories [39, 40], and also two heterotic string theories [41, 42, 43].

Apart from T-duality, different superstring theories can also be related via S-duality. It is a duality
between theories that have different coupling constants. Type I superstring theory with a coupling
constant g is S-dual to the SO(32) heterotic string theory with coupling constant 1

g
[44]. Moreover,

type IIB superstring theory is invariant under S-duality.
In 1995, Edward Witten suggested that all superstring theories could be related with dualities to an

eleven-dimensional M -theory. The M -theory has not been formulated on all orders of perturbations,
but its effective low-energy action is an eleven-dimensional theory of supergravity. Type IIA super-
string theory in strong coupling is equivalent to an eleven-dimensional supergravity theory with one
dimension compactified on T 1 [44]. Similarly, E8 × E8 heterotic string theory with strong coupling
constant g becomes M-theory compactified to a Z2 orbifold of the circle [45, 46]. These observa-
tions make strong arguments for the existence of theM -theory which is connected with all superstring
theories by a web of dualities.
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So far, there is no universal description of T-duality that can be applied to an arbitrary string field
configuration. The intricate geometric and non-geometric spaces that can be related via T-duality
necessitate a novel mathematical framework to be able to accommodate them. In the next part, we
will introduce the reader to the basic elements of generalized geometry, which appears to come with
a suitable apparatus for describing T-duality and other relevant string phenomena.
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Part II

Generalized geometry
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Chapter 4

Differential geometry

This chapter begins with definitions of fundamental geometric terms that will be used throughout the
thesis. We introduce vectors, the Lie derivative of a vector field, and define the Lie bracket. Next,
we define differential forms, together with the exterior derivative and the interior product. Finally, we
extend the definition of Lie bracket to multi-vectors by introducing the Schouten-Nijenhuis bracket.

4.1 Tangent and cotangent bundle
We start with the definition of a manifold:

Definition 1 (Manifold)
A n-dimensional smooth manifold is a Hausdorff 1 topological space M such that:

• For each point p ∈ M there is an open neighborhood Uα that is homeomorphic to Rn, i.e. there
is a smooth map ϕα : Uα → Rn. The ordered pairs Uα, ϕα are called charts, and the collection
of charts covering all topological space is called atlas.

• For each two non-disjoint neighborhoods Uα and Uβ , transition maps on their intersections
ϕαβ = ϕβ ◦ ϕ−1

α : ϕα(Uα ∩ Uβ) → ϕβ(Uα ∩ Uβ) are smooth maps.

This means that locally n-dimensional manifold resembles the n-dimensional Euclidean space, and
that in each chart a local coordinate system is defined. The resemblance with Rn manifests in the
ability to use the calculus techniques on manifolds.

1Hausdorff topological space is a topological space where for any two distinct points, there exists neighborhoods of
each which are disjoint from each other.
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Definition 2 (Tangent vector)
Let M be a smooth n-dimensional manifold. Given a point p on it, let FpM be the family of real

valued smooth functions on M. A function ξ : FpM → R is called the tangent vector ξ at p ∈ M if
it satisfies:

• ξ is linear - ξ(af + bg) = aξ(f) + bξ(g) , for f, g ∈ FpM , and for a, b ∈ R ,

• ξ satisfies Leibniz property - ξ(fg) = ξ(f)g + fξ(g) , for f, g ∈ FpM.

If we chose a chart at p with coordinates xµ, the vector field in point p can be represented in the
basis of partial derivatives ξ = ξµ∂µ. If there is no global covering of the manifold, i.e. if it cannot
be covered by a single chart, then it is not possible to define partial derivatives globally. The set of all
tangent vectors at a point p forms a vector space.

Definition 3 (Tangent space)
The set TpM of all tangent vectors through a point p is called the tangent space of M at p.

Intuitively, we can associate a n-dimensional Euclidean vector space to each point of a manifold.
This is by no means sufficient to describe all physical phenomena. For example, there are internal
degrees of freedom, that are associated to each point on the space-time, and as such we would like
to have generalizations of manifolds, such that to each point on a manifold we can attribute another
manifold. To achieve this, let us define the fiber bundle.

Definition 4 (Fiber bundle)
A bundle is a triple

(
V, π, M

)
consisting of a base manifold M, a total manifold V and a

surjective map π : V → M called projection. The inverse image π−1(p) is the fiber over p, for
p ∈ M. If fibers over all points on the base manifold are homeomorphic to a space F , the triple(
V, π, M

)
is said to be a fiber bundle, with F being a fiber.

The physical fields are usually represented as functions that depend on specific points on manifolds,
and appear as sections.

Definition 5 (Section)
A section of a bundle

(
V, π, M

)
is a map σ : M → V such that the image of each point p ∈ M

lies in the fiber π−1(p) over p, i.e. π ◦ σ = Id, where Id is an identity operator on the base manifold.

The first example of a fiber bundle can simply be obtained as the disjoint union of the tangent
spaces of a manifold M. This way, we obtain the tangent bundle, which we define below.
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Definition 6 (Tangent bundle)
The tangent bundle is a triple

(
TM, π, M

)
, where TM is the disjoint union of the tangent

spaces of a base manifold M, and the projection π is trivial projection π : TpM → p.

The fibers of the tangent bundle are the tangent spaces TpM. Its section is some function that will
take some point p on the manifold as a domain and map it to the fiber TpM. Therefore, we conclude
that vector fields are elements of the smooth section of the tangent bundle.

The tangent bundle is also a smooth manifold, so we can define the higher order tangent bundles
by T nM = T (T n−1M). Their sections’ elements are antisymmetric multi-vectors.

We also define the cotangent space and cotangent bundle:

Definition 7 (Cotangent bundle)
The cotangent space T ⋆

pM to a smooth manifold M at the point p is the dual space of the tangent
space TpM. The disjoint union of cotangent spaces to the manifold is the cotangent bundle T ⋆M.

The elements of the smooth section of the cotangent bundle are differential 1-forms. In some local
chart, 1-forms can be written in the basis of coordinate differentials, i.e. λ = λµdx

µ.
The cotangent bundle is also a manifold, so higher order of cotangent bundles are defined as the

cotangent bundles of the cotangent bundles, i.e.
∧p T ⋆M = T ⋆

∧p−1 T ⋆M. The elements of their
sections are differential p-forms ω - totally antisymmetric tensors of type (0, p), which in some coor-
dinate basis can be expressed by

ω =
1

p!
ωµ1...µpdx

µ1 ∧ ... ∧ dxµp , (4.1)

where ∧ denotes the wedge product ∧ :
∧p T ⋆M ×

∧q T ⋆M →
∧p+q T ⋆M, which is totally anti-

symmetric, e.g. dxµ ∧ dxν = −dxν ∧ dxµ.

4.2 Lie derivative
Lie derivative represents the coordinate invariant evaluation of the change of a tensor field along the
flow defined by a vector field. There are multiple equivalent ways to define a Lie derivative. We
present the so-called classical definition:

Definition 8 (Lie derivative)
Let T be a tensor field of type (p, q) (i.e. contravariant of order p and covariant of order q) defined

over a manifold M. The Lie derivative of the tensor field T with respect to the vector field ξ is another
tensor field LξT of type (p, q) with components

LξT
µ1µ2...µp
ν1ν2...νq

= ξρ∂ρT
µ1µ2...µp
ν1ν2...νq

−
p∑

i=0

T µ1...ρµ̂i...µp
ν1ν2...νq

∂ρξ
µi +

q∑
i=1

T
µ1...µp

ν1...ρν̂i...νq
∂νiξ

ρ , (4.2)
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where ν̂i denotes omission of such index, e.g. T µ1µ2...µp

ν1...ρν̂q
∂νqξ

ρ = T
µ1µ2...µp
ν1ν2...ρ ∂νqξ

ρ

We will now provide explicit expressions for the action of the Lie derivative on the tensors that we
will encounter most frequently. Lie derivative of a function is defined as the directional derivative of
a function

Lξf = ξµ∂µf . (4.3)

The Lie derivative of a vector field produces another vector field, that is known as the Lie bracket,
defined by

[ξ1, ξ2]Lf = (Lξ1ξ2)f = Lξ1(Lξ2f)− Lξ2(Lξ1f) , (4.4)

or in local coordinate basis by (
[ξ1, ξ2]L

)µ
= ξν1∂νξ

µ
2 − ξν2∂νξ

µ
1 . (4.5)

The Lie bracket satisfies the Leibniz rule

[ξ1, fξ2]L = f [ξ1, ξ2]L + (Lξ1f) ξ2 , (4.6)

and the Jacobi identity

[ξ1, [ξ2, ξ3]L]L + [ξ2, [ξ3, ξ1]L]L + [ξ3, [ξ1, ξ2]L]L = 0 . (4.7)

We can use the Lie derivative properties in order to obtain the action of Lie derivative on the 1-
forms. There is a way to obtain a scalar from a vector ξ with a 1-form λ using the contraction defined
by λ(ξ) = λµξ

µ. From the fact that Lie derivative satisfies the Leibniz rule, we write

Lξ1(λ(ξ2)) = (Lξ1λ)ξ2 + λ(Lξ1ξ2) = (Lξ1λ)µξ
µ
2 + λµ

(
ξν1∂νξ

µ
2 − ξν2∂νξ

µ
1

)
. (4.8)

On the other hand, λ(ξ2) is a scalar, and using (4.3) we obtain

Lξ1(λ(ξ2)) = ξµ1 ∂µ(λνξ
ν
2 ) = ξµ1 ∂µλνξ

ν
2 + ξµ1λν∂µξ

ν
2 . (4.9)

By comparing the relations (4.8) and (4.9), we obtain the action of the Lie derivative on 1-form ex-
pressed in some coordinate basis by(

Lξ1λ
)
µ
= ξν1 (∂νλµ − ∂µλν) . (4.10)
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4.3 Exterior algebra of differential forms
Differential p-forms (4.1) are part of the smooth section of

∧p TM. The antisymmetric wedge product
∧ defines exterior algebra between differential forms, equipped with natural grading related to the
degree of differential forms. It is often convenient working with the exterior derivative and interior
product, which we define below.

Definition 9 (Exterior derivative)
The exterior derivative of a p-form λ is a p+ 1 -form dλ, such that

dλ(ξ0, ..., ξp) =

p∑
i=0

(−1)iLξi

(
λ(ξ0, ..., ξ̂i, ..., ξp)

)
(4.11)

+
∑
i<j

(−1)i+jλ([ξi, ξj]L, ξ0, ..., ξ̂i, ..., ξ̂j, ..., ξp) ,

where dλ(ξ0, ..., ξp) stands for the contraction of a p + 1 -form dλ with p + 1 vectors ξ0...ξp, and ξ̂i
denotes the omission of ξi in such contractions.

The exterior derivative extends the notion of the differential of the function to differential forms of
degree p. It is the antiderivation of degree 1 on the graded algebra of differential forms

∧p T ⋆M →∧p+1 T ⋆M that is also nilpotent, i.e.
d(dλ) = 0 , (4.12)

for any p-form λ, and it satisfies the graded Leibniz identity

d(λ1 ∧ λ2) = dλ1 ∧ λ2 + (−1)pλ1 ∧ dλ2 , (4.13)

where λ1, λ2 are a p-form and a q-form, respectively.

Definition 10 (Interior product)
The interior product iξ :

∧p T ⋆M →
∧p−1 T ⋆M is defined to be the contraction of a differential

form with a vector field ξ by

(iξλ)(ξ1, ξ2, ..., ξp−1) = λ(ξ, ξ1, ξ2, ..., ξp−1) . (4.14)

The interior product reduces the degree of a differential form by one, and also satisfies the graded
Leibniz identity

iξ(λ1 ∧ λ2) = iξλ1 ∧ λ2 + (−1)pλ1 ∧ iξλ2 , (4.15)

for any p-form λ1, and q-form λ2, so it is an antiderivation of degree −1 on the graded algebra of
differential forms.
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The Lie derivative on a function (4.3) can be written in terms of interior product by

Lξf = iξdf , (4.16)

while the Lie derivative of a 1-form (4.10) can be rewritten in coordinate independent form, also known
as Cartan formula, by

Lξλ = iξdλ+ diξλ . (4.17)

The Cartan formula stands for any p-form λ. Combining Cartan formula with Leibniz rule, we can
obtain the useful identity for Lie derivative

L(fξ)λ = fLξλ+ dfiξλ , (4.18)

where f is a smooth function.
For two vector fields ξ1 and ξ2, the interior product satisfies

iξ1iξ2λ = −iξ2iξ1λ , (4.19)

and
i[ξ1,ξ2]L = Lξ1iξ2 − iξ2Lξ1 . (4.20)

4.4 Schouten-Nijenhuis bracket
The Schouten-Nijenhuis bracket [47, 48, 49] is a bracket that extends the notion of the Lie bracket
to the space of multi-vectors. Formally, multi-vectors and Schouten-Nijenhuis bracket constitute a
Gerstenhaber algebra, which is a graded-commutative algebra with a Lie bracket of degree -1 satisfying
the Poisson identity.

Let θ1 ∈ Γ(T
∧p M) and θ2 ∈ Γ(T

∧q M) be multi-vectors of order p and q respectively, and
0 ≤ p, q ≤ dim(M). Suppose that in some local coordinate basis they are given by

θ1 =
1

p!
θ
µ1,...µp

1 ∂µ1 ∧ ... ∧ ∂µp , θ2 =
1

q!
θ
ν1,...νq
2 ∂ν1 ∧ ... ∧ ∂νq . (4.21)

The Schouten-Nijenhuis bracket of θ1 and θ2 is the function [, ]S : T
∧pM×T

∧q M → T
∧p+q−1M,

given by

[θ1, θ2]S =
1

(p+ q − 1)!
[θ1, θ2]

µ1...µp+q−1

S ∂µ1 ∧ ... ∧ ∂µp+q−1 , (4.22)

[θ1, θ2]
µ1...µp+q−1

S =
1

(p− 1)!q!
ϵµ1...µp+q−1
ν1...νp−1ρ1...ρq

θ
σν1...νp−1

1 ∂σθ
ρ1...ρq
2

+
(−1)p

p!(q − 1)!
ϵµ1...µp+q−1
ν1...νpρ1...ρq−1

θ
σρ1...ρq−1

2 ∂σθ
ν1...νp
1 ,

28



where the antisymmetric Levi Civita symbol is defined by

ϵµ1...µp
ν1...νp

=

∣∣∣∣∣∣∣∣∣∣∣

δµ1
ν1

... δµ1
νp

. .

. .

. .

δ
µp
ν1 ... δ

µp
νp

∣∣∣∣∣∣∣∣∣∣∣
. (4.23)

To get a more grasp into definition of the Schouten-Nijenhuis bracket, let us consider some simple
examples. Firstly, for two vector fields ξ1 = ξµ1 ∂µ and ξν2∂ν , we have p = q = 1, and Levi Civita symbol
(4.23) becomes just the trivial Kroneker delta ϵµν = δµν . The second expression in (4.22) becomes

[ξ1, ξ2]
µ
S = ξν1∂νξ

µ
2 − ξν2∂νξ

µ
1 , (4.24)

which is just the expression for Lie bracket. Another case that we will consider in the thesis is of a
Schouten-Nijenhuis bracket of the bi-vector θ = 1

2
θµν∂µ ∧ ∂ν with itself. Its expression is given by

[θ, θ]S|µνρ = ϵµνραβγθ
ασ∂σθ

βγ , (4.25)

and

ϵµνραβγ =

∣∣∣∣∣∣∣
δµα δνβ δργ
δνα δρβ δµγ
δρα δµβ δνγ

∣∣∣∣∣∣∣ , (4.26)

resulting in
[θ, θ]S|µνρ = θµσ∂σθ

νρ + θνσ∂σθ
ρµ + θρσ∂σθ

µν . (4.27)

It turns out that this coincides with the expression for the string R-flux. The bi-vector θ such that
its Schouten-Nijenhuis bracket gives zero is a Poisson bi-vector, which can be used to define Poisson
manifolds (see Appendix [A]).

The Schouten-Nijenhuis bracket is graded-commutative,

[θ1, θ2]S = −(−1)(p−1)(q−1)[θ2, θ1]S , (4.28)

and it satisfies the graded Jacobi identity

(−1)(p−1)(r−1)[θ1, [θ2, θ3]S]S + (−1)(q−1)(p−1)[θ2, [θ3, θ1]S]S + (−1)(r−1)(q−1)[θ3, [θ1, θ2]S]S = 0 ,

(4.29)
where p, q, r are oders of multi-vectors θ1, θ2, θ3, respectively. Moreover, it satisfies the graded
Leibniz identity

[θ1, θ2 ∧ θ3]S = [θ1, θ2]S ∧ θ3 + (−1)(p−1)qθ2 ∧ [θ1, θ3]S . (4.30)
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In fact, the Schouten-Nijenhuis bracket can be alternatively defined by relations [22]

[f, g]S = 0 , [ξ, f ]S = Lξ(f) , [ξ1, ξ2]S = [ξ1, ξ2]L , (4.31)

where other relations for multi-vectors are obtained by demanding the graded commutativity (4.28)
and graded Leibniz identity (4.30).
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Chapter 5

Lie algebroid

In general, vector fields can be defined on a smooth section of a vector bundle, that is not necessarily
a tangent bundle. This motivates the question of the change of tensors along these vector fields, which
Lie algebroids can explain. In this chapter, we provide a definition of Lie algebroid and demonstrate
how one can extend the notions of Lie and exterior derivative to some other vector bundles. We also
provide a definition of the Koszul bracket, which is the generalization of the Lie bracket to the space
of 1-forms. Lastly, we define Lie bialgebroids, which will be useful in introducing the Courant bracket
on the generalized tangent bundle.

5.1 Lie algebroid and its corresponding Lie derivative
Definition 11 (Lie algebroid)

Lie algebroid is a triple
(
V, [, ], ρ

)
consisting of a vector bundle V , the anchor ρ : V → TM, and

the skew-symmetric bracket [, ] on the space of smooth section of V , so that the following compatibility
conditions are satisfied:

ρ[ξ1, ξ2] = [ρ(ξ1), ρ(ξ2)]L , (5.1)
[ξ1, fξ2] = f [ξ1, ξ2] + (Lρ(ξ1)f)ξ2 , (5.2)
[ξ1, [ξ2, ξ3]] + [ξ2, [ξ3, ξ1]] + [ξ3, [ξ1, ξ2]] = 0 . (5.3)

The Lie algebroid [50, 51] generalizes the notion of the tangent bundle. The first compatibility condi-
tion tells us that the anchor ρ is the morphism between vector bundle V and the tangent bundle over a
manifold TM that is compatible with the Lie bracket. This way, we relate the Lie algebroid bracket,
defined on some vector bundle to the well-known Lie bracket on the tangent bundle. The remaining
two conditions require that the new bracket satisfies the Leibniz rule and Jacobi identity, both satisfied
by the Lie bracket.
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From the compatibility conditions in the Lie algebroid definition, we see that on this structure we
can define a Lie derivative. Its action on functions is defined by

L̂ξf = Lρ(ξ)f , (5.4)

and on vectors by the Lie algebroid bracket

L̂ξ1ξ2 = [ξ1, ξ2] . (5.5)

The second compatibility condition from the definition above ensures that this derivative satisfies the
Leibniz property, i.e.

L̂ξ1(fξ2) = f L̂ξ1ξ2 + (L̂ξ1f)ξ2 , (5.6)

which can be used to obtain its action on dual vectors.
We can also define the exterior derivation by [52]

d̂λ(ξ0, ..., ξp) =

p∑
i=0

(−1)iLρ(ξi)

(
λ(ξ0, ..., ξ̂i, ..., ξp)

)
(5.7)

+
∑
i<j

(−1)i+jλ([ξi, ξj], ξ0, ..., ξ̂i, ..., ξ̂j, ..., ξp) ,

where we effectively in relation (4.11) substituted the Lie derivative with its algebroid counterpart L̂ξ.
This exterior derivative is also nilpotent. The Lie derivative on the dual vectors can be expressed by
Cartan formula, i.e.

L̂ξλ = iξd̂ λ+ d̂iξ λ . (5.8)

There is a myriad of examples of Lie algebroids. The easiest and the most straightforward is the
Lie algebroid with the tangent bundle over a manifold TM as a vector bundle, the Lie bracket [, ]L
and the identity operator Id as its anchor. The compatibility conditions from Definition 11 are the
well-known characteristics of the Lie bracket (4.6) and (4.7).

5.2 Koszul bracket
We now want to introduce the Lie algebroid on a cotangent bundle over a manifold T ⋆M. We will
define a morphism from cotangent to tangent bundle by

θ(λ1)λ2 = θ(λ1, λ2) ,
(
θ(λ1)

)µ
= λ1νθ

νµ , (5.9)
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where θ is a bi-vector (θµν = −θνµ) that satisfies

[θ, θ]S = 0 , (5.10)

where [, ]S is the Schouten-Nijenhuis bracket (4.25). The bi-vector that satisfies this condition is called
Poisson bi-vector (see Appendix [A]).

We define the Koszul bracket [53] between two 1-forms by

[λ1, λ2]θ = Lθ(λ1)λ2 − Lθ(λ2)λ1 − d(θ(λ1, λ2)) , (5.11)

which in some local basis dxµ has the components(
[λ1, λ2]θ

)
µ
= θνρ(λ1ν∂ρλ2µ − λ2ν∂ρλ1µ) + λ1ρλ2ν∂µθ

ρν . (5.12)

To show that the structure
(
T ⋆M, [, ]θ, θ

)
is a Lie algebroid, we need to prove that the three Lie

algebroid conditions (5.1)-(5.3) are satisfied. Firstly, in order to show that θ is really a correct anchor,
we express the left-hand side of the (5.1) by(

θ([λ1, λ2]θ)
)
µ
= θνρθσµ(λ1ν∂ρλ2σ − λ2ν∂ρλ1σ) + λ1ρλ2σθ

νµ∂νθ
ρσ . (5.13)

On the other hand, we express the right-hand side of (5.1) by

([θ(λ1), θ(λ2)]L)µ = λ1νθ
νρ∂ρ(λ2σθ

σµ)− λ2νθ
νρ∂ρ(λ1σθ

σµ) (5.14)

= θνρθσµ
(
λ1ν∂ρλ2σ − λ2ν∂ρλ1σ

)
+ λ1ρλ2σ

(
θρν∂νθ

σµ + θσν∂νθ
µρ
)
.

Now combining (5.13) and (5.14), we obtain(
θ([λ1, λ2]θ)

)
µ

= ([θ(λ1), θ(λ2)]L)µ − λ1ρλ2σ

(
θρν∂νθ

σµ + θσν∂νθ
µρ
)
+ λ1ρλ2σθ

νµ∂νθ
ρσ

= ([θ(λ1), θ(λ2)]L)µ − λ1ρλ2σ(θ
µν∂νθ

ρσ + θρν∂νθ
σµ + θσν∂νθ

µρ) (5.15)
= ([θ(λ1), θ(λ2)]L)µ ,

where we used (4.22) and the condition (5.10). If the bi-vector is not Poisson, this condition would
not be satisfied.

Next, let us show that the Koszul bracket satisfies the Leibniz rule (5.2)

[λ1, fλ2]θ = Lθ(λ1)(fλ2)− Lfθ(λ2)λ1 − dθ(λ1, fλ2) (5.16)
= fLθ(λ1)λ2 + (Lθ(λ1)f)λ2 − fLθ(λ2)λ1

−dfθ(λ2, λ1)− dfθ(λ1, λ2)− fdθ(λ1, λ2)

= f [λ1, λ2]θ + Lθ(λ1)fλ2 .

33



We used the fact that the Lie derivative satisfies the Leibniz rule (4.6), its property (4.18), and that the
bi-vector is antisymmetric. We did not use the fact that θ is a Poisson bi-vector, so the Koszul bracket
satisfies the Leibniz rule regardless of that.

Lastly, the associativity (5.3) is easily proven from the first Lie algebroid condition (5.15) and
associativity of Lie derivative (4.7). We write

[θ(λ1), [θ(λ2), θ(λ3)]L]L + cyclic = [θ(λ1), θ([λ2, λ3]θ)]L + cyclic (5.17)
= θ([λ1, [λ2, λ3]θ]θ + cyclic) = 0 .

We showed that the triple
(
T ⋆M, [, ]θ, θ

)
is a Lie algebroid, for a Poisson bi-vector θ. In the case of

the bi-vector not being Poisson, the Koszul bracket can still be defined and it will satisfy the Leibniz
rule. However, the anchor θ is not algebra homomorphism, and the Jacobi identity does not stand.
This structure is then referred to as quasi-Lie algebroid.

For the Lie algebroid associated with the Koszul bracket, we can define its corresponding Lie
derivative. On functions, it can be defined from (5.4)

L̂λ1f = λ1νθ
νµ∂µf , (5.18)

while on 1-forms, it acts as the Koszul bracket

L̂λ1λ2 = [λ1, λ2]θ . (5.19)

Therefore, the Koszul bracket is interpreted as the generalization of the Lie bracket on 1-forms.
Since this Lie algebroid is defined on the cotangent bundle, and therefore acts on 1-forms, it defines

the exterior derivation on the smooth section of the tangent bundle and higher orders of the tangent
bundle. From (5.7), we obtain the action of exterior derivative on functions and vectors

(dθf)
µ = θµν∂νf , (dθξ)

µν = θµρ∂ρξ
ν − θνρ∂ρξ

µ − ξρ∂ρθ
µν . (5.20)

The generalized formula for the exterior derivative can also be written in terms of the Schouten-
Nijenhuis bracket [21]

dθ = [θ, .]S . (5.21)

The exterior derivative is nilpotent for the Poisson bi-vector θ. We can prove that easily for functions

(dθdθf)
µν = θµρ∂ρ(θ

νσ∂σf)− θνρ∂ρ(θ
µσ∂σf)− θρσ∂σf∂ρθ

µν (5.22)
= ∂σf(θ

µρ∂ρθ
νσ + θνρ∂ρθ

σµ + θσρ∂ρθ
µν) ,

which goes to zero if and only if the condition (5.10) is satisfied. For a general multi-vector β of rank
r, the nilpotence of the exterior derivative dθ is a consequence of the graded Jacobi identity (4.29)

(−1)r−1[θ, [θ, β]S]S − [θ, [β, θ]S]S + (−1)r−1[β, [θ, θ]S]S = 0 . (5.23)
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The third term is zero due to condition (5.10). After applying the graded-commutative relation (4.28)
to the second term, with the help of definition (5.21), we obtain

dθdθβ = 0 , (5.24)

for any multi-vector β. If the bi-vector θ is not Poisson, and the relation (5.10) does not hold, one can
still define the exterior derivative dθ. The relation (5.23) has the form

2dθdθβ + [β, [θ, θ]S]S = 0 , (5.25)

so the exterior derivative is no longer nilpotent, but it does satisfy the Leibniz rule.

