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Наслов дисертације: Пребројавање класа еквиваленције Булових функција

Резиме: У овој дисертацији разматран јe проблем израчунавања броја класа
еквиваленције Булових функција. Тежина одређивања броја класа еквивален-
ције нагло расте са бројем променљивих n. Мотивација за избор ове теме лежи
у чињеници да су конкретни бројеви до сада били познати само за релативно
мале вредности n, иако је сам проблем теоријски одавно решен.

Нека је G група пермутација скупа Bn = {0, 1}n. Разматра се дејство групе
G на скаларне, Bn 7→ B1, односно векторске инвертибилне Булове функције,
Bn 7→ Bn. Две скаларне Булове функције f(x) и g(x), дефинисане на Bn, сма-
трају се еквивалентним у односу на групу G, тј. f ∼ g, ако за неко σ ∈ G за
свако x ∈ Bn важи f(x) = g(σ(x)). Две векторске инвертибилне Булове функ-
ције f(x) и g(x), сматрају се еквивалентним у односу на групу G, тј. f ∼ g, ако
за неки пар (σ, ρ) ∈ G × G за свако x ∈ Bn важи g(x) = ρ(f(σ(x))). Релација
еквиваленције ∼ разлаже скуп свих Булових функција у класе еквиваленције.
Еквиваленција Булових функција има значајну примену у логичкој синтези
комбинаторних кола и у криптографији, посебно у вези са пројектовањем
табела S (енг. S-box).

Нека Un(G), односно Vn(G) означава број класа еквиваленције скаларних,
односно векторских инвертибилних Булових функција од n променљивих у
односу на групу G. Бројеви Un(G) и Vn(G) могу се релативно једноставно
израчунати ако се зна циклусни индекс групе G. У дисертацији се разматрају
четири групе G пермутација скупа Bn:

• група S′
n индукована групом Sn пермутација координата елемената x =

(x1, x2, . . . , xn) ∈ Bn,

• група Gn, индукована пермутацијама и комплементирањима координа-
та,

• група GLn линеарних инвертибилних трансформација елемената век-
торског простора Bn, и

• група AGLn афиних инвертибилних трансформација елемената Bn.

Ако пермутација σ ∈ G има ik циклуса дужине k ⩾ 1, њена циклусна струк-



тура је i(σ) = (i1, i2, . . .). Циклусни индекс групе G је генератриса

ZG(f1, f2, . . .) =
1

|G|
∑
σ∈G

∏
k⩾1

f ik
k

циклусних структура свих пермутација σ ∈ G. Општи изрази за циклусне
индексе четири разматране групе су познати, али су сами циклусни индекси,
односно бројеви Un(G) и Vn(G), практично израчунати само за релативно мале
вредности, за нпр. n ⩽ 10.

Дисертација приказује оригиналне резултате из области пребројавања кла-
са еквиваленције Булових функција у односу на ове четири групе трансфор-
мација. За све четири групе трансформација изведен је сличан израз за ци-
клусни индекс у облику суме по партицијама броја n. На основу тог израза и
претходно израчунатих табела циклусни индекс се израчунава много ефика-
сније. Преглед познатих резултата за релативно мале n и нових резултата у
тези за веће n приказан је у наредној табели:

Број\ G S′
n Gn GLn AGLn

Un(G) 11→ 33 10→ 32 8→ 31 10→ 31

Vn(G) 6→ 30 7→ 27 6→ 26 6→ 26

Специјално, у случају групе пермутација S′
n, приказан је ефикасан директ-

ни поступак рачунања броја класа еквиваленције који не користи циклусни
индекс, а описан је трећем раду из уводног поглавља.

Други део дисертације односи се на мононотоне Булове функције — ска-
ларне Булове функције које задовољавају услов монотоности (из x ⩽ y следи
f(x) ⩽ f(y)). Нека rn, односно dn (n-ти Дедекиндов број), означава број класа
еквиваленције монотоних Булових функција у односу на групу S′

n, односно
укупан број монотоних Булових функција од n променљивих. Тежина израчу-
навања броја rn нагло расте са n, тако да је донедавно последњи израчунати
члан низа био r7. У дисертацији се описује поступак заснован на Фробенију-
совој теореми, којим је одређен број r8. При томе се користи позната вредност
броја d8.

Дисертација се састоји од првог - уводног поглавља и од наредна три по-
главља. У другом поглављу уводе се теоријски појмови у вези са материјалом
из поглавља 3 и 4, а односе се на дискретну математику, комбинаторику и
циклусне индексе разматране четири групе трансформација.



У поглављу 3 описује се поступак израчунавања цикусних индекса за че-
тири разматране групе пермутација, као и бројева Un(G) и Vn(G) класа екви-
валенција Булових функција у односу на ове групе. Најпре се разматрају
заједничка побољшања за све четири групе, а затим и специфична убрзања
везана за појединачне групе. Ови резултати објављени су у другом раду са
списка у уводном поглављу.

У поглављу 4 решава се проблем проналажења броја класа еквиваленције
монотоних Булових функција. Најпре се даје општи израз за рачунање броја
rn на основу Фробенијусове теореме — у облику суме (по партицијама броја
n) броја фиксних тачака пермутације која одговара партицији. Након тога,
у зависности од графова који одговарају различитим партицијама, приказују
се различити начини рачунања броја фиксних тачака за n ⩽ 8. Приказан је
поступак на основу кога је израчунат број r8, што такође представља ори-
гинални допринос ове дисертације - видети први рад са списка из уводног
поглавља. Применивши сличан поступак, Павелски (Pawelski, [31]) је израчу-
нао r8 практично у исто време када је добијен резултат описан у дисертацији.

Кључне речи: Булове функције, монотоне Булове функције, партиције, ци-
клусни индекс, Фробенијусова теорема, Дедекиндови бројеви
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Dissertation title: Counting equivalence classes of Boolean functions

Abstract: In this dissertation, the problem of calculating the number of equiva-
lence classes of Boolean functions is discussed. The difficulty of determining the
number of equivalence classes increases sharply with the number of variables n.
The motivation for choosing this topic lies in the fact that concrete numbers have
been known so far only for relatively small values of n, although the problem itself
was theoretically solved a long time ago.

Let G be the group of permutations of the set Bn = {0, 1}n. The effect of
the group G on scalar, Bn 7→ B1, that is, vectorial invertible Boolean functions,
Bn 7→ Bn. Two scalar Boolean functions f(x) and g(x), defined on Bn, are
considered equivalent with respect to the group G, i.e. f ∼ g, if for some σ ∈ G
for every x ∈ Bn f(x) = g(σ(x)) holds. Two vector invertible Boolean functions
f(x) and g(x), are considered equivalent with respect to the group G, i.e. f ∼ g,
if for some pair (σ, ρ) ∈ G × G for each x ∈ Bn holds g(x) = ρ(f(σ(x))). The
equivalence relation ∼ decomposes the set of all Boolean functions into equivalence
classes. Equivalence of Boolean functions has significant applications in the logical
synthesis of combinatorial circuits and in cryptography, especially in connection
with the design of S-boxes.

Let Un(G) and Vn(G) denote number of equivalence classes of scalar, i.e. vector
invertible Boolean functions of n variables in relation to the group G. The numbers
Un(G) and Vn(G) can be calculated relatively simply if the cycle index of the group
G is known. The dissertation considers four groups G of permutations of the set
Bn:

• group S′
n induced by group Sn permutations of coordinates elements x =

(x1, x2, . . . , xn) ∈ Bn,

• group Gn, induced by permutations and complementations of coordinates,

• group of GLn linear invertible transformations elements of the vector space
Bn, i

• group of AGLn affine invertible transformations elements Bn.

If the permutation σ ∈ G has ik cycles of length k ⩾ 1, its cycle structure is



i(σ) = (i1, i2, . . .). The cyclic index of the group G is the generatrix

ZG(f1, f2, . . .) =
1

|G|
∑
σ∈G

∏
k⩾1

f ik
k

of cycle structures of all permutations σ ∈ G. General expressions for cycle indices
the four considered groups are known, but the cycle indices themselves, i.e. the
numbers Un(G) and Vn(G), are practically calculated only for relatively small
values, for e.g. n ⩽ 10.

The dissertation presents original results in the field of enumeration of equiv-
alence classes of Boolean functions in relation to these four groups of transfor-
mations. A similar expression was derived for all four groups of transformations
for the cycle index in the form of sum over partitions of the number n. Based
on that expression and previously calculated tables, the cycle index is calculated
much more efficiently. An overview of known results for relatively small n and
new results in the thesis for larger n is shown in the following table:

Number\ G S′
n Gn GLn AGLn

Un(G) 11→ 33 10→ 32 8→ 31 10→ 31

Vn(G) 6→ 30 7→ 27 6→ 26 6→ 26

Specially, in the case of the permutation group S′
n, an effective direct procedure

for calculating the number of equivalence classes that does not use a cycle index
is shown, and is described in the third paper from the introductory chapter.

The second part of the dissertation concerns monotone Boolean functions —
scalar Boolean functions which satisfy the monotonicity condition (from x ⩽ y

follows f(x) ⩽ f(y)). Let rn, i.e. dn (the n-th Dedekind number), denote the
number of equivalence classes of monotone Boolean functions in relation to the
group S′

n, that is, the total number of monotone Boolean functions of n variables.
The difficulty of calculating the number rn increases rapidly with n, so that
until recently the last calculated member of the sequence was r7. The procedure
described in the dissertation is based on the Frobenius theorem, by which it was
determined number r8. In doing so, the known value of the number d8 is used.

The dissertation consists of the first - introductory chapter and the following
three chapters. In the second chapter, theoretical terms related to the material
from chapters 3 and 4 are introduced, and they refer to discrete mathematics,
combinatorics and cycle indices of the considered four groups of transformations.



Chapter 3 describes the procedure for calculating the cycle indices for the
four considered groups of permutations, as well as numbers Un(G) and Vn(G)

equivalence classes of Boolean functions in relation to these groups. First, common
improvements for all four groups are considered, and then specific accelerations
related to individual groups. These results are published in the second paper
listed in the introductory chapter.

In chapter 4, the problem of finding the number of equivalence classes of
monotone Boolean functions is solved. First, a general expression for calculating
the number rn is given based on the Frobenius theorem in the form of the sum
(by partitions of the number n) of the number of fixed points of the permutation
corresponding to the partition. After that, depending on the graphs corresponding
to different partitions, different ways of calculating the number of fixed points for
n ⩽ 8 are shown. The procedure based on which the number r8 was calculated,
which also represents the original contribution of this dissertation is presented -
see the first paper from the list from the introductory chapter. Applying a similar
procedure, Pawelski [31] calculated r8 practically at the same time as the obtained
result described in the dissertation.

Keywords: Boolean functions, monotone Boolean functions, partitions, cyclic
index, Frobenius theorem, Dedekind numbers

Research area: Computer science

Research sub-area: Discrete mathematics

UDC number: 004.415.5(043.3)
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Глава 1

Увод

Многи проблеми пребројавања, а нарочито они код којих међу посматра-
ним објектима има „сличних”, тешко би се могли замислити без примене тео-
рије група [10]. Нека је X произвољан коначан скуп, а G = SX група узајамно
једнозначних трансформација X → X (пермутација) које на њега делују. Гру-
па SX зове се симетрична група скупа X; ако је |X| = n, онда се уместо SX

користи ознака Sn, а група се зове симетрична група степена n. Елементи
x, y ∈ X су слични (еквивалентни) ако постоји транформација σ ∈ G таква
да је σ(x) = y. Пошто је сличност релација еквиваленције, дејство групе G
разлаже скуп X на класе еквиваленције, орбите.

Ако пермутација σ ∈ G има ik циклуса дужине k ⩾ 1, њена циклусна
структура је i(σ) = (i1, i2, . . .). Циклусни индекс групе G је генератриса

ZG(f1, f2, . . .) =
1

|G|
∑
σ∈G

∏
k⩾1

f ik
k

циклусних структура свих пермутација σ ∈ G.
У овом раду разматрају се четири групе G пермутација скупа Bn = {0, 1}n:

• група S′
n индукована групом Sn пермутација координата елемената x =

(x1, x2, . . . , xn) ∈ Bn

• група Gn, индукована пермутацијама и комплементирањима координа-
та,

• група GLn инвертибилних трансформација елемената векторског про-
стора Bn, и

1



ГЛАВА 1. УВОД

• група AGLn инвертибилних трансформација елемената Bn и комплемен-
тирања координата.

Разматрају се три врсте Булових функција дефинисаних на скупу Bn:

• скаларне, Bn 7→ B1,

• векторске инвертибилне, Bn 7→ Bn, и

• мононотоне — скаларне функције које задовољавају услов монотоности:
x ⩽ y ⇒ f(x) ⩽ f(y).

У следећој табели приказан је пример векторске инвертибилне функције f :

B3 7→ B3,
y = (y1, y2, y3) = f(x) = f(x1, x2, x3)

и њене инверзне функције x = f−1(y).

x1 x2 x3 y1 y2 y3 y1 y2 y3 x1 x2 x3

0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 1 1 0 0 1 0 1 1
0 1 0 0 1 0 0 1 0 0 1 0
0 1 1 0 0 1 0 1 1 0 0 1
1 0 0 1 0 0 1 0 0 1 0 0
1 0 1 1 1 0 1 0 1 1 1 1
1 1 0 1 1 1 1 1 0 1 0 1
1 1 1 1 0 1 1 1 1 1 1 0

Скаларна функција y1 = f1(x) је монотона, а скаларна функција y2 = f2(x)

није монотона, јер је на пример (1, 1, 0) ⩽ (1, 1, 1) и f2(1, 1, 0) = 1 > 0 =

f2(1, 1, 1).
Две скаларне Булове функције f(x) и g(x), дефинисане на Bn, сматра-

ју се еквивалентним у односу на групу G, тј. f ∼ g, ако је за неко σ ∈ G

за свако x ∈ Bn важи f(x) = g(σ(x)). Две векторски инвертибилне Булове
функције f(x) и g(x), дефинисане на Bn, сматрају се еквивалентним у односу
на групу G, тј. f ∼ g, ако за неки пар (σ, ρ) ∈ G × G за свако x ∈ Bn ва-
жи g(x) = ρ(f(σ(x))). Релација еквиваленције ∼ разлаже скуп свих Булових
функција (сва три типа) у класе еквиваленције. Нека Un(G), односно Vn(G)

означава број класа еквиваленције скаларних, односно векторских инверти-
билних Булових функција од n променљивих. Бројеви Un(G) и Vn(G) могу
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ГЛАВА 1. УВОД

се релативно једноставно израчунати ако се зна циклусни индекс групе G.
Инспирисан претходним радовима [2, 5, 32, 34, 36], Харисон (Harrison) јe у
радовима [22, 23] извео опште изразе за циклусне индексе за S′

n, Gn, GLn и
AGLn и екплицитно их израчунао за n ⩽ 6. Лоренс (Lorens)[20, 21] је израчу-
нао број класа еквиваленције инвертибилних Булових функција за ове четири
групе трансформација за n ⩽ 5. Полазећи од изоморфизма између AGLn и
групе пермутација, Чанг (Zhang) и остали [41] израчунали су Un(AGLn) за
n ⩽ 10. Већина до сада израчунатих бројева Un(G) и Vn(G) могу се пронаћи
у Енциклопедији целобројних низова (OEIS [30]). Горње границе за индексе
израчунатих бројева, кодови одговарајућих низова у OEIS и референце на
евентуалне радове у оквиру којих је израчунато више чланова низа него у
OEIS приказане су у табели 1.1.

Табела 1.1: Горње границе за индексе израчунатих бројева Un(G) и Vn(G) и
њихови кодови у Енциклопедији целобројних низова (OEIS [30]).

Низ
G

S′
n Gn GLn AGLn

Un(G) 11 ([19], A003180) 10 ([19], A000616) 8 (A000585) 10 ([41], A000214)
Vn(G) 6 (A000653) 7 (A000654) 6 (A001038) 6 (A001537)

Треба напоменути да је Фрипертингер (Fripertinger) ([15]) имплементирао
рачунање циклусног индекса за GLn и AGLn у оквиру програмског пакета
SYMMETRICA, уз приказ времена израчунавања за n ⩽ 17. Наша верзија
Фрипертингеровог програма рачуна циклусни индекс за n ⩽ 21. Користећи
овај резултат није тешко израчунати Un(G) и Vn(G) за GLn и AGLn за веће n
од приказаних у табели 1.1.

Нека rn, односно dn (n-ти Дедекиндов број), означава број класа еквива-
ленције монотоних Булових функција у односу на групу S′

n, односно укупан
број монотоних Булових функција од n променљивих. Дедекиндове броје-
ве d7 и d8 израчунали су Берман (Berman) и Келер (Köhler) [3] и Видеман
(Wiedemann) [40], користећи сличан приступ. Чучанг (Chuchang) и Шобен
(Shoben) [28, 29] израчунали су r7 користећи Фробенијусову теорему. Стивен
(Stephen) и Јусун (Yusun) [37] потврдили су резултат за r7 користећи други
приступ. Познато је да је Булова функција f ∈ Bn монотона ако и само ако
се у запису њене дисјунктивне нормалне форме не појављују негације. Про-
фил монотоне Булове функције f ∈ Bn је вектор (p1, . . . , pn), где је pk број
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ГЛАВА 1. УВОД

конјукција од k променљивих у оквиру DNF функције f . Стивен и Јусун су
израчунали r7, разлагањем скупа D7 према профилима монотоних Булових
функција. Применивши Фробенијусову теорему Павелски (Pawelski) [31] је
израчунао r8, практично у исто време када је добијен и наш резултат.

Дисертација је састављена из три дела. У поглављу 2 дат је преглед теорије
потребан за разумевање идеја из којих су проистекли новодобијени резултати.
У поглављу 3 приказан је начин добијања броја класа еквиваленције Булових
и инвертибилних Булових функција за битно веће вредности од постојећих.
У поглављу 4 приказан је нови начин рачунања броја класа еквиваленције
монотоних Булових функција.

Резултати из области дисертације објављени су у радовима:

1. M. Carić, M. Živković, The number of nonequivalent monotone Boolean
functions of 8 variables, i IEEE Transactions on Information Theory, 2022,
doi: 10.1109/TIT.2022.3214973.

2. M. Živković, M. Carić, On the Number of Equivalence Classes of Boolean and
Invertible Boolean Functions, in IEEE Transactions on Information Theory,
vol. 67, no. 1, pp. 391-407, Јan. 2021, doi: 10.1109/TIT.2020.3025767.

3. M. Carić, M. Živković, M. On the number of equivalence classes of invertible
Boolean functions under action of permutation of variables on domain and
range, Publications de l’Institut Mathématique. 100(114) 95–99 (2016).
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Глава 2

Основни појмови и теореме

У овом поглављу уводе се теоријски појмови у вези са материјалом из
поглавља 3 и 4, а односе се редом на дискретну математику, комбинаторику
и циклусне индексе разматране четири групе.

2.1 Дискретна математика

У овом одељку уводе се теоријски појмови везани за партиције, групе и
Булове функције. Додатно, као основа за поглавље 3, уводе се појмови везани
за коначна поља, полиноме, матрице и векторске просторе. Као основа за
поглавље 4, уводе се појмови везани за графове.

2.1.1 Партиције

У теорији бројева и комбинаторици, партиција позитивног целог броја n,
је начин записа броја n као збира позитивних целих бројева. Два збира која се
разликују само по редоследу својих сабирака сматрају се истом партицијом;
ако је редослед сабирака битан, збир постаје композиција. На пример, 4 се
може поделити на пет различитих начина:
4

3 + 1

2 + 2

2 + 1 + 1

1 + 1 + 1 + 1

При томе, две различите композиције 1 + 2 + 1 и 1 + 1 + 2 представљају исту
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ГЛАВА 2. ОСНОВНИ ПОЈМОВИ И ТЕОРЕМЕ

партицију 2 + 1 + 1. Нека је Pn скуп партиција броја n, n = a1 + a2 + . . .+ ak,
a1 ⩾ a2 ⩾ . . . ⩾ ak > 0.

Нека P (n, k) и P (n, k) означавају редом скуп партиција броја n од највише
k сабирака и од тачно k сабирака: специјално, P (n, n) = Pn. Партиције броја
n од највише k сабирака могу се разложити на два скупа: скуп партиција
од тачно k сабирака и скуп партиција од највише k − 1 сабирака, па важи
следеће разлагање у дисјунктну унију

P (n, k) = P (n, k) ∪ P (n, k − 1), 1 ⩽ k ⩽ n.

Нека је p(n, k) = |P (n, k)| и p(n, k) = |P (n, k)|. Ови бројеви задовољавају
рекурентну релацију

p(n, k) = p(n, k) + p(n, k − 1), 1 ⩽ k ⩽ n (2.1)

уз почетне услове p(n, 1) = p(n, 1) = 1. У табелама 2.1 и 2.2 приказане су
вредности p(n, k) и p(n, k) за n ⩽ 9.

Табела 2.1: Број партиција броја n ⩽ 9 од тачно k сабирака.

k
n

1 2 3 4 5 6 7 8 9

1 1 1 1 1 1 1 1 1 1
2 1 1 2 2 3 3 4 4
3 1 1 2 3 4 5 7
4 1 1 2 3 5 6
5 1 1 2 3 5
6 1 1 2 3
7 1 1 2
8 1 1
9 1
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Табела 2.2: Број партиција броја n ⩽ 9 од највише k сабирака.

k
n

1 2 3 4 5 6 7 8 9

1 1 1 1 1 1 1 1 1 1
2 2 2 3 3 4 4 5 5
3 3 4 5 7 8 10 12
4 5 6 9 11 15 19
5 7 10 13 18 24
6 11 14 20 27
7 15 21 28
8 22 29
9 30

На пример, партиције броја 3 од највише 2 сабирка су: 3 и 2+1; партиција
броја 3 од тачно 2 сабирка је само 2+1. Одузимањем броја 1 од сваког сабирка
из партиција скупа P (n, k) добија се скуп P (n − k, k). Обрнуто, додавањем
броја 1 сваком сабирку из скупа P (n−k, k) добија се скуп P (n, k). На пример,
партиције скупа P (5, 3) су 3+ 1+1 и 2+ 2+1. Одузимањем броја 1 од сваког
сабирка добијају се партиције скупа P (2, 3): 2 и 1 + 1. Комбиновањем са
изразом (2.1) долази се до рекурентне релације:

p(n, k) = p(n− k, k) + p(n, k − 1), 1 ⩽ k ⩽ n. (2.2)

Даљим рекурзивним разлагањем другог сабирка добија се:

p(n, k) =
k∑

i=1

p(n− i, i), 1 ⩽ k ⩽ n.

Скуп P (n, k) се може поделити на два скупа: скуп партиција међу којима
се налази сабирак 1 и скуп партиција без сабирка 1. Елиминацијом једног
сабирка 1 из партиција првог скупа добија се скуп P (n−1, k−1). Одузимањем
броја 1 од сваког сабирка из партиција другог скупа добија се скуп P (n−k, k),
при чему важи и обрнуто тврђење. Дакле, важи:

p(n, k) = p(n− k, k) + p(n− 1, k − 1), 1 ⩽ k ⩽ n.

Произвољна партиција n = a1 + a2 + . . . + ak једнозначно је представљена
вектором p = (p1, p2, . . . , pn) ∈ Pn, где је pi = |{j | aj = i|}. На пример, за
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n = 4, вектор (2, 1, 0, 0) придружен је партицији 2+ 1+ 1. У даљем тексту ће

Pn = {(p1, p2, . . . , pn) |
n∑

i=1

ipi = n} (2.3)

истовремено означавати и скуп придружен партицијама броја n ⩾ 1; погод-
ности ради, нека је P0 = {(0)}.

2.1.2 Групе

Алгебарскa структурa је непразан скуп у коме су дефинисане извесне
операције које задовољавају задата својства. Алгебарскa структурa са једном
бинарном операцијом назива се групоид. Ако скуп означимо са X, а бинарну
операцију са ·, одговарајући групоид означава се као уређен пар G = (X, ·).

Дефиниција 2.1.1. Групоид G = (X, ·) назива се група ако су испуњени
следећи услови:

• (∀a, b, c ∈ X), (a · b) · c = a · (b · c), (асоцијативност)

• (∃e ∈ X)(∀a ∈ X), e · a = a · e = a, (постојање неутралног елемента)

• (∀a ∈ X)(∃a−1 ∈ X), a·a−1 = a−1 ·a = e. (постојање инверзног елемента)

Пример 2.1.1. Нека је Zm = {0, 1, ...,m− 1} и нека је операција + сабирање
по модулу m. Тада је (Z,+) група.

Дефиниција 2.1.2. Ред |G| групе G је број њених елемената.

Пример 2.1.2. Нека су темена квадрата из скупа {1, 2, 3, 4}. Ротације и
рефлексије квадрата, заједно са операцијом композиције чине диедарску групу
D4, |D4| = 8.

Табела 2.3: Елементи диедарске групе D4.

идентичка трансформација (ротација за 0◦) R0

ротација за 90◦ R90

ротација за 180◦ R180

ротација за 270◦ R270

рефлексија око дијагонале 13 D
рефлексија око дијагонале 24 D′

рефлексија око средина страница 12 и 34 H
рефлексија око средина страница 14 и 23 V
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Дефиниција 2.1.3. Ако за групе (G, ·) и (H, ·) важи H ⊆ G, онда је H

подгрупа групе G.

Дефиниција 2.1.4. За подгрупу H групе G и било које a ∈ G, a ◦H = {x|x =

a ◦ h за неко h из H} је леви разред (косет) подгрупе H у G. Аналогно се
дефинише десни разред.

Пример 2.1.3. Нека је G група са операцијом сабирања над скупом целих
бројева, Z = ({. . . ,−2,−1, 0, 1, 2, . . .},+) и нека је H њена подгрупа (3Z,+) =

(. . . ,−6,−3, 0, 3, 6, . . .,+). Тада су разреди подгрупе H групе G скупови 3Z, 3Z+
1 и 3Z+2, где је 3Z+a = . . . ,−6 + a,−3 + a, a, 3 + a, 6 + a, . . .. Ова три скупа
разлажу скуп Z, па покривају све десне разреде подгрупе H. Због комутатив-
ности сабирања важи H +1 = 1+H и H +2 = 2+H. Дакле, у овом случају,
сваки десни разред истовремено је и леви разред подгрупе H.

Скуп свих разреда подгрупе H групе G чини количничку групу G : H.

Дефиниција 2.1.5. Број левих (десних) разреда подгрупе H групе G назива
се индекс подгрупе H групе G, у ознаци [G : H].

Теорема 2.1.1. (Лагранж, Lagrange) Ако је G коначна група и ако је H

подгрупа групе G, тада |H|
∣∣|G| и важи [G : H] = |G|/|H|.

Дефиниција 2.1.6. Пресликавање f : G 7→ H назива се хомоморфизам групе
(G, ·) на групу (H,×) ако важи

(∀x, y ∈ G) f(x · y) = f(x)× f(y).

Мономорфизам, епиморфизам и изоморфизам, представљају редом инјек-
тивни, сурјективни и бијективни хомоморфизам. Изоморфизам групе на саму
себе назива се аутоморфизам. Хомоморфизам групе на неки њен део назива
се ендоморфизам.

Дефиниција 2.1.7. Централизатор елемента x групе G дефинише се изра-
зом

CG(x) = {g ∈ G | gx = xg} = {g ∈ G | gxg−1 = x}.

Централизатор CG је подгрупа групе G.
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Пример 2.1.4. Постоје четири централизатора - подгрупе групе D4:

C(R0) = D4 = C(R180)

C(R90) = {R0, R90, R180, R270} = C(R270)

C(H) = {R0, H,R180, V } = C(V )

C(D) = {R0, D,R180, D
′} = C(D′)

Бијективно пресликавање скупа X на себе, назива се пермутација скупа
X. Композиција две пермутације σ ◦ ρ је пермутација која елементе x ∈ X

пресликава у елементе σ(ρ(x)). Композиција је асоцијативна операција, па се у
запису композиције пермутација могу изоставити заграде. У општем случају,
композиција две пермутације није комутативна операција.

Скуп свих пермутација коначног скупа X са операцијом композиције пре-
сликавања је група SX , симетрична група скупа X. Уколико је |X| = n,
уместо SX користи се и ознака Sn за симетричну групу степена n. Свака
подгрупа групе SX назива се група пермутација.

Пермутација скупа величине n може се представити матрицом 2× n, чија
се прва врста састоји од оригинала, а друга од одговарајућих слика. Тако на
пример, пермутација (

a b c d e

b c d e a

)
(2.4)

одговара бијекцији скупа X = {a, b, c, d, e} на себе самог и пресликава елемен-
те a→ b, b→ c, c→ d, d→ e, e→ a. Пермутација облика(

a1 a2 · · · ak−1 ak

a2 a3 · · · ak a1

)
, (2.5)

чини циклус дужине k и представља се изразом (a1 a2 · · · ak−1 ak). Перму-
тација из претходног примера управо је овог облика; чини циклус (a b c d e)

дужине 5, односно представља цикличну пермутацију. Циклус дужине k има
k еквивалентних записа. На пример, циклус (a b c d e) може се написати и
у облику (b c d e a). Произвољна пермутација скупа X разлаже се у прои-
звод (композицију) дисјунктних циклуса. Елементи скупа које пермутација
пресликава у себе саме су фиксне тачке пермутације и припадају циклусима
дужине један.

Пример 2.1.5. Пермутација(
1 2 3 4 5 6

2 1 3 5 6 4

)
= (1 2)(3)(4 5 6)

10
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је производ три циклуса: једног дужине два, једног дужине три и једне фиксне
тачке. Елементи у овим циклусима су дисјунктни подскупови скупа X и чи-
не једно разлагање скупа X. Уобичајено је да се приликом записа пермутације
циклуси дужине 1 изостављају.

Две композиције пермутација a = (1 3 5 2) и b = (1 6 3 4) су различите

a ◦ b = (1 6 5 2)(3 4),

b ◦ a = (1 4)(2 6 3 5).

Дефиниција 2.1.8. Нека је G група пермутација скупа X. За сваки елеме-
нат i ∈ X, стабилизатор елемента i групе G је

stabG(i) = {g ∈ G | g(i) = i}

Стабилизатор stabG је подгрупа групе G.
Ако се σ ∈ Sn састоји од pi циклуса дужине i, 1 ⩽ i ⩽ n, кажемо да је

тип пермутације σ једнак p = type(σ) = (p1, p2, . . . , pn) ∈ Pn. Партиција p ∈ Pn

може се представити полиномом f p =
∏M

i=1 f
pi
i , где су f1, f2, . . . fM независне

променљиве, а M горња граница дужина циклуса пермутације σ. У скла-
ду са (2.3), у наставку се користе ова три еквивалентна формата партиција
(нерастући низ сабирака (a1, a2, . . . , ak), p и f p).

Нека је Bn = {0, 1}n и N = 2n за n ⩾ 1. Нека [a..b] означава скуп
{a, a+1, . . . , b}. Пермутација σ ∈ Sn која пермутује n симбола x1, x2, ..., xn, јед-
нозначно одређује (индукује) пермутацију σ′ која n-торку x = (x1, ..., xn) ∈ Bn

пресликава у n-торку σ′(x) = (xσ(1), ..., xσ(n)) ∈ Bn. Ако се n-торке x =

(x1, x2, . . . , xn) ∈ Bn кодирају бројевима X =
∑n

i=1 xi2
n−i, онда важи σ′(X) =

Y =
∑n

i=1 yi2
n−i, где је y = σ(x). Нека је S′

n група коју чине све пермутације
σ′ које одговарају пермутацијама σ ∈ Sn. Нека w(x) =

∑n
i=1 xi означава Хе-

мингову (Hamming) тежину низа x ∈ Bn. Пошто пермутација σ′ ∈ S′
n само

пермутује компоненте n-торке x на коју делује, увек важи w(σ′(x)) = w(x).

Пример 2.1.6. За n = 3 и σ = (1 2), пермутација σ′ замењује прве две
компоненте бинарне тројке, па је

σ′ =

(
0 1 2 3 4 5 6 7

0 1 4 5 2 3 6 7

)
= (0)(1)(2 4)(3 5)(6)(7).

Пермутација σ′ пресликава 5 = (1, 0, 1) у 3 = (0, 1, 1), па је w(5) = w(3).