5.3 Lie bialgebroid
We saw that Lie algebroid can be defined on a tangent bundle, for example, with the Lie bracket as its
bracket, and on the cotangent bundle, for example with the Koszul bracket as its bracket. In general,
Lie algebroids can be defined on mutually dual bundles. Of particular interest is the case when the
exterior derivative corresponding to one algebroid commute with the bracket of the other algebroid,
in which case we obtain the Lie bialgebroid [54, 55], for which we provide a definition below:

Definition 12 (Lie bialgebroid)
Let
(
V, [, ]L, ρ

)
be a Lie algebroid and supposee that

(
V ⋆, [, ]L⋆ , ρ⋆

)
is also a Lie algebroid, where

bundles V and V ⋆ are dual to each other. The structure (V, V ⋆) is said to define a Lie bialgebroid if

d⋆[ξ1, ξ2]L = [d⋆ξ1, ξ2]S + [ξ1, d
⋆ξ2]S , (5.26)

where d⋆ is a Lie algebroid differential of V ⋆, and ξ1, ξ2 are from smooth section of V , and [, ]S is a
Schouten-Nijenhuis bracket on a smooth section of multi-vectors T

∧p M defined graded symmetric
via Leibniz rule.

A simple corollary can be proven - if (V, V ⋆) is a Lie bialgebroid, then (V ⋆, V ) is also a Lie
bialgebroid. The condition (5.26) suggests that the exterior derivative related to the one algebroid
bracket acts as the graded bracket on the dual bundle. To illustrate this, let us recall two structures -(
TM, [, ]L, Id

)
, and

(
T ⋆M, [, ]θ, θ

)
for Poisson bi-vector θ, that we demonstrated are both examples

of Lie algebroids. They are defined on mutually dual bundles and in fact, constitute a Lie bialgebroid.
The condition (5.26) becomes

dθ[ξ1, ξ2]L = [dθξ1, ξ2]S + [ξ1, dθξ2]S (5.27)
[θ, [ξ1, ξ2]S]S = [[θ, ξ1]S, ξ2]S + [ξ1, [θ, ξ2]S]S

[θ, [ξ1, ξ2]S]S + [ξ1, [ξ2, θ]S]S + [ξ2, [θ, ξ1]S]S = 0 ,
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where we firstly used (5.20), and then the graded identity (4.28). The final expression is just the graded
Jacobi identity (4.29), so we proved the condition (5.26). The exterior derivative related to the Koszul
bracket dθ acts on multi-vectors as the Schouten-Nijenhuis bracket.

The attempts to construct structures similar to Lie algebroids on the double of Lie bialgebroid
V ⊕V ⋆ led to the development of generalized geometry and construction of Courant algebroids, which
we will introduce in the next chapter.
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Chapter 6

Generalized tangent bundle

In this chapter, we will consider the so-called generalized geometry, that is to say, the geometry of
the generalized tangent bundle. Primarily, we will define two natural inner products on the space of
generalized vectors. Secondarily, we will obtain the Courant bracket as the extension of the Lie bracket
to the section of the generalized tangent bundle. Lastly, we will define the Courant algebroid together
with the conditions for it to be the Lie algebroid.

6.1 Inner product and O(D,D) group
The research of generalized geometry was pioneered in the early 2000s, in the works of Hitchin and his
introduction of generalized Calabi-Yau manifolds [56], and later in the works of his student Gualtieri
[57]. It is a geometry of the generalized tangent bundle, defined as a direct sum of tangent and cotan-
gent bundle over a manifold TM ⊕ T ⋆M. The elements of its section are generalized vectors, that
have both the vector and 1-form components

ΛM = ξµ ⊕ λµ =

(
ξµ

λµ

)
, (6.1)

where ξ represents the vector components, and λ represents the 1-form components of generalized
vectors.

The interior product (4.14) defines a natural way to combine vectors and 1-forms into a scalar
iξλ = ξµλµ. We can use this to define an inner product on the smooth section of the generalized
tangent bundle. We can define the inner product between generalized vectors in two ways - so that it
is symmetric and antisymmetric. In the former case, it is defined by

⟨Λ1,Λ2⟩ = ⟨ξ1 ⊕ λ1, ξ2 ⊕ λ2⟩ = iξ1λ2 + iξ2λ1 . (6.2)
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The signature of the symmetric inner product is (D,D), where D is the dimension of the manifold
M. It is well known that the Lie group of linear transformations that leaves the inner product of such a
signature invariant is the indefinite orthogonalO(D,D) group. This group plays a very important role
in string theory, as it governs the T-duality transformations. The fact that a transformation O keeps
the inner product (6.2) invariant can be expressed in matrix notation by

(OT ) P
M ηPQ OQ

N = ηMN , (6.3)

where η is O(D,D) invariant metric, given by

ηMN =

(
0 1

1 0

)
. (6.4)

The metric can be used for lowering or raising indices M, N .
Some of more notable examples of O(D,D) transformations include B-transformations (or B-

shifts), which are given by

eB̂ =

(
1 0

2B 1

)
B̂M

N =

(
0 0

2Bµν 0

)
. (6.5)

Their inverse is easily obtained from (B.4)

e−B̂ =

(
1 0

−2B 1

)
. (6.6)

The B-transformations act on the generalized metric (2.38) by shifting the Kalb-Ramond field. The
second example we will outline here is the θ-transformations, which are given by

eθ̂ =

(
1 κθ

0 1

)
, θ̂MN =

(
0 κθµν

0 0

)
, (6.7)

and when inverted by

e−θ̂ =

(
1 −κθ
0 1

)
. (6.8)

It is easy to show that indeed

⟨eB̂Λ1, e
B̂Λ2⟩ = ⟨Λ1,Λ2⟩ , ⟨eθ̂Λ1, e

θ̂Λ2⟩ = ⟨Λ1,Λ2⟩ . (6.9)

We will encounter these and other O(D,D) transformations throughout the thesis. For more mathe-
matically rigorous details of O(D,D) group, see Appendix [B].
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For completeness, let us also define the antisymmetric inner product by

⟨Λ1,Λ2⟩− = ⟨ξ1 ⊕ λ1, ξ2 ⊕ λ2⟩− = iξ1λ2 − iξ2λ1 . (6.10)

As we will see in the next section, this inner product is used in a definition of the Courant bracket. We
will primarily be interested in the symmetric inner product, which we will simply refer to as the inner
product from now onward.

6.2 Courant bracket
We would like to generalize the notion of the Lie bracket, defined on generalized vectors. The definition
of the generalized tangent bundle as a direct sum of two dual bundles TM and T ⋆M is suitable for
considering a Lie bialgebroid structure of the form (TM, T ⋆M), with their respective brackets [, ]L
and [, ]L⋆ . We can define a skew-symmetric bracket on the smooth section of the generalized tangent
bundle by

[Λ1,Λ2] =
(
[ξ1, ξ2]L + L⋆

λ1ξ2 − L⋆
λ2ξ1 −

1

2
d⋆⟨Λ1,Λ2⟩−

)
(6.11)

⊕
(
[λ1, λ2]L⋆ + Lξ1λ2 − Lξ2λ1 −

1

2
d⟨Λ1,Λ2⟩−

)
.

Here, Lξ and d represent the Lie derivative and exterior derivative defined on the Lie algebroid on
TM, while L⋆

λ and d⋆ are analogous operations corresponding to the Lie algebroid of T ⋆M.
Let us construct a simple example of a skew-symmetric bracket using (6.11). For a bracket on the

tangent bundle, we will use the usual Lie bracket. On the cotangent bundle, we can use the trivial
bracket that is zero between any two forms. This corresponds to the Lie algebroid with the anchor
ρ⋆ = 0, and the Lie bialgebroid compatibility condition (5.26) is satisfied. The above relation for the
bracket gives rise to the well-known Courant bracket given by

[Λ1,Λ2]C = ξ ⊕ λ (6.12)
ξ = [ξ1, ξ2]L ,

λ = Lξ1λ2 − Lξ2λ1 −
1

2
d(iξ1λ2 − iξ2λ1) .

The Courant bracket is the generalization of the Lie bracket to the generalized tangent bundle. The
right-hand side vector and 1-form components of (6.12) can be expressed in some local coordinate
basis by

ξµ = ξν1∂νξ
µ
2 − ξν2∂νξ

µ
1 , (6.13)

λµ = ξν1 (∂νλ2µ − ∂µλ2ν)− ξν2 (∂νλ1µ − ∂µλ1ν) +
1

2
∂µ(ξ1λ2 − ξ2λ1) .

39



There is a natural way to introduce the projections to the tangent and cotangent bundle π and π̃
respectively by

π(Λ) = π(ξ ⊕ λ) = ξ , π̃(Λ) = π̃(ξ ⊕ λ) = λ . (6.14)

From the expression (6.12), we see that the Courant bracket on vectors reduces to Lie bracket, while
on 1-form it becomes zero

[π(Λ1), π(Λ2)]C = [ξ1, ξ2]L , [π̃(Λ1), π̃(Λ2)]C = 0 . (6.15)

Effectively, the Courant bracket on smooth sections of tangent and cotangent bundles reduces to the
respective Lie algebroid brackets from which it was constructed. Therefore, though the generalized
tangent bundle treats vectors and 1-forms in a symmetrical manner, the Courant bracket defined on it
does not. Moreover, we have

π
(
[Λ1,Λ2]C

)
= [π(Λ1), π(Λ2)]C , π̃

(
[Λ1,Λ2]C

)
̸= [π̃(Λ1), π̃(Λ2)]C , (6.16)

and hence the projection on the tangent bundle is involutive with respect to the Courant bracket, while
the projection on the cotangent bundle is not.

In general, the Courant bracket satisfies neither the Leibniz rule nor Jacobi identity (see Appendix
[C] for proof). In fact, the deviation from these identities can be expressed in terms of the exterior
derivative of the inner product

[Λ1, fΛ2]C = f [Λ1,Λ2]C + (Lπ(Λ1)f)Λ2 −
1

2
⟨Λ1,Λ2⟩df , (6.17)

Jac(Λ1,Λ2,Λ3) = dNij(Λ1,Λ2,Λ3) , (6.18)

where Jac is the Jacobiator, given by

Jac(Λ1,Λ2,Λ3) = [[Λ1,Λ2] ,Λ3] + [[Λ2,Λ3] ,Λ1] + [[Λ3,Λ1] ,Λ2] , (6.19)

and Nij is the Nijenhuis operator, given by

Nij(Λ1,Λ2,Λ3) =
1

6

(
⟨[Λ1,Λ2],Λ3⟩+ ⟨[Λ2,Λ3],Λ1⟩+ ⟨[Λ3,Λ1],Λ2⟩

)
. (6.20)

6.3 Courant algebroid
We saw that the Courant bracket does not satisfy the Lie algebroid conditions, and as such, we cannot
in general define the Lie algebroid with the Courant bracket as its bracket. However, one can define
the Lie algebroid generalization, called Courant algebroid [58]. We provide its definition below:
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Definition 13 (Courant algebroid)
Let V be a vector bundle, ⟨, ⟩ the non-degenerate inner product and [, ] a skew-symmetric bracket

on a smooth section of a vector bundle V , and let ρ : V → TM be a smooth bundle map called anchor.
Let D be a differential operator on smooth functions defined by

⟨Df,Λ⟩ = Lρ(Λ)f . (6.21)

The structure
(
V, ⟨, ⟩, [, ], ρ

)
is called the Courant algebroid if it satisfies the following compatibility

relations

ρ[Λ1,Λ2] = [ρ(Λ1), ρ(Λ2)]L , (6.22)

[Λ1, fΛ2] = f [Λ1,Λ2] + (Lρ(Λ1)f)Λ2 −
1

2
⟨Λ1,Λ2⟩Df , (6.23)

Lρ(Λ1)⟨Λ2,Λ3⟩ = ⟨[Λ1,Λ2] +
1

2
D⟨Λ1,Λ2⟩,Λ3⟩+ ⟨Λ2, [Λ1,Λ3] +

1

2
D⟨Λ1,Λ3⟩⟩ , (6.24)

⟨Df,Dg⟩ = 0 , (6.25)
Jac(Λ1,Λ2,Λ3) = DNij(Λ1,Λ2,Λ3) , (6.26)

for all Λ1, Λ2, Λ3 from smooth section of a vector bundle V , and for all smooth functions f and g on
the manifold.

Any double of Lie bialgebroid defines the Courant algebroid. The reverse however is not the case,
and the Courant algebroid brackets encompass a larger set of brackets [59].

A straightforward example of Courant algebroids, that we will refer to as the standard Courant
algebroid, consists of the generalized tangent bundle, the O(D,D) invariant inner product (6.2), the
projection π from the generalized tangent bundle to the tangent bundle as its anchor (6.14), and the
Courant bracket (6.12). It is not difficult to show that the five compatibility conditions are satisfied.
We present the proof in the Appendix [C].

There is an alternative definition of the Courant algebroid, in which the Courant algebroid bracket
is defined so that it is not skew-symmetric, but it does satisfy the Leibniz rule and Jacobi identity [60].
This definition is proven to be equivalent to the one provided above. The skew-symmetric brackets
are more suitable to describe the algebra of symmetries, and we will use the definition (Def. 13)
exclusively in this thesis.

Perhaps the most striking application of Courant algebroids is in the attempt to explain the T-
duality. For instance, in [61, 62], authors investigated two manifolds M and M̃, both principle torus
bundles over a common manifold B. The manifolds had 3-form fluxes H and H̃ on them. The condi-
tions for the theories defined on these two manifolds with fluxes to be mutually T-dual were obtained,
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which were shown in [63] to be equivalent to the isomorphism ϕ between two Courant algebroids, that
satisfies

⟨ϕ(Λ1), ϕ(Λ2)⟩ = ⟨Λ1,Λ2⟩ , ϕ
(
[Λ1,Λ2]CH

)
= [ϕ(Λ1), ϕ(Λ2)]CH̃ , (6.27)

where [, ]CH denotes the Courant bracket deformed with the flux H . As such, the Courant algebroids
appear convenient to describe T-duality. We will further investigate it in the analysis of bosonic string
σ-model symmetries.

6.4 Dirac structures
Definition 14 (Dirac structures)

For a sub-bundle to be isotropic with respect to the inner product means that the inner product of
any two generalized vectors from its section is zero

⟨Λ1,Λ2⟩ = 0 . (6.28)

Dirac structures are defined as the isotropic sub-bundles with the maximal dimension that are
closed under the skew-symmetric Courant algebroid bracket.

For any 2-form B, the sub-bundle

VB(Λ) = ξµ ⊕ 2Bµνξ
ν (6.29)

is going to be isotropic with respect to the O(D,D) invariant inner product (6.2) due to the antisym-
metric properties of a 2-form

⟨ξµ1 ⊕ 2Bµρξ
ρ
1 , ξ

ν
2 ⊕ 2Bνσξ

σ
2 ⟩ = 2Bµν(ξ

µ
1 ξ

ν
2 + ξν1ξ

µ
2 ) = 0 . (6.30)

Similarly, for any bi-vector θ, we can construct another isotropic sub-bundle by

Vθ(Λ) = κθµνλν ⊕ λµ . (6.31)

The sub-bundle of the form VB and Vθ from the mathematical perspective represent a graph of 2-form
over tangent bundle, and a graph of bi-vector over a cotangent bundle, respectively.

The importance of Dirac structures lies in the fact that the Courant algebroid on them reduces to the
Lie algebroid. To see this, let us take a look at the second Courant algebroid compatibility condition
(6.23), and note that the algebroid bracket satisfies Leibniz rule up to the term 1

2
⟨Λ1,Λ2⟩Df . This

term is zero on isotropic sub-spaces (6.28), and therefore the Leibniz identity will be satisfied on
them. Likewise, the fifth compatibility condition (6.26) becomes the usual Jacobi identity on Dirac
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structures. This can be deduced by evaluating the Nijenhuis operator (6.20) of some vectors from the
Dirac structure V . Without loss of generality, we have

Λ1,Λ2 ∈ V ⇒ [Λ1,Λ2] ∈ V , (6.32)
[Λ1,Λ2],Λ3 ∈ V ⇒ ⟨[Λ1,Λ2],Λ3⟩ = 0 ,

where the first line is the consequence of Dirac structures being closed under the bracket, and the
second line stands from the definition of isotropic spaces (6.28).

6.4.1 Dirac structures of the standard Courant algebroid

Let us calculate the Dirac structures associated with the standard Courant bracket. Substituting λ1µ =

2Bµνξ
ν
1 and λ2µ = 2Bµνξ

ν
2 into the second relation of (6.13), we obtain

λµ = 2ξν1

(
∂ν(Bµρξ

ρ
2)− ∂µ(Bνρξ

ρ
2)
)
− 2ξν2

(
∂ν(Bµρξ

ρ
1)− ∂µ(Bνρξ

ρ
1)
)
+ 2∂µ(Bνρξ

ν
1ξ

ρ
2)

= 2Bµρ(ξ
ν
1∂νξ

ρ
2 − ξν2∂νξ

ρ
1) + 2Bνρ(ξ

ν
2∂µξ

ρ
1 + ξρ2∂µξ

ν
1 ) (6.33)

+2ξν1ξ
ρ
2(∂νBµρ − ∂µBνρ − ∂ρBµν + ∂µBρν + ∂µBνρ)

= 2Bµνξ
ν − 2(∂µBνρ + ∂νBρµ + ∂ρBµν)ξ

ν
1ξ

ρ
2 ,

where we first applied the chain rule, and then the skew-symmetric properties of B, together with
expressing the first relation of (6.13) to express ξµ. Therefore, the sub-bundle VB (6.29) is a Dirac
structure for a closed 2-form B

dB = 0 ⇔ ∂µBνρ + ∂νBρµ + ∂ρBµν = 0 . (6.34)

Mathematically, the manifold M with a closed non-degenerate 2-form B is a symplectic structure.
If we interpret a 2-form B as the Kalb-Ramond field, we obtained that its field strength is zero, or
equivalently that H-flux is zero.

On the other hand, for sub-bundle Vθ we firstly note that it can be written as

Vθ(Λ) = −θ(λ)⊕ λ , (6.35)

where θ(λ) is defined as in (5.9). For Vθ to be closed under the Courant bracket, we can use the
coordinate-free expression for the Courant bracket (6.12), and obtain

ξ = [θ(λ1), θ(λ2)]L (6.36)

λ = −
(
Lθ(λ1)λ2 − Lθ(λ2)λ1 − d(θ(λ1, λ2))

)
= −[λ1, λ2]θ ,
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where we recognized in the second line the expression for the Koszul bracket (5.11). We can use the
relation (5.15) which is correct only for [θ, θ]S = 0 (5.10). On this Dirac structure, we obtained the
Poisson manifold [A]. If the bi-vector θ is interpreted as the non-commutative parameter (3.16), this
translates into the R-flux being zero.

In general, Dirac structures define integrability conditions for Courant algebroids. We saw how
symplectic and Poisson manifolds are obtained from the Dirac structures for the standard Courant
algebroid. Moreover, we observed that Dirac structures associated with the standard Courant algebroid
put severe restrictions on string fluxes. In the following chapters of the thesis, we will investigate
twisted Courant brackets and their corresponding Courant algebroids. We will demonstrate that these
restrictions on string fluxes are relaxed on Dirac structures related to the twisted Courant algebroids
[64].
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Part III

Single theory
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Chapter 7

Symmetries of bosonic string

In this chapter, we will obtain generators of both diffeomorphisms and local gauge transformations
for the bosonic string σ-model. We will show that these symmetries are not independent, rather they
are related by T-duality. In the end, we will consider the double generator governing both of these
symmetries and show that its Poisson bracket algebra produces the Courant bracket.

7.1 Symmetry generators
Symmetry is generally understood as a change in space-time fields that does not change the physically
observable quantities. In the standard approach of quantum field theory, symmetries can be seen as
transformations of the background fields that keep classical action invariant. In string theory, back-
ground fields are defined as functions on the world-sheet, which possess conformal invariance. The
physical observable quantities, like scattering amplitudes, are obtained from conformal field theory.
Therefore, symmetries imply the existence of physically equivalent solutions to the string equations
of motions, which correspond to the mutually isomorphic conformal field theories [65, 66].

Symmetries in string theory σ-model are governed by generators. They are scalars G, that in
classical theory act on Hamiltonian via Poisson bracket. If the Poisson bracket between the generator
and Hamiltonian can be interpreted as the change in fields, we say that G generates a symmetry, i.e. if

H(G,B) + {G,H(G,B)} = H(G+δG,B+δB) , (7.1)

we say that B → B + δB, and G → G+ δG are symmetry transformations of the background fields
generated by G. We will seek symmetry generators G such that its action on Hamiltonian seeks a
change that can be interpreted as the difference in background fields.
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7.1.1 Diffeomorphisms

The first generator to be considered will be in the form [67]

Gξ =

∫ 2π

0

dσξµ(x(σ))πµ(σ) , (7.2)

with ξµ being a symmetry parameter. The usual equal-time Poisson bracket relations are assumed

{xµ(σ), πν(σ̄)} = δµν δ(σ − σ̄) , {πµ(σ), πν(σ̄)} = {xµ(σ), xν(σ̄)} = 0 . (7.3)

The change in Hamiltonian generated by Gξ (7.2) can be expressed as

{Gξ,H} = δξH . (7.4)

The transformation of each term in the Hamiltonian (2.35) will be considered separately. For the
change in the first term, we have

δξ

( 1

2κ
πµ(G

−1)µνπν

)
=

1

2κ

∫
dσ̄
{
ξρ(σ̄)πρ(σ̄), πµ(σ)(G

−1)µν(σ)πν(σ)
}

(7.5)

=
1

2κ

∫
dσ̄
(
πρ∂µξ

ρ(G−1)µνπν + πµ(G
−1)µν∂νξ

ρπρ

−πµξρ∂ρ(G−1)µνπν

)
δ(σ − σ̄)

=
1

2κ
πµ

(
− ξρ∂ρ(G

−1)µν + ∂ρξ
µ(G−1)νρ + (G−1)µρ∂ρξ

ν
)
πν ,

where in the second step we omitted dependence on σ, and relabeled some dummy indices, to make
the expression more readable. For the second term of Hamiltonian (2.35), we write

δξ

(κ
2
x′µGE

µνx
′ν
)

=
κ

2

∫
dσ̄
{
ξρ(σ̄)πρ(σ̄), x

′µ(σ)GE
µν(σ)x

′ν(σ)
}

(7.6)

=
κ

2

∫
dσ̄
[(
ξµ(σ̄)GE

µνx
′ν + x′µGE

µνξ
ν(σ̄)

)
δ′(σ − σ̄)− x′µξρ∂ρG

E
µνx

′νδ(σ − σ̄)
]

=
κ

2

∫
dσ̄
[(
x′ρ∂ρξ

µGE
µνx

′ν + x′µGE
µνx

′ρ∂ρξ
ν − x′µξρ∂ρG

E
µνx

′ν
)
δ(σ − σ̄)

+
(
ξµGE

µνx
′ν + x′µGE

µνξ
ν
)
δ′(σ − σ̄)

]
=

κ

2
x′µ
(
∂µξ

ρGE
ρν +GE

µρ∂νξ
ρ − ξρ∂ρG

E
µν

)
x′ν ,

where in the third line we used the property of the delta function

f(σ̄)δ′(σ − σ̄) = f ′(σ)δ(σ − σ̄) + f(σ)δ′(σ − σ̄) , (7.7)
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and in the last line, we used∫
dσ̄f(σ)δ′(σ − σ̄) = f(σ)

∂

∂σ

∫
dσ̄δ(σ − σ̄) = 0 , (7.8)

which makes the anomalous part become zero in (7.6).
The last term in the Hamiltonian (2.35) transforms as

δξ

(
− 2x′µ(BG−1) ν

µ πν

)
= −2

∫
dσ̄
{
ξρ(σ̄)πρ(σ̄), x

′µ(σ)(BG−1) ν
µ (σ) πν(σ)

}
(7.9)

= −2

∫
dσ̄
[(
x′µ(BG−1) ν

µ ∂νξ
ρπρ − x′µξρ∂ρ(BG

−1) ν
µ πν

)
δ(σ − σ̄)

+ξµ(σ̄)(BG−1) ν
µ πνδ

′(σ − σ̄)
]

= −2

∫
dσ̄
[(
x′µ(BG−1) ν

µ ∂νξ
ρπρ − x′µξρ∂ρ(BG

−1) ν
µ πν

+x′ρ∂ρξ
µ(BG−1) ν

µ πν

)
δ(σ − σ̄) + ξµ(BG−1) ν

µ πνδ
′(σ − σ̄)

]
= −2x′µ

(
(BG−1) ρ

µ ∂ρξ
ν + ∂µξ

ρ(BG−1) ν
ρ − ξρ∂ρ(BG

−1) ν
µ

)
πν ,

where we once again used (7.7) and (7.8). Substituting (7.5), (7.6) and (7.9) into (7.4), we can read
the following transformation laws

δξ(G
−1)µν = −ξρ∂ρ(G−1)µν + ∂ρξ

µ(G−1)νρ + (G−1)µρ∂ρξ
ν , (7.10)

δξG
E
µν = ∂µξ

ρGE
ρν +GE

µρ∂νξ
ρ − ξρ∂ρG

E
µν , (7.11)

δξ(BG
−1) ν

µ = (BG−1) ρ
µ ∂ρξ

ν + ∂µξ
ρ(BG−1) ν

ρ − ξρ∂ρ(BG
−1) ν

µ . (7.12)

From these relations, we can easily obtain the transformation laws for metric and Kalb-Ramond tensor.
For instance, using

δξ(Gµρ(G
−1)ρν) = δξGµρ(G

−1)ρν +Gµρδξ(G
−1)ρν = 0 , (7.13)

we obtain
δξGµν = −ξρ∂ρGµν − ∂µξ

ρGρν − ∂νξ
ρGρµ . (7.14)

Similarly, substituting δξ(Bµρ(G
−1)ρν) = δξBµρ(G

−1)ρν +Bµρδξ(G
−1)ρν into (7.12), we obtain

δξBµν = −ξρ∂ρBµν + ∂µξ
ρBρν −Bµρ∂νξ

ρ . (7.15)

Without loss of generality, we can change the sign of the parameter ξ → −ξ, and write

δξGµν = LξGµν = ξρ∂ρGµν + ∂µξ
ρGρν + ∂νξ

ρGρµ , (7.16)
δξBµν = LξBµν = ξρ∂ρBµν − ∂µξ

ρBρν +Bµρ∂νξ
ρ . (7.17)
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These are the general coordinate transformations or diffeomorphisms. The Poisson bracket satisfies
the Jacobi identity, so we can write

0 = {Gξ1 , {Gξ2 ,H}}+ {Gξ2 , {H,Gξ1 , }}+ {H, {Gξ1 ,Gξ2}} (7.18)
= {Gξ1 , {Gξ2 ,H}} − {Gξ2 , {Gξ1 ,H}} − {{Gξ1 ,Gξ2},H} ,

from which we obtain that the algebra of generators governing diffeomorphisms closes on the Lie
bracket (4.5) {

Gξ1 ,Gξ2

}
= −G[ξ1,ξ2]L . (7.19)

7.1.2 Local gauge transformations

We now seek the generator in the form

Gλ =

∫ 2π

0

dσλµ(x(σ))κx
′µ(σ) , (7.20)

so that its action on the Hamiltonian via Poisson bracket

{Gλ,H} = δλH . (7.21)

can be interpreted as the change of background fields. With the help of delta function identity (7.7),
we obtain

δλ

( 1

2κ
πµ(G

−1)µνπν

)
=

1

2κ

∫
dσ̄
{
κλρ(σ̄)∂σ̄x

ρ(σ̄), πµ(σ)(G
−1)µν(σ)πν(σ)

}
(7.22)

=

∫
dσ̄
(
− λµ(σ̄)(G

−1)µνπνδ
′(σ − σ̄) + x′ρ∂µλρ(G

−1)µνπνδ(σ − σ̄)
)

= x′µ(∂ρλµ − ∂µλρ)(G
−1)ρνπν ,

where the anomalous part goes to zero due to (7.8). The second Hamiltonian term (2.35) does not
depend on momenta, so we have

δλ

(1
2
x′µGE

µνx
′ν
)
=

1

2

∫
dσ̄
{
λρ(σ̄)∂σ̄x

ρ(σ̄), x′µ(σ)GE
µν(σ)x

′ν(σ)
}
= 0 , (7.23)

and similarly using (7.7), we have

δλ

(
− 2x′µ(BG−1) ν

µ πν

)
= −2κ

∫
dσ̄
{
λρ(σ̄)∂σ̄x

ρ(σ̄), x′µ(σ)(BG−1) ν
µ (σ)πν(σ)

}
(7.24)

= −2κx′µ(BG−1) ν
µ

∫
dσ̄
(
− λν(σ̄)δ

′(σ − σ̄) + ∂νλρx
′ρδ(σ − σ̄)

)
= 2κx′µ(BG−1) ρ

µ (∂νλρ − ∂ρλν)x
′ν .
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Substituting contributions (7.22), (7.23) and (7.24) into (7.21), we obtain

δλ(G
−1)µν = 0 , (7.25)
δλG

E
µν = 4(BG−1) ρ

µ (∂ρλν − ∂νλρ) , (7.26)

δλ(BG
−1) ν

µ =
1

2
(∂µλρ − ∂ρλµ)(G

−1)ρν , (7.27)

from which we read the transformation of background fields

δλGµν = 0 , (7.28)
δλBµν = (dλ)µν = ∂µλν − ∂νλµ ,

where without loss of generality we redefined λ → 1
2
λ. These transformations of the background

fields are known as local gauge transformations. There are analogous to the gauge transformations of
the vector potential in electromagnetism (2.8).