11
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Пример 2.1.7. Настављајући претходни пример, за n = 3 и σ = (1 2), је
type(σ) = (1, 1, 0) (пермутација σ састоји се од једног циклуса (3) дужине
1, једног циклуса (1 2) дужине 2 и без циклуса дужине 3). Пермутација
σ′ има четири циклуса дужине 1 и два циклуса дужине 2, што одговара
разлагању 3 = 2 + 1. Због тога је type(σ′) = (4, 2, 0, 0, 0, 0, 0, 0), што се може
представити циклусном структуром f type(σ′) = f 4

1 f
2
2 .

Дефиниција 2.1.9. Нека је G група пермутација над скупом X. За сваки
елемент x ∈ X, нека је orbG(x) = {σ(x)|σ ∈ G}. Скуп orbG(x) ⊆ X назива се
орбита елемента x у односу на групу G.

У претходној дефиницији, индекс G може се изоставити када је јасно о
којој групи се ради.

Група G делује на себе конјугацијом ако се сваком g ∈ G придружи пре-
сликавање αg : G → G, αg(x) = gxg−1. За x ∈ G конјугациона класа елемента
x дефинише се изразом

xG = {y ∈ G | y = gxg−1 за неко g ∈ G}.

Приметимо да овде важи xG = orb(x) и stabG(x) = CG(x). Све пермутаци-
је (дејства) које припадају истој конјугационој класи имају исту циклусну
структуру.

Теорема 2.1.2. Нека је G група пермутација скупа X. Тада, за свако i ∈ X
важи

|G| = | orbG(i)|| stabG(i)|.

Доказ. На основу Лагранжове теореме, |G|/| stabG(i)| је број различитих ле-
вих разреда подгрупе stabG(i) групе G. Зато је довољно успоставити бијекцију
између левих разреда подгрупе stabG(i) и елемената орбите orbG(i). Нека је
T пресликавање које за произвољно ϕ ∈ G разреду ϕ stabG(i) придружу-
је елеменат орбите ϕ(i). Пресликавање T је добро дефинисано, пошто из
α stabG(i) = β stabG(i) следи α−1β ∈ stabG(i), (α−1β)(i) = i и према томе
α(i) = β(i). Претходни низ корака у обрнутом редоследу показује да је T 1-1
пресликавање. Нека је j ∈ orbG(i). Тада је α(i) = j за неко α ∈ G и важи
T (α stabG(i)) = α(i) = j па је T такође и „на” пресликавање.

Последица 2.1.1. За свако x ∈ G важи једнакост

|xG| = [G : CG(x)] =
|G|
|CG(x)|

.

12
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Доказ. Доказ следи из Лагранжове теореме (теорема 2.1.1) и из једнакости
xG = orb(x) и stabG(x) = CG(x).

Лема 2.1.1. Ако је (векторска инвертибилна функција од n променљивих)
F фиксна тачка трансформације одређене паром пермутација (σ, ρ), и ако је
(X1 · · · Xk) циклус пермутације σ (тј. σ(Xi) = Xi+1, i = 1, 2, ..., k−1, σ(Xk) =

X1), онда сви елементи F (Xi) у бинарном запису имају исти број јединица.

Доказ. F (Xi) = ρ(F (σ(Xi)) = ρ(F (Xi+1), па F (Xi) и F (Xi+1) имају исти број
јединица.

2.1.3 Декартов производ пермутација

У овој тачки дефинише се Декартов производ две или више пермутација,
и оператор × који циклусну структуру Декартовог производа пермутација
изражава преко циклусних структура аргумената.

Дефиниција 2.1.10. Нека је αi пермутација скупа Zi, 1 ⩽ i ⩽ n. Декартов
производ (α1, . . . , αn) пермутација α1, . . . , αn је пермутација скупа Z1 × Z2 ×
· · · × Zn дефинисана једнакошћу:

(α1, . . . , αn)(z1, . . . , zn) = (α1(z1), . . . , αn(zn))

Нека ⟨p, q⟩ и (p, q) редом означавају најмањи заједнички садржалац и нај-
већи заједнички делилац бројева p и q.

Теорема 2.1.3. Нека су пермутације α = (a1, . . . , ap) и β = (b1, . . . , bq) редом
циклуси дужине p и q. Тада је циклусна структура пермутације (α, β) дата
изразом

f
(p,q)
⟨p,q⟩ .

Доказ. За p = q тврђење следи директно из дефиниције. Циклусна структура
пермутације (α, β) је f p

p = f
(p,p)
⟨p,p⟩ , пошто елемент x из X може бити у пару са

било којим елементом y из Y , следбеник x у пару са следбеником y, ... Резул-
тат је циклус дужине p и то важи за све могуће парове (x, y) за фиксирано x.
Без смањења општости претпоставимо да је p < q. Ако произвољно изаберемо
елемент (a1, b1), резултат је циклус

(a1, b1)→ (a2, b2)→ · · · (ap, bp)→ (a1, bp+1)→ · · · → (ap, bq)

13
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дужине ⟨p, q⟩(p, q). Пошто се пермутује pq елемената и пошто важи

pq = ⟨p, q⟩(p, q)

из чињенице да у једном циклусу постоји ⟨p, q⟩ елемената следи да постоји
(p, q) таквих циклуса.

Пример 2.1.8. Декартов производ два циклуса (a b)× (c d e) је пермутација
- циклус дужине 6:

(a b)× (c d e) =
{
{a, c}, {b, d}, {a, e}, {b, c}, {a, d}, {b, e}

}
.

Циклусна структура Декартовог производа (a b)× (c d e) је дакле f6.

Нека ⟨z1, z2, . . . , zn⟩ и (z1, z2, . . . , zn) редом означавају најмањи заједнички
садржалац и највећи заједнички делилац бројева z1, z2, . . . , zn.

Теорема 2.1.4. Нека је αi пермутација скупа Zi, са циклусном структуром
f yi
xi
, i = 1, . . . , n. Декартов производ (α1, . . . , αn) има циклусну структуру

f
∏n

i=1(xiyi)/⟨x1,x2,...,xn⟩
⟨x1,x2,...,xn⟩

Доказ. Доказ се изводи индукцијом по n. За n = 2 Декартов производ (α1, α2)

на основу теореме 2.1.3 има циклусну структуру f y1y2(x1,x2)
⟨x1,x2⟩ . Претпоставимо да

је тврђење тачно за неко n = k > 1 тј. пермутација (α1, . . . , αn) има циклусну
структуру

f
∏k

i=1(xiyi)/⟨x1,x2,...,xk⟩
⟨x1,x2,...,xk⟩ .

Тада је циклусна структура Декартовог производа (α1, . . . , αn, αn+1) једнака
циклусној структури Декартовог производа две пермутације са циклусним
структурама f

∏k
i=1(xiyi)/⟨x1,x2,...,xk⟩

⟨x1,x2,...,xk⟩ и f yk+1
xk+1 , па је једнака

f
(⟨x1,x2,...,xk⟩,xk+1)yk+1

∏k
i=1(xiyi)/⟨x1,x2,...,xk⟩

⟨⟨x1,x2,...,xk⟩,xk+1⟩ =

= f
[⟨x1,x2,...,xk⟩xk+1/⟨⟨x1,x2,...,xk⟩,xk+1⟩]yk+1

∏k
i=1(xiyi)/⟨x1,x2,...,xk⟩

⟨x1,x2,...,xk+1⟩ =

= f
[⟨x1,x2,...,xk⟩/⟨x1,x2,...,xk+1⟩]xk+1yk+1

∏k
i=1(xiyi)/⟨x1,x2,...,xk⟩

⟨x1,x2,...,xk+1⟩ =

= f
∏k+1

i=1 (xiyi)/⟨x1,x2,...,xk+1⟩
⟨x1,x2,...,xk+1⟩

14
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Теорема 2.1.5. Нека је α пермутација скупа X, |X| = a, са циклусном
структуром f j1

1 · · · f ja
a и нека је β пермутација скупа Y , |Y | = b, са циклусном

структуром fk1
1 · · · f

kb
b . Пермутација (α, β) има циклусну структуру

a∏
p=1

b∏
q=1

f
jpkq(p,q)

⟨p,q⟩ (2.6)

Доказ. Доказ следи из особине Декартовог производа и теореме 2.1.3.

Теорема 2.1.5 може се уопштити:

Теорема 2.1.6. Нека је αi пермутација скупа Zi, |Zi| = ki, i = 1, . . . , n са
циклусном структуром f

yz1
1 · · · f

yzki
ki

. Пермутација (α1, . . . , αn) има циклусну
структуру

k1∏
z1=1

k2∏
z2=1

· · ·
kn∏

zn=1

f
∏n

i=1(ziyi,zi )/<z1,z2,...,zn>
<z1,z2,...,zn>

Доказ. Доказ се изводи индукцијом на основу теорема 2.1.4 и 2.1.5.

Дефиниција 2.1.11. Нека је αi пермутација скупа Zi са циклусном струк-
туром Fi, i = 1, . . . , n. Операција × (крст) над циклусним структурама
дефинисана је условом да је циклусна структура пермутације (α1, . . . , αn)

једнака
Śn

i=1 Fi.

Циклусна структура пермутације (α1, . . . , αn) једнозначно је одређена ци-
клусним структурама пермутација α1, . . . , αn, па је ова дефиниција исправна.
Следећа последица теореме 2.1.6 прецизира начин рачунања са оператором
×.

Последица 2.1.2.

k1∏
z1=1

k2∏
z2=1

· · ·
kn∏

zn=1

n
ą

i=1

f
yi,zi
zi =

k1∏
z1=1

k2∏
z2=1

· · ·
kn∏

zn=1

f
∏n

i=1(ziyi,zi )/<z1,z2,...,zn>
<z1,z2,...,zn>

Специјално важи:
f j
p × fk

q = f
jk(p,q)
⟨p,q⟩ . (2.7)
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2.1.4 Коначна поља и полиноми

Дефиниција 2.1.12. Алгебарска структура (S,+, ·), где су + и · бинарне
операције скупа S, назива се поље, ако су испуњени следећи услови:

• (S,+) је група,

• бинарне операције + и · су комутативне,

• операција · је дистрибутивна према операцији +,

• структура (S\{0}, ·), где је 0 неутрални елемент групe (S,+), је кому-
тативна група.

Поље са коначним бројем елемената назива се коначно поље. Уколико у
претходним условима (S\{0}, ·) није група (из услова који чине групу изузето
је постојање инверзног елемента), алгебарска структура постаје комутатив-
ни прстен (или само прстен уколико услов комутативности није задовољен).
Неутрални елемент за (S\{0}, ·) означаваћемо са 1.

Пример 2.1.9. Нека је дат скуп Zm = {0, 1, ...,m− 1} и нека су операције +

и · редом сабирање и множење по модулу m. Алгебарска структура (Z,+, ·)
је поље ако и само ако је m прост број.

Дефиниција 2.1.13. Нека је x апстрaктни симбол. Скуп свих полинома

p(x) = c0 + c1x+ c2x
2 + · · ·+ cn−1x

n−1 + cnx
n

са коефицијентима ci ∈ F означава се са F[x]. Уколико је cn = 1, полином је
моничан.

У пољу F2[x] = Z2[x], сви ненула полиноми су монични.

Дефиниција 2.1.14. Нека је p прост број. Нека је Zp[x] скуп полинома са
коефицијентима из Zp и нека су операције + и · сабирање и множење по
модулу p. За f, g ∈ Zp[x], каже се да f дели g, односно f |g, ако постоји
q ∈ Zp[x] тако да важи g = qf . Степен полинома f(x), у ознаци deg(f), је
највећи степен променљиве x. Ако f, g, h ∈ Zp[x] и deg(f) = n ⩾ 1, тада су
полиноми g и h конгруентни по модулу f , у ознаци g(x) ≡ h(x) (mod f(x)),
ако f(x)|(g(x)− h(x)).
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У наставку се разматрају полиноми над пољем Zp[x], при чему је p прост
број, и посебно случај p = 2.

Теорема 2.1.7 (Дељење полинома са остатком.). Нека је deg(f) = n. За
произвољни полином g постоје јединствени полиноми q и r, такви да је
g = qf + r и deg(r) < n.

Доказ. Постоји бар један полином q такав да је g = qf + r и deg(r) < n.
Заиста,

• Ако је deg(g) < n, тада је q = 0 важи r = g и deg(r) < n.

• У противном, ако је deg(g) ⩾ n, претпоставимо да не постоје полиноми q
и r, такви да је g = qf+r и deg(r) < n. Нека су q и r таква два полинома
да је g = qf+r и deg(r) ⩾ n, при чему степен остатка deg(r) има најмању
могућу вредност. Ако су a и b најстарији коефицијенти полинома g и f ,
онда два полинома q′ = q − ag/(bf) и r′ = g − q′f такође задовољавају
услов g = q′f + r′, при чему је, супротно претпоставци, deg(r′) < deg(r).

Полиноми q, r чије је постојање доказано, су јединствени који задовољавају
услове g = qf + r и deg(r) < n. Заиста, из претпоставке да постоје друга два
полинома q′, r′ који задовољавају исте услове следи r′ − r = f(q − q′); ако је
q ̸= q′, онда је deg(f(q − q′)) ⩾ n deg(r − r′) < n, супротно претпоставци.

Аналогно конструкцији Zm у оквиру Z (елементи су остаци, a операције
сабирање и множење по модулу f), из Zp[x] се издвајају остаци по модулу f ,
у ознаци Zp[x]/(f), који могу бити степена највише n− 1.

Дефиниција 2.1.15. Полином f ∈ Zp[x] је несводљив ако не постоје поли-
номи f1, f2 ∈ Zp[x], такви да важи f = f1f2, уз deg(f1) > 0 и deg(f2) > 0.

Теорема 2.1.8. Zp[x]/(f) је поље ако и само ако је полином f несводљив.

Елементе поља Zp[x]/(f) чини pn полинома из Zp[x] степена највише n−1.
На пример, за p = 2 и n = 3 постоји 8 полинома степена највише 2.

Пример 2.1.10. За конструкцију поља од 23 = 8 елемената, потребно је
у прстену Z2[x] пронаћи несводљив полином степена 3. При томе је довољ-
но посматрати полиноме који имају слободан члан 1, јер су полиноми са
слободним чланом 0 дељиви полиномом x. То су полиноми:

f1(x) = x3 + 1, f2(x) = x3 + x+ 1, f3(x) = x3 + x2 + 1, f4(x) = x3 + x2 + x+ 1.
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Полиноми f1 и f4 нису несводљиви јер је

f1(x) = (x+ 1)(x2 + x+ 1), f4(x) = (x+ 1)(x2 + 1).

Преостала два полинома f2 и f3 су несводљиви, пошто нису дељиви ни са x
ни са x+1. Поље Z2[x]/(x

3+x+1) има 8 елемената: 0, 1, x, x+1, x2, x2+1, x2+

x, x2 + x+ 1. Сабирање и множење полинома обавља се по модулу x3 + x+ 1.
На пример,

(x2 + 1)(x2 + x+ 1) = x4 + x3 + x+ 1 = (x+ 1)(x3 + x+ 1) + x2 + x = x2 + x.

Нека је p прост број и n ⩾ 1. У скупу Zp[x] постоји барем један несво-
дљив полином степена n [16], па постоји коначно поље од pn елемената. Нека
је ϕ(n) Ојлерова (Euler) функција дефинисана као број позитивних целих
бројева мањих или једнаких од n, који су узајамно прости са n. У скупу
Zp[x] постоји ϕ(pn−1)/n несводљивих полинома степена n. Међутим, коначна
поља конструисана од било која два несводљива полинома међусобно су изо-
морфна [16]. Дакле, постоји јединствено коначно поље од pn елемената које
означавамо са GF(pn). Специјално за n = 1, GF(p) је исто што и Zp.

Следећа лема наводи се без доказа.

Лема 2.1.2. За сваки полином f(x) ∈ F[x], f(0) ̸= 0 постоји e > 0 тако да
важи f(x)|xe − 1.

Дефиниција 2.1.16. Ред ord(p) полинома p(x) је најмањи број e такав да
важи

p(x)|xe − 1.

2.1.5 Матрице

У наставку, ако се не нагласи другачије, разматрају се матрице над пољем
F.

Дефиниција 2.1.17. Квaдратна матрица A је инвертибилна, ако посто-
ји матрица B тако да важи AB = BA = I, где је I јединична матрица
исте димензије као A. Инвертибилну матрицу често називамо регуларном
матрицом.

Дефиниција 2.1.18. Две матрице A и B су еквивалентне ако важи B =

PAQ где су P и Q инвертибилне матрице.
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Дефиниција 2.1.19. Дијагонална матрица diag(d1, . . . , dn) је квадратна ма-
трица са елементима d1, . . . , dn на главној дијагонали, док су сви остали
елементи нуле.

Јединична матрица је специјалан случај дијагоналне матрице diag(1, 1, ..., 1).

Дефиниција 2.1.20. Директни производ произвољне две матрице A и B

дефинише се изразом:

A⊕B =

[
A 0

0 B

]
,

где су 0 0-матрице одговарајуће димензије.

Линеарна група степена n GL(n,F) над пољем F је скуп свих n× n инвер-
тибилних матрица над пољем F са операцијом множења матрица. Матрица
A из групе пресликава елемент x ∈ Bn у елемент Ax. Афина група степена
n над пољем F је скуп парова (A, b), A ∈ GL(n,F), b ∈ Mn,1(F) са операцијом
множења (A′, b′) ◦ (A′′, b′′) = (A′A′′, b′A′′ + b′′). Пар (A, b) из групе пресликава
елемент x ∈ Bn у елемент Ax+ b.

Дефиниција 2.1.21. Две матрице A,B ∈ Mn(F) су сличне ако је B =

P−1AP за неку инвертибилну матрицу P ∈ Mn(F). Трансформација P−1AP

је трансформација сличности матрице A.

Квадратној инвертибилној матрици A ∈Mn(F) одговара линеарно пресли-
кавање векторског простора Fn 7→ Fn, које произвољан вектор x ∈ Fn пресли-
кава у вектор Ax. Колоне матрице A су слике базних вектора e1, e2, . . . , en,
колона јединичне матрице реда n. У општем случају се колоне матрице ли-
неарног пресликавања L : Fn 7→ Fn у бази b1, . . . , bn састоје се од координата
слика базних вектора. Матрице линеарне трансформације у различитим ба-
зама су међусобно сличне. Група GL(n, q) може се посматрати и као група
n×n несингуларних матрица чији су елементи из поља GF(q). У групи матри-
ца GL(n, q) сличност је исто што и конјугованост у смислу група, па сличне
матрице такође зовемо конјугатима.

За матрицу A ∈Mn(Fq) нека је

[A]GL(n,q) = {P−1AP : P ∈ GL(n, q)}

скуп матрица конјугованих матрици A и нека су

19



ГЛАВА 2. ОСНОВНИ ПОЈМОВИ И ТЕОРЕМЕ

CMn(Fq)(A) = {X ∈Mn(Fq) : AX = XA}
CGL(n,q)(A) = {P ∈ GL(n, q) : AP = PA} = C(Mn(Fq))(A) ∩GL(n, q)

редом централизатори матрице A у Mn(Fq) и GL(n, q). За A ∈ GL(n, q),
[A]GL(n,q) је класа конјугованости матрице A у GL(n, q) и важи

|[A]GL(n,q)| =
|GL(n, q)|
|CGL(n,q)(A)|

.

Нека је x симболичка променљива. Матрица xI − A је карактеристична
матрица квадратне матрице A. Карактеристични полином квадратнe матри-
це A дефинише се изразом χA(x) = det(xI − A) и важи χA(A) = 0. Каракте-
ристични полином је инваријантан у односу на сличност матрица.

Ако за f ∈ F[x] важи f(A) = 0 · I, каже се да f поништава A. Међу
свим моничним полиномима који поништавају A, монични полином mA(x)

најмањег степена назива се минимални полином квадратне матрице A. Из
дефиниције минималног полинома следи mA(x)|χA(x).

Нека је матрица xI − A (на основу познатог поступка дијагонализације)
слична дијагоналној матрици diag(f1, ..., fn) над прстеном F[x], при чему су
f1, ..., fn јединствени монични полиноми такви да f1|f2|...|fn. Елементи ску-
па {f1, ..., fn} називају се инваријантни фактори матрице A. Неконстантни
инваријантни фактори такође се зову нетривијални инваријантни фактори.

Дефиниција 2.1.22. Нека су f1, ..., fn инваријантни фактори матрице A и
нека је

fj(x) = p1(x)
cj1 · · · pm(x)cjm , j = 1, ..., n,

где су cji ⩾ 0 цели бројеви и p1(x), ..., pm(x) различити монични несводљиви
полиноми. Свe изразe у скупу

{di = pi(x)
cji, cji ⩾ 1, j = 1, ..., n}

рачунајући и дупликате, називамо елементарним делитељима матрице A.

Инваријантни фактори и елементарни делитељи могу се добити једни из
других и важи:

f1(x) · · · fn(x) = det(xI −A) = d1(x) · · · dm(x).

Пример 2.1.11. Нека матрица A реда 12 над прстеном Q има следеће ин-
варијантне факторе: f1(x) = · · · = f9(x) = 1, f10(x) = x2 + 1, f11(x) =
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(x2 + 1)(x2 − 2), f12(x) = (x2 + 1)(x2 − 2)2. Тада су елементарни делитељи:
x2 + 1, x2 + 1, x2 + 1, x2 − 2, (x2 − 2)2.

Теорема 2.1.9. Ако су f1, ..., fn инваријантни фактори матрице A над пр-
стеном F[x] такви да f1|f2|...|fn, тада је fn минимални полином матрице
A ∈Mn(F).

Доказ. Доказ директно следи из израза χA(x) = f1(x) · · · fn(x).

Пример 2.1.12. Нека је у пољу GF (2) дефинисана матрица

A =


1 1 1 1

1 1 1 0

0 1 0 1

0 1 1 0

 .
Карактеристични и минимални полиноми матрице A су редом x4 + 1 и
(x+1)3 = x3+x2+x+1. Нетривијални инваријантни фактори и елементарни
делитељи су (x+ 1) и (x+ 1)3.

Дефиниција 2.1.23. За n ⩾ 1 нека је дат монични полином облика:

q(x) = c0 + c1x+ c2x
2 + · · ·+ cn−1x

n−1 + xn.

За n ⩾ 2, придружена (companion) матрица овог полинома дефинисана је
изразом:

C(q) :=



0 0 · · · 0 −c0
1 0 · · · 0 −c1
0 1 · · · 0 −c2
...

... . . . ...
...

0 0 · · · 1 −cn−1


.

За n = 1 је q(x) = x+ c0 и C(q) = [−c0].

Теореме 2.1.10 и 2.1.11 наводе се без доказа.

Теорема 2.1.10. Свака матрица је слична матрици придруженој свом ка-
рактеристичном полиному.

Теорема 2.1.11. Карактеристични и минимални полином придружене ма-
трице су једнаки.
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Дефиниција 2.1.24. Ред e матрице A је најмањи природан број такав да
важи Ae = I.

Егзистенција реда матрице e следи на основу леме 2.1.2 и теореме 2.1.12.

Теорема 2.1.12. Нека је

f(x) = c0 + c1x+ c2x
2 + · · ·+ cn−1x

n−1 + cnx
n ∈ F[x]

где је n ⩾ 1 и c0 ̸= 0. Ред полинома f једнак је реду његове придружене
матрице A из GL(n,F).

Доказ. Пошто је A придружена матрица полиномa f(x), полином f(x) је исто-
времено и карактеристични и минимални полином матрице A. Ако f(x)|xe−1

за неко e, следи f(A)|Ae − I тј. Ae − I = 0. Ако f(x) ∤ xe − 1 за неко e, следи
f(A) ∤ Ae − I тј. Ae − I ̸= 0. Дакле, Ae = I ако и само ако f(x)|xe − 1. Спе-
цијално, претходно разматрање важи и за најмање могуће e које задовољава
наведене услове.

Пример 2.1.13. Нека је

A =

0 0 1

1 0 1

0 1 0


придружена матрица полинома x3 + x + 1 над пољем GF (2). Непосредно се
проверава да је A[0 0 0]T = [0 0 0]T и A7v = v, x ̸= 0. Карактеристични и
минимални полином матрице A је f(x) = x3+x+1 и непосредно се проверава
да је ред полинома f(x) једнак 7 тј. x3 + x+ 1|x7 − 1.

Придружена матрица је специјалан случај хипер-придружене матрице:

Дефиниција 2.1.25. За n ⩾ 1 нека је q(x) монични полином облика:

q(x) = c0 + c1x+ c2x
2 + · · ·+ cn−1x

n−1 + xn.

За n ⩾ 2, хипер-придружена (hyper-companion) матрица полинома qk дефи-
нисана је изразом:

H(q(x)k) = Ck(q) :=



C(q) 0 · · · 0 0

N C(q) · · · 0 0

0 N · · · 0 0
...

... . . . ...
...

0 0 · · · N C(q)


(kn)×(kn)
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где је N n × n-матрица састављена од свих нула осим елемента у горњем
десном углу са вредношћу 1. За k = 1, H(q) = C1(q) = C(q).

Пример 2.1.14.

H((x2+1)3) =

C(x
2 + 1) 0 0

N C(x2 + 1) 0

0 N C(x2 + 1)

 =



0 −1 0 0 0 0

1 0 0 1 0 0

0 1 0 −1 0 0

0 0 1 0 0 0

0 0 0 1 0 −1
0 0 0 0 1 0


.

H(x3 + 5x2 − 6) = C(x3 + 5x2 − 6) =

0 0 6

1 0 0

0 1 −5

 .

H((x− 3)4) =


3 0 0 0

1 3 0 0

0 1 3 0

0 0 1 3

 .
Лема 2.1.3. Нека је q ∈ F[x] монични полином степена n ⩾ 1. Тада је:

• карактеристични и минимални полином придружене матрице C(q)

једнак q(x).

• карактеристични и минимални полином хипер-придружене матрице
Ck(q) једнак qk(x).

Дакле, за k ⩾ 1, инваријантни фактори матрице Ck(q) су {1, ..., 1, qk(x)} и
Ck(q) има један елементарни делитељ qk(x).

Скуп канонских матрица треба да садржи све „представнике” класа екви-
валенције. Другим речима, свака матрица треба да буде еквивалентна тачно
једној из скупа канонских матрица. Канонске форме матрица дефинишу се
тако да „што је могуће више” имају дијагонални облик. Нека је:

B = diag(B1, ..., Br), C = diag(C1, ..., Cr), P = diag(P1, ..., Pr)

где су за свако i = 1, ..., r, Bi, Ci, Pi квадратне матрице истих димензија,
а матрице Pi су инвертибилне. Матрица B је директни производ матрица
B1, ..., Br. Матрица P је инвертибилна и важи:
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BC = diag(B1C1, ..., BrCr)

P−1 = diag(P−1
1 , ..., P−1

r )

P−1BP = diag(P−1
1 B1P1, ..., P

−1
r BrPr)

Лема 2.1.4. [25, 26] За матрице над прстеном F[x] важе следећа тврђења:

• Сличност директних производа:
Ако је матрица Bi слична са Ci за i = 1, ..., r, тада је diag(B1, ..., Br)
слична са diag(C1, ..., Cr).

• Еквивалентност директних производа:
Ако је матрица Bi еквивалентна са Ci за i = 1, ..., r, тада је diag(B1, ..., Br)
еквивалентна са diag(C1, ..., Cr).

• Пермутација директних производа:
Нека су за i = 1, ..., r Bi квадратне матрице. Тада је за сваку пермута-
цију p индекса (1, ..., r), diag(B1, ..., Br) еквивалентна са diag(Bp(1), ..., Bp(r)).

• Разлагање директних производа:
Нека су полиноми f(x) и g(x) узајамно прости. Тада је diag(1, fg) над
пољем F[x] еквивалентна са diag(f, g). Општије, ако су q1, ..., qk узајам-
но прости полиноми, тада је матрица diag(q1, ..., qk) еквивалентна са
матрицом diag(Ik−1,

∏k
i=1 qi).

Теорема 2.1.13. Свака квадратна матрица над пољем F слична је:

• директном производу придружених матрица нетривијалних инвари-
јантних фактора,

• директном производу придружених матрица елементарних делитеља
над пољем F и

• директном производу хипер-придружених матрица елементарних де-
литеља над пољем F.

Другим речима, нека су за A ∈ Mn(F), f1, ..., fn инваријантни фактори и
нека су над прстеном F[x], d1 = qk11 , ..., dm = qkmm елементарни делитељи,
где су q1, ..., qm несводљиви полиноми. Тада је матрица A слична са следећим
матрицама:
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diag(C(f1), ..., C(fn))

diag(C(d1), ..., C(dm))

diag(Ck1(q1), ..., Ckm(qm))

Пошто је сличност релација еквиваленције, матрице Ck(q) и C(qk) су слич-
не.

Дефиниција 2.1.26. Матрица A је у Јакобсоновој канонској форми (у даљем
тексту - у канонској форми), ако је директни производ хипер-придружених
матрица елементарних делитеља над прстеном F[x]

A =


H1 0 0 0 0

0 H2 0 0 0

· · · · · · · · · · · · · · ·
0 0 0 Hn−1 0

0 0 0 0 Hn


где је Hi матрица придружена i-том елементарном делитељу.

Пример 2.1.15. Нека је као у примеру 2.1.12, у пољу GF (2)

A =


1 1 1 1

1 1 1 0

0 1 0 1

0 1 1 0

 .
Карактеристични и минимални полиноми матрице A редом су x4 + 1 и
(x+1)3 = x3+x2+x+1. Придружена матрица елементарног делитеља x+1

јe
[
1
]
. Придружена матрица елементарног делитеља (x+1)3 = x3+x2+x+1

(односнo минималном полиному) је0 0 1

1 0 1

0 1 1


па је канонска форма матрице A

1 0 0 0

0 0 0 1

0 1 0 1

0 0 1 1

 = diag(
[
1
]
,

0 0 1

1 0 1

0 1 1

).
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Пример 2.1.16. Нека су дати инваријантни фактори над пољем Q: f1(x) =
(x2 + 4)(x2 − 3) и f2(x) = (x2 + 4)2(x2 − 3)2. Елементарни делитељи су (x2 +

4), (x2 − 3), (x2 + 4)2 и (x2 − 3)2 па канонска форма матрице има облик:

diag(

[
0 −4
1 0

]
,

[
0 3

1 0

]
,


0 −4 0 0

1 0 0 0

0 1 0 −4
0 0 1 0

 ,

0 3 0 0

1 0 0 0

0 1 0 3

0 0 1 0

).
Пример 2.1.17. Нека је у пољу GF (2) дефинисана матрица

A =

1 1 0

0 1 0

0 0 1

 .
Матрица A делује на векторе из F 3

2 на следећи начин:

v 000 001 010 011 100 101 110 111

Av 000 001 110 111 100 101 010 011

Пермутација индукована матрицом A (дејством A матрице на све векторе
из F 3

2 ) има циклусну структуру којој одговара моном f 4
1 f

2
2 . Исту структуру

има и пермутација индукована канонском формом мартице A. Каракте-
ристични и минимални полиноми матрице A су редом x3 + x2 + x + 1 и
x2 + 1 = (x+ 1)2. Канонска форма матрице A је 1 0 0

0 0 1

0 1 0

.
Први блок матрице делује на први бит, док други блок делује на послед-
ња два бита вектора. Због тога се формирање циклусних структура може
посматрати независно по блоковима, при чему се у коначном исходу сва деј-
ства првог блока „упарују” са свим дејствима другог блока. Блокови уствари
представљају хипер-придружене матрице које одговарају факторима x+ 1 и
(x+ 1)2 минималног полинома (елементарним делитељима карактеристич-
ног полинома) матрице A. Дејство првог блока је пермутација са циклусном
структуром f 2

1 : [
1
] [

0
]
=
[
0
]
,
[
1
] [

1
]
=
[
1
]
.
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Дејство другог блока је пермутација са циклусном структуром f 2
1 f2:[

0

0

]
→

[
0

0

]
,

[
0

1

]
→

[
1

0

]
,

[
1

0

]
→

[
0

1

]
,

[
1

1

]
→

[
1

1

]
.

Циклусна структура пермутације која одговара матрици A је Декартов про-
извод блоковима индукованих циклусних структура:

f 2
1 × f 2

1 f2 = f 4
1 f

2
2 .

Пример 2.1.18. Посматрајмо регуларне матрице димензије 2 у пољу GF (2).