Local gauge transformations are reducible transformations, due to the nilpotency of the exterior
derivative. To demonstrate this, we consider the transformation of the Kalb-Ramond field governed
by the generator of local gauge transformations with the parameter that is a sum of parameter λ and
the exterior derivative of some smooth function f

δλ+dfB = dλ+ d2f = δλB , (7.29)

or in some coordinate basis

δλ+dfBµν = ∂µ(λν + ∂νf)− ∂ν(λµ + ∂µf) = δλBµν . (7.30)

The T-duality exchanges momenta with the winding numbers (3.28). Since canonical momenta
and the coordinate σ-derivatives are also generators of the diffeomorphisms and local gauge transfor-
mations, respectively, we conclude that the general coordinate transformations and local gauge trans-
formations are not independent, rather they are related by T-duality.

7.2 Double generator and Courant bracket
The mutual relation of generators by T-duality motivates us to consider a single generator that will
govern both of these symmetry transformations. The parameters of diffeomorphism ξµ are vector
components, while the parameters of the local gauge transformations λµ are components of the 1-
forms. Therefore, we can combine two parameters into a generalized vector ΛM , where

ΛM =

(
ξµ

λµ

)
. (7.31)
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The generator governing both symmetry transformations is just the sum of generators Gξ (7.2) and Gλ

(7.20)

GΛ = Gξ + Gλ =

∫ 2π

0

dσ
(
ξµπµ + λµκx

′µ
)
, (7.32)

which can be recognized as the inner product (6.2) on the generalized tangent bundle

GΛ =

∫
dσ⟨Λ, X⟩ . (7.33)

Let us now proceed with the algebra of double generator GΛ. Using the Poisson bracket relations
(7.3), we obtain{

G(ξ1 ⊕ λ1), G(ξ2 ⊕ λ2)
}
=

∫
dσ
(
πµ(ξ

ν
2∂νξ

µ
1 − ξν1∂νξ

µ
2 ) + κx′µ(ξν2∂νλ1µ − ξν1∂νλ2µ)

)
(7.34)

+

∫
dσdσ̄κ

(
λ1µ(σ)ξ

µ
2 (σ̄) + λ2µ(σ̄)ξ

µ
1 (σ)

)
δ′(σ − σ̄) ,

where we adopt the notation in which ξ1 and λ1 are vector and 1-form components of a generalized
vector Λ1, etc. To transform the anomalous terms, we note the identity

δ′(σ − σ̄) = −∂σ̄δ(σ − σ̄) . (7.35)

Now, the first term in the last line on the right-hand side of the equation (7.34) can be rewritten as

κ

∫
dσdσ̄λ1µ(σ)ξ

µ
2 (σ̄)δ

′(σ − σ̄) =
κ

2

∫
dσdσ̄

(
λ1µ(σ)ξ

µ
2 (σ̄)δ

′(σ − σ̄)− λ1µ(σ)ξ
µ
2 (σ̄)∂σ̄δ(σ − σ̄)

)
=

κ

2

∫
dσdσ̄

(
λ1µξ

µ
2 δ

′(σ − σ̄)− λ1µ(σ̄)ξ
µ
2 (σ̄)∂σ̄δ(σ − σ̄)

)
(7.36)

+
κ

2

∫
dσ
(
λ1µ∂νξ

µ
2x

′ν − ∂νλ1µξ
µ
2x

′ν
)

= κ

∫
dσ
(1
2
∂ν(λ1µξ

µ
2 )− ξµ2 ∂νλ1µ

)
x′ν .

We first made the relation symmetric with the help of (7.35). Afterward, we used the relation (7.7),
and in the end, we used the chain rule, and (7.8).

Similarly, the second anomalous term in (7.34) is as easily transformed

κ

∫
dσdσ̄λ2µ(σ̄)ξ

µ
1 (σ)δ

′(σ − σ̄) =
κ

2

∫
dσdσ̄

(
λ2µ(σ̄)ξ

µ
1 (σ)δ

′(σ − σ̄)− λ2µ(σ̄)ξ
µ
1 (σ)∂σ̄δ(σ − σ̄)

)
=

κ

2

∫
dσdσ̄

(
λ2µξ

µ
1 δ

′(σ − σ̄)− λ2µ(σ̄)ξ
µ
1 (σ̄)∂σ̄δ(σ − σ̄)

)
(7.37)

+
κ

2

∫
dσ
(
∂νλ2µξ

µ
1x

′ν − λ2µ∂νξ
µ
1x

′ν
)

= κ

∫
dσ
(
ξµ1 ∂νλ2µ −

1

2
∂ν(λ2µξ

µ
1 )
)
x′ν .
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Substituting (7.36) and (7.37) into (7.34), we obtain{
GΛ1 , GΛ2

}
= −GΛ , (7.38)

where the resulting gauge parameters are given by

ξµ = ξν1∂νξ
µ
2 − ξν2∂νξ

µ
1 , (7.39)

λµ = ξν1 (∂νλ2µ − ∂µλ2ν)− ξν2 (∂νλ1µ − ∂µλ1ν) +
1

2
∂µ(ξ1λ2 − ξ2λ1) .

These relations can be recognized from the previous chapter, as relations (6.13) defining the Courant
bracket {

GΛ1 , GΛ2

}
= −G[Λ1,Λ2]C . (7.40)

We see that by extending the generator of diffeomorphisms with the local gauge transformations,
the Courant bracket appears [68]. Due to the T-dual relation between two symmetry transformations,
we conclude that the Courant bracket is the T-dual extension of the Lie bracket.

The Courant bracket, together with the generalized tangent bundle and its symmetric bilinear form
(6.2), and the natural projection to the tangent bundle as an anchor, defines the standard Courant
algebroid (see Appendix [C]). In the previous chapter, we obtained its Dirac structures and saw that it
puts a severe restriction onH- andR-fluxes. In the next chapter, we will introduce the twisted Courant
algebroid, that is to say, the Courant algebroid defined with the twisted version of the Courant bracket.
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Chapter 8

Twisted Courant algebroid

We will define the Courant bracket twisted by any element of the O(D,D) group and then show that
it defines a Courant algebroid, where all the compatibility conditions are a priori satisfied.

8.1 Twisted Courant bracket
Let eT be anO(D,D) transformation, keeping the inner product (6.2) invariant. Its action on the basis
XM (2.39) produces another basis

X̂M = (eT )MN XN . (8.1)

We can express the generator GΛ (7.33) in this basis, using the invariance of the inner product with
respect to eT

GΛ =

∫
dσ⟨Λ, X⟩ =

∫
dσ⟨eTΛ, eTX⟩ =

∫
dσ⟨Λ̂, X̂⟩ = G(T )

Λ̂
, (8.2)

where we marked the resulting generator as G(T )

Λ̂
, and where

Λ̂M = (eT )MN ΛN . (8.3)

Using the O(D,D) invariance of the inner product, the algebra relations of the generator written in a
new basis becomes{

G(T )

Λ̂1
, G(T )

Λ̂2

}
= −

∫
dσ⟨[Λ1,Λ2]C , X⟩ = −

∫
dσ⟨[e−T Λ̂1, e

−T Λ̂2]C , e
−T X̂⟩ (8.4)

= −
∫
dσ⟨eT [e−T Λ̂1, e

−T Λ̂2]C, X̂⟩ = −G(T )

[Λ̂1,Λ̂2]CT
,

where we defined the T -twisted Courant bracket by

[Λ̂1, Λ̂2]CT = eT [e−T Λ̂1, e
−T Λ̂2]C . (8.5)

53



For each O(D,D) invariant transformation eT , there is a corresponding twisted Courant bracket. A
straightforward method of obtaining the twisted Courant bracket involves using the transformation eT

to change the basis in which the generator is represented, followed by calculating the Poisson bracket
algebra of said generator.

8.2 Courant algebroid related to the twisted Courant bracket
Let us demonstrate that the twisted Courant bracket defines a Courant algebroid. We are looking for
an anchor that satisfies

ρ
(
[Λ̂1, Λ̂2]CT

)
= [ρ(Λ̂1), ρ(Λ̂2)]L . (8.6)

Using (8.3) and (8.5), we rewrite the previous relation as

ρ
(
eT [Λ1,Λ2]C

)
= [ρ(eTΛ1), ρ(e

TΛ2)]L . (8.7)

Now from the fact that the natural projection π (6.14) is the anchor for the standard Courant algebroid
(6.16), we obtain

ρ(Λ̂) = π(e−T Λ̂) . (8.8)

The corresponding differential operator is obtained from substituting (8.3) and (8.8) into the definition
of the Courant algebroid differential operator (6.21)

⟨Df, Λ̂⟩ = Lρ(Λ̂) f = Lπ(Λ)f = ⟨D(0)f,Λ⟩ = ⟨D(0)f, e−T Λ̂⟩ = ⟨eTD(0)f, Λ̂⟩ , (8.9)

from which we obtain
Df = eTD(0)f , (8.10)

where D(0) is differential operator of standard Courant algebroid (C.4).
We still need to verify that the compatibility conditions in the Courant algebroid definition (6.23)

- (6.26) are satisfied for the above choice of anchor, bracket, and differential operator. For the second
property (6.23), we have

[Λ̂1, f Λ̂2]CT = eT [e−T Λ̂1, fe
−T Λ̂2]C (8.11)

= eT
(
f [e−T Λ̂1, e

−T Λ̂2]C + (Lπ(e−T Λ̂1)
f)(e−T Λ̂2)−

1

2
⟨e−T Λ̂1, e

−T Λ̂2⟩D(0)f
)

= f [Λ̂1, Λ̂2]CT + (Lρ(Λ̂1)
f)Λ̂2 −

1

2
⟨Λ̂1, Λ̂2⟩Df ,

where we first used the definition of the twisted Courant bracket (8.5), afterward we applied (6.17),
and in the end used the expressions for the anchor ρ (8.8) and the differential operator D (8.10), as
well as the fact that O(D,D) transformations keep the inner product invariant.
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For the third condition (6.24), we firstly write

⟨[Λ̂1, Λ̂2]CT +
1

2
D⟨Λ̂1, Λ̂2⟩, Λ̂3⟩ = ⟨eT [e−T Λ̂1, e

−T Λ̂2]C +
1

2
eTD(0)⟨Λ̂1, Λ̂2⟩, Λ̂3⟩ (8.12)

= ⟨[Λ1,Λ2]C +
1

2
D(0)⟨Λ1,Λ2⟩,Λ3⟩ ,

where we used (8.5), (8.3) and (8.10). Similarly, we obtain

⟨Λ̂2, [Λ̂1, Λ̂3]CT +
1

2
D⟨Λ̂1, Λ̂3⟩⟩ = ⟨Λ2, [Λ1,Λ3]C +

1

2
D(0)⟨Λ1,Λ3⟩⟩ , (8.13)

and
Lρ(Λ̂1)

⟨Λ̂2, Λ̂3⟩ = Lπ(Λ1)⟨Λ2,Λ3⟩ . (8.14)

Adding (8.12) and (8.13), we obtain

⟨[Λ̂1, Λ̂2]CT +
1

2
D⟨Λ̂1, Λ̂2⟩, Λ̂3⟩+ ⟨Λ̂2, [Λ̂1, Λ̂3]CT +

1

2
D⟨Λ̂1, Λ̂3⟩⟩ = (8.15)

⟨[Λ1,Λ2]C +
1

2
D(0)⟨Λ1,Λ2⟩,Λ3⟩+ ⟨Λ2, [Λ1,Λ3]C +

1

2
D(0)⟨Λ1,Λ3⟩⟩ =

Lπ(Λ1)⟨Λ2,Λ3⟩ = Lρ(Λ̂1)
⟨Λ̂2, Λ̂3⟩ ,

where in the end we used (C.11) and (8.14).
The fourth condition (6.25) is as easily obtained from the orthogonality of eT with respect to the

inner product
⟨Df,Dg⟩ = ⟨eTD(0)f, eTD(0)g⟩ = ⟨D(0)f,D(0)g⟩ = 0 . (8.16)

Lastly, we note that

[[Λ̂1, Λ̂2]CT , Λ̂3]CT = eT [[e−T Λ̂1, e
−T Λ̂2]C, e

−T Λ̂3]C = eT [[Λ1,Λ2]C,Λ3]C , (8.17)

from which we express the Jacobiator (6.19) for the twisted Courant bracket in terms of the Jacobiator
for the Courant bracket by

JacCT (Λ̂1, Λ̂2, Λ̂3) = eT JacC(Λ1,Λ2,Λ3) . (8.18)

Similarly, we note that

⟨[Λ̂1, Λ̂2]CT , Λ̂3⟩ = ⟨eT [e−T Λ̂1, e
−T Λ̂2]C, Λ̂3⟩ = ⟨[Λ1,Λ2]C,Λ3⟩ , (8.19)

from which one easily obtains the relation between the Nijenhuis operator (6.20) of the twisted and
standard Courant bracket

NijCT (Λ̂1, Λ̂2, Λ̂3) = NijC(Λ1,Λ2,Λ3) . (8.20)
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Substituting (8.10), (8.18) and (8.20) into (6.18), we obtain the last compatibility condition of (6.26).
Thus, it has been demonstrated that

(
TM⊕ T ⋆M, ⟨, ⟩, [, ]CT , ρ

)
is a Courant algebroid with the

appropriate twisted Courant bracket (8.5) as its bracket. This is a simple consequence of the fact that
the Courant bracket defines the standard Courant algebroid and that the inner product (6.2) remains
invariant under O(D,D) transformations.

It is worth reiterating that the crucial step in obtaining the twisted Courant brackets is a change of
basis by the action of O(D,D) transformation. As we will see in the following chapters, it is possible
to choose different bases in which the generalized metric is diagonal, and Hamiltonian has the form
of a non-interacting Hamiltonian, expressed in terms of non-canonical currents. The Poisson bracket
relations of these currents will contain fluxes.
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Chapter 9

B-twisted Courant bracket

The procedure for obtaining the twisted Courant algebroid from the Poisson bracket algebra will be
applied in this chapter for case of B-transformations. We will obtain the B-twisted Courant bracket,
its related Courant algebroid and its Dirac structures.

9.1 Free form Hamiltonian
Consider the background field characterized only with the metric tensor, so that the generalized metric
has a simple diagonal form

GMN =

(
Gµν 0

0 (G−1)µν

)
. (9.1)

Acting with the B-transformations eB̂ (6.5), we can obtain the usual expression for the generalized
metric HMN (2.38)

HMN = ((eB̂)T ) K
M GKL (eB̂)LN . (9.2)

Therefore, we can rewrite the canonical Hamiltonian (2.35) in the form of a free Hamiltonian

HC =
1

2κ
(XT )MHMNX

N =
1

2κ
(eB̂X)MGMN(e

B̂X)N =
1

2κ
X̂MGMNX̂

N , (9.3)

where

X̂M = (eB̂)MN XN =

(
κx′µ

πµ + 2κBµνx
′ν

)
≡

(
κx′µ

iµ

)
, (9.4)

where iµ is an auxiliary current given by

iµ = πµ + 2κBµνx
′ν . (9.5)
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The Poisson bracket algebra of auxiliary currents iµ is easily obtained with the help of the standard
Poisson bracket relations between canonical variables (7.3)

{iµ(σ), iν(σ̄)} = −2κBµνρx
′ρδ(σ − σ̄) , (9.6)

where Bµνρ is the Kalb-Ramond field strength (2.28). In the context of flux compactification, the
Kalb-Ramond field strength is known as the H-flux. Mathematically, this is the exterior derivative of
a 2-form B.

Let us now express the generator (7.32) in the non-canonical basis X̂M . It is given by

GB̂
Λ̂
=

∫
dσ⟨Λ̂, X̂⟩ =

∫
dσ
(
ξµiµ + λ̂µκx

′µ
)
, (9.7)

which is exactly equal to the generator written in canonical basis when the following relation between
gauge parameters is satisfied

Λ̂M = (eB̂)MN ΛN =

(
δµν 0

2Bµν δνµ

)(
ξν

λν

)
=

(
ξµ

λµ + 2Bµνξ
ν

)
≡

(
ξµ

λ̂µ

)
. (9.8)

In the previous chapter, we saw that the O(D,D) transformation on the basis in which the generator
is expressed gives rise to the new basis, in which generator closes on the twisted Courant bracket. In
this case, we have eB̂ as O(D,D) transformation, which when substituted in (8.4) becomes{

GB̂
Λ1
,GB̂

Λ2

}
= −GB̂

[Λ1,Λ2]CB
, (9.9)

where we have marked the B-twisted Courant bracket (8.5) by

[Λ1,Λ2]CB = eB̂[e−B̂Λ1, e
−B̂Λ2]C . (9.10)

9.2 B-twisted Courant bracket
We see how the B-twisted Courant bracket can be obtained from the newly defined generator GB̂

Λ

(9.7). Before that, we require the Poisson bracket relations between the auxiliary currents (9.5) and
parameters (9.8), which are easily obtained using the standard Poisson bracket relations

{ξµ(σ), iν(σ̄)} = ∂νξ
µδ(σ − σ̄) , {λµ(σ), iν(σ̄)} = ∂νλµδ(σ − σ̄) , (9.11)

where we assume the σ dependence unless stated otherwise. We note that the part containing only
vector parameters ξ in (9.9) produces additional term containing H-flux, compared to the standard
Courant bracket{

ξµ1 (σ)iµ(σ), ξ
ν
2 (σ̄)iν(σ̄)

}
= −

[(
ξν1∂νξ

µ
2 − ξν2∂νξ

µ
1

)
iµ + 2Bµνρξ

ν
1ξ

ρ
2κx

′µ
]
δ(σ − σ̄) . (9.12)
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The other contributions remain the same as in the case of the Courant bracket, since{
λ1µ(σ)κx

′µ(σ), ξν2 (σ̄)iν(σ̄)
}

=
{
λ1µ(σ)κx

′µ(σ), ξν2 (σ̄)πν(σ̄)
}

(9.13){
λ1µ(σ)κx

′µ(σ), λ2ν(σ̄)κx
′ν(σ̄)

}
= 0 .

Substituting (9.12) and (9.13) into (9.9), we obtain the expression for resulting symmetry parameter
Λ̂ = ξ ⊕ λ̂ for the B-twisted Courant bracket

ξµ = ξν1∂νξ
µ
2 − ξν2∂νξ

µ
1 , (9.14)

λ̂µ = ξν1 (∂νλ̂2µ − ∂µλ̂2ν)− ξν2 (∂νλ̂1µ − ∂µλ̂1ν) +
1

2
∂µ(ξ1λ̂2 − ξ2λ̂1) + 2Bµνρξ

ν
1ξ

ρ
2 ,

or in the coordinate invariant notation

ξ = [ξ1, ξ2]L , (9.15)

λ = Lξ1λ2 − Lξ2λ1 −
1

2
d(iξ1λ2 − iξ2λ1) + dB(ξ1, ξ2, .) .

TheB-twisted Courant bracket was firstly obtained in [69], where the authors considered a double
of a trivial Lie algebroid on cotangent bundle with the bracket [λ1, λ2] = 0, and a quasi-Lie algebroid
whose bracket is defined as

[ξ1, ξ2]L̃ = [ξ1, ξ2]L + dB(ξ1, ξ2, .) . (9.16)

Then, the relations (6.11) gives rise to the B-twisted Courant bracket. The bracket (9.16) does not
satisfy the Jacobi identity, and for that reason defines a quasi-Lie algebroid. The flux term can be seen
as the deformation from the Lie algebroid.

9.3 Courant algebroid
We saw how the B-twisted Courant bracket is directly obtained from the symmetry generator in basis
obtained from the appropriate O(D,D) transformation. Substituting eT = eB̂ into (8.8) and (8.10),
we see that the anchor and the derivative operator are defined the same as in the case of non-twisted,
standard Courant algebroid, i.e.

ρ(B̂) = π , D(B̂)f = D(0)f = 0⊕ df . (9.17)

Let us seek the Dirac structures in the form of VB (6.29). On this sub-bundle, the symmetry
generator becomes

GB̂
VB(Λ) =

∫
dσ
(
ξµiµ + 2Bµνξ

νκx′µ
)
=

∫
dσ
(
ξµπµ + 2Bµν(ξ

µκx′ν + ξνκx′µ)
)

(9.18)

=

∫
dσξµπµ ,
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due to B being antisymmetric. This generator is known to be a generator of diffeomorphisms (7.2),
and gives rise to the Lie bracket (7.19) in its Poisson bracket algebra. Hence, VB is going to be a Dirac
structure no matter what value of the Kalb-Ramond field strength dB, i.e.[

VB(Λ1),VB(Λ2)
]
CB

= VB

(
[Λ1,Λ2]CB

)
, ∀ dB . (9.19)

For the standard Courant algebroid, VB is a Dirac structure only for a closed 2-form dB = 0 (6.34).
The twisting of the Courant bracket by B lifted the restriction it imposed on its Dirac structures in the
form of VB.

As for the Dirac structures in the form of Vθ (6.31), the restrictions on fluxes remain. The easiest
way to see that is to substitute ξµ = κθµνλν into relation (9.14). We obtain

ξµ = κ2θµσθνρ(λ1ρ∂νλ2σ − λ2ρ∂νλ1σ) + κ2(θνρ∂νθ
µσ − θνσ∂νθ

µρ)λ1ρλ2σ (9.20)
λµ = κθνρ(λ1ρ∂νλ2µ − λ2ρ∂νλ1µ) + κ∂µθ

νρλ1ρλ2ν + 2κ2Bµνρθ
ναθρβλ1αλ2β .

For this to define a Dirac structure, the condition ξµ = κθµνλν has to be true on resulting parameters.
However, we have instead the relation

ξµ = κθµνλν − κ2(θµσ∂σθ
νρ + θνσ∂σθ

ρµ + θρσ∂σθ
µν + 2κθµαθνβθργBαβγ)λ1νλ2ρ , (9.21)

and therefore Vθ will be a Dirac structure for

[Vθ(Λ1),Vθ(Λ2)]CB = Vθ

(
[Λ1,Λ2]CB

)
, R = 0 , (9.22)

where R is generalized R-flux, given by

Rµνρ = Rµνρ + 2κθµαθνβθργBαβγ , Rµνρ = θµσ∂σθ
νρ + θνσ∂σθ

ρµ + θρσ∂σθ
µν . (9.23)

In the coordinate free notation, the generalized R-flux has the expression

R =
1

2
[θ, θ]S + 2κ ∧3 θ dB , (9.24)

where ∧3θ dB represents the multiplication of a bi-vector θ three times with the 3-form dB.
The condition R = 0 defines twisted Poisson structures [69]. In that case, one can define the

twisted Poisson bracket, using the relation (A.1), which will not satisfy the Jacobi identity. The twisted
Poisson structures appeared in many instances in the context of string theory. For instance, they are a
suitable mathematical language for describing the non-commutative and non-associative string back-
grounds [70]. As we see, in generalized geometry we obtain twisted Poisson structures as Dirac struc-
tures of the B-twisted Courant algebroids.
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Chapter 10

θ-twisted Courant bracket in symmetry
algebra

In this chapter, we will consider the background obtained by the action of θ-transformation, acting on
the background characterized solely by the T-dual metric tensor. We will show that Hamiltonian can
be written in the diagonal form in a non-canonical basis and that the symmetry generator algebra in
that basis closes on θ-twisted Courant bracket. In the end, we will show that this bracket is in fact
T-dual to B-twisted Courant bracket.

10.1 Free form Hamiltonian
We will begin with the background characterized solely by the T-dual metric tensor. The T-dual of the
diagonal generalized metric GMN (9.1) is given by

⋆GMN =

(
⋆(G−1)µν 0

0 ⋆Gµν

)
=

(
GE

µν 0

0 (G−1
E )µν

)
, (10.1)

where the relation (3.21) was used. We will introduce the antisymmetric field with the T-dual of
B-transformations, which are θ-transformations eθ̂ (6.7). The T-dual generalized metric becomes

⋆HMN = ((eθ̂)T ) L
M

⋆GLK(e
θ̂)KN =

(
1 0

−2⋆B 1

) (
⋆G−1 0

0 ⋆G

)(
1 2⋆B

0 1

)
(10.2)

=

(
⋆G−1 2⋆G−1⋆B

−2⋆B⋆G−1 ⋆G− 4⋆B⋆G−1⋆B

)
=

(
GE 2BG−1

−2G−1B G−1

)
= HMN ,

where in the second line we used (3.21) and (2.38).
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We rewrite the Hamiltonian in a non-canonical basis, so that the T-dual generalized metric is di-
agonal

⋆ĤC =
1

2κ
(XT ) L

M ((eθ̂)T ) K
L

⋆GKJ (eθ̂)JN XN =
1

2κ
X̂M⋆GMNX̂

N , (10.3)

where

X̂M = (eθ̂)MN XN =

(
δµν κθµν

0 δνµ

)(
κx′ν

πν

)
=

(
κx′µ + κθµνπν

πµ

)
≡

(
kµ

πµ

)
, (10.4)

and where kµ is an auxiliary current, given by

kµ = κx′µ + κθµνπν . (10.5)

The Poisson bracket algebra of these currents is easily obtained from the standard Poisson bracket
relations between canonical variables (7.3)

{kµ(σ), kν(σ̄)} = κ2θνσ(σ̄)δµσδ
′(σ − σ̄)− κ2θµρδνρ∂σ̄δ(σ − σ̄) (10.6)

+κ2θνσ∂σθ
µρπρδ(σ − σ̄)− κ2θµσ∂σθ

νρπρδ(σ − σ̄)

= κ2θνµδ′(σ − σ̄) + κ2∂ρθ
νµx′ρδ(σ − σ̄) + κ2θµνδ′(σ − σ̄)

+κ2θνσ∂σθ
µρπρδ(σ − σ̄)− κ2θµσ∂σθ

νρπρδ(σ − σ̄)

= −κQ µν
ρ kρδ(σ − σ̄)− κ2Rµνρπρδ(σ − σ̄) ,

where in the second step we applied two δ-function identities (7.7) and (7.35), and in the last step we
used the inverted relation of (10.5)

κx′µ = kµ − κθµνπν , (10.7)

and expressed the structure coefficients as non-geometric fluxes Q and R, given by

Q µν
ρ = ∂ρθ

µν , Rµνρ = θµσ∂σθ
νρ + θνσ∂σθ

ρµ + θρσ∂σθ
µν . (10.8)

These fluxes can create a potential that stabilizes the vacuum expectation value and provides mass to
the moduli [23, 24, 25]. Additionally, Q flux is linked to string non-commutativity [71], while R flux
is linked to string non-associativity [72].

The other relevant algebra relation is as easily obtained

{kµ(σ), πν(σ̄)} = κδµν δ
′(σ − σ̄) + κ∂νθ

µρπρδ(σ − σ̄) . (10.9)

We also rewrite the symmetry generator in a new non-canonical basis

G θ̂
Λ̂ =

∫
dσ⟨Λ̂, X̂⟩ , (10.10)
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which is the same as the generator GΛ, when the following relation between the symmetry parameters
stand

Λ̂M = (eθ̂)MN ΛN =

(
δµν κθµν

0 δνµ

)(
ξν

λν

)
=

(
ξµ + κθµνλν

λµ

)
≡

(
ξ̂µ

λµ

)
. (10.11)

The algebra of parameters and auxiliary currents is a straightforward application of (7.3), e.g.

{λµ(σ), kν(σ̄)} = κθνρ∂ρλµδ(σ − σ̄) , (10.12)

and similarly for other cases.

10.2 θ-twisted Courant bracket
Like in the previous chapter, we want to obtain the algebra in the form{

G θ̂
Λ̂1
, G θ̂

Λ̂2

}
= −G θ̂

[Λ̂1,Λ̂2]Cθ
, (10.13)

where [Λ̂1, Λ̂2]Cθ is the θ-twisted Courant bracket. Again, we will do the termwise calculations. From
the vector-vector contribution, we obtain the Lie bracket

{ξ̂µ1πµ(σ), ξ̂ν2πν(σ̄)} = −(ξ̂ν1∂ν ξ̂
µ
2 − ξ̂ν2∂ν ξ̂

µ
1 )πµδ(σ − σ̄) . (10.14)

For the form-form bracket, using (10.6) and (10.12) we obtain

{λ1µkµ(σ), λ2νkν(σ̄)} = −
(
κθνρ(λ1ν∂ρλ2µ − λ2ν∂ρλ1µ) + κλ1ρλ2νQ

ρν
µ

)
kµδ(σ − σ̄)

−κ2Rµνρλ1νλ2ρπµδ(σ − σ̄) . (10.15)

The direct calculations of the form-vector part gives

{λ1µkµ(σ), ξ̂ν2πν(σ̄)} = ξ̂ν2∂νλ1µk
µδ(σ − σ̄)− κλ1µθ

µρ∂ρξ̂
ν
2πνδ(σ − σ̄) (10.16)

+κλ1µ(σ)ξ̂
µ
2 (σ̄)δ

′(σ − σ̄) + κλ1µ∂νθ
µρπρξ̂

ν
2δ(σ − σ̄) .

As in the previous chapters, the anomalous part can be further transformed. Using (7.7) and (7.35),
we obtain

κλ1µ(σ)ξ̂
µ
2 (σ̄)δ

′(σ − σ̄) =
κ

2
λ1µ(σ)ξ̂

µ
2 (σ̄)

(
δ′(σ − σ̄)− ∂σ̄δ(σ − σ̄)

)
(10.17)

=
κ

2

(
λ1µ∂ν ξ̂

µ
2 − ∂νλ1µξ̂

µ
2

)
x′νδ(σ − σ̄)

+
κ

2

(
λ1µ(σ)ξ̂

µ
2 (σ)δ

′(σ − σ̄)− λ1µ(σ̄)ξ̂
µ
2 (σ̄)∂σ̄δ(σ − σ̄)

)
.

63



Now the anomalous part goes to zero after the integration over both σ and σ̄, while the non-anomalous
part can be transformed with the help of (10.7). After relabeling some dummy indices, the expressions
for resulting symmetry parameters are

ξ̂µ = ξ̂ν1∂ν ξ̂
µ
2 − ξ̂ν2∂ν ξ̂

µ
1 + (10.18)

+κθµν
(
ξ̂ρ1(∂ρλ2ν − ∂νλ2ρ)− ξ̂ρ2(∂ρλ1ν − ∂νλ1ρ) +

1

2
∂ν(ξ̂1λ2 − ξ̂2λ1)

)
+κξ̂ν1∂ν(λ2ρθ

ρµ)− κξ̂ν2∂ν(λ1ρθ
ρµ) + κ(λ1νθ

νρ)∂ρξ̂
µ
2 − κ(λ2νθ

νρ)∂ρξ̂
µ
1

+κ2Rµνρλ1νλ2ρ ,

λµ = ξ̂ν1 (∂νλ2µ − ∂µλ2ν)− ξ̂ν2 (∂νλ1µ − ∂µλ1ν) +
1

2
∂µ(ξ̂1λ2 − ξ̂2λ1)

+κθνρ(λ1ν∂ρλ2µ − λ2ν∂ρλ1µ) + κλ1ρλ2νQ
ρν
µ .

In the coordinate free notation, the above expressions read

ξ̂ =[ξ̂1, ξ̂2]L − κ[ξ̂2, λ1θ]L + κ[ξ̂1, λ2θ]L +
κ2

2
[θ, θ]S(λ1, λ2, .) (10.19)

− κθ
(
Lξ̂2

λ1 − Lξ̂1
λ2 +

1

2
d(iξ̂1λ2 − iξ̂2λ1)

)
λ =Lξ̂1

λ2 − Lξ̂2
λ1 −

1

2
d(iξ̂1λ2 − iξ̂2λ1) + κ[λ1, λ2]θ ,

where [θ, θ]S represents the Schouten-Nijenhuis bracket (4.25) [47], and [λ1, λ2]θ is the Koszul bracket
(5.11) [53], and θ(λ) is defined as in (5.9).

10.3 Courant algebroid
The obtained bracket is the θ-twisted Courant bracket, given by

[Λ̂1, Λ̂2]Cθ = eθ̂[e−θ̂Λ1, e
−θ̂Λ2]C . (10.20)

It defines the Courant algebroid with the following anchor

ρ(θ̂)(Λ) = ξµ − κθµνλν , (10.21)

from which we easily obtain the differential operator

D(θ̂)f =

(
κθµν∂νf

∂µf

)
=

(
dθf

df

)
, (10.22)
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where dθ (5.20) is the exterior derivative corresponding to the Koszul bracket. The structure
(
TM⊕

T ⋆M, [, ]Cθ , ⟨, ⟩, ρ(θ)
)

is a Courant algebroid, with all compatibility conditions satisfied.
To obtain the Dirac structures, we firstly substitute the graph of a 2-form into the definition of the

symmetry generator (10.10)

G θ̂
VB(Λ) =

∫
dσ
(
ξ̂µπµ + 2Bµν ξ̂

νκθµρπρ + 2Bµνκx
′µξ̂ν
)

(10.23)

=

∫
dσ
(
ξ̂ν(δµν − 2κBνρθ

ρµ)πµ + 2Bµνκx
′ν ξ̂ν
)
.

Next, we can use the following identity

δµν = 2κθµρBρν + (G−1
E )µρGρν , (10.24)

which is easily obtained from (2.36) and (3.16). The generator (10.23) can be rewritten in canonical
form as

G θ̂
VB(Λ) =

∫
dσ
(
ξ̃µπµ+λ̃µκx

′µ
)
= GΛ̃ , ξ̃µ = ξ̂µ−2κθµνBνρξ̂

ρ , λ̃µ = 2(BG−1GE)µν ξ̃
ν . (10.25)

The generator written like this will give rise to the Courant bracket. We can use the results from
previous chapters, namely (6.34), to establish that the condition for VB to be Dirac structure is given
by

d(BG−1GE) = dB − 4d(BG−1BG−1B) = 0 . (10.26)

On the other hand, when we substitute the graph of the bi-vector into (10.10), the generator be-
comes

G θ̂
Vθ(Λ)

=

∫
dσκx′µλµ , (10.27)

which does not depend on canonical momenta, and hence Vθ is always Dirac structure. Moreover, we
have

[Vθ(Λ1),Vθ(Λ2)]Cθ = 0 . (10.28)

This reflects the basic asymmetry of the Courant bracket in the way how it treats vectors and 1-forms.
On vectors, it reduces to the Lie bracket, which happens when the B-twisted Courant bracket is con-
sidered on the subspace VB. On 1-forms, the Courant bracket is zero. The θ-twisted Courant bracket
becomes precisely the Courant bracket of 1-forms on Vθ.

10.4 Relation to B-twisted Courant bracket via self T-duality
Suppose we want to implement T-duality within the same phase space, without adding any new D

coordinates or their corresponding momenta. Such a transformation should swap the momenta πµ
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with the coordinate σ-derivatives, as well as the background fields with their T-dual counterparts, i.e.

πµ ↔ κx′µ , 2Bµν ↔ κθµν . (10.29)

We will use the term "self T-duality" to describe this concept. Under such transformation, auxiliary
currents iµ (9.5) and kµ (10.5) transform one into another

iµ = πµ + 2κBµνx
′ν ↔ κx′µ + κθµνπν = kµ . (10.30)

We can conclude that the generators (9.7) and (10.10) are also related by self T-duality, and so is
their algebra. This means that B-twisted Courant bracket and θ-twisted Courant bracket are mutually
related by self T-duality. The Courant algebroid with H-flux under the exchange of mutually T-dual
variables becomes the Courant algebroid with Q and R fluxes.

The advantage of considering the T-duality and all generators in the same phase space is that we
can easily express one in terms of the other by coordinate transformation. Inverting relations (9.8) and
substituting it into (10.11), we obtain the following relation between the parameters

Λ̂M
(θ) = (eθ̂e−B̂)MN Λ̂N

(B) , (10.31)

where in order to differentiate between parameters (9.8) and (10.11), we added indices B and θ. We
have obtained the isomorphism between these Courant algebroids

φ = (eθ̂e−B̂)MN =

(
δµν − 2κ(θB)µν κθµν

−2Bµν δνµ

)
. (10.32)

The isomorphism φ satisfies the first rule of (6.27), simply from the fact that the inner product is
invariant under theO(D,D) transformations. The second property can be also easily verified. Firstly,
from relation (9.10) we can derive

φ[Λ1,Λ2]CB = eθ̂[e−B̂Λ1, e
−B̂Λ2]C , (10.33)

and from (10.20) we obtain

[φ(Λ1), φ(Λ2)]Cθ = eθ̂[e−B̂Λ1, e
−B̂Λ2]C , (10.34)

and therefore we obtain the second requirement in (6.27)

φ[Λ1,Λ2]CB =
(
[φ(Λ1), φ(Λ2)]Cθ

)
. (10.35)

We demonstrated that the Courant algebroid relations that govern symmetry generator algebra in
both the initial and self T-dual picture are isomorphic. This isomorphism is governed by the same
properties (6.27) as the isomorphism that governs topological T-duality on backgrounds defined on
tori [63]. As a result, we extended the idea of T-duality as a Courant algebroid isomorphism to include
symmetry transformations as well.
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Chapter 11

B-θ twisted Courant bracket

The focus of this chapter is on creating a Courant bracket that is twisted by both B and θ fields. The
first step is to construct a twisting matrix that includes both fields and is self T-dual. Next, we derive
the necessary algebraic relations to obtain the complete bracket, along with all the corresponding
generalized fluxes. We then explain how these fluxes can be interpreted in terms of deformations of
Lie algebroids.

11.1 Twisting transformation
The B-twisted Courant bracket is obtained with the action of eB̂, while the θ-twisted Courant bracket
is obtained with the action of eθ̂ transformation on the basis of a double generator. Initially, one might
think to obtain the twist by B and θ by using the product of transformations eB̂ and eθ̂. This would
indeed give rise to the twisted Courant bracket since the composition of two group elements remains
in that group. However, the two transformations do not commute, i.e.

eB̂eθ̂ =

(
1 0

2B 1

)
·

(
1 κθ

0 1

)
=

(
1 κθ

2B 1 + 2κBθ

)
, (11.1)

eθ̂eB̂ =

(
1 κθ

0 1

)
·

(
1 0

2B 1

)
=

(
1 + 2κθB κθ

2B 1

)
. (11.2)

The Courant bracket twisted with the transformation (11.1) yields the Roytenberg bracket. This is an
extension of the Courant bracket which includes all fluxes and has been derived several times [60, 73,
74]. However, it is unclear why that bracket is to be preferred to the Courant bracket twisted with
the transformation (11.2). Moreover, neither of the brackets is invariant under T-duality. Our goal is
to twist the bracket in a way that treats B and θ equally and maintains the T-dual invariance of the
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bracket. This we will refer to as the simultaneous twisting of the Courant bracket by both B and θ [3].
Let us define B̆ by

B̆ = B̂ + θ̂ =

(
0 κθµν

2Bµν 0

)
. (11.3)

By construction, B̆ is invariant under self T-duality and it treats the Kalb-Ramond fieldB and the non-
commutativity parameter θ equally. Therefore, we defined the Courant bracket twisted at the same time
by a 2-form B and by a bi-vector θ by

[Λ1,Λ2]CB̆ = eB̆[e−B̆Λ1, e
−B̆Λ2]C . (11.4)

It is not as straightforward to derive the formula for the matrix eB̆ as it was in the previous cases. The
reason for this is that while the matrices B̂ and θ̂ have a squared value of zero, the same is not true for
the matrix B̆. Hence, the full Taylor expression

eB̆ =
∞∑
n=0

B̆n

n!
(11.5)

has to be obtained. The square of the matrix B̆ is given by

B̆2 =

(
2κ(θB)µν 0

0 2κ(Bθ) ν
µ

)
=

(
αµ

ν 0

0 (αT ) ν
µ

)
, (11.6)

while its cube is given by

B̆3 =

(
0 2κ2(θBθ)µν

4κ(BθB)µν 0

)
=

(
0 καµ

ρθ
ρν

2Bµρα
ρ
ν 0

)
, (11.7)

where we have marked
αµ

ν = 2κθµρBρν . (11.8)

The matrixα is defined for pure convenience, and it possesses a couple of useful properties. Firstly,
it is a symmetric matrix

αµ
ν = 2κθµρBρν = 2κ(−θρµ)(−Bνρ) = 2κBνρθ

ρµ = (αT ) µ
ν , (11.9)

and it transforms into its transpose under the self T-duality relations (10.29)

αµ
ν ↔ (αT ) µ

ν . (11.10)
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Moreover, we have

θµρ(αT ) ν
ρ = 2κθµρBρσθ

σν = αµ
σθ

σν (11.11)
Bµρα

ρ
ν = 2κBµρθ

ρσBσν = (αT ) σ
µ Bσν .

One easily observes the regularity that degrees of B̆ possess. The even degrees are given by

B̆2n =

(
(αn)µν 0

0 ((αT )n) ν
µ

)
, (11.12)

while the odd degrees by

B̆2n+1 =

(
0 κ(αnθ)µν

2(Bαn)µν 0

)
, (11.13)

where we applied (11.11). We can now substitute (11.12) and (11.13) into (11.5), and write

eB̆ =


(∑∞

n=0
αn

(2n)!

)µ
ν

κ
(∑∞

n=0
αn

(2n+1)!

)µ
ρ
θρν

2Bµρ

(∑∞
n=0

αn

(2n+1)!

)ρ
ν

(∑∞
n=0

(αT )n

(2n)!

) ν

µ

 . (11.14)

The terms in the twisting matrix can be simplified using the Taylor expressions for hyperbolic functions

coshα =
∞∑
n=0

α2n

(2n)!
, sinhα =

∞∑
n=0

α2n+1

(2n+ 1)!
, (11.15)

from which we derive

cosh
√
α =

∞∑
n=0

αn

(2n)!
,

sinh
√
α√

α
=

∞∑
n=0

αn

(2n+ 1)!
. (11.16)

For our convenience let us introduce Sµ
ν and Cµ

ν by

Sµ
ν =

(sinh√α√
α

)µ
ν
, Cµ

ν =
(
cosh

√
α
)µ

ν
. (11.17)

We can now rewrite the full transformation matrix eB̆ as

eB̆ =

(
Cµ

ν κSµ
ρθ

ρν

2BµρSρ
ν (CT ) ν

µ

)
. (11.18)

Due to (11.9), the hyperbolic functions (11.17) are symmetric

Sµ
ν = (ST ) µ

ν , Cµ
ν = (CT ) µ

ν . (11.19)
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Secondly, the relation (11.11) is easily generalized to higher orders of α, from which we obtain

Sµ
ρθ

ρν = θµρ(ST ) ν
ρ , Cµ

ρθ
ρν = θµρ(CT ) ν

ρ , (11.20)
BµρSρ

ν = (ST ) ρ
µ Bρν , BµρCρ

ν = (CT ) ρ
µ Bρν .

Thirdly, the well-known hyperbolic identity cosh2 x − sinh2 x = 1 can also be expressed in terms of
newly defined tensors by

(C2)µν − αµ
ρ(S2)ρν = δµν . (11.21)

Lastly, from (11.10) we conclude
C ↔ CT , S ↔ ST . (11.22)

The transformation has been obtained, but we need to check whether it is an O(D,D) transforma-
tion, and therefore suitable for twisting the Courant bracket and defining the Courant algebroid. The
transpose of eB̆ is given by

(eB̆)T =

(
(CT ) µ

ν −2BµρSρ
ν

−κSµ
ρθ

ρν Cµ
ν

)
, (11.23)

and therefore it can be easily verified that

(eB̆)T η eB̆ =

(
CT −2BS

−κSθ C

)(
0 1

1 0

)(
C κSθ

2BS CT

)
(11.24)

=

(
2CTBS − 2BSC (CT )2 − 2κBS2θ

−2κSθBS + C2 −κSθCT + κCSθ

)
= η ,

where η is O(D,D) invariant metric (6.4), and in the last step the properties (11.20) and (11.21) were
used. The determinant of eB̆ is given by

det(eB̆) = eTr(B̆) = 1 , (11.25)

and its inverse by

e−B̆ =

(
Cµ

ν −κSµ
ρθ

ρν

−2BµρSρ
ν (CT ) ν

µ

)
, (11.26)

which is in the accordance with (B.4).

11.2 Self T-dual generator
Having constructed the O(D,D)-invariant self T-dual twisting transformation with both B and θ, we
can move forward with the approach outlined in Chapter 8 to derive the corresponding twisted Courant

70



bracket using the generator algebra. The Poisson bracket representation of the Courant bracket twisted
by B and θ can be obtained from the generator written in the basis

X̆M = (eB̆)MN XN =

(
k̆µ

ῐµ

)
, (11.27)

where the new currents ῐµ and k̆µ are given by

k̆µ = κCµ
νx

′ν + κ(Sθ)µνπν , (11.28)
ῐµ = 2(BS)µνx′ν + (CT ) ν

µ πν .

These currents are mutually related by self T-duality (10.29), implying that the generator is invariant
under self T-duality. Using (11.26), the relations (11.28) can easily be inverted

κx′µ = Cµ
ν k̆

ν − κ(Sθ)µν ῐν , (11.29)
πµ = −2(BS)µν k̆ν + (CT ) ν

µ ῐν .

The double generator is given by
ĞΛ̆ =

∫
dσ⟨X̆, Λ̆⟩ , (11.30)

and is equal to the generator GΛ (7.33) for

Λ̆M = (eB̆)MN ΛN =

(
ξ̆µ

λ̆µ

)
, (11.31)

where

ξ̆µ = Cµ
νξ

ν + κ(Sθ)µνλν , (11.32)
λ̆µ = 2(BS)µνξν + (CT ) ν

µ λν .

We could proceed by directly computing the Poisson bracket between the generators ĞΛ̆. However,
the interpretation of terms is easier if an auxiliary basis is introduced by

X̊M =

(
Cµ

ν 0

0 ((C−1)T ) ν
µ

)(
k̆ν

ῐν

)
=

(
k̊µ

ι̊µ

)
, (11.33)

where the auxiliary currents are

k̊µ = κx′µ + κθ̊µν ι̊ν , (11.34)
ι̊µ = πµ + 2κB̊µνx

′ν ,
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and auxiliary fields are
B̊µν = BµρSρ

σ(C−1)σν , (11.35)

and
θ̊µν = Cµ

ρSρ
σθ

σν . (11.36)

The hyperbolic functions of the background fields are incorporated into the auxiliary background fields
in the auxiliary basis. Additionally, the auxiliary currents (11.34) take the same form as the currents
that generate the Roytenberg bracket [60], although they depend on a different set of fields. We can
easily invert the relation (11.33), and obtain

k̆µ = Cµ
ν k̊

µ , ῐµ = ι̊νCν
µ . (11.37)

Moreover, the coordinate σ-derivative is as easily expressed in terms of auxiliary currents by

κx′µ = k̊µ − κθ̊µν ι̊ν , (11.38)

all of which simplifies computations substantially.
We will find the algebra of the auxiliary currents with auxiliary fluxes as its structure functions.

Using these relations and equation (11.37), we will then determine the necessary algebraic relations
for the twisted Courant bracket with both B and θ backgrounds.

11.3 Algebra of auxiliary currents
The Poisson bracket algebra of the auxiliary currents ι̊µ is given by

{̊ιµ(σ), ι̊ν(σ̄)} = −2B̊µνρk̊
ρδ(σ − σ̄)− F̊ ρ

µν ι̊ρδ(σ − σ̄) , (11.39)

where
B̊µνρ = ∂µB̊νρ + ∂νB̊ρµ + ∂ρB̊µν , (11.40)

and
F̊ ρ
µν = −2κB̊µνσθ̊

σρ . (11.41)

The algebra of currents k̊µ is given by

{̊kµ(σ), k̊ν(σ̄)} = −κQ̊ µν
ρ k̊ρδ(σ − σ̄)− κ2R̊µνρι̊ρδ(σ − σ̄) , (11.42)

where
Q̊ νρ

µ = Q̊ νρ
µ + 2κθ̊νσθ̊ρτ B̊µστ , Q̊ νρ

µ = ∂µθ̊
νρ , (11.43)
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and

R̊µνρ = R̊µνρ + 2κθ̊µλθ̊νσθ̊ρτ B̊λστ , R̊µνρ = θ̊µσ∂σθ̊
νρ + θ̊νσ∂σθ̊

ρµ + θ̊ρσ∂σθ̊
µν . (11.44)

The remaining algebra of currents k̊µ and ι̊µ can be as easily obtained

{̊ιµ(σ), k̊ν(σ̄)} = κδνµδ
′(σ − σ̄) + F̊ ν

µρ k̊
ρδ(σ − σ̄)− κQ̊ νρ

µ ι̊ρδ(σ − σ̄) . (11.45)

These algebra relations can be summarized in the double formalism as

{X̊M , X̊N} = −F̊MN
P X̊

P δ(σ − σ̄) + κηMNδ′(σ − σ̄) , (11.46)

with

FMNρ =

(
κ2R̊µνρ −κQ̊ µρ

ν

κQ̊ νρ
µ F̊ ρ

µν

)
, FMN

ρ =

(
κQ̊ µν

ρ F̊ µ
νρ

−F̊ ν
µρ 2B̊µνρ

)
. (11.47)

The terms appearing are generalized fluxes [20, 21, 22]. Now we can use these relations to obtain the
fluxes related to the Courant bracket twisted with B and θ.

11.4 Fluxes of self T-dual currents
The algebra of auxiliary currents closes with auxiliary fluxes as its structure coefficients. We can now
use the expression for self T-dual currents k̆ and ῐ in terms of their auxiliary counterparts (11.37) to
compute the fluxes relevant for the Courant bracket twisted with both B and θ. Besides the relations
(11.46), we will require the algebra relations in the form

{Cµ
ρ(σ), ι̊ν(σ̄)} = ∂νCµ

ρδ(σ − σ̄) , {Cµ
ρ(σ), k̊

ν(σ̄)} = κθ̊νσ∂σCµ
ρδ(σ − σ̄) , (11.48)

and similar identities for algebra between variables that do not depend on momenta with currents that
form the self T-dual basis.

Firstly, we write

{ῐµ(σ), ῐν(σ̄)} = Cρ
µCσ

ν {̊ιρ, ι̊σ}+ Cρ
µ̊ισ{̊ιρ, Cσ

ν}+ ι̊ρCσ
ν{Cρ

µ, ι̊σ} (11.49)
= −2Cρ

µCσ
νB̊ρσαk̊

αδ(σ − σ̄)− Cρ
µCσ

νF̊ α
ρσ ι̊αδ(σ − σ̄)

−
(
Cρ

µ∂ρCσ
ν − Cρ

ν∂ρCσ
µ

)̊
ισδ(σ − σ̄)

= −2B̆µνρk̆
ρδ(σ − σ̄)− F̆ ρ

µν ῐρδ(σ − σ̄) ,
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where we firstly used (11.37), after which we substituted (11.39) and (11.48). The resulting algebra
we expressed in terms of B̆ flux, given by

B̆µνρ = Cα
µCβ

νCγ
ρB̊αβγ , (11.50)

and F̆ flux, given by

F̆ ρ
µν = F̊ γ

αβ C
α
µCβ

ν(C−1)ργ + (C−1)ρτ

(
Cσ

µ∂σCτ
ν − Cσ

ν∂σCτ
µ

)
. (11.51)

In order to simplify the expression for F̆ flux, let us introduce new sets of derivatives by

∂̂µ = (CT ) ν
µ ∂ν . (11.52)

Here it is worth noting that in general there is no coordinate system x̂µ so that ∂̂µ are well-defined partial
derivatives in that system. This would only be true if the matrix CT defined the diffeomorphisms, i.e.,
if (CT ) ν

µ = ∂xµ

∂x̂ν , which would imply ∂̂µ(CT ) ρ
ν − ∂̂ν(CT ) ρ

µ = 0. However, the matrix C is defined in
terms of the string fields B and θ, and this relation does not hold.