• Карактеристични и минимални полином матрице

[
1 0

0 1

]
редом су

(x − 1)2 и (x − 1). Ред минималног полинома је 1 и елементарни де-
литељи матрице су (x − 1) и (x − 1). Канонска форма, састављена од

два блока хипер-придружених матрица је

[
1 0

0 1

]
. Сваком блоку одго-

вара пермутација са циклусном структуром f 2
1 , а пермутација која

одговара канонској форми има циклусну структуру f 2
1 × f 2

1 = f 4
1 .

• Карактеристични и минимални полином матрице

[
1 1

0 1

]
је (x − 1)2.

Ред минималног полинома је 2 и елементарни делитељ матрице је
(x−1)2. Канонска форма, састављена од једног блока хипер-придружене

(истовремено и придружене) матрице је

[
0 1

1 0

]
и пермутација која

одговара канонској форми има циклусну структуру f 2
1 f2.

• Карактеристични и минимални полином матрице

[
0 1

1 0

]
је x2+x+1.

Ред минималног полинома је 3 и елементарни делитељ матрице је
x2+x+1. Канонска форма, састављена од једног блока хипер-придружене

(истовремено и придружене) матрице је

[
0 1

1 1

]
и пермутација која

одговара канонској форми има циклусну структуру f1f3.

Ове три матрице можемо узети као представнике конјугованих класа (слич-
них матрица). Узимајући у обзир свих шест регуларних матрица, непосредно
се проверава да је ZGL(2,2)(f) =

1
6
(f 4

1 + 3f 2
1 f2 + 2f1f3).
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Напомена 2.1.1. Изоставимо полином x и посматрајмо несводљиве поли-
номе p(x) степена мањег или једнаког од 2. Скуп елементарних делитеља
полинома облика p(x)k степена 2, које индукују представници конјугованих
класа је скуп {{x− 1, x− 1}, {(x− 1)2}, {x2 + x+1}}. Пошто постоји по један
несводљиви полином степена 1 и 2, овај скуп се може добити из скупа свих
несводљивих полинома p(x) степена ⩽ 2, разлагањем на партиције броја k.

2.1.6 Векторски простори

Нека је S поље и нека је V скуп чије елементе називамо векторима. За
векторе x1, ..., xn из векторског простора V над пољем S каже се да су ли-
неарно зависни ако постоје елементи α1, ..., αn поља S, који нису сви једнаки
нули, такви да важи једнакост

α1x1 + · · ·+ αnxn = 0⃗ (2.8)

где је 0⃗ неутрални елемент у групи (V,+). Израз на левој страни једнако-
сти (2.8) назива се линеарна комбинација вектора x1, ..., xn. Ако вектори нису
линеарно зависни, кажемо да су линеарно независни. Другим речима, за неза-
висне векторе x1, ..., xn из једнакости (2.8) следи α1 = 0, ..., αn = 0. За коначан
скуп вектора каже се да је линеарно зависан или линеарно независан према
томе да ли су вектори који образују скуп линеарно зависни или независни.
Нека је T = {x1, ..., xt} ⊂ V . Скуп свих линерних комбинација вектора из T ,
тј. скуп

U = {α1x1 + · · ·+ αtxt | α1, ..., αt ∈ S}

назива се линеал (L(T )) скупа T . Каже се да је U генерисан скупом T . Лине-
арно независан скуп вектора B назива се база векторског простора V ако B
генерише V . Број елемената у произвољној бази назива се димензија простора
V .

Дефиниција 2.1.27. Сваки непразан подскуп W простора V (F) је потпро-
стор ако заједно са сваким паром вектора које садржи, садржи и све њихове
линеарне комбинације. Другим речима, потпростор мора бити затворен за
операције дефинисане у простору V .

Сума потпростора W1 и W2 је линеал њихове уније:

W1 +W2 = L(W1 ∪W2).
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Уколико је пресек два потпростора нула вектор, њихова сума назива се ди-
ректном (унутрашњом) сумом и означава са W1 ⊕W2. Потпростори W1 и W2

чине разлагање (декомпозицију) простора V уколико важи

V =W1 ⊕W2.

Пример 2.1.19. Скуп Zp[x] полинома са коефицијентима из Zp, где је p

прост број, представља векторски простор над пољем Zp.

Дефиниција 2.1.28. Модул је генерализација појма векторског простора у
коме је поље скалара замењено прстеном.

Теорема 2.1.14. Матрица A је регуларна (несингуларна) ако и само ако су
врсте (колоне) матрице линеарно независне.

Дефиниција 2.1.29. Нека су V и W векторски простори над пољем F .
Линеарно пресликавање из V у W је функција T из V у W тако да је

T (cα+ β) = c(Tα) + Tβ

за све векторе α, β ∈ V и за сваки скалар c ∈ F .

Матрицу Am,n можемо посматрати као функцију (линеарну трансформа-
цију) T : F → F дефинисану изразом T (x) = Ax за свако x ∈ F. GL(n, q) је
група свих инвертибилних линеарних трансформација n-димензионог вектор-
ског простора над пољем GF(q). Сличне матрице представљају исто линеарно
пресликавање над двема базама векторског простора.

Теорема 2.1.15. Ред групе GL(n, q) је
n−1∏
i=0

(qn − qi).

Доказ. Потребно је избројати све n × n матрице чије су врсте линеарно не-
зависне. При формирању такве матрице, њена прва врста може да буде било
који вектор дужине n који за елементе нема све нуле. Таквих вектора има
qn − 1. Друга врста мора бити линеарно независна од прве, што значи да не
може бити једнака првој врсти помноженој скаларом из скупа {0, 1, . . . , q−1}.
Даклe, за другу врсту постоји qn − q могућности. Уопште, i-та врста не сме
бити линеарна комбинација претходних i−1 врста, односно не сме припадати
линеалу првих i− 1 врста. Пошто постоји qi−1 линеарних комбинација првих
i− 1 врста, за i-ту врсту постоји qn − qi−1 могућности. Дакле, n× n матрицу

могуће је формирати на (qn−1)(qn−q) · · · (qn−qn−1) =
n−1∏
i=0

(qn−qi) начина.

29



ГЛАВА 2. ОСНОВНИ ПОЈМОВИ И ТЕОРЕМЕ

Пример 2.1.20. Размотримо групу GL(n, 2) свих инвертибилних линеарних
трансформација n-димензионог векторског простора над пољем GF(2). Група
GL(n, 2) може се посматрати и као група n×n несингуларних матрица чији
су елементи из поља GF(2). Нека је A = (aij) једна таква матрица и нека
су дати скуп улазних променљивих x = {x1, x2, . . . , xn} и Булова функција
f : {0, 1}n → {0, 1}n, тако да је f(x1, x2, . . . , xn) = {f1, f2, . . . , fn}. Дејство
матрице A на улазне и излазне променљиве означимо респективно са xA

и fA (тј. x и f су врсте). Множење матрице и вектора дефинише се на
уобичајени начин (⊕ овде означава компонентно сабирање по модулу 2):

xA =
( n⊕

k=1

ak1xk, . . . ,

n⊕
k=1

aknxk

)
односно

fA =
( n⊕

k=1

ak1fk, . . . ,
n⊕

k=1

aknfk

)
.

Ред групе GL(n, 2) је

n−1∏
i=0

(2n − 2i) = (2n − 1)2(2n−1 − 1)22(2n−2 − 1) · · · 2n−1(21 − 1)

= 21+2+···+n−1

n∏
i=1

(2i − 1) = 2
n(n−1)

2

n∏
i=1

(2i − 1) (2.9)

Трансформације афине групе AGL(n, 2) добијају се композицијом трансфор-
мација линеарне групе и 2n трансформацијa комплементирања излаза, па
је

|AGL(n, 2)| = 2n|GL(n, 2)| = 2
n(n+1)

2

n∏
i=1

(2i − 1).

Дефиниција 2.1.30. Нека је V векторски простор. Инваријантан потпро-
стор линеарног пресликавања T : V → V је потпростор W ⊆ V затворен за
T , тј. потпростор за који важи T (W ) ⊆W .

Напомена 2.1.2. Базу једнодимензионог векторског простора V чини било
који ненула вектор v ∈ V . Било који други вектор из V може се представити
као λv, где је λ скалар. Свако линеарно пресликавање T може се представити
матрицом A, при чему је Av = λv, па је V инваријантан потпростор.
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Дефиниција 2.1.31. Нека је V векторски простор и нека је T : V →
V линеарно пресликавање. T -циклични потпростор векторског простора V

генерисан вектором v је потпростор W ⊆ V генерисан скупом вектора
{v, T (v), T 2(v), T 3(v), ...}. Уколико је димензија T -цикличног потпростора W
једнака димензији векторског простора V , v је циклични вектор пресликава-
ња T на простору V .

Нека је
p(x) = c0 + c1x+ c2x

2 + · · ·+ cn−1x
n−1 + cnx

n

карактеристични полином пресликавања T и нека је v циклични вектор пре-
сликавања T . Нека је T (v1) = v2, T (v2) = v3, T (v3) = v4, ..., T (vn−1) = vn. Из
p(T ) = c0 + c1T + c2T

2 + · · · + cn−1T
n−1 + cnT

n = 0, тј. c0v + c1Tv + c2T
2v +

· · ·+ cn−1T
n−1v + cnT

nv = 0, следи T (vn) = −c0v1 − c1v2 − · · · − cn−1vn. Дакле,
пресликавање T у бази B може се представити матрицом:

C(p) :=



0 0 · · · 0 −c0
1 0 · · · 0 −c1
0 1 · · · 0 −c2
...

... . . . ...
...

0 0 · · · 1 −cn−1


.

Приметимо да је ова матрица придружена матрица карактеристичног и ис-
товремено минималног полиномa p(x).

Пример 2.1.21. Нека је V дводимензиони векторски простор и нека је

пресликавање T представљено матрицом

[
0 0

1 0

]
у стандардној бази

{
e1 =

[1 0]T , e2 = [0 1]T
}
. Пошто је T (e1) = e2, следи да циклични вектор e1 раза-

пиње V . С друге стране, T (e2) = 0 = 0 · e2, па e2 не разапиње V .

Следећа теорема је непосредна последица Теореме 2.1.12.

Теорема 2.1.16. Нека је V векторски простор у коме оператор (матри-
ца) A има минимални полином облика p(x) = (q(x))k где је q(x) несводљиви
полином. Тада за сваки вектор v ∈ V из Asv = v следи s| ord(p(x)).

Теорема 2.1.16 илуструје важну чињеницу да циклуси које генерише ма-
трица A морају бити дужине која дели ред минималног полинома матрице
A.
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Пример 2.1.22. Нека је дата матрица

A =

1 0 0

1 1 0

0 1 1

 .
Карактеристични и минимални полином матрице A над пољем GF (2) је
f(x) = x3 + x2 + x+ 1 = (x+ 1)3. Ред овог полинома је 4. Пошто је каракте-
ристични полином једнак минималном, одговарајућа придружена матрица
има исти ред као и минимални полином. Постоји вектор v ̸= 0, рецимо
v = [1 0 0]T такав да важи A4v = v и постоји циклус v2 = Av, v3 = Av2, v4 =

Av3, v = Av4. На овај начин нису „исцрпљени” сви вектори простора, па да-
ље посматрамо скуп „преосталих” вектора. На овом новом потпростору ре-
стрикција линеарног пресликавања има минимални полином (x−1)2 = x2+1.
Ред овог полинома је 2, па за рецимо вектор v = [0 1 0]T важи A2v = v.
Пошто још увек нису исцрпљени сви вектори простора, посматра се нови
потпростор који има минимални полином x−1 = x+1 и састоји се од јединог
преосталог ненула вектора v = [0 0 1]T за који важи Av = v. Имајући у виду
да се нула вектор увек пресликава у себе, из претходних закључака следи да
дејство матрице A на векторе простора разлаже простор на два циклуса
дужине 1, један циклус дужине 2 и један циклус дужине 4 односно циклусну
структуру f 2

1 f2f4. Дакле, инваријантни простор састављен од свих векто-
ра разложен је на (директну суму) четири циклична потпростора и збир
димензија потпростора једнак је димензији простора.

Уопштимо сада претходна разматрања. Нека је A линеарни оператор n-
димензионог векторског простора V над пољем F. Нека је

φ(x) =
s∏

i=1

Pi(x)
ci (2.10)

минимални полином оператора A, где су Pi(x) различити, монични, несводљи-
ви полиноми над пољем F. Примарна декомпозиција векторског простора V је
директна сума инваријантних потпростора Ui таквих да је Pi(x)

ci минимални
полином потпростора Ui. Сваки од инваријантних потпростора Ui је директна
сума цикличних потпростора Wi,j таквих да је Pi(x)

ci минимални полином
потпростора Wi,r(i) и минимални полином потпростора Wi,j дели минимални
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полином потпростора Wi,j+1, j = 1, ..., r(i)− 1. Дакле, важе следећи изрази:

V =
s⊕

i=1

Ui и Ui =

r(i)⊕
j=1

Wi,j.

Нека је Pi(x) =
∑di

j=0 bjx
j ∈ F [x], bdi = 1. Нека је Wi циклични потпростор

димензије kdi са минималним полиномом Pi(x)
k. Рестрикција оператора A на

Wi представља се хипер-придруженом матрицом H(P k
i ). Дакле, простор са

минималним полиномом из израза (2.10) разлаже се на директну суму α
(i)
j

цикличних потпростора са минималним полиномом Pi(x)
j за 1 ⩽ j ⩽ ci, 1 ⩽

i ⩽ s. Класична нормална форма матрице A је блок дијагонална матрица

diag
(
D(P1, α

(1)), ..., D(Ps, α
(s))
)
, (2.11)

при чему се матрице D(Pi(x), α
(i)) даље разлажу на блок дијагоналне матрице

(канонску форму) облика

D(Pi, α
(i)) = diag

(
H(Pi), ...,H(Pi)︸ ︷︷ ︸

α
(i)
1

, H(P 2
i ), ...,H(P 2

i )︸ ︷︷ ︸
α
(i)
2

, ...
)
. (2.12)

Из претходног следи да карактеристични полином матрице A има облик:

χA(x) =
s∏

i=1

Pi(x)
ai

где је ai =
∑

j jα
(i)
j и

∑s
i=1 aidi = n. Дакле, дејство матрице A може се пред-

ставити као директни производ

s
ą

i=1

ai
ą

j=1

α
(i)
j

ą

k=1

H(P j
i ) =

s
ą

i=1

ai
ą

j=1

H(P j
i )

Ś

αij . (2.13)

2.1.7 Булове функције

Елемент x = (x1, x2, . . . , xn) ∈ Bn одговара целом броју X =
∑n

i=1 xi2
n−i.

Функција f : Bn 7→ B1 која одговара вектору F = [f0, f1, . . . , fN−1] ∈ BN (N =

2n), односно таблици истинитости функције f , fX = f(x), назива се Булова
функција. Без опасности од забуне, користићемо ознаке x и f редом за X и
F . Скуп Bn Булових функција f : Bn 7→ B1 у овом контексту одговара скупу
вектора BN . У случају пресликавања f : Bn 7→ Bm, f се назива векторска
Булова функција. Специјално, за m = n, уколико је f бијективно пресликава-
ње, векторска Булова функција је инвертибилна. Хемингова тежина Булове
функције f у ознаци wt(f) представља број улаза x таквих да је f(x) = 1.
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Пример 2.1.23. У случају векторских Булових функција f : Bn 7→ Bm сваком
од 2n улаза може се придружити било који од 2m излаза. Другим речима, број
векторских Булових функција одговара броју варијација са понављањем 2n-те
класе од 2m елемената, тј. (2m)2n = 2m2n. Специјално, за m = 1 број Булових
функција је 22

n. Број инвертибилних Булових функција од n променљивих
једнак је 2n!.

Дефиниција 2.1.32. Нека је G пермутациона група која делује на Bn. Две
Булове функције f, g : Bn → B1 пермутационо су еквивалентне у односу на G,
ако постоји пермутација σ ∈ G таква да је f(x) = g(σ(x)) за свако x ∈ Bn.

Релација пермутационе еквиваленције разлаже Bn на класе еквиваленције.
Нека је представник класе еквиваленције лексикографски најмања N -торка
у класи. Нека Un(G) означава број класа еквиваленције Булових функција у
односу на G; специјално, за четири групе које се разматрају у раду (S′

n, Gn,
GLn и AGLn), то су низови А003180, А000616, А000585, А000214 у енцикло-
педији [30].

Пример 2.1.24. Свих 16 Булових функција f : B2 7→ B1 приказане су у та-
бели 2.4 својим таблицама истинитости. Нека на аргумент (x1, x2) делује
симетрична група S2, коју чине две пермутације: (1)(2) и (1 2). Пермутаци-
ја (1)(2) сваку функцију пресликава у њу саму. Пермутација (1 2) индукује
замену друге и треће врсте (замена колона x1 и x2 у табели 2.4), па паро-
ви функција (f3,f5),(f4,f6),(f11,f13) и (f12,f14) чине класе еквиваленције. Све
остале функције припадају једночланим класама еквиваленције. Дакле, 16

Булових функција од две променљиве разлажу се на U2(S2) = 12 класа екви-
валенције (једночлане класе у табели нису обојене).

Табела 2.4: Класе еквиваленције Булових функција f : B2 7→ B1 у односу на
групу S2

x1 x2 f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Две инвертибилне функције f, g : Bn → Bn еквивалентнe су у односу на
групу G ако постоје две пермутације σ, ρ ∈ G такве да је f(x) = ρ(g(σ(x)))
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за све x ∈ Bn. Нека Vn(G) означава број класа еквиваленције инвертибилних
Булових функција од n променљивих под дејством исте групе G на домен и
кодомен. Првих неколико чланова овог низа за четири групе које се разма-
трају у раду (S′

n, Gn, GLn и AGLn) могу се наћи у енциклопедији [30] (низови
А000653, А000654, А001038, А001537).

Пример 2.1.25. За n = 2 постоји 22! = 24 инвертибилних Булових функција
fi, 1 ⩽ i ⩽ 24. Булове функције f : B2 7→ B2 приказане су својим таблицама
истинитости (видети табелу 2.5):

Табела 2.5: Класе еквиваленције инвертибилних Булових функција f : B2 7→
B2 у односу на групу S2

x1 x2 f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12
0 0 00 00 00 00 00 00 01 01 01 01 01 01
0 1 01 01 10 10 11 11 00 00 10 10 11 11
1 0 10 11 01 11 01 10 10 11 00 11 00 10
1 1 11 10 11 01 10 01 11 10 11 00 10 00
x1 x2 f13 f14 f15 f16 f17 f18 f19 f20 f21 f22 f23 f24
0 0 10 10 10 10 10 10 11 11 11 11 11 11
0 1 00 00 01 01 11 11 00 00 01 01 10 10
1 0 01 11 00 11 00 01 01 10 00 10 00 01
1 1 11 01 11 00 01 00 10 01 10 00 01 00

Ако S2 делује и на улазне променљиве (x1, x2) и на излазне променљиве
fx1 , fx2, онда четири трансформације из S2 × S2 разлажу 24 функције на
V2 = 7 класа еквиваленције: (f1,f3),(f2,f4,f5,f6),(f7,f9,f13,f15),(f8,f11,f14,f17),
(f10,f12,f16,f18),(f19,f20,f21,f23) и (f22,f24). Представници ових класа еквива-
ленције су редом f1, f2, f7, f8, f10, f19 и f22.

Ако је x, y ∈ Bn, x = (x1, x2, . . . , xn) и y = (y1, y2, . . . , yn), тада неједнакост
x ⩽ y означава скуп неједнакости xi ⩽ yi, 1 ⩽ i ⩽ n. Булова функција f : Bn 7→
B1 је монотона ако за сваки пар x, y ∈ Bn услов x ⩽ y имплицира f(x) ⩽ f(y).
Означимо са Dn скуп монотоних Булових функција од n променљивих и нека
је dn = |Dn| (Дедекиндови бројеви, видети [12]).

Пример 2.1.26. Из скупа од 16 Булових функција, само њих 6 су монотоне,
тј. d2 = 6 (видети табелу 2.6).
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Табела 2.6: Скуп D2

x1 x2 f1 f2 f3 f4 f5 f6
0 0 0 0 0 0 0 1
0 1 0 0 0 1 1 1
1 0 0 0 1 0 1 1
1 1 0 1 1 1 1 1

За две монотоне Булове функције f1 и f2 важи:

x ⩽ y ⇒ (f1(x) ∧ f2(x) ⩽ f1(y) ∧ f2(y))

x ⩽ y ⇒ (f1(x) ∨ f2(x) ⩽ f1(y) ∨ f2(y))

Дакле, конјукција и дисјункција две монотоне Булове функције такође су
монотоне Булове функције. Ако је функција f : Bn 7→ B1 монотона, онда су
све функције еквивалентне (у односу на групу пермутација променљивих) са
f такође монотоне. Заиста, ако је π ∈ Sn и g(x) = f(π(x)) за све x ∈ Bn, онда
из x ⩽ y следи π(x) ⩽ π(y) и g(x) = f(π(x)) ⩽ f(π(y)) = g(y). Према томе,
пермутациона релација еквиваленције разлаже Dn на класе еквиваленције.
Означимо са Rn скуп представника класа еквиваленције монотоних Булових
функција од n променљивих и нека је rn = |Rn|.

Пример 2.1.27. Нееквивалентне монотоне Булове функције од две промен-
љиве су (видети табелу 2.6): f1 = 0, f2 = x1∧x2, f3 = x1, f5 = x1∨x2, f6 = 1.
Функција f3 = x1 еквивалентна је са f4 = x2. Примећује се да изрази за моно-
тоне Булове функције не садрже негацију, што важи и у општем случају.

2.1.8 Графови

Дефиниција 2.1.33. Нека је X непразан скуп и ρ бинарна релација над X.
Уређен пар G = (X, ρ) се назива граф. Елементи скупа X су чворови графа, а
елементи скупа ρ гране графа.

Дефиниција 2.1.34. Граф G = (X, ρ) је симетричан или неусмерен ако и
само ако је ρ симетрична релација.

Граф G = (X, ρ) је асиметричан или усмерен ако и само ако је ρ асиме-
трична релација.

За произвољан граф, уместо G = (X, ρ) често се пише G = (X,U), при
чему се заобилази појам бинарне релације и U тумачи као скуп уређених
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парова елемената скупа X, тј. као скуп грана. Дакле, граф је задат ако је
задат скуп чворова и скуп грана.

Нека је дат граф G = (X,U). Граф облика H = (Y, T ), при чему је Y ⊆ X
и T = U ∩ (Y × Y ) (T је подскуп скупа U који садржи све оне парове из
U који су индуковани од елемената скупа Y ), назива се подграф графа G,
индукован скупом чворова Y . Дакле, индуковани подграф из датог графа
добија се тако што се уочи неки подскуп Y скупа чворова и удаље из графа
сви остали чворови заједно са гранама које су суседне удаљеним чворовима.
У подграфу остају само гране које повезују чворове из Y .

Два графа су изоморфна ако постоји узајамно једнозначно пресликавање
скупа њихових чворова (из једног на други) које одржава особину суседности
чворова.

Дефиниција 2.1.35. За произвољне графове G1 = (X1, U1) и G2 = (X2, U2)

каже се да су изоморфни ако и само ако постоји бијекција φ скупа X1 на X2

за коју важи:

(∀a, b ∈ X1)(a, b) ∈ U1 ⇔ (φ(a), φ(b)) ∈ U2.

Изоморфизам графа са самим собом назива се аутоморфизам. Скуп свих
аутоморфизама једног графа са операцијом композиције је група.

2.2 Комбинаторика

У овом одељку, као основа за поглавље 3, уводе се теоријски појмови
везани за Фробенијусову теорему. Специјално, као основа за поглавље 3, уводе
се појмови везани за циклусни индекс, Појину и де Бројнову теорему.

2.2.1 Фробенијусова теорема

Фробенијусова (Frobenius) теорема даје израз за број орбита скупа под
дејством пермутационе групе. У литератури се Фробенијусова теорема често
среће под називом Бернсајдова (Burnside) лема. У оквиру доказа теореме
користи се неколико лема.

Лема 2.2.1. Непразан скуп H групе (G, ·) је подгрупа ако и само ако за свако
h1, h2 ∈ H важи h1 · h−1

2 ∈ H.
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Доказ. Нека је H група и нека h1, h2 ∈ H. Из h−1
2 ∈ H следи h1 · h−1

2 ∈ H.
Обрнуто, нека за свако h1, h2 ∈ H важи h1 · h−1

2 ∈ H. Специјално, за h1 = h2

добија се h1 · h−1
1 ∈ H односно e ∈ H. За h1 = e добија се e · h−1

2 ∈ H

односно h−1
2 ∈ H. Коначно, за h1, h2 ∈ H из h1 · h−1

2 ∈ H и h−1
2 ∈ H следи

h1 · (h−1
2 )−1 = h1 · h2 ∈ H, па је H група.

Следећа теорема даје кардиналност орбите orb(x).

Лема 2.2.2. Нека је Gx = {g|g ∈ G, g(x) = x}. За свако x ∈ X, скуп Gx

је подгрупа групе G. Кардиналност орбите orb(x) елемената групе G који
фиксирају елемент x ∈ X једнака је индексу количничке подгрупе G : Gx, тј.
важи:

|orb(x)| = [G : Gx]

Доказ. Нека је g ∈ Gx. Специјално, за идентичку трансформацију g важи
g(x) = x, тј. x ∈ Gx. Из x = g−1(g(x)) = g−1(x) следи g−1 ∈ Gx. За g1, g2 ∈ Gx

из g1 · g−1
2 (x) = g1(g

−1
2 (x)) = g1(x) = x следи g1 · g−1

2 ∈ Gx, па на основу леме
2.2.1 следи да је Gx подгрупа групе G.

Посматрајмо било који (рецимо леви) разред g1Gx подгрупе Gx и нека
је g2 ∈ g1Gx. Пошто је g1Gx леви разред, постоји g ∈ Gx такво да је g2 =

g1 · g. Како је g2(x) = g1 · g(x) = g1(g(x)) = g1(x), то елементи истог разреда
пресликавају x у исти елемент. С друге стране, ако g1 и g2 пресликавају
x у исти елемент, тј. ако је g1(x) = g2(x), тада је g−1

2 g1(x) = x. Одавде је
g−1
2 · g1 ∈ Gx, тј. g1 и g2 припадају истом разреду. Дакле, g1 и g2 припадају
истом разреду ако и само ако пресликавају x у исти елемент. Према томе,
произвољни разред g1Gx може се придружити елементу y = g1(x) = g2(x)

који је у истој орбити са x. Обрнуто, нека је елемент y у истој орбити са x.
Тада постоји g ∈ G такво да је y = g(x), па је y придружен разреду који
садржи g. Дакле, постоји бијективно пресликавање између елемената орбите
елемента x и разреда групе G у односу на подгрупу Gx.

Теорема 2.2.1. (Фробенијус) Број орбита скупа X индукованих дејством
пермутационе групе G дат је изразом:

1

|G|
∑
g∈G

I(g). (2.14)

где је I(g) број елемената скупа X које пермутација g фиксира, тј. број
циклуса дужине један у пермутацији g.
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Доказ. Нека је Кронекеров симбол дефинисан изразом

δi,j =

1, ако је i = j,

0, ако је i ̸= j.

Број орбита скупа X једнак је∑
orb(x)⊆X

1 =
1

|G|
∑

orb(x)⊆X

|Gx||G : Gx| =
1

|G|
∑

orb(x)⊆X

|Gx|| orb(x)| =

1

|G|
∑
x∈X

|Gx| =
1

|G|
∑
x∈X

∑
g∈G

δg(x),x =
1

|G|
∑
g∈G

∑
x∈X

δg(x),x =
1

|G|
∑
g∈G

I(g)

где је I(g) =
∑
x∈X

δg(x),x.

Пример 2.2.1. Број нееквивалентиних Булових функија из примера 2.1.24
може се израчунати на основу Фробенијусове теореме. Посматра се дејство
групе S2 на бинарне улазе Булових функција f : B2 → B1. Под дејством
пермутације (1)(2) свака од 16 Булових функција остаје непромењена. Под
дејством пермутације (1 2), мењају се друга и трећа компонента Булових
функција, па Булове функције остају непромењене када су им те компоненте
исте. Постоји 8 таквих функција. Дакле, дејство пермутација из S2 на два
бинарна улаза, производи укупно 16 + 8 = 24 фиксних тачака. На основу
Фробенијусове теореме број орбита индукованих дејством групе S2 износи
U2(S2) = 24/2 = 12.

Нека за x, y ∈ Bn, x ⊕ y означава компонентно сабирање по модулу 2.
Следећи пример илуструје израчунавање броја фиксних тачака за линеарну
трансформацију примењену на улазе и излазе.

Пример 2.2.2. Нека је задат пар инвертибилних матрица

A =

[
0 1

1 0

]
, B =

[
1 0

1 1

]
које трансформишу излаз, односно улаз векторске инвертибилне функције
f(x1, x2) = (f1, f2)(x1, x2). Услов (A,B) (fA)(xB) = f(x) да функција f буде
фиксна тачка трансформације еквивалентан је услову (fA)(x) = f(xB), тј.
услову(
(f1, f2)

[
0 1

1 0

])
(x1, x2) = (f2, f1)(x1, x2) = f

(
(x1, x2)

[
1 0

1 1

])
= f(x1 ⊕ x2, x2).
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Другим речима, функција f је фиксна тачка пара ако за пар функција f1, f2
за сваки пар (x1, x2) важи идентитет

(f2(x1, x2), f1(x1, x2)) = (f1(x1 ⊕ x2, x2), f2(x1 ⊕ x2, x2)).

За x2 = 0 добијају се два идентична услова: f1(x1, 0) = f2(x1, 0). За x2 =

1 добијају се услови: f2(x1, 1) = f1(x1, 1) и f1(x1, 1) = f2(x1, 1). Ове услове
задовољавају следеће четири инвертибилне функције:

x1 x2 f1 f2 f1 f2 f1 f2 f1 f2

0 0 0 0 0 0 1 1 1 1

0 1 0 1 1 0 0 1 1 0

1 0 1 1 1 1 0 0 0 0

1 1 1 0 0 1 1 0 0 1

Дакле, трансформација (A,B) има четири фиксне тачке.

Пример 2.2.3. За n = 2 на основу (2.9) постоји 2 ·1 ·3 = 6 несингуларних ма-
трица, односно 62 = 36 парова матрица које се могу применити истовремено
на улазе и на излазе. Несингуларне матрице реда 2 су следеће матрицe:[

1 0

0 1

]
,

[
0 1

1 0

]
,

[
1 1

1 0

]
,

[
0 1

1 1

]
,

[
1 1

0 1

]
,

[
1 0

1 1

]
.

Према Фробенијусовој теореми, број класа еквиваленције једнак је колич-
нику броја фиксних тачака и броја примењених трансформација. Непосред-
ним пребројавањем добија се да постоје укупно 72 фиксне тачке.
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A B
Циклусна структура

матрица A и B
Број фиксних тачака[

1 0

0 1

] [
1 0

0 1

]
x41 24

[
0 1

1 0

] [
0 1

1 0

]
x21x2 4

[
0 1

1 0

] [
1 1

0 1

]
x21x2 4

[
0 1

1 0

] [
1 0

1 1

]
x21x2 4

[
1 1

1 0

] [
1 1

1 0

]
x1x3 3

[
1 1

1 0

] [
0 1

1 1

]
x1x3 3

[
1 1

0 1

] [
0 1

1 0

]
x21x2 4

[
1 1

0 1

] [
1 1

0 1

]
x21x2 4

[
1 1

0 1

] [
1 0

1 1

]
x21x2 4

[
1 0

1 1

] [
0 1

1 0

]
x21x2 4

[
1 0

1 1

] [
1 1

0 1

]
x21x2 4

[
1 0

1 1

] [
1 0

1 1

]
x21x2 4

[
0 1

1 1

] [
1 1

1 0

]
x1x3 3

[
0 1

1 1

] [
0 1

1 1

]
x1x3 3
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Трансформација (A,B) има фиксне тачке ако и само ако пермутације
које реализују матрице A и B имају исту циклусну структуру; то смањује
број парова матрица које треба разматрати. За сваки разматрани пар број
фиксних тачака може се одредити као у претходном примеру за пар

A =

[
0 1

1 0

]
, B =

[
1 0

1 1

]
,

четврти у табели. Поред тога, сви парови са истом структуром циклуса
имају исти број фиксних тачака; посао олакшава чињеница да различитих
циклусних структура има само три: x41, x21x2 и x1x3. Пошто је број транс-
формација 62 = 36, број класа еквиваленције у односу на линеарну групу је
2.