Furthermore, we introduce a new non-commutative field θ̆, which is given by

θ̆µν = (SC−1)µρθ
ρν = (C−2)µρθ̊

ρν . (11.53)

After substituting (11.41) and (11.53) into (11.51), one obtains

F̆ ρ
µν = f̆ ρ

µν − 2κB̆µνσθ̆
σρ , (11.54)

where
f̆ ρ
µν = (C−1)ρσ

(
∂̂µCσ

ν − ∂̂νCσ
µ

)
. (11.55)

Similarly, starting with (11.37), with the help of (11.42) and (11.48), we have

{k̆µ(σ), k̆ν(σ̄)} = (C−1)µρ(C−1)νσ{̊kρ, k̊σ}+ (C−1)µρk̊
σ{̊kρ, (C−1)νσ} (11.56)

+k̊ρ{(C−1)µρ, k̊
σ}(C−1)νσ

= −κ(C−1)µρ(C−1)νσQ̊
ρσ
τ k̊τδ(σ − σ̄)− κ2(C−1)µρ(C−1)νσR̊

ρστ ι̊τδ(σ − σ̄)

−κ
(
θ̆µα∂̂α(C−1)νρ − θ̆να∂̂α(C−1)µρ

)̊
kρδ(σ − σ̄)

= −κQ̆ µν
ρ k̆ρδ(σ − σ̄)− κ2R̆µνρῐρδ(σ − σ̄) ,

where we used the relations (11.52) and (11.53) to simplify result. The fluxes that we obtained are

Q̆ µν
ρ = Cα

ρ(C−1)µβ(C
−1)νγQ̊ βγ

α − Cα
ρ

(
θ̆νβ∂̂β(C−1)µα − θ̆µβ∂̂β(C−1)να

)
, (11.57)
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and
R̆µνρ = R̊αβγ(C−1)µα(C−1)νβ(C−1)ργ . (11.58)

These are expressions for analogs of non-geometric fluxes. We will now proceed to rewrite them in
more recognizable forms. For Q̆-flux, substituting (11.43) into (11.57), we obtain

Q̆ µν
ρ = Q̆ µν

ρ + 2κθ̆µαθ̆νβB̆ραβ , (11.59)

where
Q̆ µν

ρ = Cα
ρ(C−1)µβ(C

−1)νγQ̊
βγ
α − Cα

ρ

(
θ̆νβ∂̂β(C−1)µα − θ̆µβ∂̂β(C−1)να

)
. (11.60)

After expressing the previous relation in terms of θ̆ (11.53), we obtain

Q̆ µν
ρ = ∂α(C2θ̆)βγCα

ρ(C−1)µβ(C
−1)νγ − Cα

ρ

(
θ̆νβ∂̂β(C−1)µα − θ̆µβ∂̂β(C−1)να

)
(11.61)

= ∂̂ρθ̆
µν −

(
(Cθ̆)βν ∂̂ρ(C−1)µβ + (Cθ̆)µγ ∂̂ρ(C−1)νγ)

)
− Cα

ρ

(
θ̆νβ∂̂β(C−1)µα − θ̆µβ∂̂β(C−1)να

)
= ∂̂ρθ̆

µν + Cα
β θ̆

νβ∂̂ρ(C−1)µα − Cα
β θ̆

µβ∂̂ρ(C−1)να − Cα
ρ

(
θ̆νβ∂̂β(C−1)µα − θ̆µβ∂̂β(C−1)να

)
= ∂̂ρθ̆

µν + θ̆νβ
(
Cα

β∂̂ρ(C−1)µα − Cα
ρ∂̂β(C−1)µα

)
− θ̆µβ

(
Cα

β∂̂ρ(C−1)να − Cα
ρ∂̂β(C−1)να

)
= ∂̂ρθ̆

µν + f̆ µ
ρσ θ̆

σν − f̆ ν
ρσ θ̆

σµ .

In the first step, we expressed the flux Q̊ using the non-commutative field θ̆. Then, in the second
step, we used partial integration on the first term and rearranged the resulting expression using equa-
tion (11.52). In subsequent steps, we recognized that (Cθ̆)βν can be expressed as Cβ

σθ̆
σν and that

Cµ
β∂α(C−1)βσ equals −∂αCµ

β(C−1)βσ. By relabeling some indices and using equation (11.55), we ar-
rived at the final step of equation (11.61).

Similarly, substituting (11.44) into (11.58), we obtain

R̆µνρ = R̆µνρ + 2κθ̆µαθ̆νβ θ̆ργB̆αβγ , (11.62)

where
R̆µνρ = R̊αβγ(C−1)µα(C−1)νβ(C−1)ργ (11.63)

The R̆-flux can further be rewritten by

R̆µνρ = (C2θ̆)ασ∂σ(C2θ̆)βγ(C−1)µα(C−1)νβ(C−1)ργ + cyclic (11.64)
= (Cθ̆)µσ∂σθ̆νρ − (Cθ̆)µσ(Cθ̆)βγ(∂σ(C−1)νβ(C−1)ργ + (C−1)νβ∂σ(C−1)ργ) + cyclic

= θ̆µσ∂̂σθ̆
νρ + θ̆µαθ̆ρβ∂̂α(C−1)ντCτ

β − θ̆µβ θ̆να∂̂β(C−1)ρτCτ
α + cyclic

= θ̆µσ∂̂σθ̆
νρ + θ̆νσ∂̂σθ̆

ρµ + θ̆ρσ∂̂σθ̆
µν − θ̆µαθ̆ρβ(C−1)ντ ∂̂αCτ

β + θ̆µβ θ̆να(C−1)ρτ ∂̂βCτ
α

−θ̆ναθ̆µβ(C−1)ρτ ∂̂αCτ
β + θ̆νβ θ̆ρα(C−1)µτ ∂̂βCτ

α − θ̆ραθ̆νβ(C−1)µτ ∂̂αCτ
β + θ̆ρβ θ̆µα(C−1)ντ ∂̂βCτ

α

= θ̆µσ∂̂σθ̆
νρ + θ̆νσ∂̂σθ̆

ρµ + θ̆ρσ∂̂σθ̆
µν − (θ̆µαθ̆ρβ f̆ ν

αβ + θ̆ναθ̆µβ f̆ ρ
αβ + θ̆ραθ̆νβ f̆ µ

αβ) .
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First, we expressed the flux as a function of θ̆ according to equation (11.53). Then, we applied the chain
rule and the derivative ∂̂ (11.52). Finally, we applied the chain rule again to hyperbolic functions and
used equation (11.55) to obtain the final expression.

Lastly, the remaining algebra between currents is obtained from (11.45) and (11.48) in a following
way

{ῐµ(σ), k̆ν(σ̄)} = Cσ
µ(C−1)νρ{̊ισ, k̊ρ(σ̄)}+ Cσ

µ{̊ισ, (C−1)νρ}̊kρ + ι̊σ{Cσ
µ, k̊

ρ}(C−1)νρ (11.65)

= κCσ
µ(σ)(C−1)νσ(σ̄)δ

′(σ − σ̄) +
(
F̊ σ
ρτ Cρ

µ(C−1)νσ − ∂̂µ(C−1)ντ

)̊
kτδ(σ − σ̄)

+
(
− κQ̊ στ

ρ Cρ
µ(C−1)νσ + κ(C−1)νσθ̊

σρ∂ρCτ
µ

)̊
ιτδ(σ − σ̄) .

Using (7.7), the anomalous term becomes

κCσ
µ(σ)(C−1)νσ(σ̄)δ

′(σ − σ̄) = κδνµδ
′(σ − σ̄) + κCσ

µ∂ρ(C−1)νσx
′ρδ(σ − σ̄) (11.66)

= κδνµδ
′(σ − σ̄) + Cρ

µ∂σ(C−1)νρk̊
σδ(σ − σ̄)

−κCρ
µ∂σ(C−1)νρθ̊

στ ι̊τδ(σ − σ̄) ,

where we also used (11.38). Substituting (11.66) into (11.65), we obtain

{ῐµ(σ), k̆ν(σ̄)} = κδνµδ
′(σ − σ̄) (11.67)

+
(
Cρ

µ(∂σ(C−1)νρ − ∂ρ(C−1)νσ) + Cρ
µ(C−1)ντ F̊ τ

ρσ

)̊
kσδ(σ − σ̄)

+κ
(
(C−1)νσ∂ρCτ

µθ̊
σρ − Cρ

µ∂σ(C−1)νρθ̊
στ − Cρ

µ(C−1)νσQ̊ στ
ρ

)̊
ιτδ(σ − σ̄) .

Substituting relations between currents in the previous expression (11.37), we obtain

{ῐµ(σ), k̆ν(σ̄)} = κδνµδ
′(σ − σ̄) + F̆ ν

µρ k̆
ρδ(σ − σ̄)− κQ̆ νρ

µ ῐρδ(σ − σ̄) , (11.68)

All Poisson bracket relations between currents (11.49), (11.56), (11.68) can be summarized by

{X̆M , X̆N} = −F̆MN
P X̆

P δ(σ − σ̄) + κηMNδ′(σ − σ̄) , (11.69)

where

F̆MNρ =

(
κ2R̆µνρ −κQ̆ µρ

ν

κQ̆ νρ
µ F̆ ρ

µν

)
, F̆MN

ρ =

(
κQ̆ µν

ρ F̆ µ
νρ

−F̆ ν
µρ 2B̆µνρ

)
. (11.70)

With basic algebra relations, we can now proceed with calculations of the Courant bracket twisted
simultaneously by B and θ.
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11.5 Full bracket
The full bracket can be obtained from Poisson bracket relations of the double generator (11.30)

{ĞΛ1 , ĞΛ2} = −Ğ[Λ1,Λ2]C
B̆
. (11.71)

We rewrite term-wise the left hand side of the previous relation

{ĞΛ1 , ĞΛ2} =

∫
dσdσ̄

(
{ξµ1 (σ)ῐµ(σ), ξν2 (σ̄)ῐν(σ̄)}+ {λ1µ(σ)k̆µ(σ), λ2ν(σ̄)k̆ν(σ̄)} (11.72)

+{ξµ1 (σ)ῐµ(σ), λ2ν(σ̄)k̆ν(σ̄)}+ {λ1µ(σ)k̆µ(σ), ξν2 (σ̄)ῐν(σ̄)}
)
.

Apart from the relations between currents, other Poisson bracket relations that we will use are

{ξµ1 (σ), ῐν(σ̄)} = (CT ) ρ
ν ∂ρξ

µ
1 δ(σ − σ̄) = ∂̂νξ

µ
1 δ(σ − σ̄) , (11.73)

{ξµ1 (σ), k̆ν(σ̄)} = κ(Cθ̆)νρ∂ρξµ1 δ(σ − σ̄) = κθ̆νρ∂̂ρξ
µ
1 δ(σ − σ̄) . (11.74)

Using (11.49) and (11.73), the first term of (11.72) becomes

{ξµ1 (σ)ῐµ(σ), ξν2 (σ̄)ῐν(σ̄)} = (ξν2 ∂̂νξ
µ
1 − ξν1 ∂̂νξ

µ
2 − F̆ µ

νρ ξν1ξ
ρ
2)ῐµδ(σ − σ̄) (11.75)

−2B̆µνρξ
ν
1ξ

ρ
2 k̆

µδ(σ − σ̄) ,

which after we substitute (11.54) becomes

{ξµ1 (σ)ῐµ(σ), ξν2 (σ̄)ῐν(σ̄)} = (ξν2 ∂̂νξ
µ
1 − ξν1 ∂̂νξ

µ
2 − (f̆ µ

νρ − 2κB̆νρσθ̆
σµ)ξν1ξ

ρ
2)ῐµδ(σ − σ̄)

−2B̆µνρξ
ν
1ξ

ρ
2 k̆

µδ(σ − σ̄) , (11.76)

and similarly, from (11.56) and (11.74), we obtain

{λ1µ(σ)k̆µ(σ), λ2ν(σ̄)k̆ν(σ̄)} = −κ2R̆µνρλ1νλ2ρῐµδ(σ − σ̄) (11.77)
−κ(Q̆ νρ

µ λ1νλ2ρ + κθ̆νρ∂̂ρλ2µλ1ν − κθ̆νρ∂̂ρλ1µλ2ν)k̆
µδ(σ − σ̄) .

which after substituting (11.59) and (11.62) becomes

{λ1µ(σ)k̆µ(σ), λ2ν(σ̄)k̆ν(σ̄)} = −κ2
(
R̆µνρ + 2κθ̆µαθ̆νβ θ̆ργB̆αβγ

)
λ1νλ2ρῐµδ(σ − σ̄) (11.78)

−κ
(
∂̂µθ̆

νρλ1νλ2ρ + θ̆νρ∂̂ρλ2µλ1ν − θ̆νρ∂̂ρλ1µλ2ν

+(f̆ ν
µσ θ̆

σρ − f̆ ρ
µσ θ̆

σν + 2κθ̆ναθ̆ρβB̆µαβ)λ1νλ2ρ

)
k̆µδ(σ − σ̄) .
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Lastly, using (11.68), (11.73), and (11.74), one obtains

{ξµ1 (σ)ῐµ(σ), λ2ν(σ̄)k̆ν(σ̄)} = κξµ1 (σ)λ2µ(σ̄)δ
′(σ − σ̄) (11.79)

+(F̆ ρ
νµ ξ

ν
1λ2ρ − ξν1 ∂̂νλ2µ)k̆

µδ(σ − σ̄)

+(−κQ̆ νµ
ρ ξρ1λ2ν + κλ2ν θ̆

νρ∂̂ρξ
µ
1 )ῐµδ(σ − σ̄) .

The anomalous part depends on both σ and σ̄, so it should be further modified by

κξµ1 (σ)λ2µ(σ̄)δ
′(σ − σ̄) =

κ

2
ξµ1 (σ)λ2µ(σ̄)δ

′(σ − σ̄)− κ

2
ξµ1 (σ)λ2µ(σ̄)∂σ̄δ(σ − σ̄)

=
κ

2
ξµ1λ2µδ

′(σ − σ̄) +
κ

2
ξµ1 ∂νλ2µx

′νδ(σ − σ̄) (11.80)

−κ
2
ξµ1 (σ̄)λ2µ(σ̄)∂σ̄δ(σ − σ̄)− κ

2
∂νξ

µ
1λ2µx

′νδ(σ − σ̄)

=
κ

2
ξµ1λ2µδ

′(σ − σ̄)− κ

2
ξµ1 (σ̄)λ2µ(σ̄)∂σ̄δ(σ − σ̄)

+
κ

2
(ξρ1 ∂̂νλ2ρθ̆

νµ − ∂̂νξ
ρ
1λ2ρθ̆

νµ)ῐµδ(σ − σ̄)

+
1

2
(ξν1 ∂̂µλ2ν − ∂̂µξ

ν
1λ2ν)k̆

µδ(σ − σ̄)

=
κ

2
ξµ1λ2µδ

′(σ − σ̄)− κ

2
ξµ1 (σ̄)λ2µ(σ̄)∂σ̄δ(σ − σ̄)

+κθ̆µν(ξρ1 ∂̂νλ2ρ −
1

2
∂̂ν(ξ

ρ
1λ2ρ))ῐµδ(σ − σ̄)

+(ξν1 ∂̂µλ2ν −
1

2
∂̂µ(ξ

ν
1λ2ν))k̆

µδ(σ − σ̄) .

We used the property of the delta function (7.7) in the initial two steps, followed by using the rela-
tion (11.29) in the subsequent step, and eventually, we applied the chain rule in the final step. After
substituting (11.80) into (11.79), we obtain

{ξν1 (σ)ῐν(σ), λ2µ(σ̄)k̆µ(σ̄)} =
κ

2
ξµ1λ2µδ

′(σ − σ̄)− κ

2
ξµ1 (σ̄)λ2µ(σ̄)∂σ̄δ(σ − σ̄) (11.81)

+
(
F̆ ρ
νµ ξ

ν
1λ2ρ + ξν1 (∂̂µλ2ν − ∂̂νλ2µ)−

1

2
∂̂µ(ξ

ν
1λ2ν)

)
k̆µδ(σ − σ̄)

+
(
− κQ̆ νµ

ρ ξρ1λ2ν + κλ2ν θ̆
νρ∂̂ρξ

µ
1

+κθ̆µν(ξρ1 ∂̂νλ2ρ −
1

2
∂̂ν(ξ

ρ
1λ2ρ))

)
ῐµδ(σ − σ̄) .

To obtain more recognizable terms, we will use the chain rule in order to transform the term containing
Q̆ flux (11.59)

−κQ̆ νµ
ρ ξρ1λ2ν = −κ

(
∂̂ρθ̆

νµ + f̆ ν
ρσ θ̆

σµ − f̆ µ
ρσ θ̆

σν + 2κ2θ̆ναθ̆µβB̆αβρ

)
ξρ1λ2ν (11.82)

= −κξρ1 ∂̂ρ(λ2ν θ̆νµ) + κξρ1 ∂̂ρλ2ν θ̆
νµ

−κ
(
f̆ ν
ρσ θ̆

σµ − f̆ µ
ρσ θ̆

σν + 2κ2θ̆ναθ̆µβB̆αβρ

)
ξρ1λ2ν .

78



Substituting (11.54) and (11.82) into (11.81), we obtain

{ξν1 ῐν , λ2µ(σ̄)k̆µ(σ̄)} =
κ

2
ξµ1λ2µδ

′(σ − σ̄)− κ

2
ξµ1 (σ̄)λ2µ(σ̄)∂σ̄δ(σ − σ̄) (11.83)

+
(
ξν1 (∂̂µλ2ν − ∂̂νλ2µ)−

1

2
∂̂µ(ξ

ν
1λ2ν)

+(f̆ ρ
νµ − 2κB̆νµσθ̆

σρ)ξν1λ2ρ

)
k̆µδ(σ − σ̄)

+
[
κθ̆µν

(
ξρ1(∂̂νλ2ρ − ∂̂ρλ2ν)−

1

2
∂̂ν(ξ

ρ
1λ2ρ)

)
+κλ2ν θ̆

νρ∂̂ρξ
µ
1 − κξρ1 ∂̂ρ(λ2ν θ̆

νµ)

−κ
(
f̆ ν
ρσ θ̆

σµ − f̆ µ
ρσ θ̆

σν + 2κ2θ̆ναθ̆µβB̆αβρ

)
ξρ1λ2ν

]
ῐµδ(σ − σ̄) .

Substituting (11.76), (11.78), and (11.83) into (11.72), with the help of (11.71), we obtain

[Λ1,Λ2]CB̆ = Λ = ξ ⊕ λ , (11.84)

where

ξµ = ξν1 ∂̂νξ
µ
2 − ξν2 ∂̂νξ

µ
1 + f̆ µ

νρ ξ
ν
1ξ

ρ
2 (11.85)

+κθ̆µν
(
ξρ1(∂̂ρλ2ν − ∂̂νλ2ρ)− ξρ2(∂̂ρλ1ν − ∂̂νλ1ρ) +

1

2
∂̂ν(ξ1λ2 − ξ2λ1)

+κf̆ σ
νρ (ξ

ρ
1λ2ν − ξρ2λ1ν)

)
+κξν1 ∂̂ν(λ2ρθ̆

ρµ)− κξν2 ∂̂ν(λ1ρθ̆
ρµ)− κλ2ν θ̆

νρ∂̂ρξ
µ
1 + κλ1ν θ̆

νρ∂̂ρξ
µ
2

+κf̆ ν
ρσ θ̆

σµ(ξρ1λ2ν − ξρ2λ1ν)

+κ2R̆µνρλ1νλ2ρ

−2κB̆νρσθ̆
σµξν1ξ

ρ
2 + 2κ2θ̆ναθ̆µβB̆αβρ(ξ

ρ
1λ2ν − ξρ2λ1ν) + 2κ3θ̆µαθ̆νβ θ̆ργB̆αβγλ1νλ2ρ ,

and

λµ = ξν1 (∂̂νλ2µ − ∂̂µλ2ν)− ξν2 (∂̂νλ1µ − ∂̂µλ1ν) +
1

2
∂̂µ(ξ1λ2 − ξ2λ1) (11.86)

+f̆ ρ
µν(ξ

ν
1λ2ρ − ξν2λ1ρ)

+κθ̆νρ(λ1ν ∂̂ρλ2µ − λ2ν ∂̂ρλ1µ) + κλ1ρλ2ν ∂̂µθ̆
ρν + κ(f̆ ν

µσ θ̆
σρ − f̆ ρ

µσ θ̆
σν)λ1νλ2ρ

+2B̆µνρξ
ν
1ξ

ρ
2 − 2κB̆µνσθ̆

σρ(ξν1λ2ρ − ξν2λ1ρ) + 2κ2θ̆ναθ̆ρβB̆µαβλ1νλ2ρ .

We grouped the terms in expressions (11.85) and (11.86) for future convenience.
In the process of twisting the Courant bracket simultaneously by B and θ, we did not rely on the

fact that these fields are T-dual background fields. Thus, the results should be valid regardless of this
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property. If we take that either of the fields B and θ is zero, the derivative ∂̂µ reduces to the ordinary
partial derivative ∂µ, and all the f̆ flux terms become zero. Specifically, for θ = 0 and an arbitrary
B, we obtain B-twisted Courant bracket, while for B = 0 and an arbitrary θ, we obtain the θ-twisted
Courant bracket.

11.6 Coordinate-free notation
In contrast to prior instances, obtaining the coordinate-free notation with a clear interpretation of its
terms is not as trivial for this bracket. We will need to introduce novel brackets that will ultimately be
identified as the brackets of Lie and quasi-Lie algebroids that have not been encountered previously.

11.6.1 Twisted Lie bracket

Firstly, we will seek the Lie algebroid with C as its anchor. This step will turn out to be crucial for
interpreting many terms that appear in the expressions (11.85) and (11.86). The bracket of this Lie
algebroid should be related to the Lie bracket by(

C[ξ1, ξ2]L̂
)µ

=
(
[Cξ1, Cξ2]L

)µ
= Cν

ρξ
ρ
1∂ν(Cµ

σξ
σ
2 )− Cν

ρξ
ρ
2∂ν(Cµ

σξ
σ
1 ) (11.87)

= Cν
ρCµ

σ

(
ξρ1∂νξ

σ
2 − ξρ2∂νξ

σ
1

)
+ ξρ1ξ

σ
2

(
Cν

ρ∂νCµ
σ − Cν

σ∂νCµ
ρ

)
= Cµ

σ

(
ξρ1 ∂̂ρξ

σ
2 − ξρ2 ∂̂ρξ

σ
1

)
+ ξρ1ξ

σ
2

(
∂̂ρCµ

σ − ∂̂σCµ
ρ

)
,

where we used (11.52) and relabeled some indices. Multiplying the previous relation with C−1 and
taking into the account (11.55), we obtain(

[ξ1, ξ2]L̂

)µ
= ξν1 ∂̂νξ

µ
2 − ξν2 ∂̂νξ

µ
1 + f̆ µ

νρ ξ
ν
1ξ

ρ
2 , (11.88)

which is exactly the first line of (11.85). Analogous to our notation for twisted Courant brackets, we
will denote this bracket as the twisted Lie bracket, since

[ξ1, ξ2]L̂ = C−1[Cξ1, Cξ2]L . (11.89)

In order for C to be a proper anchor of a Lie algebroid, the Leibniz rule has to be satisfied, i.e.

[ξ1, fξ2]L̂ = (LCξ1f) ξ2 + f [ξ1, ξ2]L̂ , (11.90)

from which we can derive the action of corresponding Lie derivative on functions

L̂ξ f = LCξ f = ξµ∂̂µf . (11.91)
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Its action on vectors is simply given by the twisted Lie bracket. The Jacobi identity is also satisfied,
since

JacL̂(ξ1, ξ2, ξ3) = C−1[Cξ1, [Cξ2, Cξ3]L]L + cyclic = C−1JacL(Cξ1, Cξ2, Cξ3) = 0 . (11.92)

To write the action of Lie derivative Lξ̂ on 1-forms, we firstly apply the Leibniz rule (11.90) on
1-form-vector contraction

L̂ξ1(ξ
µ
2λ2µ) = (L̂ξ1ξ2)

µλ2µ + ξµ2 (L̂ξ1λ2)µ (11.93)
= (ξν1 ∂̂νξ

µ
2 − ξν2 ∂̂νξ

µ
1 )λ2µ + f̆ µ

νρ ξ
ν
1ξ

ρ
2λ2µ + ξµ2 (L̂ξ1λ2)µ ,

and then (11.91) on that contraction, since it is effectively a scalar

L̂ξ1(ξ
µ
2λ2µ) = ξν1 ∂̂ν(ξ

µ
2λ2µ) = ξν1 ∂̂νξ

µ
2λ2µ + ξν1ξ

µ
2 ∂̂νλ2µ . (11.94)

When we equate right-hand sides of previous two relations, we obtain

(L̂ξ1λ2)µ = ∂̂µξ
ν
1λ2ν + ξν1 ∂̂νλ2µ+ f̆ ρ

µν ξ
ν
1λ2ρ = ξν1 (∂̂νλ2µ− ∂̂µλ2ν)+ ∂̂µ(ξ

ν
1λ2ν)+ f̆ ρ

µν ξ
ν
1λ2ρ . (11.95)

The exterior algebra is easily derived from the relation (5.7). Let us explicitly obtain the action of
exterior derivative on functions and 1-forms. Functions correspond to the case p = 0, so we have

d̂f(ξ) = Cξ(f) = ξµ∂̂µf , (d̂f)µ = ∂̂µf . (11.96)

From (11.91), we see that the usual relation for the action of Lie derivatives on function L̂ξf = iξd̂f

still holds in the twisted case. On the other hand, 1-forms correspond to the case of p = 1 in (5.7),
from which we obtain

d̂λ(ξ1, ξ2) = Cξ1(λ(ξ2))− Cξ2(λ(ξ1))− λ([ξ1, ξ2]L̂) (11.97)

= ξµ1 ξ
ν
2

(
∂̂µλν − ∂̂νλµ − f̂ ρ

µνλρ

)
,

(d̂λ)µν = ∂̂µλν − ∂̂νλµ − f̂ ρ
µνλρ .

The Cartan formula L̂ξλ = iξd̂λ + d̂iξλ can be easily demonstrated using (11.95) and (11.97), and
holds true for any p-form λ.

We saw how the hyperbolic function C defines an anchor for the Lie algebroid defined with the
twisted Lie bracket as its bracket. Various terms in the expressions (11.85) and (11.86) can be ex-
pressed in terms of the corresponding twisted Lie derivative.
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11.6.2 Generalized H-flux

Let us explore the generalized H-flux B̆ (11.50). It has a structure of a 3-form, that when contracted
with three vectors can be written by

B̆µνρξ
µ
1 ξ

ν
2ξ

ρ
3 = B̊αβγCα

µξ
µ
1 Cβ

νξ
ν
2Cγ

ρξ
ρ
3 = dB̊(Cξ1, Cξ2, Cξ3) . (11.98)

where B̊µνρ is defined in (11.40). The right-hand side of the previous relation is expressed in a non
coordinate notation, which using (4.11) can be further transformed by

(dB̊)(Cξ1, Cξ2, Cξ3) = Cξ1
(
B̊(Cξ2, Cξ3)

)
− Cξ2

(
B̊(Cξ1, Cξ3)

)
+ Cξ3

(
B̊(Cξ1, Cξ2)

)
(11.99)

−B̊
(
[Cξ1, Cξ2]L, Cξ3

)
+ B̊

(
[Cξ1, Cξ3]L, Cξ2

)
− B̊

(
[Cξ2, Cξ3]L, Cξ1

)
= Cξ1

(
B̂(ξ2, ξ3)

)
− Cξ2

(
B̂(ξ1, ξ3)

)
+ Cξ3

(
B̂(ξ1, ξ2)

)
−B̂
(
[ξ1, ξ2]L̂, ξ3

)
+ B̂

(
[ξ1, ξ3]L̂, ξ2

)
− B̂

(
[ξ2, ξ3]L̂, ξ1

)
= d̂B̂(ξ1, ξ2, ξ3) ,

where B̂ is a new field that we defined by

B̂µν = B̊αβCα
µCβ

ν = (BSC)µν , (11.100)

and in the last step recognized the expression for twisted exterior derivative acting on a 2-form.

11.6.3 Twisted Koszul bracket

We define the twisted Koszul bracket by

[λ1, λ2]θ̆ = L̂θ̆(λ1)
λ2 − L̂θ̆(λ2)

λ1 − d̂(θ̆(λ1, λ2)) , (11.101)

where θ̆(λ1)µ = λ1ν θ̆
νµ. This is an analogous definition to the one for the (non-twisted) Koszul

bracket. In some local basis, its components are given by(
[λ1, λ2]θ̆

)
µ
= θ̆νρ(λ1ν ∂̂ρλ2µ − λ2ν ∂̂ρλ1µ) + ∂̂µθ̆

νρλ1νλ2ρ + (f̆ ρ
µν θ̆

νσ − f̆ σ
µν θ̆

νρ)λ1ρλ2σ . (11.102)

This bracket can be related to the twisted Lie bracket. In order to do that, we firstly obtain

θ̆
(
[λ1, λ2]θ̆

)
= θ̆νµ

(
θ̆σρ(λ1σ∂̂ρλ2ν − λ2σ∂̂ρλ1ν) + ∂̂ν θ̆

σρλ1σλ2ρ (11.103)

+(f̆ ρ
ντ θ̆

τσ − f̆ σ
ντ θ̆

τρ)λ1ρλ2σ

)
..

82



Next, we obtain

[θ̆(λ1), θ̆(λ2)]L̂ = θ̆νρλ1ρ∂̂ν(θ̆
µσλ2σ)− θ̆νρλ2ρ∂̂ν(θ̆

µσλ1σ) + f̆ µ
νρ θ̆

νσθ̆ρτλ1σλ2τ (11.104)

= θ̆νρθ̆µσ
(
λ1ρ∂̂νλ2σ − λ2ρ∂̂νλ1σ

)
+ f̆ µ

νρ θ̆
νσθ̆ρτλ1σλ2τ

+(θ̆ρν ∂̂ν θ̆
σµ + θ̆σν ∂̂ν θ̆

µρ)λ1ρλ2σ .

After relabeling of some dummy indices, we obtain the relation[
θ̆
(
[λ1, λ2]θ̆)

)]µ
=
(
[θ̆(λ1), θ̆(λ2)]L̂

)µ
+ R̆µνρλ1νλ2ρ , (11.105)

where R̆ is defined in (11.64). We can use the definition of the twisted Lie bracket (11.89), to rewrite
the previous relation as[

Cθ̆
(
[λ1, λ2]θ̆

)]µ
=
(
[Cθ̆(λ1), Cθ̆(λ2)]L

)µ
+ Cµ

σR̆
σνρλ1νλ2ρ . (11.106)

The twisted Koszul bracket defines a quasi-Lie algebroid with anchor ρ̂θ̆ = Cθ̆ and with the R̆-flux as
deformation from the Lie algebroid structure.

We can still define the exterior derivative associated with the quasi-Lie algebroid defined with the
twisted Koszul bracket. On functions, its action is obtained from (5.7)

d̂θ̆f(λ) = θ̆µν ∂̂νfλµ , (d̂θ̆f)
µ = θ̆µν ∂̂νf . (11.107)

Similarly, on vectors it becomes

d̂θ̆ξ(λ1, λ2) = (λ1ρθ̆
ρν)∂̂ν(ξ

µλ2µ)− (λ2ρθ̆
ρν)∂̂ν(ξ

µλ1µ)− ξµ
(
[λ1, λ2]θ̆

)
µ

(11.108)

=
(
θ̆µρ∂̂ρξ

ν − θ̆νρ∂̂ρξ
µ − ξρ(∂̂ρθ̆

µν + f̆ µ
ρσ θ̆

σν − f̆ ν
ρσ θ̆

σµ)
)
λ1µλ2ν .

The exterior derivative d̂θ̆ satisfies Leibniz rule, but is not idempotent, unless the R̆-flux is zero.

11.6.4 Twisted Schouten-Nijenhuis bracket

Lastly, we are going to interpret the term containing the R̆-flux in terms of newly defined quasi-Lie
algebroid. Recall that in the previous chapters, we defined R-flux as the Schouten-Nijenhuis bracket,
that can be written as dθθ = [θ, θ]S . This motivates us to consider the action of exterior derivative d̂θ̆
on the bi-vector θ̆. From definition (5.7), we have

d̂θ̆θ̆(λ1, λ2, λ3) = Cθ̆(λ1)
(
[λ2, λ3]θ̆

)
− Cθ̆(λ2)

(
[λ1, λ3]θ̆

)
+ Cθ̆(λ3)

(
[λ1, λ2]θ̆

)
−θ̆
(
[λ1, λ2]θ̆, λ3

)
+ θ̆
(
[λ1, λ3]θ̆, λ2

)
− θ̆
(
[λ2, λ3]θ̆, λ1

)
. (11.109)
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There are two types of terms, so let us calculate the components of a representative of each type.
Firstly, we have

Cθ̆(λ1)
(
[λ2, λ3]θ̆

)
= λ1µθ̆

µσ∂̂σ

(
θ̆νρλ2νλ3ρ

)
(11.110)

= θ̆µσ∂̂σθ̆
νρλ1µλ2νλ3ρ + θ̆µσθ̆νρλ1µ(∂̂σλ2νλ3ρ + λ2ν ∂̂σλ3ρ) ,

and secondly

−θ̆
(
[λ1, λ2]θ̆, λ3

)
= λ1µλ2νλ3ρ

(
θ̆ρσ∂̂σθ̆

µν + f̆ µ
στ θ̆

νσθ̆ρτ − f̆ ν
στ θ̆

µσθ̆ρτ
)

(11.111)

−θ̆µρθ̆νσ(λ1ν ∂̂σλ2µ − λ2ν ∂̂σλ1µ)λ3ρ .

When (11.110) and (11.111) are substituted in (11.109), we obtain

d̂θ̆θ̆(λ1, λ2, λ3) = 2R̆µνρλ1µλ2νλ3ρ , (11.112)

which is exactly what we hoped for. We will therefore define the twisted Schouten-Nijenhuis bracket
as

[θ̆, θ̆]Ŝ = d̂θ̆θ̆ . (11.113)

11.7 Courant algebroid
We are now able to express all the terms in the Courant bracket twisted by B and θ in terms of newly
defined twisted brackets. In the coordinate free notation, the expression (11.85) is given by

ξ = [ξ1, ξ2]L̂ − κθ̆
(
L̂ξ1λ2 − L̂ξ2λ1 −

1

2
d̂(iξ1λ2 − iξ2λ1)

)
(11.114)

+[ξ1, κθ̆(λ2)]L̂ − [ξ2, κθ̆(λ1)]L̂ +
κ2

2
[θ̆, θ̆]Ŝ(λ1, λ2, .)

+2κθ̆ d̂B̂(., ξ1, ξ2)− 2 ∧2 κθ̆ d̂B̂(., λ1, ξ2) + 2 ∧2 κθ̆ d̂B̂(., λ2, ξ1) + 2 ∧3 κθ̆ d̂B̂(λ1, λ2, .) ,

and the expression (11.86) by

λ = L̂ξ1λ2 − L̂ξ2λ1 +
1

2
d̂(iξ1λ2 − iξ2λ1) + κ[λ1, λ2]θ̆ (11.115)

+2d̂B̂(ξ1, ξ2, .)− 2κθ̆ d̂B̂(λ2, ., ξ1) + 2κθ̆ d̂B̂(λ1, ., ξ2) + 2 ∧2 κθ̆ d̂B̂(λ1, λ2, .) .

The exponents on the wedge represent how many times a bi-vector is contracted with a 3-form, while
the dot denotes the non-contracted index, e.g.(

∧2 κθ̆ d̂B̂(., λ1, ξ2)
)µ

= κ2θ̆µαθ̆νβB̆αβρλ1νξ
ρ
2 . (11.116)
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The Courant bracket twisted at the same time by B and θ defines a Courant algebroid. The anchor
is obtained from substituting e−B̆ (11.26) into (8.8)

ρ(B̆)Λ = Cξ − κCθ̆λ , (11.117)

and similarly the differential operator from (11.18) and (8.10)

D(B̆)f =

(
κCµ

ρθ̆
ρν∂νf

(CT ) ν
µ ∂νf

)
=

(
d̂θ̆f

d̂f

)
. (11.118)

Let us now obtain the Dirac structures for this Courant algebroid. Firstly, consider an isotropic space
in the form of graph of B̊ over the tangent bundle

VB̊(Λ) = ξµ ⊕ 2B̊µνξ
ν . (11.119)

On this sub-bundle, the symmetry generator (11.30) becomes

ĞVB̊(Λ) =

∫
dσξν(C µ

ν − 2κB̊µν(Sθ)νρ)πµ (11.120)

=

∫
dσπµ(C−1)µρ

(
(C2)ρν − 2κ(S2θB)ρν

)
ξν

=

∫
dσπµ(C−1)µνξ

ν ,

where we firstly used (11.35) and (11.8), and then (11.21). This is the generator of diffeomorphisms
with the parameter (C−1)µνξ

ν , which closes on the Lie bracket in the Poisson bracket algebra. There-
fore, the sub-bundle VB̊ will be a Dirac structure and no restrictions on the B̊-field have to be imposed.

Similarly, we seek Dirac structures in the form of graphs of θ̆, i.e.

Vθ̆(Λ) = θ̆µνλν ⊕ λµ . (11.121)

The generator (11.30) becomes
ĞVθ̆(Λ)

=

∫
dσλµCµ

νκx
′ν , (11.122)

We encountered this case at the end of the previous chapter - this is a generator that does not depend on
π and therefore gives zero bracket in its Poisson bracket algebra. The graphVθ̆ will be a Dirac structure,
regardless of θ̆. Once again, we do not need to impose any restrictions on fluxes on the Dirac structures.
Therefore, the Courant bracket twisted at the same time by B and θ defines a Courant algebroid, such
that on its Dirac structures all fluxes can exist without restrictions.
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Part IV

Double theory
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Chapter 12

Double theory action

In this chapter, we will introduce the basic notions of a string theory defined in a phase space that is
a direct sum of the initial and T-dual phase space, which we call double theory. We will introduce
the Lagrangian of the double theory, derive its canonical momenta and Hamiltonian, and extend the
Poisson bracket relations to the double phase space.

12.1 Lagrangian and Hamiltonian in double formalism
The idea behind the double theory [75, 76, 77, 78, 79] is the unification of the D-dimensional initial
and its corresponding T-dual theory into a single theory defined in 2D dimensions. This theory should
incorporate T-duality as its symmetry, and both the initial and T-dual theory should be obtained after
projection to a suitable D-coordinate subspace. One of the most straightforward justifications for the
double theory may be observed in the scenario of a closed string in which certain dimensions are
compactified, enabling it to wrap around these compact dimensions. The winding number, which is
to say the number of times a string curls around the compactified dimension, can be associated with
the set of T-dual momenta, as it was previously demonstrated. The coordinates conjugate to these T-
dual momenta yµ are additional degrees of freedom, so the full description of the string theory should
incorporate them as well.

In order to write Lagrangian, we firstly define a double coordinate XM , defined in a direct sum of
the initial coordinate space, characterized by xµ, and T-dual coordinate space, characterized by yµ, i.e.

XM =

(
xµ

yµ

)
, (12.1)

where µ = 0, 1...D − 1, M = 0, 1...2D − 1, D = 26. We assume that the generalized metric has
the same form as in the single theory, but with all fields, in general, depending on the double set of
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coordinates xµ and yµ

HMN =

(
GE

µν(x, y) −2Bµρ(x, y)(G
−1)ρν(x, y)

2(G−1)µρ(x, y)Bρν(x, y) (G−1)µν(x, y)

)
. (12.2)

The Lagrangian density is taken in the same form as in the initial theory

L =
κ

2
∂+X

MHMN∂−X
N . (12.3)

The equations of motions from the variation of the Lagrangian (12.3) become

∂+(HMN∂−X
N) + ∂−(HMN∂+X

N) = 0 . (12.4)

In the case of constant background fields, these relations simplify to

∂+∂−x
µ = 0 , ∂+∂−yµ = 0 , (12.5)

which are well-known equations of motion for the initial and T-dual theories, respectively. The relation
(12.4) is also known as the Bianchi identity. We see that the Bianchi identities and equations of motion
are united into a single relation in double formalism.

The double set of coordinates is accompanied by the double set of momenta conjugate to them. It
can be easily obtained by varying the Lagrangian (12.3) with respect to ẊM

ΠM =
δL
δẊM

= κHMNẊ
N , (12.6)

which can be written in the component notation as

ΠM =

(
πµ
⋆πµ

)
, (12.7)

where
πµ = GE

µν ẋ
ν − 2(BG−1) ν

µ ẏν , (12.8)

and
⋆πµ = (G−1)µν ẏν + 2(G−1B)µν ẋ

ν . (12.9)

We can easily obtain the inverse of the relation (12.6)

ẊM =
1

κ
HMNΠN , (12.10)

where HMN is the inverse of the generalized metric, given by

HMN = ηMKHKLη
LN . (12.11)
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Now we can apply the Legendre transformation of the Lagrangian (12.3), in order to obtain the canon-
ical Hamiltonian

HC = ΠMẊ
M − L =

1

2κ
ΠMH

MNΠN +
κ

2
X ′MHMNX

′N , (12.12)

where we used (12.10).

12.2 T-duality
Our goal is to rewrite the Buscher T-duality transformation laws (3.22) and (3.25) in the double formal-
ism. We note that by separating terms that change sign with those that do not, the T-duality relations
can be rewritten as

±∂±yµ ≃ GE
µν∂±x

ν − 2(BG−1)µ
ν∂±yν ,

±∂±xµ ≃ 2(G−1B)µν∂±x
ν + (G−1)µν∂±yν , (12.13)

which can be easily integrated into a single relation

∂±X
M ≃ ±ηMNHNK ∂±X

K . (12.14)

To obtain the canonical form of T-duality relations, using (2.19) we rewrite (12.14)

ẊM ±X ′M ≃ ηMNHNKX
′K ± ηMNHNKẊ

K , (12.15)

or equivalently
ẊM ≃ ηMNHNKX

′K , X ′M ≃ ηMNHNKẊ
K , (12.16)

which using (12.6) can be expressed as

ΠM ≃ κ ηMNX
′M . (12.17)

After application of (12.14) to (12.3), we have

κ

2
∂+X

MHMN∂−X
N ≃ −κ

2
ηMKHKL∂+X

LHMNη
NPHPQ∂−X

Q = −L . (12.18)

The Lagrangian is (up to a sign) invariant under T-duality. The change of sign does not matter, since
equations of the motion will remain the same, and we will have exactly the same theory.
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12.3 Poisson bracket relations in double formalism
As double theory should generalize both initial and T-dual theory, we assume the standard Poisson
bracket relations within the initial and T-dual phase spaces

{x′µ(σ), πν(σ̄)} = δµν δ
′(σ − σ̄) , {y′µ(σ), ⋆πν(σ̄)} = δνµδ

′(σ − σ̄) , (12.19)

with other brackets of canonical variables within the same phase space being zero, i.e.

{κx′µ(σ), κx′ν(σ̄)} = {κy′µ(σ), κy′ν(σ̄)} = 0 , (12.20)

and
{πµ(σ), πν(σ̄)} = {⋆πµ(σ), ⋆πν(σ̄)} = 0 . (12.21)

These relations have to be extended so that they include relations of phase space variables from
mutually T-dual phase spaces, which we will do using T-duality. Let us firstly apply T-duality along
all coordinates yµ to the Poisson bracket relation between coordinate derivatives in mutually T-dual
phase spaces

{κx′µ(σ), κy′ν(σ̄)} ≃ {κx′µ(σ), πν(σ̄)} = κδµν δ
′(σ − σ̄) . (12.22)

Relations (12.20) and (12.22) can be rewritten in terms of double coordinates as

{κX ′M(σ), κX ′N(σ̄)} ≃ κ ηMNδ
′(σ − σ̄) . (12.23)

If we were to obtain the Poisson bracket relation between double coordinates, rather than their deriva-
tives, we could integrate the previous relation along both σ and σ̄, and obtain

{κXM(σ), κXN(σ̄)} = −κηMNθ(σ − σ̄) , (12.24)

where θ is Heavyside step function. The relation (12.24) is determined up to boundary conditions,
that can be set with different choice of Heavyside step function.

Secondly, we apply T-dualization along all yµ coordinates to the Poisson bracket of momenta from
mutually T-dual spaces, and obtain

{πµ(σ), ⋆πν(σ̄)} ≃ κ{πµ(σ), x′ν(σ̄)} = κδνµδ
′(σ − σ̄) . (12.25)

Relations (12.21) and (12.25) nicely combine into

{ΠM(σ),ΠN(σ̄)} ≃ κ ηMNδ
′(σ − σ̄) . (12.26)

Lastly, we once again T-dualize along all the initial coordinates xµ to obtain the remaining bracket

{κx′µ(σ), ⋆πν(σ̄)} ≃ {⋆πµ(σ), ⋆πν(σ̄)} = 0 , (12.27)
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which with the other brackets (12.19) can be written as

{X ′M(σ),ΠN(σ̄)} = δMN δ
′(σ − σ̄) . (12.28)

Some Poisson bracket relations are written as T-duality relations, emphasizing that double theory
intrinsically incorporates T-duality.

12.4 Restricted fields
While it is true that background fields depend on both initial and T-dual coordinates, in order to achieve
invariance under both diffeomorphisms and T-dual diffeomorphisms, specific constraints must be im-
posed to the background fields. Firstly, we will demand that all fields are annihilated by the operator

∆ = ηMN∂M∂N = ∂M∂M = 0 , (12.29)

where ∂M are the derivatives in a double theory, given by

∂M =

(
∂µ
∂̃µ

)
,

(
∂µ ≡ ∂

∂xµ
, ∂̃µ ≡ ∂

∂yµ

)
. (12.30)

Moreover, we will require the so-called strong constraints, in which all the products of any two fields
ϕ and ψ are also annihilated by (12.29), i.e.

∂M∂M(ϕψ) = (∂M∂Mϕ) ψ + 2∂Mϕ ∂Mψ + ϕ ∂M∂Mψ = 2∂Mϕ ∂Mψ = 0 . (12.31)

These conditions appear also from the Virasoro conditions [80, 81]. Without strong constraints, the
symmetry algebra would not close.
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Chapter 13

C-bracket

In this chapter, we provide the world-sheet derivation of the C-bracket, which is the double theory
generalization of the Lie bracket. We will present the double generator of diffeomorphisms and show
that the C-bracket appears in its algebra. We will end this chapter by considering the projection of the
C-bracket to the initial and T-dual phase spaces and show that it reduces to the Courant bracket.

13.1 Generator of diffeomorphisms in double theory
Previously, we saw that the diffeomorphisms are generated by momenta πµ, and we expect that T-
dual diffeomorphisms are generated by T-dual momenta ⋆πµ. In double theory, these momenta are
integrated into a double momentum ΠM (12.7). We will construct the double generator which is a
sum of generators of initial and T-dual diffeomorphisms. It can be written as the O(D,D) invariant
inner product

GΛ =

∫
dσ⟨Λ,Π⟩ , (13.1)

where ΛM are the symmetry parameters, which can be expressed by

ΛM(X) =

(
ξµ(x, y)

λµ(x, y)

)
. (13.2)

The parameters ξµ are associated with initial diffeomorphisms, while the parameters λµ are associated
with T-dual diffeomorphisms. Both parameters depend on all initial coordinates xµ and all T-dual
coordinates yµ.
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We want to obtain the Poisson bracket relations of a double generator. We have

{GΛ1(σ),GΛ2(σ̄)} =

∫
dσdσ̄

(
ΛM

1 (σ){ΠM(σ),ΠN(σ̄)}ΛN
2 (σ̄) (13.3)

+ΛM
1 (σ){ΠM(σ),ΛN

2 (σ̄)}ΠN(σ̄) + ΠM(σ){ΛM
1 (σ),ΠN(σ̄)}ΛN

2 (σ̄)
)
.

We did not write the term ΠM(σ){ΛM
1 (σ),ΛN

2 (σ̄)}ΠN(σ̄), since it is zero after applying the strong
constraint (12.31) and the chain rule

{ΛM
1 (σ),ΛN

2 (σ̄)} = −1

κ
∂PΛM

1 ∂PΛ
N
2 θ(σ−σ̄) = −1

κ

(
∆(ΛM

1 ΛN
2 )−∆ΛM

1 ΛN
2

)
θ(σ−σ̄) = 0 . (13.4)

Without this condition, the generator algebra would be anomalous. In fact, there were successful
attempts to find constraints that are weaker than the strong constraint that we imposed, in which case
anomalous part in the algebra contributes to the trivial transformation [82]. We are primarily interested
in constructing theC-bracket, and for this purpose, it is sufficient to assume strong constraints (12.31).

To the first term of (13.3), we apply the relation (12.26)

κΛM
1 (σ){ΠM(σ),ΠN(σ̄)}ΛN

2 (σ̄)δ
′(σ − σ̄) ≃ κ⟨Λ1(σ),Λ2(σ̄)⟩δ′(σ − σ̄) . (13.5)

After applying (7.7) on the right-hand side of the previous relation, we obtain

κ⟨Λ1(σ),Λ2(σ̄)⟩δ′(σ − σ̄) =
κ

2

(
⟨Λ1,Λ

′
2⟩ − ⟨Λ′

1,Λ2⟩
)
δ(σ − σ̄)

+
κ

2

(
⟨Λ1,Λ2⟩+ ⟨Λ1,Λ2⟩(σ̄)

)
δ′(σ − σ̄) , (13.6)

where parameters depend on σ unless otherwise explicitly expressed. With the help of the chain rule

κΛ′M = κX ′N∂NΛ
M , (13.7)

the relation (13.6) further transforms into

κ⟨Λ1(σ),Λ2(σ̄)⟩δ′(σ − σ̄) =
1

2
ηPQ

(
ΛP

1 ∂NΛ
Q
2 − ΛP

2 ∂NΛ
Q
1

)
X ′Nδ(σ − σ̄)

+
κ

2

(
⟨Λ1,Λ2⟩(σ) + ⟨Λ1,Λ2⟩(σ̄)

)
δ′(σ − σ̄) . (13.8)

The anomaly disappears after the integration with respect to σ and σ̄. The first line in (13.8) contributes
to the C-bracket expression. We apply the T-duality relations (12.17) to it, and obtain

1

2
ηPQ

(
ΛP

1 ∂NΛ
Q
2 − ΛP

2 ∂NΛ
Q
1

)
X ′N ≃ 1

2
ηPQ η

MN
(
ΛP

1 ∂NΛ
Q
2 − ΛP

2 ∂NΛ
Q
1

)
ΠM . (13.9)

Note that we applied T-duality twice - in (13.5) and (13.9), and consequentially we can write

ΛM
1 (σ){ΠM(σ),ΠN(σ̄)}ΛN

2 (σ̄) =
1

2
ηPQ η

MN
(
ΛP

1 ∂NΛ
Q
2 − ΛP

2 ∂NΛ
Q
1

)
ΠMδ(σ − σ̄) . (13.10)

93



After relabeling of some dummy indices, the remaining terms in (13.3) can be written as

−ΠM(ΛN
1 ∂NΛ

M
2 − ΛN

2 ∂NΛ
M
1 )δ(σ − σ̄) (13.11)

From relations (13.10) and (13.11), we can express the generator algebra relations

{GΛ1 ,GΛ2} = −G[Λ1,Λ2]C , (13.12)

where [Λ1,Λ2]C is the C-bracket, given by(
[Λ1,Λ2]C

)M
= ΛN

1 ∂NΛ
M
2 − ΛN

2 ∂NΛ
M
1 − 1

2

(
ΛN

1 ∂
MΛ2N − ΛN

2 ∂
MΛ1N

)
. (13.13)

The C-bracket was firstly obtained by Siegel [80, 81]. It is a generalization of the Lie bracket to
double space. One can introduce the double Lie derivative L̂Λ, that acts on all indices as if they were
both covariant and contravariant and its algebra will give C-bracket. For example, its action on the
generalized metric is given by

L̂ΛH
MN = ΛP∂PH

MN + (∂MΛP − ∂PΛ
M)HPN + (∂NΛP − ∂PΛ

N)HMP . (13.14)

If no dependence on T-dual momenta and T-dual coordinates exists, the generator GΛ would be just
the generator of diffeomorphisms. Its algebra is known to close and produces the Lie bracket.

13.2 Projections to the initial and T-dual phase spaces
Let us consider projections of the C-bracket to the initial and T-dual phase spaces. Firstly, we will
demand that all parameters in (13.13) depend exclusively on the initial coordinates xµ. In that case,
the double derivative ∂M reduces to the derivative along xµ, i.e.

∂M →

(
0

∂µ

)
. (13.15)

The terms in the C-bracket also simplify

ΛN
1 ∂NΛ

M
2 →

(
ξν1∂νξ

µ
2

ξν1∂νλ2µ

)
, ΛN

1 ∂
MΛ2N →

(
0

λ1ν∂µξ
ν
2 + ξν1∂µλ2ν

)
, (13.16)

where parameters depend only on x. Substituting the previous relation into (13.13), we obtain the
projection of the C-bracket to the initial phase space

[Λ1,Λ2]C →

(
ξν1∂νξ

µ
2 − ξν2∂νξ

µ
1

ξν1∂νλ2µ − ξν2∂νλ1µ − 1
2
(λ1ν∂µξ

ν
2 − λ2ν∂µξ

ν
1 + ξν1∂µλ2ν − ξν2∂µλ1ν)

)

=

(
ξν1∂νξ

µ
2 − ξν2∂νξ

µ
1

ξν1 (∂νλ2µ − ∂µλ2ν)− ξν2 (∂νλ1µ − ∂µλ1ν) +
1
2
∂µ(ξ

ν
1λ2ν − ξν2λ1ν)

)
,
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where we used the chain rule, in order to recognize the result as the Courant bracket. By projecting
the C-bracket to the initial theory, we obtained the standard Courant bracket.

Secondly, by ignoring all dependence on xµ, we will obtain the C-bracket projection to the T-dual
phase space. Then, the double derivative reduces to the derivative along T-dual coordinates yµ

∂M →

(
∂̃µ

0

)
, (13.17)

and similarly, we obtain

ΛN
1 ∂NΛ

M
2 →

(
λ1ν ∂̃

νξµ2
λ1ν ∂̃

νλ2µ

)
, ΛN

1 ∂
MΛ2N →

(
ξν1 ∂̃

µλ2ν + λ1ν ∂̃
µξν2

0

)
. (13.18)

Now all parameters depend solely on T-dual coordinates yµ. Substituting (13.18) into (13.13), one
obtains

[Λ1,Λ2]C →

(
λ1ν ∂̃

νξµ2 − λ2ν ∂̃
νξµ1 − 1

2
(ξν1 ∂̃

µλ2ν + λ1ν ∂̃
µξν2 − ξν2 ∂̃

µλ1ν − λ2ν ∂̃
µξν1 )

λ1ν ∂̃
νλ2µ − λ2ν ∂̃

νλ1µ

)

=

(
λ1ν(∂̃

νξµ2 − ∂̃µξν2 )− λ2ν(∂̃
νξµ1 − ∂̃µξν1 ) +

1
2
∂̃µ(λ1νξ

ν
2 − ξν1λ2ν)

λ1ν ∂̃
νλ2µ − λ2ν ∂̃

νλ1µ

)
.