Примена Фробенијусове теореме у општем случају није тривијална. Наиме,
за групу великог реда потребно је за сваку њену пермутацију одредити број
фиксних тачака. Са порастом реда групе, рачунање постаје захтевно. Јед-
но мало упрошћење представља чињеница да конјуговане пермутације имају
исту структуру циклуса, па самим тим и исти број фиксних тачака. Стога
се у изразу (2.14) може сумирати не по свим пермутацијама већ по класама
конјугације.

2.2.2 Израчунавање Un(G) на основу Појине теореме

Нека је D коначан скуп и нека је G група пермутација скупа D. Нека је R
коначан скуп и нека је RD скуп функција D 7→ R. Група G тада пермутује и
функције из RD.

Функције fi, fj ∈ RD су еквивалентне (fi ∼ fj) ако постоји g ∈ G тако да за
свако x ∈ D важи fi(x) = fj(g(x)). За произвољну функцију f ∈ RD, нека је
o(f) = {f ′ ∈ RD, f ′ ∼ f}. Нека је F = {o(f) | f ∈ RD} скуп свих орбита (класа
еквиваленције функција). Појина теорема омогућује израчунавање |F |, броја
класа еквиваленције функција.

Теорема 2.2.2 (Појина теорема). Број класа еквиваленције у скупу функција
RD једнак је ∣∣RD/G

∣∣ = 1

|G|
∑
g∈G

mc(g),

где је m = |R| и c(g) је број циклуса елемента g ∈ G када се он посматра као
пермутација скупа D.
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Доказ. Функција f ∈ RD је фиксна тачка пермутације g ∈ G ако и само ако
на свим орбитама (циклусима) има константну вредност. Према томе, број
фиксних тачака пермутације g добија се степеновањем m на број циклуса
пермутације g. На основу Фробенијусове теореме број класа еквиваленције
функција f ∈ RD је ∣∣RD/G

∣∣ = 1

|G|
∑
g∈G

mc(g).

Ако је G група пермутација степена m, и ако је циклусни индекс групе G
када делује на D једнак

ZG(x1, . . . , xm) =
1

|G|
∑
g∈G

x
k1(g)
1 · · ·xkm(g)

m ,

где је ki(g) број циклуса дужине i у пермутацији g, 1 ⩽ i ⩽ m, онда је број
класа еквиваленције функција f ∈ RD једнак

1

|G|
∑
g∈G

mk1(g)+···+km(g) = ZG(m,m, . . . ,m).

Последица 2.2.1. Специјално, ако је

ZG(f) =
1

|G|
∑
g∈G

f type(g) =
1

|G|
∑
p∈Pn

g(p)f p1
1 f

p2
2 · · · f pn

n

=
1

|G|
∑
p∈Pn

g(p)f p.

циклусни индекс групе G, једне од четири типа разматраних група, тада је

Un(G) = ZG(2, 2, . . . , 2) =
1

|G|
∑
p∈PN

g(p)2
∑N

i=1 pi . (2.15)

Пример 2.2.4. Матрица

[
1 1

0 1

]
из групе GL(2, 2), (видети пример 2.2.3)

реализује следећу пермутацију скупа вектора B2:[
0

0

]
→

[
0

0

]
,

[
0

1

]
→

[
1

1

]
,

[
1

0

]
→

[
1

0

]
,

[
1

1

]
→

[
0

1

]
.

Два бинарна вектора сликају се у себе саме, а преостала два чине циклус
дужине 2, па је моном који одговара циклусној структури пермутације ин-
дуковане овом матрицом x21x2. Узимајући у обзир и остале матрице из групе
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GL(2, 2), добија се циклусни индекс

ZGL(2,2)(x1, x2, x3) =
1

6

(
x41 + 3x21x2 + 2x1x3

)
.

На основу Појине теореме број класа еквиваленције Булових функција од две
променљиве у односу на групу GL(2, 2) једнак је

U2(GL(2, 2)) = ZGL(2,2)(2, 2, 2) =
1

6

(
24 + 3 · 22 · 2 + 2 · 2 · 2

)
= 8.

Пример 2.2.5. Нека је Cn
2 група трансформација Булових функција од n про-

менљивих коју чине комплементирања ga, a = (a1, . . . , an) ∈ Bn, подскупова
променљивих {xi | ai = 1, 1 ⩽ i ⩽ n}. Ред групе Cn

2 је 2n. Комплемен-
тирање променљиве означава се надвлачењем те променљиве. На пример,
g(1,0,0)(f(x1, x2, x3)) = f(x̄1, x2, x3). Функције f1 и f2 су еквивалентне ако за
неко g ∈ Cn

2 важи f1(x) = f2(g(x)). За сваку од 2n трансформација групе G
могу се одредити циклусне структуре. Идентичка трансформација g(0,0,...,0)
има 2n једночланих циклуса. Све остале трансформације имају по 2n−1 ци-
клуса дужине 2 (транспозиција) одакле се добија циклусни индекс

ZCn
2
(x1, x2) =

1

2n

(
x2

n

1 + (2n − 1)x2
n−1

2

)
.

На основу Појине теореме број класа еквиваленције Булових функција од две
променљиве у односу на групу Cn

2 једнак је

Un(C
n
2 ) = ZCn

2
(2, 2) =

1

2n
(22

n

+ (2n − 1)22
n−1

).

2.2.3 Израчунавање Vn(G) на основу Де Бројнове
теореме

Де Бројн (De Bruiјn) [5, 6] је разматрао генерализацију Појине (Pólya) [32]
теореме на случај када не само на скуп D, већ и на скуп R делује пермута-
циона група. Другим речима, разматрају се две пермутационе групе G и H,
од којих прва делује на скуп D, друга на скуп R [5, 6]. Две функције f1, f2 из
RD су еквивалентне, f1 ∼ f2, ако постоје пермутације g ∈ G и h ∈ H, такве
да за свако d ∈ D важи f1(g(d)) = h(f2(d)). Релација ∼ је релација екви-
валенције, па се скуп RD може поделити на класе еквиваленције - шаблоне.
Свакој функцији f ∈ RD додeљује се тежина W (f), уз услов да еквивалентне
функције имају исту тежину, тј. из f1 ∼ f2 следи W (f1) = W (f2). Шаблону
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F додељује се тежина W (f) која је једнака тежини било које функције f ∈ F
из шаблона. Потребно је одредити инвентар шаблона, односно суму тежина
свих шаблона.

За функцију f = f(x1, . . . , xn) од више променљивих, као што је уобичаје-
но, ∂f

∂xi
означава парцијални извод по променљивој xi, 1 ⩽ i ⩽ n.

Теорема 2.2.3. Инвентар шаблона за функције f ∈ RD уз претходно дефи-
нисану класу еквиваленције износи:∑

F∈F

W (F ) =
1

|G||H|
∑
g∈G

∑
h∈H

∑
fg=hf

W (f)

где је F скуп свих шаблона, а
(g,h)∑
f

W (f) означава суму свих тежина W (f)

функција f таквих да важи fg = hf .

Доказ. Нека је w једна од могућих вредности тежине W и нека је S скуп
свих функција f ∈ RD таквих да важи W (f) = w. Нека је на Декартовом
производу G × H који се састоји од свих производа g × h за g ∈ G, h ∈ H

множење дефинисано једнакошћу:

(g × h)(g′ × h′) = (gg′)× (hh′).

Сваком пару g × h ∈ G × H доделимо функцију πg×h : S 7→ S дефинисану
једнакошћу:

πg×hf1 = f2 ⇔ f2 = hf1g
−1.

Докажимо да је πg×h пермутација скупа S. Из f2 = hf1g
−1 следи f1 ∼ f2 па је

W (f1) =W (f2), тј. πg×h пресликава скуп S у себе самог (πg×h : S → S). Поред
тога, πg×h има инверзну функцију, пошто важи

h−1f2(g
−1)−1 = h−1hf1g

−1(g−1)−1 = f1.

Дакле, πg×h је пермутација скупа S. Даље, пресликавање g × h → πg×h пред-
ставља хомоморфизам. Заиста, ако g, g′ ∈ G, h, h′ ∈ H, онда за свако f ∈ S
важи

π(g×h)(g′×h′)f = πgg′×hh′f = (hh′)f(gg′)−1

и
πg×h(πg′×h′f) = πg×h(h

′fg′−1) = h(h′fg′−1)g−1
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одакле следи:
π(g×h)(g′×h′) = πg×hπg′×h′.

Две функције f1 и f2 (два елемента скупа S) су еквивалентне ако постоје g и
h такве да важи πg×hf2 = f1. Према томе, на основу Фробенијусове теореме,
број шаблона који припадају скупу S износи:

1

|G||H|
∑
g∈G

∑
h∈H

ψw(g, h), (2.16)

где је ψw(g, h) број функција f таквих да је W (f) = w и πg×hf = f (одно-
сно hf = fg). Када се израз (2.16) помножи са w и сумира по свим могућим
вредностима за w, из чињенице да је збир тежина свих функција (које задово-
љавају наведене услове) једнак суми производа шаблона и њихових тежина,
тј. ∑

w

ψw(g, h)w =
∑

fg=hf

W (f),

следи тврђење теореме.

Размотримо сада шаблоне 1-1 пресликавања. Дефинишимо тежину W (f)

било које функције f ∈ RD једнакошћу:

W (f) =

{
1, f је 1− 1

0, f није 1− 1

За g ∈ G, h ∈ H пресликавање hfg−1 је 1-1 ако и само ако је f 1-1, па тежина
W (f) задовољава услов константности на класи еквиваленције функција:

f1 = hf2g
−1 ⇒W (f1) =W (f2), тј. f1 ∼ f2 ⇒W (f1) =W (f2).

Теорема 2.2.4. Број шаблона за 1-1 функције f ∈ RD уз претходно дефини-
сану релацију еквиваленције износи:

ZG

( ∂

∂x1
,
∂

∂x2
,
∂

∂x3
, . . .

)
ZH(1 + x1, 1 + 2x2, 1 + 3x3, . . . ),

при чему се вредност израза рачуна у тачки x1 = x2 = x3 = · · · = 0.

Доказ. Да би се на основу теореме 2.2.3 одредио инвентар шаблона
∑

W (F )

(једнак броју шаблона 1-1 функција), потребно је прво израчунати
∑

fg=hf

W (f).
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Нека су g ∈ G и h ∈ H фиксиране пермутације. Нека је g типа (b1, b2, b3, . . . )

и h типа (c1, c2, c3, . . . ) (овде bi, односно ci, означавају број циклуса дужине
i). Потребно је пронаћи број 1-1 пресликавања f : D 7→ R која задовољавају
услов fg = hf , односно треба пронаћи број фиксних тачака.
Нека је f пресликавање које задовољава услов fg = hf и нека елемент d ∈ D
припада циклусу дужине i. Тај циклус се састоји од елемената:

d, gd, g2d, . . . , gi−1d. (2.17)

Пошто је циклус дужине i, важи gid = d. Из fg = hf следи:

fg2 = fgg = hfg = hhf = h2f

и слично:
fg3 = fg2g = h2fg = h2hf = h3f.

Генерално, за произвољно i важи hifd = fgid = fd. Дакле, елементе из
циклуса (2.17) f слика у елементе:

hifd, hfd, h2fd, . . . , hi−1fd. (2.18)

Из hifd = fd следи да дужина циклуса из скупа R коме припада елемент fd
мора бити делилац броја i.
До сада смо посматрали произвољну функцију f ∈ RD. Ако се додатно уведе
услов да је f 1-1 пресликавање, онда два различита елемента из (2.17) не могу
добити исту вредност међу елементима из (2.18), односно међу елементима из
списка (2.18) нема понављања. Одатле следи да је дужина циклуса коме при-
пада елемент fd једнака i. Другим речима, циклус из D дужине i пресликава
се у циклус из R који је такође дужине i. Пошто је f 1-1, различити циклуси
из D сликају се у различите циклусе из R.
Сада је јасно да је при конструкцији 1-1 функције f , која задовољава услов
fg = gh, потребно сваком циклусу из D узајамно једнозначно доделити ци-
клус исте дужине из R. Приликом доделе циклуса дужине i из D циклусу
из R, због кружне повезаности елемената унутар циклуса, могуће је сва-
ком елементу циклуса из D доделити i елемената придруженог циклуса из
R. Ако је скуп D састављен од bi циклуса и скуп R од ci циклуса дужи-
не i, тада се таквим циклусима из D могу придружити циклуси из R на

ci!
(ci−bi)!

= ci(ci− 1)(ci− 2) · · · (ci− bi +1) начина. Ако је ci < bi, онда такво 1− 1
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пресликавање не постоји; у производу неки чинилац постаје нула (за неко
k, ci + k = bi), па је број пресликавања нула. Дакле, број 1− 1 пресликавања
f : D → R, fg = gh једнак је:

(g,h)∑
f

W (f) =
∏
i:bi>0

ibici(ci − 1) · · · (ci − bi + 1). (2.19)

Ако је bi = 0, онда је производ ci · · · (ci − 0 + 1) без чинилаца, па се може
сматрати да је једнак 1. Производ icc(c − 1)(c − 2) · · · (c − b + 1) у ствари
представља парцијални извод b-тог реда израза (1 + ix)c по променљивој x у
тачки x = 0. Због тога се производ у (2.19) може заменити низом парцијалних
извода по променљивама x1, x2, x3, . . .( ∂

∂x1

)b1( ∂

∂x2

)b2( ∂

∂x3

)b3 · · · (1 + x1)
c1(1 + 2x2)

c2(1 + 3x3)
c3 · · · (2.20)

у тачки x1 = x2 = x3 = · · · = 0.
Полазна претпоставка је била да су пермутације g ∈ G и h ∈ H фиксира-
не. Проласком кроз све пермутације g ∈ G и h ∈ H и дељењем са |G||H|,
израз (2.20) постаје инвентар шаблона за 1 − 1 пресликавања, што у овом
случају уједно представља и број шаблона за 1−1 пресликавања. Диференци-
јални оператор у (2.20) добија се од монома циклусног индекса ZG(z1, z2, . . . )

заменама zi = ∂
∂xi

. Операнд у том изразу добија се заменама zi = 1 + ixi

у члану циклусног индекса ZH(z1, z2, . . . ). Сумирањем се долази до тврђења
теореме.

У случају |R| < |D| број 1− 1 пресликавања је нула. Пресликавање 1− 1 у
случају |R| = |D| постаје и „на” пресликавање, односно бијекција, па можемо
формулисати следећу теорему.

Теорема 2.2.5. Број шаблона за бијективне функције f ∈ RD уз претходно
дефинисану релацију еквиваленције једнак је вредности израза

ZG

( ∂

∂x1
,
∂

∂x2
,
∂

∂x3
, . . .

)
ZH(x1, 2x2, 3x3, . . . ). (2.21)

израчунатог у тачки x1 = x2 = x3 = · · · = 0.

Доказ. Из претпоставке |D| = |R|, следи
∑
i

bi =
∑
i

ci, па постоје две могућ-

ности: или је b1 = c1, b2 = c2, . . . или је бар за један индекс i bi > ci.
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У другом случају производ
∏
i:bi>0

ibici(ci − 1) · · · (ci − bi + 1) постаје нула и

самим тим израз ZG

(
∂

∂x1
, ∂
∂x2
, ∂
∂x3
, . . .

)
ZH(1 + x1, 1 + 2x2, 1 + 3x3, . . . ) постаје

нула. Дакле, мора бити b1 = c1, b2 = c2, . . . , bi = ci, . . . па је:∏
i:bi>0

ibici(ci − 1) · · · (ci − bi + 1) =
∏
i:bi>0

ibici(ci − 1) · · · 1 =
∏
i:bi>0

ibici!.

Како за b = c важи icc! =
(

∂
∂x

)c
(ix)c =

(
∂
∂x

)b
(ix)c = ibc! у тачки x = 0, следи да

производ ibc! представља b-ти парцијални извод израза (ix)c променљиве x у
тачки x = 0. Самим тим израз (2.20) увек има исту вредност као израз( ∂

∂x1

)b1( ∂

∂x2

)b2( ∂

∂x3

)b3 · · · (x1)c1(2x2)c2(3x3)c3 · · · (2.22)

израчунат у тачки x1 = x2 = x3 = · · · = 0.

Пошто бијективно пресликавање из D у R подразумева да постоји инвер-
зно пресликавање из R у D, у претходном производу циклусних индекса групе
трансформација могу заменити места:

ZG

( ∂

∂x1
,
∂

∂x2
, . . .

)
ZH(x1, 2x2, . . . ) = ZH

( ∂

∂x1
,
∂

∂x2
, . . .

)
ZG(x1, 2x2, . . . ) (2.23)

Последица 2.2.2. Специјално, ако је

ZG(f) =
1

|G|
∑
g∈G

f type(g) =
1

|G|
∑
p∈Pn

g(p)f p1
1 f

p2
2 · · · f pn

n

=
1

|G|
∑
p∈Pn

g(p)f p.

циклусни индекс групе G, једне од четири типа разматраних група, тада је

Vn(G) = ZG

( ∂
∂t1

,
∂

∂t2
, . . . ,

∂

∂tN

)
·

ZG(t1, 2t2, . . . , NtN)
∣∣
t1=···=tN=0

=
1

|G|2
∑
p∈PN

g(p)2
N∏
i=1

ipipi!. (2.24)

Следећа теорема може олакшати рачунање израза (2.22).

Теорема 2.2.6. Сабирак облика:[
p
( ∂b1

∂xi1

∂b2

∂xi2
· · · ∂

bs

∂xis

)
q
(
(k1xk1)

c1(k2xk2)
c2 · · · (ksxks)cs

)]
x1=x2=···=xs=0
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једнак је:  pq

s∏
r=1

kbrr br!, ако i1 = k1, . . . , is = ks

0, у супротном
(2.25)

Доказ. Важи b1 = c1, b2 = c2, . . . bs = cs. Треба приметити да уколико струк-
тура циклуса израза у диференцијалном оператору није иста као у изразима
ван њега, резултат диференцирања је нула. Структура циклуса биће иста за
i1 = k1, . . . , is = ks, одакле после примене диференцирања следи (2.25).

Пример 2.2.6. У случају инвертибилних Булових функција група Cn
2 делује

и на улазе и на излазе. Број различитих комплементирања улазних и из-
лазних променљивих је |Gx| = |Gf | = 2n, па је укупан број транформација
|G| = |Gx|·|Gf | = 2n2n = 22n. Број фиксних тачака идентичке трансформаци-
је једнак је броју Булових инвертибилних функција 2n!. Из циклусног индекса
(видети пример 2.2.5) види се да постоји 2n−1 неиндентичких пермутација
са по 2n−1 двочланих циклуса, што значи да се типови улазних и излазних
циклуса поклапају у (2n − 1) · (2n − 1) = (2n − 1)2 случајева. Број фиксних
тачака неидентичке трансформације је 2n−1!22

n−1:

• 2n−1 двочланих циклуса између себе могу заменити места на 2n−1! на-
чина, чиме Булова инвертибилна функција остаје непромењена.

• Уколико се примени кружна замена елемената унутар сваког двочланог
циклуса, такође се добија фиксна тачка. Таквих замена има 22

n−1.

Према томе, број класа еквиваленције за инвертибилне Булове функције под
дејством Cn

2 износи:

Vn(C
n
2 ) =

2n! + (2n − 1)2 · 2n−1! · 22n−1

22n
.

До истог резултата долази се применом теореме 2.2.5, која даје број класа
еквиваленције када група Cn

2 делује на улазе и на излазе:

ZCn
2

( ∂

∂x1

∂

∂x2

)
ZCn

2

(
x1, 2x2

)
=

1

2n

( ∂2n

∂x1
+(2n−1)∂

2n−1

∂x2

) 1

2n

(
x2

n

1 +(2n−1)(2x2)2
n−1
)

Применом леме 2.2.6 или директним рачунањем добијају се чланови разли-
чити од нуле:

∂2n

∂x1
x2

n

1 = 2n!
∂2n−1

∂x2
(2x2)

2n−1

= 22
n−1

2n−1!
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Према томе, тражени број класа еквиваленције једнак је:

ZCn
2

( ∂

∂x1

∂

∂x2

)
ZCn

2

(
x1, 2x2

)
=

2n! + (2n − 1)2 · 2n−1! · 22n−1

22n
.

2.3 Циклусни индекси за четири групе

трансформација

Нека су S′
n, Gn, GLn и AGLn редом група пермутација, група композици-

је пермутација и комплементирања променљивих, линеарна група и афина
група које делују на Bn. У овом одељку приказује се поступак израчунавања
циклусних индекса за све четири групе трансформација.

Де Бројн ([5, 6]) уводи уопштење Појине теореме [32]. Ашенхурст (Ashenhurst [2])
и Слепијан (Slepian [36]) изводе уопштени образац за ZGn . На основу њихових
радова, Харисон [22, 23, 24] је извео изразе за циклусни индекс за S′

n, Gn,
GLn и AGLn и приказује њихове вредности за n ⩽ 6. У циљу рачунања Vn,
Применко (Primenko [33]) користи алтернативни приступ.

2.3.1 Група пермутација

Теорема 2.3.1. Ако је d дужина циклуса пермутације σ′
n ∈ S′

n индукованог
циклусом σn ∈ Sn дужине k, онда важи d|k.

Доказ. За било који елемент x ∈ Bn важи σk(x) = x. То значи да орбита
елемента x има највише k елемената, тј. d ⩽ k. Из чињенице да је σd(x) = x

следи d|k.

Пример 2.3.1. За n = k = 6, σ = (1 2 3 4 5 6), орбита елемента 001001 је
величине 3 (σ3(001001) = 001001), а орбита елемента 010101 је величине 2

(σ2(010101) = 010101). У оба случаја величина орбите дели k = 6.

Нека је e(d) број орбита дужине d у σ′ ∈ S′
n . Циклус дужине k када делује

на елементе скупа Bk, разлаже тај скуп на e(d) орбита дужине d за све d|k,
па је

e(k) =

{
2, k = 1
1
k

(
2k −

∑
d|k,d̸=k d · e(d)

)
, k > 1.

(2.26)

Низ e(n) такође означава број несводљивих полинома степена n над пољем
GF(2) (или број различитих огрлица од n-перли обојених у 2 боје - огрлице
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су апериодичне (не састоје се од поновљених низова, односно примитивни
период је n), а бројање се врши „без превртања“ (без обртања редоследа перли)
видети [30, низ A001037]).

Пример 2.3.2. Могуће огрлице од 5 перли када замена две боје није дозвоље-
на су: PPPPB,BBBBP,PPPBB,BBBPP,PBPPB,BPBBP . Уз дозвољену
замену боја, парови који се међусобно преклапају представљају исту боју, па
су такве огрлице облика: PPPPB,PPPBB,PBPPB. Дакле, e(5) = 6.

Неколико ненула чланова низa e(n) приказани су у табели 2.7.

Табела 2.7: Низ e.

n 1 2 3 4 5 6 7 8 9 10
e(n) 2 1 2 3 6 9 18 30 56 99

Теорема 2.3.2. Циклус дужине k пермутације σ ∈ Sn индукује циклус пер-
мутације σ′ ∈ S′

n са циклусном структуром:∏
d|k

f
e(d)
d .

Пример 2.3.3. Специјално, ако је k прост број, тада циклус дужине k

индукује циклусну структуру f 2
1 f

2k−2
k

k , тј. пермутацију која има две фиксне
тачке и (2k−2)/k циклуса дужине k. На основу мале Фермаове теореме 2k−2

k

је цео број.

Последица 2.3.1. Пермутација σ ∈ Sn типа p = type(σ) ∈ Pn индукује
партицију типа type(σ′) = p′ = (p′1, p

′
2, . . . , p

′
N) са циклусном структуром

f p′ =
ą

1⩽j⩽n
pj>0

∏
d|j

f
e(d)
d

×pj

.

Пример 2.3.4. За n = 4 постоје следеће партиције скупа од n елемената

(0, 0, 0, 1), (0, 2, 0, 0), (1, 0, 1, 0), (2, 1, 0, 0), (4, 0, 0, 0)

Овим партицијама одговарају редом пермутације са циклусном структуром
одређеном мономима t4, t22, t1t3, t21t2, t41. На основу теореме 2.3.2 добијају се
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мономи који одговарају циклусним структурама одговарајућих индукованих
пермутација из S′

4:

t4 → f 2
1 f2f

3
4 , t22 = t2t2 → f 2

1 f2 × f 2
1 f2, t1t3 → f 2

1 × f 2
1 f

2
3

t21t2 = t1t1t2 → f 2
1 × f 2

1 × f 2
1 f2 t41 = t1t1t1t1 → f 2

1 × f 2
1 × f 2

1 × f 2
1

Пример 2.3.5. Посматрајмо пермутацију из S4 са структуром која одговара
моному t1t3. Из примера 2.3.4 коресподенција између S4 и S′

4 представљена
је са t1t3 → f 2

1 × f 2
1 f

2
3 . Циклус t3 делује на следећи начин:

x1 x2 x3 p(x1) p(x2) p(x3)

0 0 0 0 0 0

0 0 1 1 0 0

0 1 0 0 0 1

0 1 1 1 0 1

1 0 0 0 1 0

1 0 1 1 1 0

1 1 0 0 1 1

1 1 1 1 1 1

Циклус (1 2 3) индукује циклусе (0)(1 4 2)(3 5 6)(7), тј. t3 индукује f 2
1 f

2
3 .

Пример 2.3.6. На елементе из B4 пермутација (1)(2 3 4) са циклусном
структуром t1t3 делује на следећи начин:
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x1 x2 x3 x4 p(x1) p(x2) p(x3) p(x4)

0 0 1 0 0 0 0 1

0 0 0 0 0 0 0 0

0 0 0 1 0 1 0 0

0 0 1 1 0 1 0 1

0 1 0 0 0 0 1 0

0 1 0 1 0 1 1 0

0 1 1 0 0 0 1 1

0 1 1 1 0 1 1 1

1 0 0 0 1 0 0 0

1 0 0 1 1 1 0 0

1 0 1 0 1 0 0 1

1 0 1 1 1 1 0 1

1 1 0 0 1 0 1 0

1 1 0 1 1 1 1 0

1 1 1 0 1 0 1 1

1 1 1 1 1 1 1 1

Прва колона излаза (пета колона табеле) је резултат дејства циклуса ду-
жине 1, док последње три колоне представљају t3. Уколико изузмемо прву
колону у улазу и излазу, горња и доња половина табеле су исте и идентич-
не са табелом из претходног примера. Према томе, циклусној структури
индуковане пермутације одговара моном f 4

1 f
4
3 .

Претходно разматрање може се интерпретирати и на следећу начин:
Нека су A = {a1, b1} и B = {a2, b2, c2, d2, e2, f2, g2, h2}. Нека на скуп A делује
пермутација (a1)(b1), а на скуп B пермутација (a2)(b2 c2 d2)(e2 f2 g2)(h2).
Тада се могу формирати следећи циклуси индуковане пермутације над скупом
A×B:

(a1, a2)

(a1, h2)

(b1, a2)

(b1, h2)

(a1, b2)→ (a1, c2)→ (a1, d2)

(a1, e2)→ (a1, f2)→ (a1, g2)
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(b1, b2)→ (b1, c2)→ (b1, d2)

(b1, e2)→ (b1, f2)→ (b1, g2)

Дакле, производ f 2
1 × f 2

1 f
2
3 представља упаривање елемената између скупа

од 2 елемента и скупа од 1 · 2 + 3 · 2 = 8 елемената. Унутар првог скупа
(пермутације) постоје два једночлана циклуса, док унутар другог скупа по-
стоје два једночлана и два трочлана циклуса. Циклусна форма првог скупа
утиче на циклусну форму другог скупа, тако што се упарују циклуси првог
скупа са циклусима другог скупа: f 2

1 × f 2
1 f

2
3 = (f 2

1 × f 2
1 )(f

2
1 × f 2

3 ) = f 4
1 f

4
3 . Треба

приметити да се унутар приказаних циклуса налазе сви парови из скупа
A×B.

Циклусни индекс групе S′
n дат је формулом

ZS′
n
(f) =

1

n!

∑
p∈Pn

n!∏n
i=1 i

pipi!

ą

1⩽j⩽n
pj>0

∏
d|j

f
e(d)
d

×pj

, (2.27)

Пример 2.3.7. На основу теореме 2.3.2

Z(S′
3) =

f 8
1 + 2f 2

1 f
2
3 + 3f 4

1 f
2
2

6

па је на основу (2.15)

U3(S
′
3) =

28 + 2 · 22 · 22 + 3 · 24 · 22

6
= 80.

и на основу (2.24)

V3(S
′
3) =

12 · 18 · 8! + ·22 · 12 · 2! · 32 · 2! + 32 · 14 · 4! · 22 · 2!
36

= 1172.

Табела 2.8 приказује циклусни индекс ZS′
n
(f) за 1 ⩽ n ⩽ 8, видети на

пример [24].

2.3.2 Група пермутација и комплементирања

Нека је Cn
2 = {(i1, . . . , in) | ij ∈ {0, 1}, 1 ⩽ j ⩽ n}. Ако је i = (i1, . . . , in) ∈

Cn
2 , дефинишимо i(x1, . . . , xn) = (xi11 , . . . , x

in
n ) где је

x
ij
j =

{
xj, ij = 0

x̄j, ij = 1
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Табела 2.8: Циклусни индекс Zn(S
′
n), 1 ⩽ n ⩽ 8.

n Zn(S
′
n)

1 f2
1

2 1
2

(
f4
1 + f2

1 f2
)

3 1
6

(
f8
1 + 3f4

1 f
2
2 + 2f2

1 f
2
3

)
4 1

24

(
f16
1 + 6f8

1 f
4
2 + 3f4

1 f
6
2 + 8f4

1 f
4
3 + 6f2

1 f2f
3
4

)
5 1

120

(
f32
1 + 10f16

1 f8
2 + 15f8

1 f
12
2 + 20f8

1 f
8
3 + 30f4

1 f
2
2 f

6
4 + 20f4

1 f
2
2 f

4
3 f

2
6 + 24f2

1 f
6
5

)
6

1
720

(
f64
1 + 15f32

1 f16
2 + 45f16

1 f24
2 + 40f16

1 f16
3 + 15f8

1 f
28
2 + 90f8

1 f
4
2 f

12
4 + 120f8

1 f
4
2 f

8
3 f

4
6 +

40f4
1 f

20
3 f4

1 + 90f6
2 f

12
4 + 144f4

1 f
12
5 + 120f2

1 f2f
2
3 f

9
6

)
7

1
5040

(
f128
1 + 21f64

1 f32
2 + 105f32

1 f48
2 + 70f32

1 f32
3 + 105f16

1 f56
2 + 210f16

1 f8
2 f

24
4 +

420f16
1 f8

2 f
16
3 f8

6 + 280f8
1 f

40
3 + 630f8

1 f
12
2 f24

4 + 504f8
1 f

24
5 + 210f8

1 f
12
2 f8

3 f
12
6 +

840f4
1 f

2
2 f

4
3 f

18
6 + 504f4

1 f
2
2 f

12
5 f6

10 + 420f4
1 f

2
2 f

4
3 f

6
4 f

2
6 f

6
12 + 720f2

1 f
18
7

)

8

1
40320

(
f256
1 + 28f128

1 f64
2 + 210f64

1 f96
2 + 112f64

1 f64
3 + 420f32

1 f112
2 + 420f32

1 f16
2 f48

4 +

1120f32
1 f16

2 f32
3 f16

6 + 105f16
1 f120

2 + 1120f16
1 f80

3 + 2520f16
1 f24

2 f48
4 + 1344f16

1 f48
5 +

1680f16
1 f24

2 f16
3 f24

6 + 1260f8
1 f

28
2 f48

4 + 3360f8
1 f

4
2 f

8
3 f

36
6 + 1120f8

1 f
4
2 f

40
3 f20

6 +
4032f8

1 f
4
2 f

24
5 f12

10 +3360f8
1 f

4
2 f

8
3 f

12
4 f4

6 f
12
12 +1260f4

1 f
6
2 f

60
4 +3360f4

1 f
6
2 f

4
3 f

38
6 +5760f4

1 f
36
7 +

2688f4
1 f

4
3 f

12
5 f12

15 + 5040f2
1 f2f

3
4 f

30
8

)

Размотримо скуп векторских инвертибилних Булових функција (у даљем
тексту функција), односно скуп SN пермутација скупа Bn, где је N = 2n.
Функција F ∈ SN пресликава n-торку X = (x1, ..., xn) ∈ Bn у Y = (y1, ..., yn) =

F (X). Ако дозволимо и комплементирања променљивих, онда је индукована
друга група, Cn

2 × Sn, реда n!2n. Елемент групе (i, σ) ∈ Cn
2 × Sn пресликава

X = (x1, ..., xn) ∈ Bn у Gn = (xi1σ(1), . . . , x
in
σ(n)) ∈ Bn.

Нека g(n) означава број апериодичних различитих огрлица од n-перли
обојених у 2 боје где се бројање врши „без превртања“, али тако да две боје
могу бити замењене (видети [30], низ A000048). Тада је g(n) = 0 за свако
непарно n, g(2) = 1, и

g(2k) =
1

2k

2k −
∑

d|2k,d∤k,d<2k

d · g(d)

 , k > 1.

Ако је σ ∈ Sn циклична пермутација (пермутација која има један циклус
дужине n), циклус дужине k из (i, σ), уколико је wt(i) парно, у σ′ индукује
пермутацију са мономом циклусног индекса∏

d|k

f
e(d)
d .

У супротном, ако је wt(i) непарно, циклус дужине k индукује∏
d|2k,d∤k

f
g(d)
d ,
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па циклус дужине k из σ (узимајући у обзир сва могућа комплементирања i)
индукује 2k пермутација којима одговара сума монома

bk = 2k−1

∏
d|k

f
e(d)
d +

∏
d|2k,d∤k

f
g(d)
d

 .

Неколико ненула чланова низа g(n) приказани су у табели 2.9.

Табела 2.9: Низ g.

n 1 2 3 4 5 6 7 8 9 10
g(2n) 1 1 1 2 3 5 9 16 28 51

Циклусни индекс ZGn(f) дат је са

∑
p∈Pn

ą

1⩽j⩽n
pj>0

∏
d|i

f
e(d)
d +

∏
d|2i,d∤i

f
g(d)
d

×pi

∏n
i=1(2i)

pipi!
. (2.28)

Пример 2.3.8. Размотримо циклусни индекс групе G3.

t31 −→ b1 × b1 × b1 = (f 2
1 + f2)× (f 2

1 + f2)× (f 2
1 + f2)

=
(
(f 2

1 × f 2
1 ) + (f 2

1 × f2) + (f2 × f 2
1 ) + (f2 × f2)

)
× (f 2

1 + f2)

= (f 4
1 + f 2

2 + f 2
2 + f 2

2 )× (f 2
1 + f2) = (f 4

1 + 3f 2
2 )× (f 2

1 + f2)

= (f 4
1 × f 2

1 ) + (f 4
1 × f2) + (3f 2

2 × f 2
1 ) + (3f 2

2 × f2)

= f 8
1 + f 4

2 + 3f 4
2 + 3f 4

2 = f 8
1 + 7f 4

2

t1t2 −→ b1 × b2 = (f 2
1 + f2)× 2(f 2

1 f2 + f4)

= 2 ·
(
(f 2

1 × f 2
1 f2) + (f 2

1 × f4) + f2 × f 2
1 f2) + (f2 × f4)

)
= 2 ·

(
(f 2

1 × f 2
1 )(f

2
1 × f2) + f 2

4 + (f2 × f 2
1 )(f2 × f2) + f 2

4

)
= 2 · (f 4

1 f
2
2 + f 2

4 + f 2
2 f

2
2 + f 2

4 ) = 2 · (f 4
1 f

2
2 + 2f 2

4 + f 4
2 )

= 2f 4
1 f

2
2 + 4f 2

4 + 2f 4
2

t3 −→ b3 = 22 · (f 2
1 f

2
3 + f2f6) = 4f 2

1 f
2
3 + 4f2f6

Полином циклусног индекса Z(G3) дат је изразом:

Z(G3) =
f 8
1 + 7f 4

2 + 3(2f 4
1 f

2
2 + 4f 2

4 + 2f 4
2 ) + 2(4f 2

1 f
2
3 + 4f2f6)

3!23
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Приметимо да
{
(i, σ)| type(σ) = (1, 1, 1)

}
и
{
(j, σ)| type(σ) = (1, 2)

}
за неко

i ∈ Cn
2 и j ∈ Cn

2 производе исти тип монома (f 4
2 ). Након сабирања чланова

истог типа добија се:

Z(G3) =
f 8
1 + 13f 4

2 + 6f 4
1 f

2
2 + 12f 2

4 + 8f 2
1 f

2
3 + 8f2f6

48

На основу (2.15) важи:

U3(G3) =
28 + 13 · 24 + 6 · 24 · 22 + 12 · 22 + 8 · 22 · 22 + 8 · 21 · 21

48
= 22

Разлика између S′
n и Gn јасно се види у расподели бројева њихових фиксних

тачака приликом дејства парова тачака на скуп инвертибилних Булових
функција. Према (3.4), расподела фиксних тачака за n = 3 за све пермута-
ције у композицији са идентичком трансформацијом комплементирања (тј.
расподела за S′

3) приказана је у табели 2.10:

Табела 2.10: Расподела фиксних тачака под дејством групе S′
3 × S′

3

2 1 0 1 2 0 2 0 1 0 2 1 0 1 2 1 0 2
(1)(0 2) (0 1 2) (0 2 1) (0)(1 2) (0)(1)(2) (0 1)(2)

(1)(0 2) 192 0 0 192 0 192
(0 1 2) 0 36 36 0 0 0
(0 2 1) 0 36 36 0 0 0
(0)(1 2) 192 0 0 192 0 192
(0)(1)(2) 0 0 0 0 40320 0
(0 1)(2) 192 0 0 192 0 192

Примећује се да се фиксне тачке постоје једино у случају када је тип
пермутације улазних променљивих једнак типу пермутације излазних про-
менљивих. Расподела фиксних тачака за n = 3 свих пермутација у компози-
цији са свим комплементирањима (тј. расподела за G3) дата је циклусним
индексом:

Z(G3) =
f 8
1 + 7f 4

2 + 3(2f 4
1 f

2
2 + 4f 2

4 + 2f 4
2 ) + 2(4f 2

1 f
2
3 + 4f2f6)

48

и приказана је у табели 2.11. Све улазне трансформације упарују се са свим
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Табела 2.11: Расподела фиксних тачака под дејством групе G3 ×G3

2 1 0 1 2 0 2 0 1 0 2 1 0 1 2 1 0 2
(1)(0 2) (0 1 2) (0 2 1) (0)(1 2) (0)(1)(2) (0 1)(2)

(1)(0 2) 2816 0 0 2816 5376 2816
(0 1 2) 0 768 768 0 0 0
(0 2 1) 0 768 768 0 0 0
(0)(1 2) 2816 0 0 2816 5376 2816
(0)(1)(2) 5376 0 0 5376 59136 5376
(0 1)(2) 2816 0 0 2816 5376 2816

излазним трансформацијама и производе следеће бројеве фиксних тачака:

t31 ◦ t31 −→ 12 · 8! · 18 + 72 · 4! · 24 = 40320 + 18816 = 59136

t1t2 ◦ t1t2 −→ 22 · 4! · 14 · 2! · 22 + 42 · 2! · 24 + 22 · 4! · 24 = 768 + 512 + 1536 = 2816

t3 ◦ t3 −→ 42 · 2! · 12 · 2! · 32 + 42 · 1! · 2 · 1! · 6 = 576 + 192 = 768

t31 ◦ t1t2 −→ 7 · 2 · 4! · 24 = 5376

па је на основу (2.24):

V3(G3) =
12 · 59136 + 32 · 2816 + 22 · 768 + 2 · 3 · 5376

(3! · 23)2
=

59316 + 25344 + 3072 + 32256

482

=
119808

2304
= 52.

2.3.3 Линеарна група

У овој тачки изводи се циклусни индекс за линеарну групу. Теореме 2.3.3
и 2.3.4 наводе се без доказа.

Теорема 2.3.3. [18] Нека су елементарни делитељи матрице A ∈Mn(GF(q))

f 1, . . . , f 1︸ ︷︷ ︸
µ1

, . . . , f s, . . . , f s︸ ︷︷ ︸
µs

где је f ∈ GF(q)[x] монички несводљиви полином степена d. Тада је

|CGL(n,q)(A)| = qd
∑

1⩽i,j⩽s min(i,j)µiµj

s∏
i=1

µi∏
u=1

(1− q−du). (2.29)

Теорема 2.3.4. [18] Нека су елементарни делитељи матрице A ∈Mn(GF(q))
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f 1
1 , . . . , f

1
1︸ ︷︷ ︸

µ
(1)
1

, . . . , f s1
1 , . . . , f

s1
1︸ ︷︷ ︸

µ
(1)
s1

...

f 1
t , . . . , f

1
t︸ ︷︷ ︸

µ
(t)
1

, . . . , f st
t , . . . , f

st
t︸ ︷︷ ︸

µ
(t)
st

где су f1, . . . , ft ∈ GF(q)[x] монички несводљиви полиноми степена deg(fk) =
dk. Тада је

|CGL(n,q)(A)| = q
∑t

k=1 dk
∑

1⩽i,j⩽sk
min(i,j)µ

(k)
i µ

(k)
j

t∏
k=1

sk∏
i=1

µ
(k)
i∏

u=1

(1− q−dku). (2.30)

Нека Pn(x) означава n-ти несводљиви полином над GF(2) ако је искључен
полином x (као једини несводљиви полином са константним чланом 0). Нека
di означава степен полинома Pi(x), и нека ei означава ред полинома Pi(x),
тј. ei = mink>0 Pi(x) | xk − 1 (дељивост је дефинисана у GF(2)[x]). Неколико
првих чланова низова Pi(x), di, ei приказани су у табели 2.12; полиноми су
лексикографски поређани као тројке (di, ei, Pi).

Табела 2.12: Листа првих 8 несводљивих полинома Pi(x), заједно са њиховим
степенима di и редовима ei.

i P (i) di ei
1 1 + x 1 1
2 1 + x+ x2 2 3
3 1 + x+ x3 3 7
4 1 + x2 + x3 3 7
5 1 + x+ x2 + x3 + x4 4 5
6 1 + x+ x4 4 15
7 1 + x3 + x4 4 15
8 1 + x+ x2 + x3 + x5 5 31

Нека је матрица A ∈ GL(2, n) дата у канонској форми изразима (2.11)
и (2.12) (тј. као блок дијагонална матрица хипер-придружених матрица не-
сводљивих полинома над пољем GF(2)). Нека је

χA(x) =

s∏
i=1

Pi(x)
ai

где је ai =
∑

j jα
(i)
j =

∑
j jαij и

∑s
i=1 aidi = n (видети изразе (2.11) и (2.12)).

Сваки несводљиви полином може се појавити као делилац карактеристичног
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полинома матрице A ∈ GL(2, n), па важи

χA(x) =

tn∏
i=1

Pi(x)
ai .

Дејство матрице A може се представити као директни производ (видети из-
раз (2.13))

tn
ą

i=1

ai
ą

j=1

H(P j
i )

Ś

αij . (2.31)

Дакле, да би смо знали циклусни тип матрице A, довољно је знати типове
индукованих хипер-придружених матрица. Циклусни тип хипер-придружене
матрице несводљивог полинома може се извести из његовог реда.

Теорема 2.3.5. Нека је P (x) несводљиви полином степена d. Нека еле-
ментарном делитељу P (x)k реда ek одговара хипер-придружена матрица
H(P (x)k) димензије kd. Нека је V векторски простор над пољем F kd

2 . Ци-
клусна структура коју индукује H(P (x)k) је

f1

k∏
i=1

f (2id−2(i−1)d)/ei
ei

.

Доказ. H(P (x)k) индукује циклусе чији је збир дужина 2kd. На основу Tеоре-
ме 2.1.12, дужина неког индукованог циклуса је ek. Дејство матрице H(P (x)k)

на векторе са првих d координата једнаким нули аналогно је дејству матрице
H(P (x)k−1) над векторима над пољем F

(k−1)d
2 (краћим за првих d координата)

чија дужина циклуса на основу Tеореме 2.1.16 дели ek−1. Приметимо да важи
ej = e12

⌈log2j⌉. Дакле, циклусна структура индукована дејством H(P (x)k) на
векторе код којих првих d координата нису истовремено нула је f (2kd−2(k−1)d)/ek

ek .
Вектор састављен од свих нула увек индукује циклус f1.

Нека је e(m) број несводљивих полинома степена m над GF(2) (видети
табелу 2.7). Нека је tn број несводљивих полинома степена највише n над
GF(2), када је искључен полином првог степена x, тј.

tn =
n∑

m=1

e(m)− 1.

Погодности ради, нека је t0 = 0. Нека је An скуп решења a = (a1, . . . , atn) у
скупу ненегативних целих бројева једначине

∑tn
i=1 aidi = n, тј.

An =

{
(a1, . . . , atn) |

tn∑
i=1

aidi = n.

}
(2.32)
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За 1 ⩽ i ⩽ tn и 1 ⩽ j ⩽ n нека је

qij = ei2
⌈log2j⌉, hij =

2di(j−1)(2di − 1)

qij
.

Теорема 2.3.6. За дати ненегативни цео низ β = (β1, β2, . . .) са коначним
бројем позитивних елемената, нека је b =

∑∞
i=1 iβi (према томе βi = 0 за

i > b) и нека S(β) означава суму

S(β) =

b∑
j=1

(
β2
j (j − 1) +

(βj − 1)βj
2

)
+

b−1∑
j=1

b∑
k=j+1

2jβjβk. (2.33)

Тада је ZGLn једнак

1

Mn

∑
a∈An

∑
α∈Pa1×···×Patn

Mn

ą

1⩽i⩽tn
ai>0

ą

1⩽j⩽ai
αij>0

(
f1

j∏
k=1

fhik
qik

)×αij

tn∏
i=1

2diS(αi)

ai∏
j=1

αij∏
k=1

(2kdi − 1)

, (2.34)

где јеMn =
∏n−1

p=0(2
n−2p) величина групе, индекс α је tn-торка α = (α1, . . . , αtn)

и

αi =

(αi,1, . . . , αi,ai), ai > 0

(0), ai = 0
.

Доказ. Преформулишимо израз (2.29) за q = 2:

|CGL(n,2)(A)| = 2d
∑

1⩽i,k⩽s min(i,k)µiµk

s∏
i=1

µi∏
u=1

(1− 2−du)

= 2d
∑s

i=1

(∑i
k=1 kµk+

∑s
k=i+1 iµk

)
µi

s∏
i=1

µi∏
u=1

(1− 2−du)

= 2d
(∑s

i=1

∑i
k=1 kµkµi+

∑s
i=1

∑s
k=i+1 iµkµi

) s∏
i=1

µi∏
u=1

(1− 2−du)

= 2d
(∑s

i=1 iµ
2
i+2

∑s
i=1

∑s
k=i+1 iµkµi

) s∏
i=1

µi∏
u=1

2−du(2du − 1)

= 2d
(∑s

i=1 iµ
2
i+

∑s
i=1

∑s
k=i+1 2iµkµi−

∑s
i=1(

µi(µi+1)

2

) s∏
i=1

µi∏
u=1

(2du − 1)

= 2d
(∑s

i=1 iµ
2
i+

∑s−1
i=1

∑s
k=i+1 2iµkµi−

∑s
i=1(µ

2
i−

µi(µi−1)

2
)
) s∏

i=1

µi∏
u=1

(2du − 1)

= 2d
(∑s

i=1((i−1)µ2
i+

µi(µi−1)

2
)+

∑s−1
i=1

∑s
k=i+1 2iµkµi

) s∏
i=1

µi∏
u=1

(2du − 1).
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Заменом ознака k = u, j = i, d = di, s = ai, µi = αij, из (2.30) добија се израз
за централизатор у изразу (2.34). Из (2.31) следи тврђење теореме.

2.3.4 Афина група

У овој тачки изводи се циклусни индекс за афину групу.

Лема 2.3.1. Нека је R комутативни прстен са јединицом. Нека је A : Rn →
Rn линеарно пресликавање и b ∈ Rn. Ако је пресликавање v → Av−v бијекција,
тада пресликавање v → B(v) = Av + b има исту циклусну структуру као и
пресликавање v → Av.

Доказ. Пошто је A − I бијекција, пресликавање c = (A − I)−1(b) је добро
дефинисано. Пресликавање T : Rn → Rn, T (v) = v − c је пермутација Rn и
важи

(T−1 ◦B ◦ T )(v) = (T−1 ◦B)(v − c) = T−1(A(v − c) + b).

Kako јe T−1(v) = v + c и (A− I)c = b, следи:

(T−1 ◦B ◦T )(v) = A(v− c)+ b+ c = A(v)−A(c)+ b+ c = Av− (A− I)c+ b = Av.

Дакле, пресликавања v → B(v) и v → Av су конјугати, па имају исту циклусну
структуру.

Дејство (A, b) ∈ AGL(2, n) на F n
2 може се посматрати као директни про-

извод дејства (A′, b) на потпросторе F n
2 где је A′ хипер-придружена матри-

ца несводљивих полинома Pi(x) ∈ F2[x]. За Pi(x) ̸= x − 1, пресликавање
v → H(P j

i )v− v је регуларно линеарно пресликавање, па на основу леме 2.3.1,
циклусни тип пресликавања (H(P j

i ), b) не зависи од b и једнак је циклусном
типу пресликавања (H(P j

i ), 0).
Нека је Pi(x) = x− 1. Тада је

A := H(P j
i ) =



1 0 0 0

1 1
. . . 0 0

0 1
. . . 0 0

0 0
. . . 1 0

0 0 1 1


.

63



ГЛАВА 2. ОСНОВНИ ПОЈМОВИ И ТЕОРЕМЕ

Нека је

b =


b1

b2
...
bj

 ∈ F j
2 , b

′ =


b1

0
...
0

 ∈ F j
2 , c =



−b2
−b3
...
−bj
0


и T (v) := v + c.

Треба приметити да важи (A − I)(c) + b = b′. Нека је B(v) = Av + b. T је
пермутација у пољу F j

2 и пошто је

T−1BT (v) = T−1B(v + c) = T−1(A(v + c) + b) = A(v + c) + b− c
= Av +Ac+ b− c = Av + (A− I)c+ b = Av + b′

следи да су пресликавања v → Av + b и v → Av + b’ конјугати у односу на
пресликавање T . Дакле, за свих 2j−1 векторa из скупа {b ∈ F j

2 : b1 = 0},
афина пресликавања облика (A, b) и (A, 0) имају исту циклусну структуру.

На крају, када је b1 ̸= 0, потребно је израчунати циклусну структуру
пресликавања v → B(v) = Av + b′. Нека је A′ := H(P j+1

i ) ∈ GL(2, j + 1). Тада
важи

A′

[
b1

v

]
=

[
b1

B(v)

]
.

Пошто је b1 ̸= 0, сви елементи

[
b1

v

]
∈ F j+1

2 имају исти минимални полином

P j+1
i (у односу на A), па образују 2j/qi,j+1 циклуса матрице A′ дужине qi,j+1.
За 1 ⩽ i ⩽ tn и 1 ⩽ j ⩽ n нека је

uij =


2j−1f1

j∏
k=1

fh1k
q1k

+ 2j−1f
2j

q1(j+1)
q1(j+1) , i = 1

2jdif1

j∏
k=1

fhik
qik
, i > 1

Израз за циклусни индекс групе AGLn сличан је изразу (2.34); израз f1
j∏

k=1

fhik
qik

замењен је са uij, уз додатно множење са 2−n:
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1

2nMn

∑
a∈An

∑
α∈Pa1×···×Patn

Mn

ą

1⩽i⩽tn
ai>0

ai
ą

j=1

u
×αij

ij

∏
1⩽i⩽tn
ai>0

2diS(αi)

ai∏
j=1

αij∏
k=1

(2kdi − 1)

. (2.35)
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Глава 3

Пребројавање класа
еквиваленције Булових и
инвертибилних Булових
функција

Из израза

Un(G) = ZG(2, 2, . . . , 2) =
1

|G|
∑
p∈PN

g(p)2
∑N

i=1 pi (3.1)

и

Vn(G) = ZG

( ∂
∂t1

,
∂

∂t2
, . . . ,

∂

∂tN

)
·

ZG(1 + t1, 1 + 2t2, . . . , 1 +NtN)
∣∣
t1=···=tN=0

=
1

|G|2
∑
p∈PN

g(p)2
N∏
i=1

ipipi! (3.2)

следи да се из познавања циклусног индекса могу израчунати бројеви класа
еквиваленције Булових Un и инвертибилних Булових функција Vn. Међутим,
општи изрази за израчунавање не омогућавају добијање циклусног индекса
за иоле веће вредности n. У наставку се приказују неки приступи ефикасног
рачунања израза за циклусне индексе за све четири групе трансформација.
Прво се разматрају заједничка побољшања за све четири групе, а потом и
специфична убрзања везана за појединачне групе.

Следећа табела сумира добијене у односу на претходно познате резултате.
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Табела 3.1: Старе и нове вредности за Un и Vn.

S′
n Gn GLn AGLn

Un 11→ 33 10→ 32 8→ 31 10→ 31
Vn 6→ 27 6→ 30 6→ 26 6→ 26

У овом поглављу приказује се ефикасно рачунање циклусног индекса и
бројева Un и Vn за све четири групе трансформација.

3.1 Коришћење полинома од једне

променљиве уместо монома од

променљивих f1, f2, . . .

Мономи који се појављују у току рачунања циклусног индекса, генерално
су доста ретки - користе се само неки од производа променљивих f1, f2, . . . ,
па је рачунање Декартовог производа два монома (2.6) прилично неефикса-
но. Овај проблем може се решити заменом израза f j

i мономом jxi, будући да
Wolfram Mathematica не штеди меморијски простор при раду са мономима,
али ефикасно ради са ретким полиномима. Декартов производ (имплементи-
ран применом оператора крст (2.7)), у овој нотацији постаје

jxp × kxq = jk(p, q)x⟨p,q⟩,

и крст два монома (2.6) постаје

( a∑
p=1

jpx
p
)

ą

( b∑
q=1

kqx
q
)

=

a∑
p=1

b∑
q=1

(
jpx

p × kqxq
)

=
a∑

p=1

b∑
q=1

jpkq(p, q)x
⟨p,q⟩.

Пошто се у репрезентацији циклусних индекса мономима користи опера-
ција сабирања, линеарна комбинација монома

p∑
k=1

uk

N∏
i=1

f
ji,k
i
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представљена је листом парова(
uk,

N∑
i=1

ji,kx
i

)
, 1 ⩽ k ⩽ p.

Ако крст две листе садржи два пара (u1,M1) и (u2,M2) где је M1 =M2, тада
та два пара могу бити замењена паром (u1 + u2,M1). Крст две такве листе(

(u′1,M
′
1), (u

′
2,M

′
2), . . . , (u

′
p,M

′
p)
)ą

(
(u′′1,M

′′
1 ), (u

′′
2,M

′′
2 ), . . . , (u

′′
q ,M

′′
q )
)

је листа свих парова

(u′iu
′′
j ,M

′
i ×M ′′

j ), 1 ⩽ i ⩽ p, 1 ⩽ j ⩽ q.

Парови са једнаком другом компонентом могу се пронаћи сортирањем резул-
тирајуће листе по другој компоненти својих парова.

Пример 3.1.1. Крст два полинома

(f 2
1 + f2)× (2f 2

1 f2 + 2f4) =

= (f 2
1 × 2f 2

1 f2) + (f 2
1 × 2f4) + (f2 × 2f 2

1 f2) + (f2 × 2f4)

= 2f 4
1 f

2
2 + 2f 2

4 + 2f 2
2 f

2
2 + 2f 2

4

= 2f 4
1 f

2
2 + 4f 2

4 + 2f 4
2

замењен је крстом две листе парова(
(1, 2x), (1, x2)

)
×
(
(2, 2x+ x2), (2, x4)

)
=

=
(
(2, 2x× (2x+ x2)), (2, 2x× x4), (2, x2 × (2x+ x2)), (2, x2 × x4)

)
=

(
(2, 4x+ 2x2), (2, 2x4), (2, 2x2 + 2x2), (2, 2x4)

)
=

=
(
(2, 4x+ 2x2), (4, 2x4), (2, 4x2)

)
.

Израчунавање циклусног индекса након ове замене постаје знатно ефика-
сније. Једноставности ради, у примерима који следе биће задржана нотација
са променљивама f1, f2, . . . .
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3.2 Унапред израчунате табеле

Показаћемо у наставку да се сви изрази за циклусне индексе (2.27), (2.28),
(2.34), (2.35) могу представити у облику:

ZG(f) =
∑
p∈Pn

ą

1⩽i⩽n
pi>0

Hi,pi , (3.3)

где је H = [Hij] одговарајућа унапред израчуната табела димензија n × n.
Овакво представљање циклусног индекса значајно убрзава његово рачунање,
пошто се избегава понављање израчунавања елемената табеле H. Следеће
убрзање постиже се смањењем броја скупих крст операција. Ова идеја илу-
стрована је следећим примером.

Пример 3.2.1. За n = 5, Pn се састоји од 7 елемената

0 0 0 0 1

1 0 0 1 0

0 1 1 0 0

2 0 1 0 0

1 2 0 0 0

3 1 0 0 0

5 0 0 0 0


.

Циклусни индекс

ZG(f) = H5,1 +H4,1 ×H1,1 +H3,1 ×H2,1+

H3,1 ×H1,2 +H2,2 ×H1,1 +H1,3 ×H2,1 +H1,5.

садржи два израза H3,1, па ZG(f) може бити израчунат са једном мање
операцијом крст:

H5,1 +H4,1 ×H1,1 +H3,1 × (H2,1 +H1,2)+

H2,2 ×H1,1 +H1,3 ×H2,1 +H1,5.

Није тешко генерализовати овај приступ. Након опадајућег лексикограф-
ског сортирања елемената из Pn, обавља се њихово груписање по позицији
k и по величини pk ненула елемената са највећим индексом. Размотримо
произвољно овакво груписање. Како сви крст изрази унутар групе почињу
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са Hk,pk , заједнички фактор Hk,pk може бити извучен испред заграде. Сума
унутар заграда одговара изразу Pn−kpk и може бити рекурзивно израчуната
коришћењем истог приступа. Исти метод може бити коришћен при рачунању
одговарајућих бројева Un; при томе, могуће је израчунати Un без рачунања
комплетног циклусног индекса. Алгоритам је представљен следећим кодом.

part(n, k, term)

[Рачунање дела ZG придруженог елементу p ∈ Pn

за који је pk+1 = · · · = pn = 0]
[term је крст израза изван заграда
насталих из претходних рекурзивних позива]
[sum је глобална променљива за формирање ZG]
[Un је глобална променљива за формирање Un]
if n = 0 then [Тренутни term је завршен]

sum← sum+ term [Крај рекурзивног позива]
Un ← Un + term(2, . . . , 2)

return

else

if k > 1 then

for i = ⌊n/k⌋ downto 0 step − 1 do

if i > 0 then [Ажурирање тренутног term]
part(n− ik,min{n− ik, k − 1}, term×H[k, i])

else

part(n, k − 1, term)

else

part(0, 0, term×H[1, n])

return

Изрази за ZG и број Un добијају се рекурзивним позивом part(n, n, 1);
за добијање израза за ZG без разломака, тј. у облику |G|ZG, иницијални
позив је part(n, n, |G|). Ако p(n) означава број партиција броја n, тада је
p(n) = O(exp(π

√
2n/3)), видети на пример [13]. Просечан број делова парти-

ција броја n је O(
√
n log n), видети [14]. На тај начин, без описаног алгори-

тамског убрзања, број операција крст у току рачунања ZG облика (3.3) грубо
је O(p(n)

√
n log n). Нека T (n, k) у алгоритму part(n, k, term) представља број

операција крст у току рачунања ZG облика (3.3), који одговара партицијама
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од највише k делова. Тада је

T (n, k) =


−1, n = k = 0

0, k = 1

⌊n/k⌋+
⌊n/k⌋∑
i=0

T (n− ik,min(n− ik, k − 1)), n > 0, k > 1.

Нека p(n, k) означава број партиција од највише k делова. Из познате реку-
рентне једначине p(n, k) = p(n − k, k) + p(n, k − 1) произилази слична реку-
рентна једначина

p(n, k) =


1, n = k = 0 или k = 1
⌊n/k⌋∑
i=0

p(n− ik,min(n− ik, k − 1)), n > 0, k > 1.

Лема 3.2.1. За свако n ⩾ 1, 1 ⩽ k ⩽ n, важи неједнакост

T (n, k) = p(n, k)− 1

.

Доказ. Доказ се изводи индукцијом по k. Једнакост је тачна за n = k = 0 и
k = 1. Претпоставимо да је тачна када је други аргумент мањи од k. Тада је

p(n, k)− T (n, k) =

⌊n/k⌋−1∑
i=0

(p(n− ik, k − 1)− T (n− ik, k − 1))− ⌊n/k⌋

+ p(n mod k, n mod k)− T (n mod k, n mod k)

=

⌊n/k⌋−1∑
i=0

1− ⌊n/k⌋+ 1 = 1.

Из доказаног следи специјално да је T (n, n) <= p(n, n) = p(n), тј. T (n, n) =
O(p(n)). Из ове неједнакости следи да је убрзање алгоритма у односу на
директно рачунање (3.3) реда O(

√
n log n).

За велике вредности n, могуће је да величина израза за ZG превазилази ме-
моријско ограничење. Тада је ипак могуће добити вредности Un без рачунања
ZG, изостављањем ажурирања променљиве sum. Вредности Vn не могу бити
израчунате на овај начин без рачунања циклусног индекса, пошто израз (2.24)
није линеаран у односу на коефицијенте циклусног индекса.
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3.3 Група пермутација променљивих S ′n

Теорема 3.3.1. Нека је

Fi,j =
∏
d|i

(
f
e(d)
d

)×j

, Ki,j = ijj!,

Hi,j =
Fi,j

Ki,j

, 1 ⩽ i ⩽ n, 1 ⩽ j ⩽
⌊n
i

⌋
.

Тада циклусни индекс (2.27) постаје

ZS′
n
(f) =

∑
p∈Pn

ą

1⩽i⩽n
pi>0

Hi,pi ,

Доказ.

ZS′
n
(f) =

∑
p∈Pn

ą

1⩽i⩽n
pi>0

Fi,pi

Ki,pi

=
∑
p∈Pn

ą

1⩽i⩽n
pi>0

Hi,pi.

Пример 3.3.1. За n = 3, добија се

F3,1 = f
e(1)
1 f

e(3)
3 = f 2

1 f
2
3 ,

F1,3 = (f
e(1)
1 )×3 = f 2

1 × f 2
1 × f 2

1 = f 4
1 × f 2

1 = f 8
1 ,

и
K3,1 = 311! = 3, K1,3 = 133! = 6.

Комплетне унапред израчунате табеле су

F =

 f 2
1 f 4

1 f 8
1

f 2
1 f2 0 0

f 2
1 f

2
3 0 0

 ,

K =

 1 2 6

2 0 0

3 0 0

 ,
и

H =

 f 2
1

1
2
f 4
1

1
6
f 8
1

1
2
f 2
1 f2 0 0

1
3
f 2
1 f

2
3 0 0

 ,
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где 0 означава елемент табеле који се не користи. Према томе

ZS′
3

= H3,1 +H1,1 ×H2,1 +H1,3 =

= 1
3
f 2
1 f

2
3 + f 2

1 × 1
2
f 2
1 f2 +

1
6
f 8
1 =

= 1
3
f 2
1 f

2
3 + 1

2
f 4
1 f

2
2 + 1

6
f 8
1 .

3.4 Алтернативни приступ за групу S ′n

Вредности Un(S
′
n) и Vn(S

′
n) могуће је директно израчунати, без рачунања

циклусног индекса.

Теорема 3.4.1. Нека декомпозиција n = k1+k2+ · · ·+km одговара партицији
p и нека је

S(p) =
∑
z1|k1

· · ·
∑
zm|km

∏m
j=1 zje(zj)

< z1, z2, . . . , zm >
,

где је e(n) низ дефинисан изразом (2.26). Тада важи

Un(S
′
n) =

∑
p∈Pn

2S(p)∏n
i=1 i

pipi!
.