We applied the chain rule in this instance as well. The resulting bracket is again the Courant bracket.
This time, the symmetry parameters ξµ and λµ have swapped their roles.

Both in the initial and T-dual theory, the C-bracket reduces to the Courant bracket. This way, the
invariance of the Courant bracket under T-duality is shown once again. The C-bracket is a double
theory extension of the Courant bracket.
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Chapter 14

B-twisted C-bracket

We are going to obtain the B-twisted C-bracket, together with its corresponding flux. Subsequently,
we will consider this bracket’s projection to the initial and T-dual phase space and show that in the
former it produces theB-twisted Couran bracket, while in the latter, it produces the θ-twisted Courant
bracket.

14.1 Non-canonical basis and basic algebra relations
The generator in the double theory also has a form of the O(D,D) invariant inner product, allowing
us to generalize the procedure of twisting the Courant bracket for twisting the C-bracket in the double
theory. Following the path we took in Chapter 9, we define a diagonal generalized metric GMN by

GMN =

(
Gµν(x, y) 0

0 (G−1)µν(x, y)

)
, (14.1)

which by the action of B-transformation produces the generalized metric HMN

((eB̂)T ) K
M GKL(e

B̂)LN = HMN , (eB̂)MN =

(
δµν 0

2Bµν(x, y) δνµ

)
. (14.2)

The B-transformation has exact same form as we encountered before (6.5), with the only difference
that the Kalb-Ramond field now depends both on the initial coordinates xµ and the T-dual coordinates
yµ. When relation (14.2) is substituted into (12.12) we obtain the free-form expression of the canonical
Hamiltonian

HC =
1

2κ
Π̂MG

MN Π̂N +
κ

2
X̂ ′MGMNX̂

′N , (14.3)
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where we introduced the non-canonical momenta Π̂ by

Π̂M = (eB̂)MNΠ
N =

(
δµν 0

2Bµν δνµ

)(
⋆πν

πν

)
=

(
⋆πµ

πµ + 2Bµν
⋆πν

)
≡

(
⋆πµ

π̂µ

)
, (14.4)

and non-canonical coordinates σ-derivatives X̂ ′ by

X̂ ′M = (eB̂)MNX
′N =

(
δµν 0

2Bµν δνµ

)(
x′ν

y′ν

)
=

(
x′µ

y′µ + 2Bµνx
′ν

)
≡

(
x′µ

ŷ′µ

)
. (14.5)

The generator GΛ (13.1) can be expressed in terms of non-canonical momenta Π̂ by

ĜΛ̂ =

∫
dσ⟨Λ̂, Π̂⟩ , (14.6)

where we introduced a new symmetry parameter Λ̂, related to the parameter Λ (13.2) by

Λ̂M = (eB̂)MNΛ
N =

(
δµν 0

2Bµν δνµ

)(
ξν

λν

)
=

(
ξµ

λµ + 2Bµνξ
ν

)
≡

(
ξµ

λ̂µ

)
. (14.7)

Using the fact that eB̂ is an O(D,D) transformation, the generator algebra (13.12) when expressed in
terms of generator ĜΛ takes the form

{ĜΛ̂1
(σ), ĜΛ̂2

(σ̄)} = −Ĝ[Λ̂1,Λ̂2]CB
(σ)δ(σ − σ̄) , (14.8)

where [Λ̂1, Λ̂2]CB
we define as the B-twisted C-bracket, given by

[Λ̂1, Λ̂2]CB
= eB̂[e−B̂Λ̂1, e

−B̂Λ̂2]C . (14.9)

In order to obtain theB-twistedC-bracket from the Poisson bracket algebra, we require the Poisson
bracket relations between non-canonical momenta Π̂. Using (14.4) we write

{Π̂M(σ), Π̂N(σ̄)} = {(eB̂Π)M(σ), (eB̂Π)N(σ̄)} (14.10)
= (eB̂)MJ (σ)(e

B̂)NK(σ̄){ΠJ(σ),ΠK(σ̄)}
−(eB̂)MJ ∂

J(eB̂)NKΠ
Kδ(σ − σ̄) + (eB̂)NJ∂

J(eB̂)MKΠ
Kδ(σ − σ̄) .

Next, using the T-duality relations (12.26) on the first term of the right-hand side of the previous
expression, we obtain

(eB̂)MJ (σ)(e
B̂)NK(σ̄){ΠJ(σ),ΠK(σ̄)} ≃ κ

[
eB(σ)η(eB)T (σ̄)

]MN

δ′(σ − σ̄) , (14.11)
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which can be further tranformed by[
eB(σ)η(eB)T (σ̄)

]MN

δ′(σ − σ̄) = κηMNδ′(σ − σ̄) (14.12)

+κ(eB̂)MPη
PR∂Q((e

B̂)T ) N
R X ′Qδ(σ − σ̄) ,

where we have used (7.7) and (6.3) for B-shifts. After applying the T-dual relations (12.17) to the
non-anomalous part of (14.12), we obtain

κ(eB̂)MP η
PR∂Q((e

B̂)T ) N
R X ′Qδ(σ − σ̄) ≃ (eB̂)MP ∂QB̂

PNΠQδ(σ − σ̄) . (14.13)

We note the following properties of matrix B̂M
N (6.5)

B̂M
KB̂

K
N = 0 , B̂M

K∂
QB̂K

N = 0 , (eB̂)MN = δMN + B̂M
N , (14.14)

and rewrite the relation (14.10) as

{Π̂M(σ), Π̂N(σ̄)} = −B̂MNQ Π̂Qδ(σ − σ̄) + AMN(σ − σ̄) . (14.15)

With AMN we have marked the anomalous term, given by

AMN(σ − σ̄) ≃ κηMNδ′(σ − σ̄) , (14.16)

and with B̂MNQ the double flux, where

B̂MNQ = BMNQ + SMNQ (14.17)
BMNQ = ∂M B̂NQ + ∂N B̂QM + ∂QB̂MN

SMNQ = B̂M
K∂

KB̂NQ + B̂N
K∂

KB̂QM + B̂Q
K∂

KB̂MN .

Flux can be written in a more compact manner

B̂MNQ = ∂̂M B̂NQ + ∂̂N B̂QM + ∂̂QB̂MN , (14.18)

where ∂̂ is a new double derivative, given by

∂̂M = (eB̂)MK∂
K = ∂M + B̂M

K ∂K . (14.19)

Appart from the relation (14.15), we will also need another basic Poisson relation

{Λ̂M(σ), Π̂N(σ̄)} = ∂̂N Λ̂Mδ(σ − σ̄) , (14.20)

and note that the bracket between parameters is zero, i.e.

{Λ̂M(σ), Λ̂N(σ̄)} = 0 , (14.21)

as a direct consequence of (12.29) and (12.31) (see discussion below (13.4) for more details).
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14.2 Derivation of B-twisted C-bracket
Substituting (14.15), (14.20) and (14.21) into (14.8), we obtain

{ĜΛ̂1
(σ), ĜΛ̂2

(σ̄)} = Λ̂M
1 (σ)Λ̂N

2 (σ̄)AMN − Λ̂1M Λ̂2N B̂
MNQΠ̂Qδ(σ − σ̄) (14.22)

+Π̂Q

[
Λ̂N

2 ∂̂N Λ̂
Q
1 − Λ̂N

1 ∂̂N Λ̂
Q
2

]
δ(σ − σ̄) .

The first term containing anomaly is transformed with the help of (7.7) and (14.16) by

Λ̂M
1 (σ)Λ̂N

2 (σ̄)AMN(σ − σ̄) (14.23)
≃ κ⟨Λ̂1(σ), Λ̂2(σ)⟩δ′(σ − σ̄) + κ⟨Λ̂1(σ), Λ̂

′
2(σ)⟩δ(σ − σ̄)

=
κ

2

(
2⟨Λ̂1, Λ̂2⟩δ′(σ − σ̄) + ⟨Λ̂1, Λ̂2⟩′δ(σ − σ̄)

)
+
κ

2

(
⟨Λ̂1, Λ̂

′
2⟩ − ⟨Λ̂′

1, Λ̂2⟩
)
δ(σ − σ̄)

=
κ

2

(
⟨Λ̂1, Λ̂2⟩(σ) + ⟨Λ̂1, Λ̂2⟩(σ̄)

)
δ′(σ − σ̄) +

κ

2

(
⟨Λ̂1, Λ̂

′
2⟩ − ⟨Λ̂′

1, Λ̂2⟩
)
δ(σ − σ̄) ,

resulting in two terms. The first term is anomalous and dissappears after the integration. On the second
term, the T-duality relations (12.17) can be applied, after which one obtains

κ

2

(
⟨Λ̂1, Λ̂

′
2⟩ − ⟨Λ̂′

1, Λ̂2⟩
)

=
κ

2
ηMN

(
Λ̂M

1 ∂QΛ̂
N
2 − Λ̂M

2 ∂QΛ̂
N
1

)
X ′Q (14.24)

≃ 1

2
ηMN

(
Λ̂M

1 ∂
QΛ̂N

2 − Λ̂M
2 ∂

QΛ̂N
1

)
ΠQ

=
1

2
ηMN

(
Λ̂M

1 ∂̂
QΛ̂N

2 − Λ̂M
2 ∂̂

QΛ̂N
1

)
Π̂Q ,

where we used (14.19) and (14.4). Note that this is a second application of T-duality, which acts as
equality. The substitution of (14.23) and (14.24) into (14.22) results in the final expression for the
B-twisted C-bracket(

[Λ̂1, Λ̂2]CB

)M
= Λ̂N

1 ∂̂N Λ̂
M
2 − Λ̂N

2 ∂̂N Λ̂
M
1 (14.25)

−1

2

(
Λ̂N

1 ∂̂
M Λ̂2N − Λ̂N

2 ∂̂
M Λ̂1N

)
+ Λ̂1N Λ̂2QB̂

MNQ .

With the substitution of (14.19) into its expression, B-twisted C-bracket becomes(
[Λ̂1, Λ̂2]CB

)M
= Λ̂N

1 ∂N Λ̂
M
2 − Λ̂N

2 ∂N Λ̂
M
1 − 1

2

(
Λ̂N

1 ∂
M Λ̂2N − Λ̂N

2 ∂
M Λ̂1N

)
(14.26)

+B̂N
R

(
Λ̂1N∂

RΛ̂M
2 − Λ̂2N∂

RΛ̂M
1

)
− 1

2
B̂M

R

(
Λ̂1N∂

RΛ̂N
2 − Λ̂2N∂

RΛ̂N
1

)
+Λ̂1N Λ̂2QB̂

MNQ .

We can see that the first line is the C-bracket, while the other two lines are corrections due to twisting.
If the Kalb-Ramond field is zero, the second and the third lines become zero and the bracket reduces
to the C-bracket.
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14.3 Projections to the initial and T-dual phase space
Firstly, let us consider the B-twisted C-bracket projected to the initial phase space. It can be ob-
tained by demanding that all gauge fields depend solely on the initial coordinates xµ. In that case, the
derivatives ∂̂M become just derivatives along the initial coordinates xµ

∂̂M →

(
δµν 0

2Bµν δνµ

)(
0

∂ν

)
=

(
0

∂µ

)
. (14.27)

The terms from the bracket simplify as

Λ̂N
1 ∂̂N Λ̂

M
2 →

(
ξν1∂νξ

µ
2

ξν1∂νλ̂2µ

)
, (14.28)

and

Λ̂N
1 ∂̂

M Λ̂2N →

(
0

λ̂1ν∂µξ
ν
2 + ξν1∂µλ̂2ν

)
, (14.29)

while the flux B̂MNQ reduces to the standard H-flux, i.e.

B̂MNQΛ̂1N Λ̂2Q →

(
0

2Bµνρξ
ν
1ξ

ρ
2

)
. (14.30)

Combining previous relations and using the chain rule, we obtain

[Λ̂1, Λ̂2]CB
→ [Λ̂1, Λ̂2]CB = Λ̂ ≡

(
ξ

λ̂

)
, (14.31)

where

ξµ = ξν1∂νξ
µ
2 − ξν2∂νξ

µ
1 , (14.32)

λ̂µ = ξν1 (∂νλ̂2µ − ∂µλ̂2ν)− ξν2 (∂νλ̂1µ − ∂µλ̂1ν) +
1

2
∂µ(ξ1λ̂2 − ξ2λ̂1) + 2Bµνρξ

ν
1ξ

ρ
2 .

The B-twisted C-bracket becomes B-twisted Courant bracket in the initial theory.
Secondly, let us obtain the projection of B-twisted C-bracket to the T-dual phase space, by de-

manding that all variables depend solely on T-dual coordinates yµ. In this case, the derivative ∂̂M

becomes

∂̂M →

(
δµν 0

2Bµν δνµ

)(
∂̃ν

0

)
=

(
∂̃µ

2Bµν ∂̃
ν

)
, (14.33)
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so that the bracket terms reduce to

Λ̂N
1 ∂̂N Λ̂

M
2 →

(
λ̂1ν ∂̃

νξµ2 + 2Bνρξ
ρ
1 ∂̃

νξµ2
λ̂1ν ∂̃

νλ̂2µ + 2Bνρξ
ρ
1 ∂̃

νλ̂2µ

)
, (14.34)

and

Λ̂N
1 ∂̂

M Λ̂2N →

(
λ̂1ν ∂̃

µξν2 + ξν1 ∂̃
µλ̂2ν

2λ̂1νBµρ∂̃
ρξν2 + 2ξν1Bµρ∂̃

ρλ̂2ν

)
. (14.35)

The term containing flux B̂MNQ becomes

B̂MNQΛ̂1N Λ̂2Q →

(
κ ⋆Qµ

νρξ
ν
1ξ

ρ
2

κ ⋆Qν
ρµ(ξ

ρ
1 λ̂2ν − ξρ2 λ̂1ν) + κ2⋆Rµνρξ

ν
1ξ

ρ
2

)
, (14.36)

where we have marked the non-geometric fluxes in T-dual theory as a function of the T-dual non-
commutative parameter ⋆θµν = 2

κ
Bµν by

κ ⋆Qµ
νρ = 2∂̃µBνρ = κ ∂̃µ ⋆θνρ , (14.37)

and

κ2⋆Rµνρ = 4Bµσ∂̃
σBνρ + 4Bνσ∂̃

σBρµ + 4Bρσ∂̃
σBµν , (14.38)

= κ2 ⋆θµσ∂̃
σ ⋆θνρ + κ2 ⋆θνσ∂̃

σ ⋆θρµ + κ2 ⋆θρσ∂̃
σ ⋆θµν .

Combining previous relations and using the chain rule, the B-twisted C-bracket becomes

[Λ̂1, Λ̂2]CB
→ [Λ̂1, Λ̂2]CB = Λ̂ ≡

(
ξ

λ̂

)
, (14.39)

where

ξµ = λ̂1ν(∂̃
νξµ2 − ∂̃µξν2 )− λ̂2ν(∂̃

νξµ1 − ∂̃µξν1 ) + ∂̃µ(ξ1λ̂2 − ξ2λ̂1) (14.40)
2Bνρ(ξ

ν
1 ∂̃

ρξµ2 − ξν2 ∂̃
ρξµ1 ) + 2∂̃µBνρξ

ν
1ξ

ρ
2 ,

λ̂µ = λ̂1ν ∂̃
νλ̂2µ − λ̂2ν ∂̃

νλ̂1µ

−2Bµν

(
λ̂1ρ(∂̃

νξρ2 − ∂̃ρξν2 )− λ̂2ρ(∂̃
νξρ1 − ∂̃ρξν1 )−

1

2
∂̃ν(λ̂1ξ2 − λ̂2ξ1)

)
+2λ̂1ν ∂̃

ν(ξρ2Bρµ)− 2λ̂2ν ∂̃
ν(ξρ1Bρµ) + 2(ξν1Bνρ)∂̃

ρλ̂2µ − 2(ξν2Bνρ)∂̃
ρλ̂1µ

+4
(
Bµσ∂̃

σBνρ +Bνσ∂̃
σBρµ +Bρσ∂̃

σBµν

)
ξν1ξ

ρ
2 .

With the following change of variables

⋆λ̂
µ
= ξµ , ⋆ξµ = λ̂µ , (14.41)
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the B-twisted C-bracket becomes ⋆θ-twisted Courant bracket in the T-dual phase space (14.40).
These are very interesting results that show the attractiveness of the double theory. When we con-

sidered only the initial theory and symmetries therein, we needed to act with different transformations
on the generator’s basis to obtain the B- and θ-twisted Courant bracket. However, in double theory,
they are both easily obtained from the projection of theB-twisted C-bracket to the relevant subspaces.
Moreover, these projections reduce the double flux B̂MNQ to the geometric H-flux, and also non-
geometric Q and R-fluxes, depending on the phase space to which we project it. Lastly, we discussed
T-duality in the context of isomorphism between Courant algebroids and showed that with the ex-
change of background fields with their T-duals according to the Buscher rules, together with momenta
and coordinate σ-derivatives, B-twisted and θ-twisted Courant algebroids transform into each other.
This Courant algebroid isomorphism becomes manifest in a double theory, as both algebroids can be
obtained from the single bracket defined in a double space.
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Chapter 15

θ-twisted C-bracket

This chapter we devote to the derivation of the θ-twisted C-bracket and its corresponding double flux.
They have the same form as theirB-twisted counterparts, which was not the case with their respective
Courant brackets. We consider the projection of this bracket to the mutually T-dual phase spaces and
obtain the θ-twisted C-bracket in the initial, and B-twisted C-bracket in the T-dual phase space.

15.1 Non-canonical basis and basic algebra relations
In the analogy with the derivation of the θ-twisted Courant bracket, we consider the string moving in
a double space-time characterized by the T-dual metric

⋆GMN =

(
⋆G−1

µν (x, y) 0

0 ⋆Gµν(x, y)

)
=

(
GE

µν(x, y) 0

0 (G−1
E )µν(x, y)

)
, (15.1)

whereGE is defined in (2.36). The generalized metric can be obtained from the action of θ-transformation
eθ̂ (6.7)

⋆HMN = ((eθ̂)T ) L
M

⋆GLK(e
θ̂)KN =

(
GE

µν −2Bµρ(G
−1)ρν

2(G−1)µρBρν (G−1)µν

)
, (15.2)

which is exactly equal to the generalized metric (2.38), with the difference of background fields de-
pending also on T-dual coordinates yµ. In terms of ⋆GMN (15.1), the canonical Hamiltonian (12.12)
is written in the form of a free Hamiltonian as

HC =
1

2κ
Π̆M

⋆GMN Π̆N +
κ

2
X̆ ′M⋆GMNX̆

′N , (15.3)

where the new non-canonical double coordinates σ-derivatives are given by

X̆ ′M = (eθ̂)MNX
′N =

(
δµν κθµν

0 δνµ

) (
x′ν

y′ν

)
=

(
x′µ + κθµνy′ν

y′µ

)
≡

(
x̆′µ

y′µ

)
, (15.4)
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and new non-canonical double momenta by

Π̆M = (eθ̂)MNΠ
N =

(
δµν κθµν

0 δνµ

) (
⋆πν

πν

)
=

(
⋆πµ + κθµνπν

πµ

)
≡

(
⋆π̆µ

πµ

)
. (15.5)

In this basis, the symmetry generator is given by

ĞΛ̆ =

∫
dσ⟨Λ̆, Π̆⟩ , (15.6)

where

Λ̆M = (eθ̂)MNΛ
N =

(
δµν κθµν

0 δνµ

) (
ξν

λν

)
=

(
ξµ + κθµνλν

λµ

)
≡

(
ξ̆µ

λµ

)
. (15.7)

The θ-twisted C-bracket appears in the algebra of generators (15.6), via relation

{ĞΛ̆1
(σ), ĞΛ̆2

(σ̄)} = −Ğ[Λ̆1,Λ̆2]Cθ
(σ)δ(σ − σ̄) , (15.8)

where
[Λ̆1, Λ̆2]Cθ

= eθ̂[e−θ̂Λ̆1, e
−θ̂Λ̆2]C . (15.9)

In order to compute this bracket, we need to obtain the algebra between non-canonical momenta,
which is expanded as

{Π̆M(σ), Π̆N(σ̄)} = {(eθ̂Π)M(σ), (eθ̂Π)N(σ̄)} (15.10)
= (eθ̂)MJ (σ)(e

θ̂)NK(σ̄){ΠJ(σ),ΠK(σ̄)}
−(eθ̂)MJ ∂

J(eθ̂)NQΠ
Qδ(σ − σ̄) + (eθ̂)NJ∂

J(eθ̂)MQΠ
Qδ(σ − σ̄) .

Using (12.26) and (7.7), we obtain

(eθ̂)MJ (σ)(e
θ̂)NK(σ̄){ΠJ(σ),ΠK(σ̄)} = AMN(σ − σ̄) + (eθ̂)MP∂Qθ̂

PNΠQδ(σ − σ̄) , (15.11)

where AMN is the same anomaly defined in (14.16). Substituting (15.11) and (15.5) into (15.10), we
obtain

{Π̆M(σ), Π̆N(σ̄)} = −Θ̆MNQΠ̆Qδ(σ − σ̄) + AMN(σ − σ̄) , (15.12)

where

Θ̆MNQ = ΘMNQ +RMNQ (15.13)
ΘMNQ = ∂M θ̂NQ + ∂N θ̂QM + ∂Qθ̂MN

RMNQ = θ̂MK∂
K θ̂NQ + θ̂NK∂

K θ̂QM + θ̂QK∂
K θ̂MN .
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In a similar manner as when twisting by B, we introduce derivatives ∂̆M by

∂̆M = (eθ̂)MN ∂N = ∂M + θ̂MN ∂N , (15.14)

and express the flux in a more compact form

Θ̆MNR = ∂̆M θ̂NR + ∂̆N θ̂RM + ∂̆Rθ̂MN . (15.15)

From definition of Π̆M one easily obtains the relation

{Λ̆M(σ), Π̆N(σ̄)} = ∂̆N Λ̆Mδ(σ − σ̄) , (15.16)

and from the strong constraints (12.31), the algebra between symmetry parameters is zero.
We note that the algebra relations between non-canonical momenta Π̂M (14.15) and parameters

Λ̂M (14.20) on the one side, and non-canonical momenta Π̆M (15.12) and parameters Λ̆M (15.16) on
the other side, have the exact same form. The difference is that the former basic relations are expressed
in terms of derivatives ∂̂M (14.19) and flux B̂MNR (14.18), and the latter in terms of derivatives ∂̆M

(15.14) and flux Θ̆MNR (15.15). Therefore, the θ-twisted C-bracket can be obtained from relation
(14.25), simply by substituting the relevant expressions with their analogons. We obtain(

[Λ̆1, Λ̆2]Cθ

)M
= Λ̆N

1 ∂̆N Λ̆
M
2 − Λ̆N

2 ∂̆N Λ̆
M
1 (15.17)

−1

2

(
Λ̆N

1 ∂̆
M Λ̆2N − Λ̆N

2 ∂̆
M Λ̆1N

)
+ Λ̆1N Λ̆2QΘ̆

MNQ ,

which once the expression (15.14) is substituted becomes(
[Λ̆1, Λ̆2]Cθ

)M
= Λ̆N

1 ∂N Λ̆
M
2 − Λ̆N

2 ∂N Λ̆
M
1 − 1

2

(
Λ̆N

1 ∂
M Λ̆2N − Λ̆N

2 ∂
M Λ̆1N

)
(15.18)

+θ̂NR

(
Λ̆1N∂

RΛ̆M
2 − Λ̆2N∂

RΛ̆M
1

)
− 1

2
θ̂MR

(
Λ̆1N∂

RΛ̆N
2 − Λ̆2N∂

RΛ̆N
1

)
+Λ̆1N Λ̆2QΘ̆

MNQ .

The first line is the C-bracket, while the remaining terms are contributions due to its twisting by θ.

15.2 Projections to the initial and T-dual phase space
We conclude this chapter with the projections of the θ-twistedC-bracket to the initial and T-dual phase
spaces. In the former case, all fields and parameters will only depend on the initial coordinates xµ.
The derivative ∂̆M becomes

∂̆M →

(
δµν κθµν

0 δνµ

)(
0

∂ν

)
=

(
κθµν∂ν
∂µ

)
, (15.19)
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and moreover

Λ̆N
1 ∂̆N Λ̆

M
2 →

(
λ1νκθ

νρ∂ρξ̆
µ
2 + ξ̆ν1∂ν ξ̆

µ
2

λ1νκθ
νρ∂ρλ2µ + ξ̆ν1∂νλ2µ

)
, (15.20)

and

Λ̆N
1 ∂̆

M Λ̆2N →

(
κθµν(ξ̆ρ1∂νλ2ρ + λ1ρ∂ν ξ̆

ρ
2)

ξ̆ρ1∂µλ2ρ + λ1ρ∂µξ̆
ρ
2

)
. (15.21)

The flux term is given by

Λ̆1N Λ̆2QΘ̆
MNQ →

(
κ2Rµνρλ1νλ2ρ + κQ ρµ

ν (ξ̆ν1λ2ρ − ξ̆ν2λ1ρ)

κQ ρν
µ λ1ρλ2ν

)
, (15.22)

where Q and R are non-geometric fluxes (10.8).
Substituting (15.20), (15.21) and (15.22) into (15.17) we obtain the projection of the θ-twisted

C-bracket

[Λ̆1, Λ̆2]Cθ
→ [Λ̆1, Λ̆2]Cθ = Λ̆ ≡

(
ξ̆

λ

)
, (15.23)

where

ξ̆µ = ξ̆ν1∂ν ξ̆
µ
2 − ξ̆ν2∂ν ξ̆

µ
1 + (15.24)

−κθµν
(
ξ̆ρ1(∂νλ2ρ − ∂ρλ2ν)− ξ̆ρ2(∂νλ1ρ − ∂ρλ1ν)−

1

2
∂ν(ξ̆1λ2 − ξ̆2λ1)

)
+κξ̆ν1∂ν(λ2ρθ

ρµ)− κξ̆ν2∂ν(λ1ρθ
ρµ) + κ(λ1νθ

νρ)∂ρξ̆
µ
2 − κ(λ2νθ

νρ)∂ρξ̆
µ
1

+κ2(θµσ∂σθ
νρ + θνσ∂σθ

ρµ + θρσ∂σθ
µν)λ1νλ2ρ ,

λµ = ξ̆ν1 (∂νλ2µ − ∂µλ2ν)− ξ̆ν2 (∂νλ1µ − ∂µλ1ν) +
1

2
∂µ(ξ̆1λ2 − ξ̆2λ1)

+κθνρ(λ1ν∂ρλ2µ − λ2ν∂ρλ1µ) + κλ1ρλ2ν∂µθ
ρν .

These are relations defining the θ-twisted Courant bracket.
On the other hand, the projection to the T-dual phase space is obtained by keeping only the terms

with the T-dual coordinates yµ. The double derivatives are just derivatives along the T-dual coordinates
yµ, i.e.