Доказ. Размотримо део циклусног индекса симетричне групе (2.27)

GS(p, f) =
ą

1⩽j⩽n
pj>0

∏
d|j

f
e(d)
d

×pj

који одговара фиксираној партицији p ∈ Pn. Нека је (k1, k2, . . . , km) низ саста-
вљен од pj целих бројева j, 1 ⩽ j ⩽ n. Тада је

GS(p, f) =
m

ą

j=1

∏
zj |kj

f e(zj)
zj

=
∏
z1|k1

· · ·
∏

zm|km

m
ą

j=1

f e(zj)
zj

=
∏
z1|k1

· · ·
∏

zm|km

f
∏m

i=1 zie(zi)/<z1,z2,...,zm>
<z1,z2,...,zm>

Нека је S(p) = log2 (GS(p, f) |f1=···=fn=2). Тада је 2S(p)/
∏n

i=1 i
pipi! део суме

Un (2.15) који одговара партицији p ∈ Pn. Дакле

Un(S
′
n) =

∑
p∈Pn

2S(p)∏n
i=1 i

pipi!
.
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Произвољном пару пермутација променљивих (ρ, σ) ∈ S2
n одговара пре-

сликавање Tρ,σ : SN → SN , које произвољну векторску инвертибилну функ-
цију F ∈ SN пресликава у векторску инвертибилну функцију F ′ = Tρ,σ(F ) =

ρ′ ◦ F ◦ σ′, такву да је F ′(x) = ρ′(F (σ′(x))) за свако x ∈ Bn. Ако се n-торке
из скупа Bn кодирају бројевима из интервала [0, N − 1], онда је скуп свих
пресликавања Tρ,σ подгрупа групе SN !.

Да би се на основу Фробенијусове теореме одредио број класа еквивален-
ције Булових инвертибилних функција, потребно је за сваки пар (ρ, σ) ∈ S2

n,
одредити број фиксних тачака. Трансформација Tρ,σ је фиксна тачка ако и
само ако важи F ′ = F .

Трансформација Tρ,σ има барем једну фиксну тачку ако и само ако type(σ) =
type(ρ) [21]. За произвољну партицију p ∈ Pn и групу пермутација G (било
ког од четири разматрана типа), нека је Gp = {σ ∈ G | type(σ) = p} подскуп
пермутација из групе G са циклусном структуром описаном партицијом p (pi
циклуса дужине i, i ⩾ 1). Нека је g(p) = |Gp|. Специјално, ако је G група
Sn, тада је (Sn)p = {σ ∈ Sn | type(σ) = p}. Нека је σ ∈ (Sn)p и нека је тип
индуковане пермутације type(σ′) = p′ = (p′1, p

′
2, . . . , p

′
N). За сваку дужину ци-

клуса i постоји p′i! могућих упаривања између улазних и излазних циклуса
(пермутације σ, односно ρ) истог типа. Пошто унутар сваког циклуса посто-
ји i ротација елемената, при којима структура циклуса није нарушена, број
фиксних тачака трансформације Tσ,σ зависи само од партиције p и једнак је

Np =
∏
i

ip
′
ip′i!. (3.4)

Из претходног излагања и последице 2.1.1 следи:

g(p) = |(Sn)p| =
|Sn|
|CSn(σ)|

=
n!∏n

i=1 i
pipi!

.

Теорема 3.4.2. Свака пермутација σ ∈ Sn јединствено одређује пермутаци-
ју σ′ ∈ S′

n. За произвољно p ∈ Pn нека је type(σ) = p и type(σ′) = (p′1, . . . , p
′
n).

Тада важи

Vn(S
′
n) =

∑
p∈Pn

∏
i i

p′ip′i!(∏
i i

pipi!
)2 . (3.5)

Доказ. Пермутација F ∈ SN је фиксна тачка трансформације Tρ,σ ако Tρ,σ(F (X)) =

F (X) важи за свако X ∈ Bn. Нека је I(ρ, σ) број фиксних тачака трансформа-
ције Tρ,σ. На основу Фробенијусове теореме, број класа еквиваленције једнак

74



ГЛАВА 3. БУЛОВE И ИНВЕРТИБИЛНE БУЛОВE ФУНКЦИЈE

је

Vn =
1

(n!)2

∑
σ∈Sn

∑
ρ∈Sn

I(ρ, σ) =
1

(n!)2

∑
p∈Pn

∑
ρ∈(Sn)p

∑
q∈Pn

∑
σ∈(Sn)q

I(ρ, σ).

Нека је (Sn)p = {σ ∈ Sn | type(σ) = p}. Број фиксних тачака трансформације
Tρ,σ која одговара пермутацијама ρ ∈ (Sn)p и σ ∈ (Sn)q једнак је

I(ρ, σ) =

{
0, p ̸= q

Np, p = q

пошто је за добијање фиксне тачке потребно и довољно да тип (односно струк-
тура) улазних циклуса одговара типу излазних циклуса. Према томе

Vn =
1

(n!)2

∑
p∈Pn

∑
ρ∈(Sn)p

∑
q∈{p}

∑
σ∈(Sn)p

Np =
1

(n!)2

∑
p∈Pn

∑
ρ∈(Sn)p

∑
σ∈(Sn)p

Np

=
1

(n!)2

∑
p∈Pn

Np

∑
ρ∈(Sn)p

∑
σ∈(Sn)p

1 =
1

(n!)2

∑
p∈Pn

Np · |(Sn)p|2

=
∑
p∈Pn

∏
i i

p′ip′i!(∏
i i

pipi!
)2

Да би се израчунала вредност овог израза, потребно је одредити структуру
одговарајућег монома циклусног индекса који одговара индукованој пермута-
цији σ′.

Теорема 3.4.3. Нека је p ∈ Pn произвољна партиција и нека је σ ∈ (Sn)p.
Нека је σ = α1α2 . . . αm разлагање σ на дисјунктне циклусе. Нека је дужина
циклуса αi једнака ki, 1 ⩽ i ⩽ m. Моном циклусног индекса

∏
i f

p′i
i који одговара

пермутацији σ′ дат је изразом∏
i

f
p′i
i ≡

m
ą

i=1

(∏
zi|ki

f e(zi)
zi

)
=
∏
z1|k1

∏
z2|k2

· · ·
∏

zm|km

f
∏m

i=1 zie(zi)/<z1,z2,...,zm>
<z1,z2,...,zm> .

Доказ. Циклус дужине ki пермутације σ индукује производ циклуса перму-
тације σ′ у облику монома

∏
zi|ki f

e(zi)
zi . Производ пермутација са мономом∏n

i=1 t
pi
i =

∏m
i=1 tki у σ индукује пермутацију са мономом циклусног индекса

Śm
i=1

∏
zi|ki f

e(zi)
zi у σ′. Део циклусног индекса који одговара пермутацији σ′

добија се на основу израза (2.1.6)∏
i

f
p′i
i =

∏
z1|k1

∏
z2|k2

· · ·
∏

zm|km

f
∏m

i=1 zie(zi)/<z1,z2,...,zm>
<z1,z2,...,zm> .

75



ГЛАВА 3. БУЛОВE И ИНВЕРТИБИЛНE БУЛОВE ФУНКЦИЈE

Описаним алтернативним приступом, вредности Un(S
′
n) и Vn(S

′
n) израчу-

нате су за n ⩽ 30. Алтернативни поступак израчунавања вредности Un и Vn

захтева мање меморије у односу на приступ који користи циклусни индекс. С
друге стране, приступ у коме се израчунава циклусни индекс временски брже
израчунава вредност Un, а спорије вредност Vn. Ово следи из чињенице да се
у току креирања циклусног индекса вредност Un може сукцесивно повећава-
ти, док је пре рачунања вредности Vn потребно креирати комплетан циклусни
индекс.

3.5 Група пермутација и комплементирања

променљивих Gn

Теорема 3.5.1. За 1 ⩽ i ⩽ n и 1 ⩽ j ⩽
⌊
n
i

⌋
нека је

Fi,j =

2i−1
(∏

d|i

f
e(d)
d +

∏
d|2i,d∤i

f
g(d)
d

)×j

,

Ki,j = ijj!, Hi,j =
Fi,j

2ijKi,j

.

Тада је
ZGn(f) =

∑
p∈Pn

ą

1⩽i⩽n
pi>0

Hi,pi .

Доказ. Једнакост (2.27) постаје

ZGn(f) =
∑
p∈Pn

1∏n
i=1 (2

i−1)pi(2i)pipi!

ą

1⩽i⩽n
pi>0

Fi,pi .

Из
n∏

i=1

(2i−1)
pi(2i)pipi! =

n∏
i=1

2ipiipipi! =
∏

1⩽i⩽n
pi>0

2ipiKi,pi ,

следи

ZGn(f) =
∑
p∈Pn

ą

1⩽i⩽n
pi>0

Fi,pi

2ipiKi,pi

=
∑
p∈Pn

ą

1⩽i⩽n
pi>0

Hi,pi .
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Пример 3.5.1. За n = 3, добија се

F3,1 = 22f
e(1)
1 f

e(3)
3 + 22f

g(2)
2 f

g(6)
6

= 4f 2
1 f

2
3 + 4f2f6,

F1,3 = (f
e(1)
1 + f

g(2)
2 )×3

= (f 2
1 + f2)× (f 2

1 + f2)× (f 2
1 + f2)

= (f 4
1 + 3f 2

2 )× (f 2
1 + f 2

2 ) = f 8
1 + 7f 4

2 ,

и
K3,1 = 311! = 3, K1,3 = 133! = 6.

Унапред израчунате табеле су

F =

 f 2
1 + f2 f 4

1 + 3f 2
2 f 8

1 + 7f 4
2

2f 2
1 f2 + 2f4 0 0

4f 2
1 f

2
3 + 4f2f6 0 0



K =

 1 2 6

2 0 0

3 0 0


и

H =


1
2
f 2
1 + 1

2
f2

1
8
f 4
1 + 3

8
f 2
2

1
48
f 8
1 + 7

48
f 4
2

1
4
f 2
1 f2 +

1
4
f4 0 0

1
6
f 2
1 f

2
3 + 1

6
f2f6 0 0


3.6 Линеарна група трансформација GLn

У овом одељку, најпре се анализирају разлози због којих је директно рачу-
нање на основу израза (2.34) неефикасно, а затим се показује како се уз помоћ
унапред израчунатих табела H, циклусни индекс може ефикасно израчунати
користећи израз (3.3).

3.6.1 Скуп An

Директна имплементација на основу израза (2.34) није ефикасна. Чак је
и први корак, добијање скупа An (2.32), проблематичан: уопштени метод за
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добијање решења линеарне диференцне једначине (FrobeniusSolve[] у про-
граму Mathematica) веома је неефикасан већ за n = 10. Међутим, није тешко
директно израчунати чланове низа скупова An. Једначина

tn∑
i=1

aidi = n (3.6)

еквивалентна је са
n∑

i=1

i

ti∑
j=ti−1+1

aj = n,

пошто за j = ti−1 + 1, . . . , ti важи dj = i. Како је Pn скуп решења p =

(p1, p2, . . . , pn) једначине
∑n

i=1 pii = n, део An који одговара партицији p ∈ Pn

једнак је Декартовом производу
(
pi+ti−ti−1−1

pi

)
композиција pi на ti − ti−1 нене-

гативних делова, 1 ⩽ i ⩽ n.
Дужина низова у скупу An једнака је tn ⩽

∑n
i=1(2

i − 2)/i (видети на при-
мер [4]), што је O(2n). Број таквих низова је 2n−1 (видети напомену 3.6.1).
Дакле, сложеност рачунања на основу листе свих низова из An је O(4n).

Пример 3.6.1. Елементи P4 су врсте матрице
0 0 0 1

1 0 1 0

0 2 0 0

2 1 0 0

4 0 0 0

 .

Четири елемента ових вектора распоређени су у низовима a ∈ A4 на пози-
цијама 1 = t1, 2 = t2, од 3 = t2 + 1 до 4 = t3, и од 5 = t3 + 1 до 7 = t4 (видети
табелу 3.2).

Табела 3.2: Партиције које одговарају низовима a ∈ A4.

Партиција Низ a
1 2 3 4 5 6 7

0 0 0 1 0 0 0 0 0 0 1
0 0 0 0 0 1 0
0 0 0 0 1 0 0

1 0 1 0 1 0 0 1 0 0 0
1 0 1 0 0 0 0

0 2 0 0 0 2 0 0 0 0 0
2 1 0 0 2 1 0 0 0 0 0
4 0 0 0 4 0 0 0 0 0 0
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Напомена 3.6.1. Свако решење једначине (3.6), a ∈ An једнозначно одговара
полиному

∏tn
i=1 Pi(x)

ai степена n, који није дељив са x (пошто x није укљу-
чен у низ Pi(x), i = 1, 2, . . ., јер је то једини полином коме је константни
члан различит од 1). Таквих полинома има 2n−1, па је |An| = 2n−1, и важи
идентитет ∑

p∈Pn

n∏
i=1

(
pi + ti − ti−1 − 1

pi

)
= 2n−1.

3.6.2 Несводљиви полиноми

Циклусни индекс (2.34) зависи само од степена di и реда ei полинома Pi(x).
Према томе, у циљу одређивања њихових степенова di и њихових редова ei,
1 ⩽ i ⩽ ti, није неопходно одредити комплетну листу несводљивих полинома
Pi(x). Број N(d, e) несводљивих полинома степена d и реда e је познат (видети
на пример [27]). Постоји само један несводљиви полином (x + 1) степена 1 и
реда 1 (ред искљученог полинома x је недефинисан), па је N(1, 1) = 1. Ако
је d > 1, полиноми степена d и реда e постоје ако и само ако је ред од 2 по
модулу e једнак d (тј. e | 2d − 1 и e ∤ 2k − 1 за k < d); тада је број оваквих
полинома једнак

N(d, e) = ϕ(e)/d,

где је ϕ(e) Ојлерова функција ϕ. Скуп

m(d) = {e | N(d, e) > 0}

дефинише се рекурзивно изразом

m(d) = {r
∣∣ r | 2d − 1}∖

d−1⋃
i=1

m(i),

(видети [30, низ A059912]). Ови скупови приказани су у табели 3.3 за d ⩽ 7.
Последња колона уствари представља скуп {N(d, e) | e ∈ m(d)}.

Табела 3.3: Редови несводљивих полинома степена d, d ⩽ 7.

d {r
∣∣ r | 2d − 1} m(d) |m(d)| N(d, e)

1 {1} {1} 1 {1}
2 {1, 3} {3} 1 {1}
3 {1, 7} {7} 1 {2}
4 {1, 3, 5, 15} {5, 15} 2 {1, 2}
5 {1, 31} {31} 1 {6}
6 {1, 3, 7, 9, 21, 63} {9, 21, 63} 3 {1, 2, 6}
7 {1, 127} {127} 1 {18}
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Несводљиви полиноми Pi(x) могу се поређати произвољним редоследом,
па се може претпоставити да су поређани у складу са лексикографским порет-
ком парова (di, ei). За фиксирани пар (di, ei), полиноми придружени N(di, ei)

могу се такође поређати произвољним редоследом. Означимо са Sn скуп ра-
зличитих парова (di, ei), 1 ⩽ i ⩽ t[n], тј.

Sn = {(di, ei) | (di, ei) ̸= (dj, ej), 1 ⩽ j < i ⩽ t[n]}.

Нека је sn = |Sn|, n ⩾ 1, и нека је због једноставности s0 = 0. Нека (d′k, e
′
k)

представља k-ти елемент Sn у лексикографском поретку. Означимо са

nk = N(d′k, e
′
k) = ϕ(e′k)/d

′
k (3.7)

број несводљивих полинома степена d′k и реда e′k. Нека је N0 = 0, и Nk =

Nk−1 + nk, k ⩾ 1. Неколико првих чланова низова di, ei, d′k, e
′
k, nk, Nk, tn и sn

приказани су у табелама 3.4, 3.5 и 3.6.

Табела 3.4: Низови d и e.

i 1 2 3 4 5 6 7 8 9 10 11 12 13
di 1 2 3 3 4 4 4 5 5 5 5 5 5
ei 1 3 7 7 5 15 15 31 31 31 31 31 31

Табела 3.5: Низови d′, e′, nk и Nk.

k 0 1 2 3 4 5 6 7 8 9 10
d′k 1 2 3 4 4 5 6 6 6 7
e′k 1 3 7 5 15 31 9 21 63 127
nk 1 1 2 1 2 6 1 2 6 18
Nk 0 1 2 4 5 7 13 14 16 22 40

Табела 3.6: Низови tn и sn.

n 0 1 2 3 4 5 6 7 8 9 10
tn 0 1 2 4 7 13 22 40 70 126 225
sn 0 1 2 3 5 6 9 10 14 16 21

Нека s0(n) означава број делилаца броја n, који се грубо може апрок-
симирати са s0(n) = O(log n), видети [9, Dirichlet Divisor Problem]. Одавде
проистиче груба оцена sn ⩽

∑n
i=1 s0(2

i − 1) = O(n2). Однос sn/(n
4/2500),
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1 ⩽ n ⩽ 80, приказан на слици 3.1 сугерише да прецизнија оцена може да
буде sn ∼ n4/2500, бар за n ⩽ 80. Број tn може бити оцењен са tn = O(2n). У
ствари, однос tn/(2n/n), 1 ⩽ n ⩽ 80, приказан на слици 3.2, упућује на оцену
tn ∼ 2n−1/n, 1 ⩽ n ⩽ 80. Може се закључити да tn расте много брже него sn,
односно да је за велико n низ An много дужи од низа Sn.

Слика 3.1: Однос tn
2n/n

, 1 ⩽ n ⩽ 80

,

Слика 3.2: Однос sn
n4/2500

, 1 ⩽ n ⩽ 80

,

3.6.3 Групе еквивалентних низова у скупу An

Ако уведемо ознаку

GL(a) =
∑

α∈Pa1×···×Patn

Mn

tn
ą

i=1

ai
ą

j=1

(
f1

j∏
k=1

fhik
qik

)×αij

tn∏
i=1

2diS(αi)

ai∏
j=1

αi,j∏
k=1

(2kdi − 1)
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(за ознаку S(·) видети (2.33)), тада је

ZGLn =
1

Mn

∑
a∈An

GL(a).

За фиксирано i, 1 ⩽ i ⩽ sn, постоји ni (3.7) несводљивих полинома
{Pk(x) | Ni−1 < k ⩽ Ni} са истим степеном d′i и истим редом e′i. Пошто
GL(a) зависи само од броја cj елемента ak, Ni−1 < k ⩽ Ni, који су једнаки j,
j = 0, 1, . . . , ⌊n/d′i⌋, није неопходно рачунати свих 2n−1 израза придружених
елементима скупа An у (2.34).

Пример 3.6.2. За n = 5, постоји 6 таквих група индекса у низу a: {1}, {2},
{3, 4}, {5}, {6, 7}, и {8, 9, . . . , 13}, видети табелу 3.4.

За фиксирано a ∈ An нека

C(a) = [ci,j], 1 ⩽ i ⩽ sn, 0 ⩽ j ⩽ ⌊n/d′i⌋

означава матрицу са елементима

ci,j(a) = |{k | Ni−1 + 1 ⩽ k ⩽ Ni, ak = j}|.

Ова матрица описује низ a: вредности GL(a) за све низове a ∈ An са истом
матрицом C(a) су једнаки, тј. ти низови су узајамно еквивалентни. У циљу
рачунања циклусног индекса, довољно је израчунати GL(a) за само један
низ из класе таквих низова (”канонски” низ) и помножити добијену вредност
величином класе:

N(a) =
sn∏
i=1

(
ni

ci,0, ci,1, . . . , ci,⌊n/d′i⌋

)
За k1 + k2 + · · ·+ kp = n(

n

k1, k2, . . . , kp

)
=

n!

k1!k2! · · · kp!

означава мултиномијални коефицијент. За ”канонски” низ a може се узети низ
за који важи aNi−1+1 ⩾ aNi−1+2 ⩾ · · · ⩾ aNi

.

Ако уведемо ознаку Bn = {(b1, b2, . . . , bsn) |
∑sn

i=1 bid
′
i = n, тада је број

канонских низова

cn =
∑
b∈Bn

sn∏
i=1

p(bi, ni).
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Овај број може се израчунати знатно ефикасније. Ако је a низ ненегативних
целих бројева, нека је a[i..j] = {ai, ai+1, . . . , aj}. Означимо са

C(m, k) = {a[1..k] |
k∑

i=1

ai = m}

скуп композиција броја m од највише k делова. Тада је

cn =
∑
p∈Pn

n∏
d=1

∑
m[1..sd−sd−1]∈C(pd,sd−sd−1)

sd−sd−1∏
k=1

p(mk, nsd−1+k).

Табела 3.7 приказује број cn канонских низова и |An| за n ⩽ 12. Слика 3.3
приказује однос cn/1.784k, што сугерише оцену cn ∼ 1.784k, барем за n ⩽ 30.
Дакле, за велико n, број канонских низова знатно је мањи од укупног броја
низова у скупу An.

Табела 3.7: Бројеви cn и |An| = 2n−1.

n 2 3 4 5 6 7 8 9 10 11 12
cn 2 3 6 8 16 21 38 52 87 119 206
|An| 2 4 8 16 32 64 128 256 512 1024 2048

Слика 3.3: Однос cn/1.784k, n ⩽ 30.

Пример 3.6.3. За n = 5 међу 16 низова a, постоји 8 канонских. Сума ZGL5 =
1

M5

∑
a∈A5

GL(a) са 16 сабирака може се заменити сумом сабирака N(a)GL(a) по
скупу од 8 канонских низова (видети табелу 3.8).
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Табела 3.8: Бројеви N(a) и GL(a), n = 5.

i 1 2 3 4 5 6 7 8 9 10 11 12 13
di 1 2 3 3 4 4 4 5 5 5 5 5 5 N(a)

Низ a
1 0 0 0 0 0 0 0 1 0 0 0 0 0 6
2 0 1 1 0 0 0 0 0 0 0 0 0 0 2
3 1 0 0 0 0 1 0 0 0 0 0 0 0 2
4 1 0 0 0 1 0 0 0 0 0 0 0 0 1
5 1 2 0 0 0 0 0 0 0 0 0 0 0 1
6 2 0 1 0 0 0 0 0 0 0 0 0 0 2
7 3 1 0 0 0 0 0 0 0 0 0 0 0 1
8 5 0 0 0 0 0 0 0 0 0 0 0 0 1

N(a) GL(a)
6 322560f1f31
2 476160f1f3f7f21
2 666624f 2

1 f
2
15

1 666624f 2
1 f

6
5

1 833280f 2
1 f

2
3 f

4
6 + 55552f 2

1 f
10
3

2 714240f 2
1 f2f

2
7 f14 + 238080f 4

1 f
4
7

1 833280f 2
1 f2f

2
3 f4f6f12 + 416640f 4

1 f
2
2 f

4
3 f

2
6

+19840f 8
1 f

8
3

1 624960f 2
1 f2f

3
4 f

2
8 + 78120f 4

1 f
6
2 f

4
4+

312480f 4
1 f

2
2 f

6
4 + 6510f 8

1 f
12
2 +

651026040f 8
1 f

4
2 f

4
4 + 465f 16

1 f28 + f 32
1

3.6.4 Табеле H

Поред доказа теореме 3.6.1 да се ZGLn може представити изразом (3.3), доказују
се три помоћне леме.

Лема 3.6.1. Нека је

F ′
ijk =

(
f1

j∏
p=1

f
hip
qip

)×k
, 1 ⩽ i ⩽ tn, 1 ⩽ j ⩽

⌊
n

di

⌋
, 1 ⩽ k ⩽

⌊
n

jdi

⌋
,

Dij =

j∏
p=1

(2ip − 1), 1 ⩽ i ⩽ n, 1 ⩽ j ⩽
⌊n
i

⌋
,

и

G′
i,a =

∑
α∈Pa

2−diS(α)
ą

1⩽j⩽a
αj>0

F ′
i,j,αj

Ddi,αj

, 1 ⩽ i ⩽ tn, 1 ⩽ a ⩽ n.
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Тада је
ZGLn =

∑
a∈An

ą

1⩽i⩽tn
ai>0

G′
i,ai (3.8)

Доказ. Ако означимо

F ′′
i,j,αij

=
F ′
i,j,αij

2diS(αi)/aiDdi,αij

,

тада циклусни индекс ZGLn постаје

∑
a∈An

∑
α∈Pa1×···×Patn

ą

1⩽i⩽tn
ai>0

ą

1⩽j⩽ai
αi,j>0

F ′
i,j,αij

tn∏
i=1

2diS(αi)
ai∏
j=1

Ddi,αij

=
∑
a∈An

∑
α∈Pa1×···×Patn

ą

1⩽i⩽tn
ai>0

ą

1⩽j⩽ai
αi,j>0

F ′′
i,j,αij

=
∑
a∈An


 ∑

α1∈Pa1

ą

1⩽j⩽a1
α1,j>0

F ′′
1,j,α1,j

ą

· · ·
ą

 ∑
αtn∈Patn

ą

1⩽j⩽atn
αtn,j>0

F ′′
tn,j,αtn,j




=
∑
a∈An

ą

1⩽i⩽tn
ai>0

∑
αi∈Pai

ą

1⩽j⩽ai
αi,j>0

F ′′
i,j,αij

=
∑
a∈An

ą

1⩽i⩽tn
ai>0

∑
αi∈Pai

ą

1⩽j⩽ai
αi,j>0

F ′
i,j,αij

2diS(αi)/aiDdi,αij

=
∑
a∈An

ą

1⩽i⩽tn
ai>0

∑
αi∈Pai

2−diS(αi)
ą

1⩽j⩽ai
αi,j>0

F ′
i,j,αij

Ddi,αij

Према томе,
ZGLn =

∑
a∈An

ą

1⩽i⩽tn
ai>0

G′
i,ai

Вредности G′
i,a, 1 ⩽ i ⩽ tn, 1 ⩽ a ⩽ n, могу се унапред израчунати, упамти-

ти и потом искористити за ефикасније рачунање ZGLn . Добијени израз сличан је
изразу (3.3); разлика је у броју сабирака: tn расте много брже од |Pn|. Брисањем
поновљених врста, ова табела димензија tn × n може се сачувати у компримованом
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облику у виду табеле G димензија sn×n. Прецизније, све врсте матрице G′ са индек-
сима i, 1 ⩽ i ⩽ tn, где је (di, ei) = (d, e) замењене су само једном врстом са индексом
k таквим да је (d′k, e

′
k) = (d, e) (видети табеле 3.4 и 3.5).

Пример 3.6.4. Нека је n = 3; тада је

F ′ =


{f21 , f41 , f81 } {f21 f2} {f21 f2f4}
{f1f3, f1f53 } {f1f3f26 } {0}
{f1f7} {0} {0}
{f1f7} {0} {0}


(овде листе представљају трећу димензију у табели F ′),

D =

 1 3 21

3 45 0

7 0 0


и

G′ =


f21

1
2f

2
1 f2 +

1
6f

4
1

1
4f

2
1 f2f4 +

1
8f

4
1 f

2
2 + 1

168f
8
1

1
3f1f3 0 0
1
7f1f7 0 0
1
7f1f7 0 0

 .
Примећује се да табела G′ садржи две исте врсте. Њиховом заменом једном вр-
стом, добија се компримовани облик, табела G:

G =

 f21
1
2f

2
1 f2 +

1
6f

4
1

1
4f

2
1 f2f4 +

1
8f

4
1 f

2
2 + 1

168f
8
1

1
3f1f3 0 0
1
7f1f7 0 0

 .
Нека |m(d)| = nd означава број различитих редова несводљивих полинома степена

n (видети 3.6.2), и нека

m(d) = {E1, E2, . . . , End
}, E1 < E2 < · · · < End

означава скуп тих редова. Нека n(d, j) = N(d,Ej), 1 ⩽ j ⩽ nd, означава број полинома
степена d и реда Ej . Нека је

Sd,i = {j | 1 ⩽ j ⩽ td, dj = d, ej = Ei}.

Следећа лема показује како израз (3.14) за ZGLn може бити додатно поједностављен.
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Лема 3.6.2. За 1 ⩽ d, q ⩽ n нека Hd,q означава израз

Hd,q =
∑

a[td−1+1..td]∈C(q,td−td−1)

ą

td−1+1⩽i⩽td
ai>0

G′
i,ai . (3.9)

Тада је

ZGLn =
∑
p∈Pn

n
ą

d=1

Hd,pd .

Доказ. Израз (3.14) за ZGLn може се трансформисати на следећи начин∑
p∈Pn

∑
a[t0+1..t1]∈C(p1,t1−t0)

· · ·
∑

a[tn−1+1..tn]∈C(pn,tn−tn−1)

ą

1⩽i⩽tn
ai>0

G′
i,ai

=
∑
p∈Pn

∑
a[t0+1..t1]∈C(p1,t1−t0)

· · ·
∑

a[tn−1+1..tn]∈C(pn,tn−tn−1) ą

t0+1⩽i⩽t1
ai>0

G′
i,ai

ą

· · ·
ą

 ą

tn−1+1⩽i⩽tn

ai>0

G′
i,ai



=
∑
p∈Pn

ą

1⩽d⩽n
pd>0

 ∑
a[td−1+1..td]∈C(pd,td−td−1)

ą

td−1+1⩽i⩽td
ai>0

G′
i,ai


=

∑
p∈Pn

n
ą

d=1

Hd,pd .

Коришћење унапред израчунатих вредности Hd,q, 1 ⩽ d, q ⩽ n, које се памте у
табели, додатно поједностављује израчунавање ZGLn .

Пошто се сви елементи низова дужине tn појављују у изразу (3.15), проблем се
своди на ефикасно рачунање табеле H. Следећа лема показује како се тај проблем
може решити коришћењем идеје канонских низова a ∈ An.

Лема 3.6.3. Нека sd,i означава индекс j, такав да је d′j = d, e′j = Ei. Тада за
1 ⩽ d, q ⩽ n важи

Hd,q =
∑

nd∑
k=1

bk = q

ą

1⩽j⩽nd
bj>0


∑

bj∑
k=0

kck = bj

(
bj

c0, c1, . . . , cbj

)
ą

1⩽k⩽bj
ck>0

G×ck
sd,i,k


. (3.10)
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Доказ. Израз (3.15) представља суму по свим композицијама a[td−1 + 1..td] броја q
на td − td−1 делова. Ове композиције могу се добити од композиција бројева b[1..nd],
надовезивањем nd композиција b[j] у сабирке {a[i], i ∈ Sd,j}, 1 ⩽ j ⩽ nd. На тај начин,
израз (3.15) за Hd,q може се трансформисати у облик∑

a[td−1+1..td]∈C(q,td−td−1)

ą

td−1+1⩽i⩽td
ai>0

G′
i,ai

=
∑

b[1..nd]∈C(q,nd)

∑∑
k1∈Sd,1

ak1 = b1

· · ·
∑∑

knd
∈Sd,nd

aknd
= bnd

ą

i1∈Sd,1
ai1>0

G′
i1,ai1

· · ·
ą

ind
∈Sd,nd

aind
>0

G′
ind

,aind

=
∑

b[1..nd]∈C(q,nd)


∑∑

k∈Sd,1

ak = b1

ą

i1∈Sd,1
ai1>0

G′
i1,ai1


ą

· · ·
ą


∑∑

k∈Sd,nd

ak = bnd

ą

ind
∈Sd,nd

aind
>0

G′
ind

,aind



=
∑

b[1..nd]∈C(q,nd)

ą

1⩽j⩽nd
bj>0


∑∑

k∈Sd,j

ak = bj

ą

ij∈Sd,j
aij>0

G′
ij ,aij

 .

Вредност G′
ij ,aij

унутар групе Sd,j зависи само од другог индекса, aij . Први индекс
може бити произвољно изабран, рецимо minSd,j . Поред тога, табела G′ може се
заменити мањом табелом G, зато што је G′

minSd,j ,aij
= Gsd,j ,aij

. Дакле, унутрашња
сума у последњем изразу постаје ∑∑

k∈Sd,j

ak = bj

ą

i∈Sd,j
ai>0

Gsd,j ,ai .

Свих (
bj

c0, c1, . . . , cbj

)
сабирака у суми придружених скупу {ak | k ∈ Sd,j} таквих да је |{k | ak = i}| = ci,
1 ⩽ i ⩽ bj , међусобно су једнаки. Стога се унутрашња сума може представити у
облику ∑

bi∑
k=0

kck = bi

(
bj

c0, c1, . . . , cbj

)
ą

1⩽k⩽bj
ck>0

G×ck
sd,j ,k

.
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Коначно је

Hd,q =
∑

nd∑
k=1

bk = q

ą

1⩽j⩽nd
bj>0


∑

bj∑
k=0

kck = bj

(
bj

c0, c1, . . . , cbj

)
ą

1⩽k⩽bj
ck>0

G×ck
sd,i,k


.

Пример 3.6.5. За n = 3 је

H =

 f21
1
2f

2
1 f2 +

1
6f

4
1

1
4f

2
1 f2f4 +

1
8f

4
1 f

2
2 + 1

168f
8
1

1
3f1f3 0 0
2
7f1f7 0 0

 .
Обједињавањем претходно изнетих чињеница долази се до наредног тврђења.

Теорема 3.6.1. За 1 ⩽ i ⩽ sn и 1 ⩽ j ⩽ n нека је (видети 3.6.2)

q′ij = e′i2
⌈log2j⌉, h′ij =

2d
′
i(j−1)(2d

′
i − 1)

q′ij
. (3.11)

Означимо

Fijk =
(
f1

j∏
p=1

f
h′
ip

q′ip

)×k
, 1 ⩽ i ⩽ sn, 1 ⩽ j ⩽

⌊
n

di

⌋
, 1 ⩽ k ⩽

⌊
n

jdi

⌋
,

Dij =

j∏
p=1

(2ip − 1), 1 ⩽ i ⩽ n, 1 ⩽ j ⩽
⌊n
i

⌋
,

и
Gi,a =

∑
α∈Pa

2−diS(α)
ą

1⩽j⩽a
αj>0

Fi,j,αj

Ddi,αj

, 1 ⩽ i ⩽ sn, 1 ⩽ a ⩽ n. (3.12)

Нека sd,i означава индекс j, такав да d′j = d, e′j = Ei. Означимо са Hd,q, 1 ⩽

d, q ⩽ n, следећи израз

∑
nd∑
k=1

bk = q

ą

1⩽j⩽nd
bj>0


∑

bj∑
k=0

kck = bj

(
bj

c0, c1, . . . , cbj

)
ą

1⩽k⩽bj
ck>0

G×ck
sd,i,k


. (3.13)

Тада је

ZGLn =
∑
p∈Pn

n
ą

d=1

Hd,pd .
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3.7 Афина група трансформација AGLn

Израз за циклусни индекс (2.35) изводи се слично као и за линеарну групу.

Лема 3.7.1. За 1 ⩽ i ⩽ sn и 1 ⩽ j ⩽ n нека је (видети (3.11))

uij =


2j−1f1

j∏
k=1

f
h′
1k

q′1k
+ 2j−1f

2j

q′
1(j+1)

q′
1(j+1)

, i = 1

2jdif1

j∏
k=1

f
h′
ik

q′ik
, i > 1

и нека је

F ′
ijk = u×k

ij , 1 ⩽ i ⩽ tn, 1 ⩽ j ⩽

⌊
n

di

⌋
, 1 ⩽ k ⩽

⌊
n

jdi

⌋
,

Dij =

j∏
p=1

(2ip − 1), 1 ⩽ i ⩽ n, 1 ⩽ j ⩽
⌊n
i

⌋
,

и

G′
i,a =

∑
α∈Pa

2−diS(α)
ą

1⩽j⩽a
αj>0

F ′
i,j,αj

Ddi,αj

, 1 ⩽ i ⩽ tn, 1 ⩽ a ⩽ n.

Тада је

ZAGLn =
∑
a∈An

ą

1⩽i⩽tn
ai>0

G′
i,ai

2aidi
(3.14)

Доказ. Увођењем ознака

F ′′
i,j,αij

=
F ′
i,j,αij

2diS(αi)/aiDdi,αij

,
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добија се

ZAGLn =
1

2n

∑
a∈An

∑
α∈Pa1×···×Patn

ą

1⩽i⩽tn
ai>0

ai
ą

j=1

u
×αij

ij

∏
1⩽i⩽tn
ai>0

2diS(αi)
ai∏
j=1

αij∏
k=1

(2kdi − 1)

=
1

2n

∑
a∈An

∑
α∈Pa1×···×Patn

ą

1⩽i⩽tn
ai>0

ą

1⩽j⩽ai
αi,j>0

F ′
i,j,αij

tn∏
i=1

2diS(αi)
ai∏
j=1

Ddi,αij

.

=
1

2n

∑
a∈An

∑
α∈Pa1×···×Patn

ą

1⩽i⩽tn
ai>0

ą

1⩽j⩽ai
αi,j>0

F ′′
i,j,αij

=
1

2n

∑
a∈An


 ∑

α1∈Pa1

ą

1⩽j⩽a1
α1,j>0

F ′′
1,j,α1,j

ą

· · ·
ą

 ∑
αtn∈Patn

ą

1⩽j⩽atn
αtn,j>0

F ′′
tn,j,αtn,j




=
1

2n

∑
a∈An

ą

1⩽i⩽tn
ai>0

∑
αi∈Pai

ą

1⩽j⩽ai
αi,j>0

F ′′
i,j,αij

=
1

2n

∑
a∈An

ą

1⩽i⩽tn
ai>0

∑
αi∈Pai

ą

1⩽j⩽ai
αi,j>0

F ′
i,j,αij

2diS(αi)/aiDdi,αij

=
∑
a∈An

ą

1⩽i⩽tn
ai>0

1

2aidi

∑
αi∈Pai

2−diS(αi)
ą

1⩽j⩽ai
αi,j>0

F ′
i,j,αij

Ddi,αij

односно

ZAGLn =
∑
a∈An

ą

1⩽i⩽tn
ai>0

G′
i,ai

2aidi

Лема 3.7.2. За 1 ⩽ d, q ⩽ n нека Hd,q означава израз

Hd,q =
1

2dq

∑
a[td−1+1..td]∈C(q,td−td−1)

ą

td−1+1⩽i⩽td
ai>0

G′
i,ai . (3.15)

Тада је

ZAGLn =
∑
p∈Pn

n
ą

d=1

Hd,pd .
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Доказ. Израз (3.14) за ZAGLn може се трансформисати на следећи начин

∑
p∈Pn

∑
a[t0+1..t1]∈C(p1,t1−t0)

· · ·
∑

a[tn−1+1..tn]∈C(pn,tn−tn−1)

ą

1⩽i⩽tn
ai>0

G′
i,ai

2aidi

=
∑
p∈Pn

∑
a[t0+1..t1]∈C(p1,t1−t0)

· · ·
∑

a[tn−1+1..tn]∈C(pn,tn−tn−1) ą

t0+1⩽i⩽t1
ai>0

G′
i,ai

2aidi

ą

· · ·
ą

 ą

tn−1+1⩽i⩽tn

ai>0

G′
i,ai

2aidi


=

∑
p∈Pn

∑
a[t0+1..t1]∈C(p1,t1−t0)

· · ·
∑

a[tn−1+1..tn]∈C(pn,tn−tn−1) ∏
t0+1⩽i⩽t1

ai>0

1

2aidi

ą

t0+1⩽i⩽t1
ai>0

G′
i,ai

ą

· · ·
ą

 ∏
tn−1+1⩽i⩽tn

ai>0

1

2aidi

ą

tn−1+1⩽i⩽tn

ai>0

G′
i,ai



=
∑
p∈Pn

ą

1⩽d⩽n
pd>0

 ∑
a[td−1+1..td]∈C(pd,td−td−1)

∏
td−1+1⩽i⩽td

ai>0

1

2aidi

ą

td−1+1⩽i⩽td
ai>0

G′
i,ai


=

∑
p∈Pn

ą

1⩽d⩽n
pd>0

1

2dpd

∑
a[td−1+1..td]∈C(pd,td−td−1)

ą

td−1+1⩽i⩽td
ai>0

G′
i,ai

=
∑
p∈Pn

n
ą

d=1

Hd,pd .

Лема 3.7.3. Нека sd,i означава индекс j, такав да је d′j = d, e′j = Ei. Вредност
Hd,q (3.15) једнака је

1

2dq

∑
nd∑
k=1

bk = q

ą

1⩽j⩽nd
bj>0


∑

bj∑
k=0

kck = bj

(
bj

c0, c1, . . . , cbj

)
ą

1⩽k⩽bj
ck>0

G×ck
sd,i,k


. (3.16)

Доказ. Доказ се изводи аналогно као у леми 3.6.3.

Теорема 3.7.1. Нека је

Fijk = u×k
ij , 1 ⩽ i ⩽ sn, 1 ⩽ j ⩽

⌊
n

di

⌋
, 1 ⩽ k ⩽

⌊
n

jdi

⌋
.
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Dij =

j∏
p=1

(2ip − 1), 1 ⩽ i ⩽ n, 1 ⩽ j ⩽
⌊n
i

⌋
,

и
Gi,a =

∑
α∈Pa

2−diS(α)
ą

1⩽j⩽a
αj>0

Fi,j,αj

Ddi,αj

, 1 ⩽ i ⩽ sn, 1 ⩽ a ⩽ n. (3.17)

Нека је елемент Hd,q, 1 ⩽ d, q ⩽ n, матрице H дефинисан изразом

1

2dq

∑
nd∑
k=1

bk = q

ą

1⩽j⩽nd
bj>0


∑

bj∑
k=0

kck = bj

(
bj

c0, c1, . . . , cbj

)
ą

1⩽k⩽bj
ck>0

G×ck
sd,i,k


.

Тада је циклусни индекс ZAGLn дат изразом

ZAGLn =
∑
p∈Pn

n
ą

d=1

Hd,pd .

Приметимо да се (3.13) разликује од (3.16) за фактор 1/2dp и да су елементи
матрице у Hd,p линеарне комбинације монома. Приметимо такође да се у изразу за
uij појављује променљива fq′

1(j+1)
, тако да табеле F и D имају колону више у односу

на одговарајуће табеле у изразу за GLn.

Пример 3.7.1. За n = 3 претходно израчунате табеле F ′, D, G и H су:

F ′ =



{
f21 , f

4
1 ,

{
f21 f2, {f21 f2f4} {f21 f2f34 }

f81 , f
16
1

}
f41 f

6
2

}
{f1f3, f1f53 } {f1f3f26 } {1} {1}

{f1f7} {1} {1} {1}

{f1f7} {1} {1} {1}


,

D =

 1 3 21 315

3 45 0 0

7 0 0 0

 ,

G =



f21 + f2
1
6f

4
1 + 1

2f
2
2+

f8
1

168 + 7
24f

4
2 + 3

2f
2
4+

+f4 + f21 f2 +1
4f

4
1 f

2
2 + f21 f2f4

4
3f1f3 0 0

8
7f1f7 0 0


,
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H =



1
2f

2
1+

1
24f

4
1 + 1

8f
2
2+

f8
1

1344 + 7
192f

4
2 + 3

16f
2
4+

+1
2f2 +1

4f4 +
1
4f

2
1 f2 + 1

32f
4
1 f

2
2 + 1

8f
2
1 f2f4

1
3f1f3 0 0

2
7f1f7 0 0

 .

3.8 Анализа добијених резултата

Tабела 3.9 приказује максималну вредност n за коју су израчунате вредности Un

и Vn за све четири групе трансформација.

Табела 3.9: Добијени резултати

S′
n Gn GLn AGLn

Un 33 32 31 31
Vn 27 27 26 26

Саме вредности Un и Vn, n ⩽ 10, дате су у прилогу. За n ⩾ 10 уместо Un и Vn

приказан је број децималих цифара, првих 10 и последњих 10 децималних цифара
тих бројева.

Пошто је logUn = Θ(2n) и log Vn = Θ(n2n), логаритам величине потребног мемо-
ријског простора расте експоненцијално. Слика 3.4 приказује логаритам за основу 2

меморијског заузећа у току рачунања Un и Vn за све четири групе (у даљем тексту
подразумева се да је основа логаритма 2). Примећује се да заузеће меморије практич-
но не зависи од конкретне групе трансформација. Бројеви Un и Vn грубо се добијају
дељењем 22

n
и 22

n! са величинама четири групе, a те величине су мале у односу на
укупне бројеве Булових и инвертибилних Булових функција. Време извршавања ра-
сте експоненцијално; слика 3.5 приказује логаритам времена извршавања израженог
у милисекундама за Un и Vn за све четири групе. Примећује се такође, да се на сли-
кама 3.4 и 3.5, (где два дијаграма исте боје одговарају истој групи трансформација)
дијаграм за Vn увек налази изнад одговарајућег дијаграма за Un.
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Слика 3.4: Логаритам величине потребног меморијског простора за Un и Vn

за све четири групе.

Слика 3.5: Логаритам времена извршавања израженог у милисекундама за
Un и Vn за све четири групе.

Број чланова циклусног индекса није лако оценити. Дијаграм на слици 3.6 су-
герише да величине циклусног индекса и табеле H у бајтовима расту практично
експоненцијално. Чини се да је и време извршавања при рачунању циклусног ин-
декса и унапред израчунатих табела H такође експоненцијално, (видети слику 3.7).
Користећи табелу H, рачунање циклусног индекса на основу израза (3.3) може се па-
ралелизовати. У том смислу, табела H представља сажети облик циклусног индекса.
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Слика 3.6: Логаритам меморијског заузећа при одређивању циклусног индекса
и табеле H за све четири групе.

Слика 3.7: Логаритам времена извршавања у милисекундама при одређивању
циклусног индекса и табеле H за све четири групе.

Дијаграм на слици 3.8 приказује резултат поређења логаритма времена изврша-
вања при рачунању циклусног индекса за GLn и AGLn коришћењем последње верзије
програма Symmetrica [15] у односу на наш програм. Програм Symmetrica је много
бржи, али највеће вредности n које достиже су 21 за GLn и 20 за AGLn (узрок је
вероватно меморијско заузеће, с обзиром да се циклусни индекс не користи у ком-
примованом облику). Нагиб дијаграма програма Symmetrica нешто је већи од нагиба
друга два дијаграма.
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Слика 3.8: Логаритам времена извршавања у милисекундама при одређивању
циклусног индекса за GLn и AGLn нашег Mathematica програма и програма
Symmetrica [15].
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Глава 4

Пребројавање класа
еквиваленције монотоних
Булових функција

Булова функција f : {0, 1}n 7→ {0, 1} је монотона Булова функција од n променљи-
вих ако за сваки пар вектора x, y ∈ {0, 1}n из x ⩽ y важи f(x) ⩽ f(y). Две монотоне
Булове функције су еквивалентне ако се пермутацијом улазних променљивих једна
може добити од друге (видети одељак 2.1.7).

Нека је dn број монотоних Булових функција n променљивих (такође познат као
Дедекиндов број) и нека је rn број нееквивалентних монотоних Булових функција.
Одређивање бројева dn и rn је давно постављен проблем и вредности ових бројева
до скоро су биле познате редом за n ⩽ 8 и n ⩽ 7 (видети табелу 4.1). У овом
раду приказан је поступак рачунања r8 = 1392195548889993358. Резултат је пронађен
практично у исто време када је објављен у раду [31] (такође видети [30], низ A003182).

Тренутно израчунате вредности за dn и rn, приказане су у табели 4.1 [30]. Табела
познатих вредности допуњена је новодобијеном вредношћу r8.

Пермутације улазних n-торки индукују пермутацију индукованих 2n-торки. Као
што је речено у трећем поглављу, да би се израчунао Un(S

′
n) - број класа еквива-

ленције Булових функција с обзиром на групу пермутације променљивих, довољно
је пронаћи структуру индукованих циклуса за сваку пермутацију и сваки циклус
посматрати као фиксну тачку. Функција која је фиксна тачка пермутације на свим
n-торкама произвољног циклуса пермутације треба да има исту вредност, 0 или 1.

Све пермутације које одговарају истој партицији броја n имају исту циклусну
структуру. Скуп фиксних тачака пермутације може се представити усмереним гра-
фом у коме сваком индукованом циклусу одговара чвор (видети одељак 4.1). Моното-
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Табела 4.1: Познате вредности за dn и rn.

n dn rn
1 3 3
2 6 5
3 20 10
4 168 30
5 7581 210
6 7828354 16353
7 2414682040998 490013148
8 56130437228687557907788 1392195548889993358

ним Буловим функцијама које су фиксне тачке пермутације тада одговарају монотоне
доделе вредности 0 или 1 чворовима графа. Услов монотоности при додели вредно-
сти чворова графа подразумева да чвор следбеник не може узети мању вредност од
чвора претходника.

У овом поглављу најпре се даје општи израз за рачунање броја rn на основу
Фробенијусове теореме - у облику суме (по партицијама броја n) броја фиксних
тачака пермутације која одговара партицији. Након тога, у зависности од графова
који одговарају различитим партицијама, приказују се различити начини рачунања
броја фиксних тачака за n ⩽ 8.

4.1 Рачунање rn на основу Фробенијусове

теореме

У даљем тексту приказана јe стратегија за добијање вредности r8 на основу Фро-
бенијусове теореме, као пондерисане аритметичке средине бројева монотоних Було-
вих функција - фиксних тачака различитих класа пермутација π′ ∈ S′

n придружених
партицијама из P8. Бројеви фиксних тачака рачунају се применом три различита
приступа:

• оптимизованом процедуром претраге коришћењем основне теореме 4.1.2;

• полазећи од скупа фиксних тачака који одговара скупу монотоних Булових
функција од 6 променљивих

– за партиције код којих су последња два сабирка једнака 1, видети оде-
љак 4.2;
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– за партиције где су сви сабирци једнаки 2, видети одељак 4.3.

Избором одговарајућег приступа за сваку партицију из P8, вредност r8 је израчуната
након 45 часова рада Јава програма на персоналном рачунару.

Произвољна функција f ∈ Bn може се представити усмереним графом са N = 2n

чворова:

• са чворовима x ∈ Bn којима је додељена вредност функције f(x),

• и са гранама (x, y) ∈ Bn ×Bn, где је x < y и w(x⊕ y) = 1.

Пример оваквог графа за n = 3 приказан је у првој колони на слици 4.1. Нека је
π ∈ Sn произвољна пермутација. Придружена индукована пермутација π′ разлаже
Bn на циклусе, који су истовремено орбите пермутације π када делује на Bn. Орбита
произвољног елемента x ∈ Bn је скуп orb(x) = {x, π(x), π2(x), . . . , πk−1(x)}, где је k =

mini⩾1 π
i(x) = x. Генерално, за задато p = (p1, p2, . . . , pn) ∈ Pn нека је Gp = (Vp, Ep)

граф одређен разлагањем n = a1 + a2 + · · ·+ ak, у сабирке a1 ⩾ a2 ⩾ · · · ⩾ ak > 0 које
одговара партицији p (p у индексу графа одговара листи сабирака n која одговара
партицији p) на следећи начин:

• Партиција p одређује пермутацију π = π(p)

(1 2 . . . a1)(a1 + 1 . . . a1 + a2) · · · (a1 + · · ·+ ak−1 . . . a1 + · · ·+ ak),

која се састоји од k циклуса дужине редом a1, a2, . . . , ak.

• Скуп чворова Vp = {orb(x) | x ∈ Bn} је скуп орбита у које π разлаже Bn.

• Скуп Ep састоји се од парова (u, v), u, v ∈ Vp, таквих да за неко y ∈ v постоји
x ∈ u, при чему је x < y и w(x⊕ y) = 1.

Приметимо да се уместо пермутације π(p), партицији p може доделити било која
пермутација таква да важи type(π) = p, пошто различите пермутације истог типа
одговарају међусобно изоморфним графовима. Елементи произвољне орбите перму-
тације π имају исту Хемингову тежину. Ово омогућава да се дефинише ниво односно
слој чвора v као layer(v) = w(x), где је x било која n-торка x ∈ v. Јасно је да у скупу
Gp постоји барем један чвор на сваком нивоу k = 0, 1, . . . , n, а чворови нивоа 0 и n

састоје се редом од тачно једне n-торке (0, 0, . . . , 0) и (1, 1, . . . , 1).

Пример 4.1.1. Партиције из P3 = {(3), (2, 1), (1, 1, 1)} одређују редом пермутације
(1 2 3), (1 2)(3) и (1)(2)(3), и редом индуковане пермутације

(0)(1 4 2)(3 5 6)(7), (0)(1)(2 4)(3 5)(6)(7) и (0)(1)(2)(3)(4)(5)(6)(7)

100



ГЛАВА 4. MОНОТОНE БУЛОВE ФУНКЦИЈE

Слика 4.1: Графови придружени партицијама из P3.

f 8
1 : G(1,1,1) f 4

1 f
2
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(због јасноће, 1-циклуси су експлицитно приказани). Типови ових пермутација редом
одговарају трећем, другом и првом сабирку у циклусном индексу ZS′

3
= 1

6(f
8
1 +3f41 f

2
2 +

2f21 f
2
3 ). Придружени графови редом имају 8, 6 и 4 чворова (видети слику 4.1).

За фиксирану партицију p ∈ Pn, нека је G = Gp = (V,E). Ако Vk = {v ∈ V | w(v) =
k} означава скуп чворова нивоа k = 0, 1, . . . , n, тада се V разлаже на дисјунктну унију
V = V0 ∪V1 ∪ · · · ∪Vn. Свака грана (u, v) ∈ E повезује нека два чвора суседних нивоа,
тј. u ∈ Vk и v ∈ Vk+1 за неко k, 0 ⩽ k < n. Нека је tk = |Vk| и Vk = {vk,1, . . . , vk,tk}, 0 ⩽

k ⩽ n. Свако пресликавање S : V 7→ B1 једнозначно одговара Буловој функцији
са константном вредношћу на орбитама пермутације π. Такве функције су фиксне
тачке индуковане пермутације π′ : Bn 7→ Bn. Нека је S = (S0, S1, . . . , Sn), Sk =

{Sk,1, . . . , Sk,tk} ∈ Btk , и за свако k ∈ [0..n], i ∈ [1..tk] нека је Sk,i = f(x) за свако
x ∈ Vk,i. Вектор S придружен Буловој функцији f са константном вредношћу на
n-торкама у сваком чвору је стање графа G; ако је f монотона функција, кажемо да
је стање S такође монотоно. Нека fix(G) означава скуп свих монотоних стања графа
G.

Напомена 4.1.1. Нека је Dn = Gp граф који је придружен партицији n = 1 + 1 +

· · · + 1. Скуп чворова графа Dn је {{x} | x ∈ Bn}, пошто је дужина сваке орбите
идентичке пермутације једнака један; зато је fix(Dn) = Dn скуп монотоних Бу-
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лових функција од n променљивих и | fix(Dn)| = dn. Вредности dn познате су као
Дедекиндови бројеви.

Пример 4.1.2. Постоји 5 монотоних стања графа G(3) придруженог партицији
броја n = 3 са једним сабирком једнаким 3 (чворови су нумерисани одозго на доле):

fix(G(3)) = {{0, 0, 0, 0}, {1, 0, 0, 0}, {1, 1, 0, 0}, {1, 1, 1, 0}, {1, 1, 1, 1}}.

За преостале две партиције броја 3 важи | fix(G(1,1,1))| = d3 = 20 и |fix(G(2,1))| = 10.

Теорема 4.1.1. Знајући | fix(Gp)| за свако p ∈ Pn, вредност rn може се израчунати
на основу израза

rn =
∑
p∈Pn

|fix(Gp)|∏
i i

pipi!
.

Доказ. За фиксирано p ∈ Pn све пермутације типа p имају исти број монотоних
стања као и пермутација π = π(p). Пошто је Sn 7→ S′

n мономорфизам [24], број таквих
пермутација је g(p) = n!∏

i i
pipi!

. Свако монотоно стање графа Gp једнозначно одговара
фиксној тачки пермутације π′, па доказ следи из Фробенијусове теореме.

Пример 4.1.3. Настављајући претходни пример, добија се

r3 =
20
133!

+ 10
111!·211! +

5
311!

= 10.

Фиксирано стање Sk чвора нивоа k у G, 0 ⩽ k < n, потпуно одређује скупN+
k+1(Sk)

могућих монотоних стања Sk+1 нивоа k+1, скупа tk+1-торки Sk+1 ∈ Btk+1
таквих да за

сваку грану (vk,i, vk+1,j) ∈ E, 1 ⩽ i ⩽ tk, 1 ⩽ j ⩽ tk+1 важи неједнакост Sk,i ⩽ Sk+1,j .
За фиксирано стање Sk нивоа k означимо са T+

k (Sk) стабло са ознакама чворова
такво да корен има ознаку Sk ∈ Btk , а скуп конкатенација ознака на свим путевима
од корена ка листовима представља скуп свих могућих стања (Sk, Sk+1, . . . , Sn). Ово
стабло може се рекурзивно дефинисати на следећи начин:

T+
k (Sk) =

{
један чвор — корен, за k = n

стабло са подстаблима T+
k+1(Sk+1), Sk+1 ∈ N+

k+1(Sk), за k < n.

Нека јеG+
k (Sk) број листова стабла T

+
k (Sk), тј. број могућих вектора (Sk, Sk+1, . . . , Sn).

Специјално, за k = 0, добија се | fix(G)| = G+
0 ({0}) +G+

0 ({1}) = G+
0 ({0}) + 1.

Вредност |fix(G)| алтернативно се може добити одређивањем скупа свих могућих
стања графа G у обрнутом редоследу, од виших ка нижим слојевима. Стање Sk ∈ Btk

чворова слоја k, 0 < k ⩽ n, одређује скуп N−
k−1(Sk) свих могућух стања Sk−1 ∈ Btk−1

слоја k − 1, таквих да је Sk−1,i ⩽ Sk,j за сваку грану (vk−1,i, vk,j) ∈ E, 1 ⩽ i ⩽ tk−1,
1 ⩽ j ⩽ tk. За фиксирано стање Sk слоја k графа G означимо са T−

k (Sk) стабло
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са ознакама додељеним чворовима такво да корен има ознаку Sk ∈ Btk , а скуп
конкатенација ознака на свим путањама од корена до листова је скуп свих могућих
стања (S0, S1, . . . , Sk). Ово стабло се може дефинисати рекурзивно на следећи начин:

T−
k (Sk) =

{
један чвор — корен, за k = 0

стабло са подстаблима T−
k−1(Sk−1), Sk−1 ∈ N−

k−1(Sk), за k > 0.

НекаG−
k (Sk) означава број листова стабла T

−
k (Sk), тј. број могућих вектора (S0, S1, . . . , Sk).

За k = n, добија се |fix(G)| = G−
n ({0}) +G−

n ({1}) = G−
n ({1}) + 1.

Комбиновањем ова два приступа долази се до ефикаснијег начина за одређивање
| fix(G)|, полазећи од скупа Btk свих могућих стања Sk средњег слоја k = ⌊n/2⌋.
Пошто се за фиксирано стање Sk свако стање облика (S0, S1, . . . , Sk) може се упарити
са сваким стањем облика (Sk, Sk+1, . . . , Sn), доказана је следећа теорема.

Теорема 4.1.2. Нека је p ∈ Pn, G = Gp и 0 < k < n. Тада је

|fix(G)| =
∑

S∈Btk

G+
k (S)G

−
k (S).

Теорема омогућава рачунање |fix(G)| полазећи од скупа могућих стања изабраног
слоја k. Поступак је најефикаснији ако се полази од средњег слоја k = ⌊n/2⌋.

Пример 4.1.4. За n = 4, граф G(2,1,1) има 12 чворова, видети слику 4.2. У средњем
слоју 2 постоји |S2| = 4 чвора (на слици су ти чворови обојени зеленом бојом).
Табела поред слике приказује G+

2 (S2), G
−
2 (S2) и G

+
2 (S2)G

−
2 (S2) за свако могуће стање

S2. Збир ових производа једнак је |fix(G(2,1,1))| = 50. Стабла T+(S2) и T−(S2) за
S2 = (1, 0, 1, 0) приказанa су на десној страни слике 4.2.

Рачунање | fix(G)| може се обавити још ефикасније коришћењем симетрија графа
G. Нека је ϕ : V 7→ V произвољни аутоморфизам графа G. Нека је S неко стање слоја
Vk и нека је S′ стање добијено из S, тако да важи S′(v) = S(ϕ(v)) за свако v ∈ Vk.
Тада је G+

k (S
′) = G+

k (S), G
−
k (S

′) = G−
k (S). Према томе, може се:

• одредити скуп представника класа еквиваленције скупа свих могућих стања
слоја k = ⌊n/2⌋,

• одредити G+
k (S) и G

−
k (S) за сваког представника S и

• израчунати суму производа |C(S)|G+
k (S)G

−
k (S), где C(S) означава величину

класе еквиваленције којој припада представник S.

Табела 4.5 приказује број аутоморфизама ap графа Gp за све партиције p ∈ P8.
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Слика 4.2: Рачунање |fix(G(2,1,1))| полазећи од скупа могућих стања средњег
слоја.
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0000 1 9 9
0001 1 2 2
0010 1 2 2
0011 1 1 1
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0101 1 1 1
0110 1 1 1
0111 2 1 2
1000 1 4 4
1001 1 1 1
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1100 2 2 4
1101 2 1 2
1110 4 1 4
1111 9 1 9
| fix(G(2,1,1))| 50
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010 000
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101 111

1 1

T−
2 (1010)

T+
2 (1010)

Пример 4.1.5. Настављајући претходни пример, означимо чворове графа на сле-
дећи начин: a = (1), b = (2), c = (5 9), d = (6 10), e = (13) и f = (14), видети
слику 4.3. Група аутоморфизама састоји се од идентичке трансформације и перму-
тације (a b)(c d)(e f). Аутоморфизам (a b)(c d)(e f) разлаже скуп од 16 могућих
стања S2 на 12 класа еквиваленције; парови чворова означени истом бојом чине ор-
бите аутоморфизма. Стања која припадају истој класи еквиваленције груписана су
у табели унутар слике 4.3.

Сложеност израчунавања |fix(Gp)| ограничена је с доње стране бројем различитих
стања средњег слоја графа Gp. Табела 4.5 приказује величине mp средњег слоја гра-
фа Gp за сваку партицију p ∈ P8. Највећи средњи слој од 70 чворова има граф D8

придружен партицији f81 . На сву срећу, број d8 монотоних стања графа D8 већ је
познат. Наредни случај по тежини је граф придружен партицији f61 f2 са 50 чворо-
ва у средњем слоју, због чега је рачунање |fix(Gp)| на основу теореме 4.1.2 крајње
неефиксано. У следећем одељку, приказује се ефикаснији начин рачунања |fix(Gp)|
у случају када су у партицији p ∈ P8 последња два сабирка јединице; полази се од
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Слика 4.3: Коришћење аутоморфизама графа у циљу ефикаснијег одређивања
броја монотоних стања.
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S2 G+
2 G−

2 | fix(G)| C(S2)
0000 1 9 9 1
0001 1 2 2 1

0010, 0100 1 2 2 2
0011, 0101 1 1 1 2

0110 1 1 1 1
0111 2 1 2 1
1000 1 4 4 1
1001 1 1 1 1

1010, 1100 2 2 4 2
1011, 1101 2 1 2 2

1110 4 1 4 1
1111 9 1 9 1

скупа монотоних стања графа који одговара партицији n− 2 = 6 која је добијена од
полазне партиције изостављањем последње две јединице.

4.2 Партиције у којима су последња два

сабирка јединице

Нека је q ∈ Pn партиција која одговара разлагању n = a1+a2+ · · ·+ak, a1 ⩾ a2 ⩾

· · · ⩾ ak, где је ak−1 = ak = 1. Нека је p ∈ Pn−2 партиција која одговара разлагању
n − 2 = a1 + a2 + · · · + ak−2. Нека је Gp = (Vp, Ep) и Gq = (Vq, Eq). Следећа теорема
показује како се може израчунати | fix(Gq)| ако је познат скуп fix(Gp).

Теорема 4.2.1. Нека је
µ(S) = |T ∈ fix(Gp) | T ⩾ S|

и
η(S) = |T ∈ fix(Gp) | T ⩽ S|.

Тада важи
|fix(Gq)| =

∑
S∈fix(Gp)

∑
T∈fix(Gp)

µ(S ∨ T )η(S ∧ T ).