∂̆M →

(
δµν κθµν

0 δνµ

)(
∂̃ν

0

)
=

(
∂̃µ

0

)
. (15.25)

Furthermore, we have

Λ̆N
1 ∂̆N Λ̆

M
2 →

(
λ1ν ∂̃

ν ξ̆µ2
λ1ν ∂̃

νλ2µ

)
(15.26)
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and

Λ̆N
1 ∂̆

M Λ̆2N →

(
λ1ν ∂̃

µξ̆ν2 + ξ̆ν1 ∂̃
µλ2ν

0

)
, (15.27)

while the flux term is simply given by

Λ̆1N Λ̆2QΘ̆
MNQ →

(
κ ⋆Bµνρλ1νλ2ρ

0

)
, (15.28)

where ⋆Bµνρ is the H flux in T-dual theory

κ⋆Bµνρ = κ ∂̃µθνρ + κ ∂̃νθρµ + κ ∂̃ρθµν (15.29)
= 2∂̃µ ⋆Bνρ + 2∂̃ν ⋆Bρµ + 2∂̃ρ ⋆Bµν .

The expression for θ-twisted C-bracket projected to the T-dual phase space is given by

[Λ̆1, Λ̆2]Cθ
→ [Λ̆1, Λ̆2]Cθ = Λ̆ ≡

(
ξ̆

λ

)
, (15.30)

where

ξ̆µ = λ1ν(∂̃
ν ξ̆µ2 − ∂̃µξ̆ν2 )− λ2ν(∂̃

ν ξ̆µ1 − ∂̃µξ̆ν1 ) +
1

2
∂̃µ(ξ̆1λ2 − ξ̆2λ1) (15.31)

+κ ⋆Bµνρλ1νλ2ρ ,

λµ = λ1ν ∂̃
νλ2µ − λ2ν ∂̃

νλ1µ .

This is the Courant bracket twisted by a 2-form ⋆B.
In the case of θ-twisted C-bracket, we see that both the Courant bracket twisted by B and by θ

can be obtained from it, depending on which phase space we project. The isomorphism between two
Courant algebroids appears naturally as a T-duality transformation between different projections of the
bracket, in the same way as in the case ofB-twistedC-bracket. It also features the flux that in different
projections contains both H-flux and non-geometric Q and R fluxes.
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Part V

Conclusions
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In this thesis, we considered the application of generalized geometry to bosonic string theory and
obtained various Courant algebroid structures in the symmetry algebra relations. Primarily we focused
on the algebroid brackets and their properties, obtaining different fluxes in the algebroid relations.
Moreover, we established relations of these brackets with T-duality, in both the single and double
theory approach. For each algebroid, we obtained its Dirac structures and the constraints they impose
on string fluxes.

The bosonic string σ-model is invariant under two groups of symmetries - diffeomorphisms and
local gauge transformations. The generators of these transformations are self T-dual, so we united these
generators into a single generator. It can be expressed as the O(D,D) invariant inner product of two
generalized vectors, one of which is the double symmetry parameter, a direct sum of diffeomorphism
and local gauge transformations parameters, and another one is the double canonical variable, a direct
sum of the coordinate σ derivative and canonical momenta. We obtained the Poisson bracket algebra
relations of these generators and showed that it closes on another generator parametrized with the
Courant bracket of two double symmetry parameters. The Courant bracket is a well-known bracket on
the generalized tangent bundle. We showed that it is in fact the self T-dual extension of the Lie bracket.
The Courant bracket defines the standard Courant algebroid, which consists of the generalized tangent
bundle as its vector bundle, the O(D,D) invariant inner product, and the projection to the tangent
bundle as its anchor. The Dirac structures related to the standard Courant algebroid are a symplectic
manifold and a Poisson manifold. Translated into the language of string fluxes, these are spaces in
which the H-flux and R-flux have to be zero, respectively.

Afterward, we developed a method of obtaining the twisted Courant bracket by an arbitraryO(D,D)

transformation. The method consists of choosing a different basis in which the generator is written,
obtained by the action of theO(D,D) transformation on a double canonical variable. If the symmetry
parameter is transformed with the same transformation, the generator will remain the same, due to
it being the O(D,D) invariant inner product. We demonstrated that in the Poisson bracket algebra
of such a generator, the twisted Courant bracket appears. Moreover, there is a natural way to define
the Courant algebroid, consisting of the generalized tangent bundle, the twisted Courant bracket, the
O(D,D) invariant inner product, and the anchor defined as a composition of the natural projection to
the tangent bundle and the inverse of the O(D,D) transformation used for twisting. We showed that
all five Courant algebroid conditions are apriori satisfied.

We chose three transformations relevant to string theory and twisted the Courant bracket by them,
using the aforementioned method. Firstly, we considered B-transformations and with it acted on the
double canonical variable. The resulting generalized vector consists of coordinates σ derivatives as
its vector and auxiliary currents iµ as its 1-form components. This is a non-canonical basis, but when
expressed in it, the Hamiltonian has a form of a free Hamiltonian, written in terms of diagonal gen-
eralized metric. The structure function of the Poisson bracket algebra of auxiliary currents is the
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Kalb-Ramond field strength, i.e. the H-flux. We expressed the symmetry generator in this basis and
obtained its algebra, where the Courant bracket twisted by B appeared. The bracket differs from the
Courant bracket by a term containing H-flux. We obtained Dirac structures corresponding to this
bracket on which an arbitrary H-flux can exist. On the other set of Dirac structures, written in the
form of a graph of bi-vector over a cotangent bundle, we showed that the generalized R-flux has to be
zero.

Secondly, we considered the background characterized only by the effective metric, which is the
T-dual metric. We acted with the θ-transformation as a similarity transformation and obtained the
generalized metric. It is possible to express this Hamiltonian in terms of the new non-canonical basis
obtained with the action of the θ-transformation to the double canonical variable. The resulting basis
consists of a new set of auxiliary currents kµ and canonical momenta. In the algebra of auxiliary
currents, the non-geometric Q− and R−fluxes appear as structure functions. We obtained the θ-
twisted Courant bracket in the Poisson algebra of this generator. Some of the terms in the θ-twisted
Courant bracket include the Koszul bracket (the Lie bracket generalization to the cotangent bundle) and
Schouten-Nijenhuis bracket (the Lie bracket generalization to the space of multivectors). We showed
that on Dirac structures related to the Courant algebroid with θ-twisted Courant bracket, R-flux can
exist without restrictions on the non-commutativity parameter.

We derived the B-twisted and θ-twisted Courant brackets in [1, 2]. What we found as a peculiar
property is their relation via T-duality. The T-duality is a known string phenomenon where winding
and momenta numbers are interchanged. The former are obtained when the coordinate σ derivative is
integrated around the compact dimension, and the latter when the canonical momenta are integrated.
Moreover, the non-commutativity parameter and effective metric are T-duals of the Kalb-Ramond field
and metric tensor, respectively. The T-duality can be realized in the same phase space, by interchanging
canonical momenta and coordinate σ derivatives, together with the interchange of background fields
with their T-duals. We coined this term self T-duality and showed that it directly relates two generators
- one giving rise to the B-twisted Courant bracket and another giving rise to the θ-twisted Courant
bracket in the Poisson bracket algebra. Because we were working in the same phase space, we were
able to obtain the coordinate transformation that takes the parameters of the one generator and results
in the parameters of the other generator. We showed that this transformation defines the isomorphism
between two Courant algebroids. This way, we demonstrated that B-twisted and θ-twisted Courant
brackets are self T-dual.

Thirdly, we obtained the Courant bracket that was simultaneously twisted both by B and θ. This
bracket was first obtained in [3]. Beforehand, only the successive twists were considered, in which
case the Courant bracket twisted firstly by B and afterward by θ was obtained. This bracket, some-
times referred to as the Roytenberg bracket, contains all generalized fluxes, but the bracket itself is not
invariant under T-duality. This is due to the fact that B-shifts and θ-transformations do not commute.
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Instead, we considered the matrix B̆, which is a sum of B̂ and θ̂, exponents of which govern twists of
the Courant bracket by B and θ, respectively. By construction, this transformation is invariant under
T-duality. The price we paid is that the square of the matrix B̆ is not zero, and therefore all terms in
Taylor’s expansion had to be obtained. The full twisting matrix contained hyperbolic functions of the
matrix αµ

ν = 2κθµρBρν .
Computing the B − θ-twisted Courant bracket was not an easy task. On the first hand, it seemed

to produce a meaningless conundrum, with the appearance of a plethora of terms with no obvious
interpretation. Luckily, we were able to overcome this obstacle by considering another twist, which was
related to the simultaneous twist byB and θ by a simple coordinate transformation. This auxiliary twist
gave rise to the currents in a simpler form, such that it was possible to obtain the fluxes, which were
then related to the fluxes of the B − θ-twisted Courant bracket by an inverse of the above-mentioned
twist.

We showed that this bracket contains all generalized fluxes. TheH-flux is defined as a field strength
of an antisymmetric field defined on the Lie algebroid, with the twisted Lie bracket as its bracket,
while the R-flux we expressed as the twisted Schouten-Nijenhuis bracket of new bi-vectors θ̆. The bi-
vector θ̆ is in general not the Poisson one, so it defines the quasi-Lie algebroid with the twisted Koszul
bracket as its bracket. It is possible to define the non-nilpotent exterior derivative corresponding to
the twisted Koszul bracket. Its action on the bi-vector θ̆ gives the R-flux and defines the twisted
Schouten-Nijenhuis bracket. We found an interesting result when we computed the Dirac structures
of the B − θ-twisted Courant bracket: all generalized fluxes can exist on Dirac structures, with no
restrictions imposed on them.

In the end, we generalized results to the case of double theory, in which all fields depend on both
initial and T-dual coordinates. We considered diffeomorphisms, generated by canonical momenta,
and T-dual diffeomorphisms, generated by T-dual canonical momenta. The parameters were taken to
depend on both the initial and T-dual coordinates. We extended the Poisson bracket relations to the
double space, taking into account that they should commute with T-duality relations. The generator
governing both diffeomorphisms and T-dual diffeomorphisms was written in the form of an O(D,D)

invariant inner product. It has been shown it gives rise to the C-bracket, which was published in [1].
The C-bracket reduces to the Courant bracket when either all the initial coordinates or all the T-dual
coordinates are projected out.

In addition, we twisted the C-bracket in the same way as the Courant bracket. We first considered
the Hamiltonian with the generalized metric in the diagonal form, containing only metric tensor, and
the Kalb-Ramond field appearing only through a flux in the non-canonical variables algebra. In its
generator algebra, we obtained the B-twisted C-bracket. It extends the C-bracket with additional
terms due to twisting, including the double theory flux. When dependence on T-dual coordinates is
neglected, the bracket reduces to theB-twisted Courant bracket. On the other hand, when dependence
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on the initial coordinates is neglected, the bracket becomes the θ-twisted Courant bracket. In a similar
manner, we twisted the C-bracket with the θ-transformation, obtained from the generator in double
theory expressed in the non-canonical basis, in which Hamiltonian is diagonal, expressed in terms of
T-dual metric. The θ-twisted C-bracket was obtained in the algebra of this generator. The bracket
has exactly the same form as the B-twisted C-bracket, which was not the case for their analogous
twisted Courant brackets. When we neglected all the T-dual coordinates in the expression for the θ-
twisted C-bracket, the θ-twisted Courant bracket was obtained, while when we neglected all the initial
coordinates, theB-twisted Courant bracket was obtained. We showed that in both twisted C-brackets,
the isomorphism between mutually T-dual Courant algebroids is naturally included. We obtained the
results regarding the twisted C-brackets and their derivations in [4].

The explanation of T-duality in terms of generalized geometry is still a work in progress, and there
is a lot more work to be done. For instance, there are solved cases of equations of motions on back-
ground fields that from a simple geometric theory produce the T-dual theory that is not local. It would
be important to see how the understanding of T-duality as the Courant algebroid isomorphism would
generalize to such cases. The non-locality of the T-dual theories poses a challenge to understanding
and interpreting the symmetries of their conformal field theory.

Additionally, there are challenges in the description of open string T-duality in terms of generalized
geometry apparatus that were not touched upon in this dissertation. The open string action has to be
extended with the terms related to the boundary conditions, which also change the symmetry generator.
There was some work in literature with the aim to interpret the D-branes as Dirac structures [83, 84].
Hopefully, our results related to Dirac structures of various Courant algebroids and the fluxes on them
might find the purpose in the challenges related to the open strings.

In the end, the description of Nature in terms of strings is contingent on the formulation of M-theory
that, on one hand, gives effective action that describes gravity, while on the other hand, connects to
a myriad of realizations of supersymmetric string theories. The fact that many of the superstring
theories are connected by T-duality makes understanding it a priority. Therefore, further work will
have to include the supersymmetry and see if isomorphism between Courant algebroids is still a valid
description of T-duality.

112



Part VI

Appendix

113



Appendix A

Poisson manifolds

Let M be a manifold, andC∞(M) the vector space of real valued functions on M. A Poisson bracket
on M is a map {, } : C∞(M)× C∞(M) → C∞(M) that satisfies:

1. Skew-symmetry: {f, g} = −{g, f} ;

2. Leibniz rule: {f, gh} = {f, g}h+ {f, h}g ;

3. Jacobi identity: {f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0.

The Poisson bracket can be defined with the bi-vector θ by

{f, g} = θ(df, dg) , (A.1)

if the bi-vector satisfies the condition [θ, θ]S = 0 (5.10). Two definitions are equivalent. The condition
(5.10) ensures that the Jacobi identity is satisfied. The structure (M, θ) is then called the Poisson
manifold.

114



Appendix B

O(D, D) group

Indefinite orthogonal group O(D,D) [85, 86] is defined as the Lie group of all linear transformations
O of a 2D-dimensional real vector space that leave invariant a non-degenerate symmetric bilinear form
of signature (D,D)

⟨OΛ1,OΛ2⟩ = ⟨Λ1,Λ2⟩ . (B.1)

Let us express the general form of an O(D,D) transformation as

O =

(
P µ

ν Qµν

Rµν S ν
µ

)
, (B.2)

where P, Q, R, S areD×D matrices. Substituting (B.2) into (6.3), we obtain the constraint on these
matrices:

P TR +RTP = 0 , P TS +RTQ = I , QTS + STQ = 0 , (B.3)

where by I we denoted the D ×D identity matrix.
From relation (6.3) we easily obtain that the inverse of the matrix O is given by

O−1 = η−1OTη , (B.4)

or

O−1 =

(
ST QT

RT P T

)
. (B.5)

From the requirement OO−1 = I , we obtain another set of conditions on P, Q, R, S

PQT +QP T = 0 , PST +QRT = I , RST + SRT = 0 . (B.6)
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The generators of O(D,D) group include the following elements:

OA =

(
A−1 0

0 AT

)
, (B.7)

OB =

(
1 0

2B 1

)
, (B.8)

and

O±i =

(
1− Ei ±Ei

±Ei 1− Ei

)
, (B.9)

where (Ei)jk = δijδ
i
k. All other elements can be obtained from these generators.
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Appendix C

Standard Courant algebroid

In this Appendix, we provide the proof for a claim that the structure
(
TM ⊕ T ⋆M, ⟨, ⟩, [, ]C, π

)
consisting of the generalized tangent bundle over a smooth manifold, the natural inner product (6.2),
and the Courant bracket is the Courant algebroid. Firstly, let us obtain the Courant algebroid differential
operator (6.21), which we mark by

(Df)M =

(
(D(0)f)µ

(D(0)f)µ

)
. (C.1)

The right hand side of (6.21) becomes

Lπ(Λ)f = iξ df = ξµ∂µf . (C.2)

The left-hand side of (6.21) becomes

⟨Λ,D(0)f⟩ = ξµ(D(0)f)µ + (D(0)f)µλµ . (C.3)

Equating (C.2) and (C.3), we obtain

D(0)f =

(
0

df

)
. (C.4)

The differential operator D(0) is basically just the exterior derivative d, but we chose the above notation
so that its action on function gives generalized vector explicitly.

The first property (6.22) is evident when we act with the projection π to the definition of the Courant
bracket (6.12), obtaining

π[Λ1,Λ2]C = [ξ1, ξ2]L = [π(Λ1), π(Λ2)]L . (C.5)
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To prove the second property, it is convenient to separate the vector and 1-form part of the left hand
side of (6.23). The vector part becomes

[ξ1, fξ2]L = f [ξ1, ξ2]L + (Lξ1f) ξ2 , (C.6)

which is just the Leibniz rule for the Lie bracket (4.6). The 1-form part gives

Lξ1(fλ2)− L(fξ2)λ1 −
1

2
d(iξ1(fλ2)− i(fξ2)λ1) = (C.7)

fLξ1λ2 + (Lξ1f) λ2 − fLξ2λ1 − dfiξ2λ1 −
1

2
d(iξ1(fλ2)− i(fξ2)λ1) =

f
(
Lξ1λ2 − Lξ2λ1 −

1

2
d(iξ1λ2 − iξ2λ1)

)
+ (Lξ1f) λ2 −

1

2
⟨Λ1,Λ2⟩df ,

where in the second line we applied (4.6) to the term Lξ1(fλ2), and (4.18) to the term L(fξ2)λ1. In the
last line the Leibniz property for exterior derivative d was used. Combining relations (C.6) and (C.7)
we obtain

[Λ1, fΛ2]C = f [Λ1,Λ2]C + (Lπ(Λ1)f) Λ2 −
1

2
⟨Λ1,Λ2⟩D(0)f , (C.8)

and therefore the second property (6.23) is satisfied.
For the third property (6.23) , we start from the first term on the right-hand side of it and write

⟨[Λ1,Λ2] +
1

2
D(0)⟨Λ1,Λ2⟩,Λ3⟩ = ⟨[ξ1, ξ2]L ⊕ (Lξ1λ2 − Lξ2λ1 + diξ2λ1), ξ3 ⊕ λ3⟩ (C.9)

= i[ξ1,ξ2]Lλ3 + iξ3(Lξ1λ2 − iξ2dλ1)

= Lξ1iξ2λ3 − iξ2Lξ1λ3 + iξ3(Lξ1λ2 − iξ2dλ1) ,

where we firstly used the definition of the inner product (6.2) and Courant bracket (6.12), and after-
wards the identity (4.20). Because we are working with a symmetric inner product, the second term
of the right-hand side of (6.24) can be obtained from the previous relations by swapping 2 ↔ 3

⟨Λ2, [Λ1,Λ3] +
1

2
D(0)⟨Λ1,Λ3⟩⟩ = Lξ1iξ3λ2 − iξ3Lξ1λ2 + iξ2(Lξ1λ3 − iξ3dλ1) . (C.10)

Adding (C.9) and (C.10), we obtain

⟨[Λ1,Λ2] +
1

2
D(0)⟨Λ1,Λ2⟩,Λ3⟩+ ⟨Λ2, [Λ1,Λ3] +

1

2
D(0)⟨Λ1,Λ3⟩⟩ (C.11)

= Lξ1(iξ2λ3 + iξ3λ2)− (iξ3iξ2 + iξ2iξ3)dλ1

= Lπ(Λ1)⟨Λ2,Λ3⟩ .

Here, we used (6.14) and (6.2), as well as (4.19). The third condition (6.24) has therefore been proven.
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The fourth property (6.25) is evident from the fact that the inner product (6.2) of pure 1-forms is
zero, i.e.

⟨D(0)f,D(0)g⟩ = ⟨0⊕ df, 0⊕ dg⟩ = 0 . (C.12)

The Jacobiator (6.19) for the Courant bracket can be easily obtained from definition of the Courant
bracket. Firstly, we start with

Jac(Λ1,Λ2,Λ3) = ξ ⊕ λ (C.13)
ξ = [[ξ1, ξ2]L, ξ3]L + cyclic = 0

λ = L[ξ1,ξ2]Lλ3 − Lξ3(Lξ1λ2 − Lξ2λ1 −
1

2
d(iξ1λ2 − iξ2λ1))

−1

2
d(i[ξ1,ξ2]Lλ3 − iξ3(Lξ1λ2 − Lξ2λ1 −

1

2
d(iξ1λ2 − iξ2λ1))) + cyclic .

The vector part is just the Jacobi identity for the Lie bracket (4.7), and is therefore zero. The 1-form
part is complicated, and it requires some more work, in order to be transformed properly. We use the
Cartan formula (4.17) and nilpotency of the exterior derivative, as well as (4.20) to write

λ =
1

2

(
L[ξ1,ξ2]Lλ3 − Lξ3(Lξ1λ2 − Lξ2λ1 −

1

2
d(iξ1λ2 − iξ2λ1)) (C.14)

+i[ξ1,ξ2]Ldλ3 − iξ3d(Lξ1λ2 − Lξ2λ1 −
1

2
d(iξ1λ2 − iξ2λ1))

)
+ cyclic

=
1

2

(
L[ξ1,ξ2]Lλ3 − Lξ3(Lξ1λ2 − Lξ2λ1) +

1

2
diξ3d(iξ1λ2 − iξ2λ1))

+(Lξ1iξ2 − iξ2Lξ1)dλ3 − iξ3d(iξ1dλ2 − iξ2dλ1)
)
+ cyclic

=
1

2

(
L[ξ1,ξ2]Lλ3 − Lξ3(Lξ1λ2 − Lξ2λ1) +

1

2
diξ3d(iξ1λ2 − iξ2λ1))

+(iξ1diξ2 + diξ1iξ2 − iξ2diξ1)dλ3 − iξ3d(iξ1dλ2 − iξ2dλ1)
)
+ cyclic .

Firstly, using the definition of the Lie bracket (4.4), we conclude that

L[ξ1,ξ2]Lλ3 − Lξ3(Lξ1λ2 − Lξ2λ1) + cyclic = (C.15)
(Lξ1Lξ2 − Lξ2Lξ1)λ3 + (Lξ2Lξ3 − Lξ3Lξ2)λ1 + (Lξ3Lξ1 − Lξ1Lξ3)λ2

−Lξ3(Lξ1λ2 − Lξ2λ1)− Lξ1(Lξ2λ3 − Lξ3λ2)− Lξ2(Lξ3λ1 − Lξ1λ3) = 0 .

Secondly, we obtain

(iξ1diξ2 − iξ2diξ1)dλ3 − iξ3d(iξ1dλ2 − iξ2dλ1) + cyclic = (C.16)
iξ1diξ2dλ3 + iξ2diξ3dλ1 + iξ3diξ1dλ2 − iξ2diξ1dλ3 − iξ3diξ2dλ1 − iξ1diξ3dλ2

−iξ3diξ1dλ2 − iξ1diξ2dλ3 − iξ2diξ3dλ1 + iξ3diξ2dλ1 + iξ1diξ3dλ2 + iξ2diξ1dλ3 = 0 .
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Thirdly, we have

diξ3(diξ1λ2 − diξ2λ1) + cyclic = (C.17)
diξ3diξ1λ2 + diξ1diξ2λ3 + diξ2diξ3λ1 − diξ3diξ2λ1 − diξ1diξ3λ2 − diξ2diξ1λ3 =

(diξ2diξ3 − diξ3diξ2)λ1 + (diξ3diξ1 − diξ1diξ3)λ2 + (diξ1diξ2 − diξ2diξ1)λ3 ,

and lastly

diξ1iξ2dλ3 + cyclic = diξ1iξ2dλ3 + diξ2iξ3dλ1 + diξ3iξ1dλ2 . (C.18)

Substituting (C.15), (C.16), (C.17) and (C.18) into (C.14), we obtain the Jacobiator of the Courant
bracket

Jac(Λ1,Λ2,Λ3) =
1

2

(
diξ1iξ2dλ3 + diξ2iξ3dλ1 + diξ3iξ1dλ2

)
(C.19)

+
1

4

(
(diξ2diξ3 − diξ3diξ2)λ1 + (diξ3diξ1 − diξ1diξ3)λ2

+(diξ1diξ2 − diξ2diξ1)λ3

)
.

Now in order to obtain the Nijenhuis operator, we substitute (6.12) and (6.2) in (6.20), and note
that

Nij(Λ1,Λ2,Λ3) =
1

6
⟨[Λ1,Λ2]C ,Λ3⟩+ cyclic , (C.20)

⟨[Λ1,Λ2]C ,Λ3⟩ = i[ξ1,ξ2]Lλ3 + iξ3

(
Lξ1λ2 − Lξ2λ1 −

1

2
d(iξ1λ2 − iξ2λ1)

)
.

If we take the exterior derivative of the above relation, using (4.17) and (4.20), we obtain

d⟨[Λ1,Λ2]C ,Λ3⟩ = di[ξ1,ξ2]Lλ3 + diξ3

(
Lξ1λ2 − Lξ2λ1 −

1

2
d(iξ1λ2 − iξ2λ1)

)
(C.21)

= diξ1diξ2λ3 − diξ2diξ1λ3 − diξ2iξ1dλ3 + diξ3iξ1dλ2 − diξ3iξ2dλ1

+
1

2
(diξ3diξ1λ2 − diξ3diξ2λ1) .

Again, we can easily add the cyclic permutations od terms that have similar form. For instance, we
have

diξ1diξ2λ3 − diξ2diξ1λ3 +
1

2
(diξ3diξ1λ2 − diξ3diξ2λ1) + cyclic = (C.22)

diξ1diξ2λ3 − diξ2diξ1λ3 + diξ2diξ3λ1 − diξ3diξ2λ1 + diξ3diξ1λ2 − diξ1diξ3λ2

+
1

2

(
diξ3diξ1λ2 − diξ3diξ2λ1 + diξ1diξ2λ3 − diξ1diξ3λ2 + diξ2diξ3λ1 − diξ2diξ1λ3

)
=

3

2

(
(diξ2diξ3 − diξ3diξ2)λ1 + (diξ3diξ1 − diξ1diξ3)λ2 + (diξ1diξ2 − diξ2diξ1)λ3

)
.
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The remaining terms from (C.21) become

−diξ2iξ1dλ3 + diξ3iξ1dλ2 − diξ3iξ2dλ1 + cyclic = (C.23)
−diξ2iξ1dλ3 + diξ3iξ1dλ2 − diξ3iξ2dλ1 − diξ3iξ2dλ1 + diξ1iξ2dλ3 − diξ1iξ3dλ2

−diξ1iξ3dλ2 + diξ2iξ3dλ1 − diξ2iξ1dλ3 =

3
(
diξ1iξ2dλ3 + diξ2iξ3dλ1 + diξ3iξ1dλ2

)
,

where we used the interior product property (4.19). The derivative D(0)of the Nijenhuis operator for
the Courant bracket is obtained by substituting (C.22) and (C.23) in (C.21)

D(0)Nij(Λ1,Λ2,Λ3) =
1

2

(
diξ1iξ2dλ3 + diξ2iξ3dλ1 + diξ3iξ1dλ2

)
(C.24)

+
1

4

(
(diξ2diξ3 − diξ3diξ2)λ1 + (diξ3diξ1 − diξ1diξ3)λ2

+(diξ1diξ2 − diξ2diξ1)λ3

)
.

Comparing relations (C.19) and (C.24), we finally prove the last Courant algebroid compatibility con-
dition (6.26)

Jac(Λ1,Λ2,Λ3) = D(0)Nij(Λ1,Λ2,Λ3) . (C.25)
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