Доказ. Пермутација σ = π(q) када делује на x = (x1, x2, . . . , xn) ∈ Bn, фиксира
елементе xn−1 и xn. Према томе, из x′ = (x′1, . . . , x

′
n) ∈ v = orb(x) ∈ Vq следи x′n−1 =
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xn−1 и x′n = xn. Нека је

Vij = {v ∈ Vq | v = orb(x), (xn−1, xn) = (i, j)} , (i, j) ∈ B2.

За свако v ∈ Vp постоје четири чвора vij ∈ Vq, (i, j) ∈ B2, таква да ако је x =

(x1, x2, . . . , xn−2) ∈ v, онда xij := (x1, x2, . . . , xn−2, i, j) ∈ vij . Према томе, Vq се раз-
лаже у дисјунктну унију Vq = V00 ∪ V01 ∪ V10 ∪ V11. Сваки подграф Gij графа Gq

индукован скупом Vij изоморфан је графу Gp. Између два чвора u ∈ Vpq и v ∈ Vrs,
(p, q) ̸= (r, s), постоји грана ако и само ако:

• u = wpq и v = wrs за неко w ∈ Vp, и

• (p, q) < (r, s) и |w((p, q)⊕ (r, s))| = 1.

Нека је Sij вектор чије су компоненте стања чворова из Vij , (i, j) ∈ B2. Нека је
S′
ij вектор који се од Sij добија уклањањем последње две компоненте. Четворка

(S00, S01, S10, S11) једнозначно одговара стању S ∈ fix(Gq) (са пермутованим компо-
нентама) ако и само ако:

• S′
ij ∈ fix(Gp) за свако (i, j) ∈ B2,

• S11 ⩾ S01 и S11 ⩾ S10, и

• S01 ⩾ S00 и S10 ⩾ S00.

Последња два услова еквивалентна су редом условима S11 ⩾ S01∨S10 и S00 ⩽ S01∧S10.
Према томе, скуп могућих четворки (S00, S01, S10, S11) добија се на следећи начин:

• сваком пару (S01, S10) који одговара пару (S′
01, S

′
10) ∈ fix(Gp)×fix(Gp) одговарају

сви могући парови (S00, S11) ∈ η(S01 ∧ S10)× µ(S01 ∨ S10).

Величина овог скупа једнака је | fix(Gq)| =
∑

S∈fix(Gp)

∑
T∈fix(Gp)

µ(S ∨ T )η(S ∧ T ).

Напомена 4.2.1. Теорема 4.2.1 представља директно уопштење поступка приме-
њеног за рачунање d7 [3] и d8 [40].

Пример 4.2.1. Графови G(2) и G(2,1,1) приказани су на слици 4.4. Чворови индукова-
них подграфова G00, G01, G10, G11 обојени су редом сивом, плавом, зеленом и црвеном
бојом.
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Слика 4.4: Граф G(2,1,1) састављен од четири подграфа изоморфна са G(2).
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Табела 4.2: Рачунање | fix(G(2,1,1))| из примера 4.2.1.

S′
T ′

000 100 110 111

000 (1, 4) (1, 3) (1, 2) (1, 1)

100 (1, 3) (2, 3) (2, 2) (2, 1)

110 (1, 2) (2, 2) (3, 2) (3, 1)

111 (1, 1) (2, 1) (3, 1) (4, 1)

Ако су чворови у овим графовима распоређени одозго на доле, слева на десно, онда
је:

fix(Gp) = {{0, 0, 0}, {0, 0, 1}, {0, 1, 1}, {1, 1, 1}}

У пресеку врсте која представља стањe S′ графа G01 и колоне која представља
стање T ′ графа G10, табела 4.2 приказује парове (µ(S′∧T ′), η(S′∨T ′)). Сума производа
ових парова једнака је ∑

S′

∑
T ′

η(S′ ∧ T ′)µ(S′ ∨ T ′) = 50.
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Број сабирака у овој суми једнак је |fix(Gp)|2. Пошто су вредности |fix(Gp)| за
партиције (2, 2, 2), (2, 2, 1, 1) и (2, 1, 1, 1, 1) релативно мале (редом су једнаке 8600,
24302 и 160948), теорема 4.2.1 омогућава ефикасно рачунање |fix(Gq)| за одгова-
рајуће веће графове. Могуће убрзање овог рачунања постиже се у спољњој петљи,
проласком кроз скуп представника класа еквиваленције скупа fix(Gp). Следеће једно-
ставно убрзање за фактор 2 постиже се коришћењем симетрије због комутативности
операција ∧ и ∨. Рачунање вредности | fix(Gq)| је дакле много ефикасније применом
теореме 4.2.1 него применом теореме 4.1.2.

Напомена 4.2.2. Вредност r7 = 490013148 израчуната је готово тренутно комби-
нованим коришћењем теореме 4.2.1 и теореме 4.1.2.

Једини преостали проблематичан случај везан је за партицију p ∈ P8 која одго-
вара разлагању 8 = 2 + 2 + 2 + 2. У следећем одељку разматра се како се за ову
партицију може ефикасно одредити | fix(Gp)|.

4.3 Партиција у којој су сви сабирци двојке

За n = 2k, нека је q ∈ Pn партиција која одговара разлагању n = 2 + 2 + · · · + 2,
и нека је Hn = Gq. Анализираћемо графове Hn и показати како се одређује |fix(Hn)|
полазећи од fix(Hn−2) и fix(Dn−2), чиме се решава проблем са последњом преосталом
партицијом.

Нека је
σn = π(q) = (1 2)(3 4) · · · (n− 3 n− 2)(n− 1 n) ∈ Sn.

Пермутација σn има орбите дужине 1 и 2, па се скуп чворова Vq графа Gq састоји од
једноструких и двоструких чворова. Чвор {x}, x = (x1, x2, . . . , xn) ∈ Bn, је једностру-
ки ако и само ако σn(x) = x, тј. x2i−1 = x2i, 1 ⩽ i ⩽ k. Према томе, у скупу Vq постоји
2k једноструких чворова. Преосталих 22k − 2k n-торки груписано је у (22k − 2k)/2

двоструких чворова {x, σn(x)}, x ∈ Bn, x < σn(x).
Свакој (n− 2)-торки x = (x1, x2, . . . , x2k−3, x2k−2) одговарају четири n-торке

xij = (x1, x2, . . . , x2k−3, x2k−2, i, j), (i, j) ∈ B2,

добијене проширивањем x паром (i, j) ∈ B2. Пермутација σn садржи циклус (n−1 n)

који делује на овај пар. Нека је V скуп чворова графа Hn и нека су V00, V01,10 и
V11 подскупови графа V који редом садрже n-торке са последња два бита {(0, 0)},
{(0, 1), (1, 0)} и {(1, 1)}. На тај начин, V се разлаже у дисјунктну унију од три под-
скупа: V = V00 ∪ V01,10 ∪ V11. Следећа лема описује структуру графа Hn.
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Лема 4.3.1. Нека су G00, G01,10 и G11 подграфови графа Hn редом индуковани под-
скуповима чворова V00, V01,10 и V11. Тада

1. Подграфови G00 и G11 изоморфни су са графом Hn−2.

2. Подграф G01,10 изоморфан је са графом Dn−2 (видети напомену 4.1.1).

3. Једине гране графа Hn које не припадају подграфовима G00, G01,10 и G11 су
следеће:

• за сваки једноструки чвор {x} графа Hn−2, x = σn−2(x), постоје три чвора
графа Hn: {x00} ∈ V00, {x01, x10} ∈ V01,10 и {x11} ∈ V11, повезана са две
гране ({x00}, {x01, x10}), ({x01, x10}, {x11});

• за сваки двоструки чвор {x, y} графа Hn−2, такав да је y := σn−2(x) > x,
постоје четири чвора графа Hn: {x00, y00} ∈ V00, {x01, y10}, {x10, y01} ∈
V01,10 и {x11, y11} ∈ V11, повезана са четири гране ({x00, y00}, {x01, y10}),
({x00, y00}, {x10, y01}), ({x01, y10}, {x11, y11}) и ({x10, y01}, {x11, y11}).

Доказ. 1. Пресликавање ϕii : Vn−2 7→ Vii дефинисано са ϕii(orb(x)) = orb(xii),
i ∈ B1, представља изоморфизам између Hn−2 и Gii, с обзиром да у графу
Hn−2 постоји грана између чворова orb(x′) и orb(x′′), x′, x′′ ∈ Bn−2, x′ ̸= x′′, ако
и само ако у графу Gii постоји грана између orb(x′ii) и orb(x′′ii).

2. Пресликавање ϕ01 : Dn−2 7→ V01,10 дефинисано са

ϕ01({x})) = orb(x01) =

{
{x01, x10}, σn−2(x) = x

{x01, (σn−2(x))10}, σn−2(x) ̸= x

представља изоморфизам између Dn−2 и G01,10, с обзиром да у Dn−2 постоји
грана између {x′} и {x′′}), x′, x′′ ∈ Bn−2, x′ ̸= x′′ ако и само ако постоји грана
у G01,10 између orb(x′01) и orb(x′′01).

3. Разликујемо редом два случаја: када је чвор orb(x) једноструки односно дво-
струки.

случај σn−2(x) = x. Изоморфизми ϕ00, ϕ01 и ϕ11 редом пресликавају чвор {x}
у чворове orb(x00) = {x00} ∈ V00, orb(x01) = {x01, x10} ∈ V01,10 и orb(x11) =

{x11} ∈ V11. Претпоставимо да су (n−2)-торке x и x′ најмање (n−2)-торке
орбита којима припадају. Тада

• постоји грана у Hn која повезује orbx00 и orbx′01 ако и само ако је
x = x′; тада је та грана ({x00}, {x01, x10}).
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• постоји грана у Hn која повезује orbx01 и {x′11} ако и само ако је
x = x′; тада је та грана ({x01, x10}, {x11}).

• не може постојати грана између orb(x00) и {x′11}, пошто из x ⩽ x′

следи w(x′11) ⩾ w(x00) + 2, што је немогуће.

случај σn−2(x) > x. Чвор orb(x) = {x, y} одговара групи од четири чвора
orb(x00) = {x00, y00} ∈ V00, orb(x01) = {x01, y10} ∈ V01,10, orb(x10) =

{x10, y01} ∈ V01,10 и orb(x11) = {x11, y11} ∈ V11. Слично претходном слу-
чају, закључујемо да ако постоји грана e у Hn између чворова добијених
проширењем orb(x) и orb(x′), тада e може повезати само два чвора из V00
и V01,10, или два чвора из V01,10 и V11. Грана e мора припадати једном од
четири типа наведених у формулацији леме.

Слика 4.5 илуструје лему 4.3.1 на примеру графова H2 и H4. Подграфови инду-
ковани сиво, односно црвено обојеним чворовима изоморфни су са графом H2. Граф
индукован зелено обојеним чворовима изоморфан је са графом D2.

Слика 4.5: Однос између графова H2 и H4.
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Следећa теорема приказује могући начин рачунања | fix(Hn)|.
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Теорема 4.3.1. За произвољно R ∈ fix(Hn−2), нека је

µ(R) = |{T ∈ fix(Hn−2) | T ⩾ R}|,

η(R) = |{T ∈ fix(Hn−2) | T ⩽ R}|.

За свако S ∈ fix(Dn−2) (тј. за сваку монотону Булову функцију од n−2 променљиве)
нека су вектори U(S), L(S) ∈ fix(Hn−2) дефинисани једнакостима:

U(S) = U(orb(x00)) =

{
S({x}), σn−2(x) = x

S({x}) ∧ S({σn−2(x)}), σn−2(x) < x
, за свако x ∈ Bn−2

L(S) = L(orb(x11)) =

{
S({x}), σn−2(x) = x

S({x}) ∨ S({σn−2(x)}), σn−2(x) < x
, за свако x ∈ Bn−2

Тада је
| fix(Gq)| =

∑
S∈fix(Dn−2)

µ(L(S))η(U(S)).

Доказ. Произвољно монотоно стање графа Hn одређено је монотоним стањима S00,
S01,10 и S11 индукованих подграфова редом G00, G01,10 и G11. Нека је S01,10 произвољ-
но монотоно стање графа G01,10. Тројка (S01,10, S00, S11) одговара монотоном стању
графа Hn, ако и само ако

• S00, S11 су монотона стања графова редом G00 и G11, и

• задовољене су неједнакости за гране које повезују ове индуковане подграфове
(видети последње тврђење леме 4.3.1).

Пошто су графови G01,10 и Dn−2 изоморфни, ове једнакости важе ако и само ако за
свако x ∈ Bn−2 важи

S00(orb(x00)) ⩽ U(orb(x00)) =

{
S01,10(orb(x01)), σ(x) = x

S01,10(orb(x01)) ∧ S01,10(orb(x10)), σ(x) < x

S11(orb(x11)) ⩾ L(orb(x11)) =

{
S01,10(orb(x01)), σ(x) = x

S01,10(orb(x01)) ∨ S01,10(orb(x10)), σ(x) < x

Ако је S01,10 ∈ fix(G01,10) монотоно стање, тада је U(S00) горња граница монотоних
стања графа G00, а L(S11) је доња граница монотоних стања графа G11. Број парова
монотоних стања графова G00 и G11 који задовољава претходне две неједнакости
је µ(L(S))η(U(S)). Сумирањем по свим монотоним стањима S01,10, односно по свим
монотоним стањима графа изоморфног са Dn−2, добија се израз из теореме.
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Израчунавање на основу доказане теореме може се учинити још ефикаснијим.
Ако је ϕ аутоморфизам графа Dn−2, нека је S′(v) = S(ϕ(v)) за све чворове v графа
Dn−2. Тада важи µ(L(S′))η(U(S′)) = µ(L(S))η(U(S)). Према томе, сума се ефикасније
може израчунати груписањем монотоних стања графа Dn−2 у класе еквиваленције и
обрадом само представника класа еквиваленције.

Пример 4.3.1. Илустроваћемо теорему 4.3.1 израчунавањем | fix(H4)| полазећи од
fix(H2) и fix(D2). Слика 4.5 приказује разлагање графа H4 у подграфове G00, G01,10 и
G11. Ако су чворови подграфова поређани одозго на доле, тада је

fix(G00) = fix(G11) = {{0, 0, 0}, {0, 0, 1}, {0, 1, 1}, {1, 1, 1}}

fix(G01,10) = {{0, 0, 0, 0}, {0, 0, 0, 1}, {0, 0, 1, 1}, {0, 1, 0, 1}, {0, 1, 1, 1}, {1, 1, 1, 1}}

Вредности µ(R) и η(R), R ∈ fix(H2) приказане су у табели 4.3. Ове вредности иско-
ришћене су за израчунавање | fix(H4)| = 28 (видети табелу 4.4). Два стања обојена
истом бојом су еквивалентна, пошто припадају истој орбити аутоморфизама графа
D2; према томе, оба стања производе исте векторе U(S) и V (S).

Табела 4.3: Вредности µ(R), η(R), R ∈ fix(H2) из примера 4.3.1.

R µ(R) η(R)
000 4 1
001 3 2
011 2 3
111 1 4

Табела 4.4: Израчунавање |fix(H4)|.
S ∈ fix(D2) U(S) L(S) η(U(S)) µ(L(S)) product

0000 000 000 1 4 4
0001 001 001 2 3 6
0011 001 011 2 2 4
0101 001 011 2 2 4
0111 011 011 3 2 6
1111 111 111 4 1 4

28
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Полазећи од | fix(D6)| = 7828354 монотоних стања графа D6, резулатат | fix(H8)| =
2038188253420 добијен је за мање од два часа. Рачунање вредности |fix(H8)| помоћу
теореме 4.1.2 мање је ефикасно: граф H8 у средњем слоју има 38 чворова, па је број
могућих стања тог слоја прилично велики (238). Група од 192 аутоморфизма графа
H8 разлаже скуп стања средњег слоја на 1439777920 класа еквиваленције; за сваког
представника класе еквиваленције, неопходно је рекурзивном претрагом израчунати
број проширења на горе и на доле.

4.4 Израчунавање r8
Нека mp означава величину средњег слоја графа Gp, p ∈ P8. Вредности |fix(Gp)|

за различите партиције одређене су на следећи начин:

• за партиције за које је |Vp| ⩽ 84 средњи слој одговарајућег графа Gp има најви-
ше 22 чвора, видети табелу 4.5. Ово дозвољава ефикасно рачунање вредности
| fix(Gp)| на основу теореме 4.1.2;

• за осам партиција које имају као сабирке две јединице и за које је |Vp| > 84,
вредност |fix(Gp)| израчуната је на основу теореме 4.2.1;

• партицији (2, 2, 2, 2) одговара граф H8. Вредност |fix(H8)| израчуната је на
основу теореме 4.3.1;

• партицији (1, 1, 1, 1, 1, 1, 1, 1) одговара граф D8, па је искоришћена већ позната
вредност |fix(D8)| = |D8| = d8 [40].

Узимајући у обзир вредности | fix(Gp)| (које су приказане у табели 4.5) на основу
леме 4.1.1, добија се r8 = 1392195548889993358. Резултат се поклапа са резултатом
Павелског [31], који је користио исту идеју, осим што је уместо партиција посматрао
појединачне пермутације. Такође, уместо графова користио је скупове битова, што је
убрзало израчунавање r8. Неколико различитих алгоритама за израчунавање броја
фиксних тачака монотоних Булових функција приказани су у раду [39] у коме је
такође израчунат број r8.
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Табела 4.5: Израчунавање r8.

p ∈ P |fix(Gp)| g(p) |Vp| mp ap
{5, 3} 870 2688 32 6 4
{8} 2364 5040 36 10 4
{7, 1} 3858 5760 40 10 12
{5, 2, 1} 21216 4032 48 10 4
{4, 3, 1} 25168 3360 48 10 2
{6, 2} 70096 3360 52 14 4
{6, 1, 1} 144320 3360 56 14 4
{5, 1, 1, 1} 531708 1344 64 14 24
{4, 4} 3211276 1260 70 20 16
{3, 3, 2} 3607596 1120 72 18 12
{3, 2, 2, 1} 16380370 1680 80 18 4
{4, 2, 2} 37834164 1260 84 22 16
{4, 2, 1, 1} 93994196 2520 88 22 8
{3, 2, 1, 1, 1} 401622018 1120 96 22 6
{4, 1, 1, 1, 1} 424234996 420 96 22 48
{3, 3, 1, 1} 535426780 1120 96 26 24

{3, 1, 1, 1, 1, 1} 262808891710 112 128 30 120
{2, 2, 2, 2} 2038188253420 105 136 38 192
{2, 2, 2, 1, 1} 7377670895900 420 144 38 48
{2, 2, 1, 1, 1, 1} 182755441509724 210 160 42 96
{2, 1, 1, 1, 1, 1, 1} 101627867809333596 28 192 50 720
{1, 1, 1, 1, 1, 1, 1, 1} 56130437228687557907788 1 256 70 40320

4.5 Процена тежине израчунавања r9

За сваку партицију p ∈ P9 табела 4.6 приказује величину mp средњег слоја скупа
Gp и величину ap групе аутоморфизама скупа Gp. Вредност |fix(Gp)| за mp ⩽ 42

може се израчунати за прихватљиво време на основу теореме 4.1.2.
Размотримо партицију p = (1, 4, 0, . . . , 0) ∈ P9 која одговара разлагању 9 = 2+2+

2+2+1. Генерално, ако је n непарно, нека је p = (1, (n−1)/2, 0, . . . , 0) ∈ Pn и Hn = Gp.
Слично као у теореми 4.3.1, може се показати да је fix(Hn) једнако суми унапред
израчунатих израза за скуп fix(Dn−2). Пошто је | fix(D7)| = 2414682040998 ∼ 241,
| fix(H9)| = | fix(Gp)| се такође може израчунати за прихватљиво време.
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Табела 4.6: Партиције p ∈ P9 и величине mp и ap редом средњег слоја и групе
аутоморфизама скупа Vp.

p ∈ P8 mp ap
1 {9} 14 6
2 {8,1} 17 4
3 {7,2} 13 12
4 {7,1,1} 18 24
5 {6,3} 23 6
6 {6,2,1} 24 4
7 {6,1,1,1} 25 12
8 {5,4} 9 8
9 {5,3,1} 12 4
10 {5,2,2} 16 16
11 {5,2,1,1} 19 8
12 {5,1,1,1,1} 26 96
13 {4,4,1} 34 16
14 {4,3,2} 18 4
15 {4,3,1,1} 19 4
16 {4,2,2,1} 39 16
17 {4,2,1,1,1} 40 24
18 {4,1,1,1,1,1} 41 240
19 {3,3,3} 42 108
20 {3,3,2,1} 33 12
21 {3,3,1,1,1} 46 72
22 {3,2,2,2} 31 24
23 {3,2,2,1,1} 34 8
24 {3,2,1,1,1,1} 41 24
25 {3,1,1,1,1,1,1} 56 720
26 {2,2,2,2,1} 66 192
27 {2,2,2,1,1,1} 69 144
28 {2,2,1,1,1,1,1} 76 480
29 {2,1,1,1,1,1,1,1} 91 5040
30 {1,1,1,1,1,1,1,1,1} 126 362880

Преосталих 6 партиција за последња два сабирка имају јединице. Да би се из-
рачунала вредност |fix(Gp)|, на основу теореме 4.2.1 потребно је сабрати |fix(Gq)|2

производа, где је партиција q ∈ P7 добијена изостављањем последња два сабирка из
одговарајуће партиције p ∈ P9. Табела 4.7 приказује |fix(Gq)| за ових 6 партиција.
Вредности |fix(Gp)| за прве две партиције могу се израчунати за прихватљиво време
на основу теореме 4.2.1. Очигледно, најзахтевнија партиција за рачунање придруже-
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на је графу D9. Уколико би се успешно израчунала вредност |fix(D9)| = d9, вероватно
би било изводљиво израчунати број фиксних тачака за све партиције из табеле 4.7.

Табела 4.7: Преосталих 6 партиција укључених у израчунавање вредности r9
у којима су барем два сабирка јединице.

p ∈ P9 |fix(Gq)| log2(|fix(Gq)|)
{3, 3, 1, 1, 1} 69264 16.1

{3, 1, 1, 1, 1, 1, 1} 2068224 21.0
{2, 2, 2, 1, 1, 1} 12015832 23.5
{2, 2, 1, 1, 1, 1, 1} 67922470 26.0
{2, 1, 1, 1, 1, 1, 1, 1} 2208001624 31.0
{1, 1, 1, 1, 1, 1, 1, 1, 1} 2414682040998 41.1

116



Глава 5

Закључак

У овом раду разматран јe проблем израчунавања броја класа еквиваленције Було-
вих функција. Тежина одређивања броја класа еквиваленције нагло расте са бројем
променљивих n. Мотивација за избор ове теме лежи у чињеници да су конкретни бро-
јеви до сада били познати само за релативно мале вредности n, иако је сам проблем
теоријски одавно решен.

У поглављу 3 анализиране су Булове и инвертибилне Булове функције, када на
улазне променљиве делују четири групе трансформација: група пермутација, група
композиције пермутација и комплементирања, линеарна група и афина група. У
случају инвертибилних Булових функција иста група трансформација делује и на
улазе и на излазе.

Ако се зна циклусни индекс, број Булових, односно инвертибилних Булових функ-
ција може се директно израчунати. Међутим, експлицитни изрази за циклусне ин-
дексе до сада су били познати за само релативно мале вредности n. Оригинални
допринос ове дисертације огледа се у проналажењу алгоритма за добијање експли-
цитног израза за циклусни индекс за битно веће вредности n за све четири групе
трансформација. На основу тога добијени су и одговарајући бројеви класа еквива-
ленције. Специјално, у случају групе пермутација, приказан је поступак рачунања
броја класа еквиваленције без претходног рачунања циклусног индекса.

У поглављу 4 решава се проблем проналажења броја класа еквиваленције мо-
нотоних Булових функција. Приказан је поступак на основу кога су (паралелно и
независно од [31]) ефикасно израчунати бројеви за n ⩽ 8, што такође представља
оригинални допринос ове дисертације.

Резултати изложени у овој дисертацији везани за Булове и инвертибилне Булове
функције објављени су у радовима:

M. Živković and M. Carić, On the Number of Equivalence Classes of Boolean and
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Invertible Boolean Functions, IEEE Transactions on Information Theory, vol. 67 (2021),
391–407.

M. Carić and M. Živković, On the number of equivalence classes of invertible Boolean
functions under action of permutation of variables on domain and range, Publications de
l’Institut Mathématique Vol. 100, Issue 114 (2016), 95–99.

Резултат везан за монотоне Булове функције објављен је у раду

M. Carić and M. Živković, „The number of nonequivalent monotone Boolean functions
of 8 variables,” in IEEE Transactions on Information Theory, 2022, doi: 10.1109/TIT.2022.3214973.
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Prevod drugog izdanјa, Beograd, 2005.

[2] L. R. Ashenhurst, The application of counting techniques,Technical Report,Bell
Laboratories, BL-1 (11), pp. 541-602, 1952.
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[19] V. Јovović, G. Kilibarda, On the number of Boolean functions in the Post classes F,
Discr. Math. Applic. 9 (6): pp. 593–605, 1999.

[20] C. S. Lorens, Invertible Boolean functions, Tech. Rep. 21, Space General Corporation
Report, El Monte, California, Research Memorandum, 1962.

[21] C. S. Lorens, Invertible Boolean functions, IEEE Trans. Electron. Comput. vol. EC-
13, pp. 529-541, 1964.

[22] M.A. Harrison, The number of transitivity sets of boolean functions, Ј. Soc. Ind.
Appl. Math. Vol. 11, No. 3, pp. 806-828, 1963.

[23] M.A. Harrison, On the classification of Boolean functions by the general linear and
affine groups, Јournal of the Society for Industrial and Applied Mathematics, Vol. 12,
No. 2, pp. 285-299, 1964.

[24] M.A. Harrison, Counting theorems and their applications to switching theory, Chapter
4 in A. Mukhopadyay, ed., Recent Developments in Switching Functions, Academic
Press, New York, pp. 85-120, 1971.

120



БИБЛИОГРАФИЈА

[25] R. A. Horn, C. R. Јohnson,Matrix Analysis, Cambridge UNiversity Press, 1999

[26] P. D. Lax, Linear Algebra, Јohn Wiley & Sons, Inc. New York, QA184.L396, 1996

[27] R. Lidl, H. Niederreiter, Finite fields, 2nd Edition, Cambridge University Press, 1997.

[28] L. Chuchang, H. Shoben, A mechanical algorithm of equivalent classification for free
distributive lattices, in Chinese Јournal of Computers, Issue 02 (in Chinese), 1985.

[29] L. Chuchang, H. Shoben, A note on computation of the numbers of equivalent classes
for the free distributive lattices, in Јournal of Wuhan University (Natural Science
Edition), Issue 01, pp. 13-17 (in Chinese), 1986.

[30] The On-Line Encyclopedia of Integer Sequences, published electronically at:
http://oeis.org, 2010.

[31] B. Pawelski, On the number of inequivalent monotone Boollean functions of 8
variables, arXiv:2108.13997v1 [math.CO] 31 Aug 2021.
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Прилози

Табела 1: Zn(S
′
n)

n Zn(S
′
n)

1 f2
1

2 1
2

(
f4
1 + f2

1 f2
)

3 1
6

(
f8
1 + 3f4

1 f
2
2 + 2f2

1 f
2
3

)
4 1

24

(
f16
1 + 6f8

1 f
4
2 + 3f4

1 f
6
2 + 8f4

1 f
4
3 + 6f2

1 f2f
3
4

)
5 1

120

(
f32
1 + 10f16

1 f8
2 + 15f8

1 f
12
2 + 20f8

1 f
8
3 + 30f4

1 f
2
2 f

6
4 + 20f4

1 f
2
2 f

4
3 f

2
6 + 24f2

1 f
6
5

)
6

1
720

(
f64
1 + 15f32

1 f16
2 + 45f16

1 f24
2 + 40f16

1 f16
3 + 15f8

1 f
28
2 + 90f8

1 f
4
2 f

12
4 + 120f8

1 f
4
2 f

8
3 f

4
6 +

40f4
1 f

20
3 f4

1 + 90f6
2 f

12
4 + 144f4

1 f
12
5 + 120f2

1 f2f
2
3 f

9
6

)
7

1
5040

(
f128
1 + 21f64

1 f32
2 + 105f32

1 f48
2 + 70f32

1 f32
3 + 105f16

1 f56
2 + 210f16

1 f8
2 f

24
4 +

420f16
1 f8

2 f
16
3 f8

6 + 280f8
1 f

40
3 + 630f8

1 f
12
2 f24

4 + 504f8
1 f

24
5 + 210f8

1 f
12
2 f8

3 f
12
6 +

840f4
1 f

2
2 f

4
3 f

18
6 + 504f4

1 f
2
2 f

12
5 f6

10 + 420f4
1 f

2
2 f

4
3 f

6
4 f

2
6 f

6
12 + 720f2

1 f
18
7

)

8

1
40320

(
f256
1 + 28f128

1 f64
2 + 210f64

1 f96
2 + 112f64

1 f64
3 + 420f32

1 f112
2 + 420f32

1 f16
2 f48

4 +

1120f32
1 f16

2 f32
3 f16

6 + 105f16
1 f120

2 + 1120f16
1 f80

3 + 2520f16
1 f24

2 f48
4 + 1344f16

1 f48
5 +

1680f16
1 f24

2 f16
3 f24

6 + 1260f8
1 f

28
2 f48

4 + 3360f8
1 f

4
2 f

8
3 f

36
6 + 1120f8

1 f
4
2 f

40
3 f20

6 +
4032f8

1 f
4
2 f

24
5 f12

10 +3360f8
1 f

4
2 f

8
3 f

12
4 f4

6 f
12
12 +1260f4

1 f
6
2 f

60
4 +3360f4

1 f
6
2 f

4
3 f

38
6 +5760f4

1 f
36
7 +

2688f4
1 f

4
3 f

12
5 f12

15 + 5040f2
1 f2f

3
4 f

30
8

)

9

1
362880

(
f512
1 +36f256

1 f128
2 +378f128

1 f192
2 +168f128

1 f128
3 +1260f64

1 f224
2 +756f64

1 f32
2 f96

4 +

2520f64
1 f32

2 f64
3 f32

6 + 945f32
1 f240

2 + 3360f32
1 f160

3 + 7560f32
1 f48

2 f96
4 + 3024f32

1 f96
5 +

7560f32
1 f48

2 f32
3 f48

6 + 11340f16
1 f56

2 f96
4 + 10080f16

1 f8
2 f

16
3 f72

6 + 2520f16
1 f56

2 f16
3 f56

6 +
10080f16

1 f8
2 f

80
3 f40

6 + 18144f16
1 f8

2 f
48
5 f24

10 + 15120f16
1 f8

2 f
16
3 f24

4 f8
6 f

24
12 + 2240f8

1 f
168
3 +

11340f8
1 f

12
2 f120

4 + 30240f8
1 f

12
2 f8

3 f
76
6 + 25920f8

1 f
72
7 + 9072f8

1 f
12
2 f24

5 f36
10 +

15120f8
1 f

12
2 f8

3 f
24
4 f12

6 f24
12 + 24192f8

1 f
8
3 f

24
5 f24

15 + 20160f4
1 f

2
2 f

20
3 f74

6 + 45360f4
1 f

2
2 f

6
4 f

60
8 +

25920f4
1 f

2
2 f

36
7 f18

14 + 18144f4
1 f

2
2 f

6
4 f

12
5 f6

10f
18
20 + 40320f2

1 f
2
3 f

56
9

)

10

1
3628800

(
f1024
1 + 45f512

1 f256
2 + 630f256

1 f384
2 + 240f256

1 f256
3 + 3150f128

1 f448
2 +

1260f128
1 f64

2 f192
4 + 5040f128

1 f64
2 f128

3 f64
6 + 4725f64

1 f480
2 + 8400f64

1 f320
3 +

18900f64
1 f96

2 f192
4 + 6048f64

1 f192
5 + 25200f64

1 f96
2 f64

3 f96
6 + 945f32

1 f496
2 +

56700f32
1 f112

2 f192
4 + 25200f32

1 f16
2 f32

3 f144
6 + 25200f32

1 f112
2 f32

3 f112
6 +

50400f32
1 f16

2 f160
3 f80

6 + 60480f32
1 f16

2 f96
5 f48

10 + 50400f32
1 f16

2 f32
3 f48

4 f16
6 f48

12 +
22400f16

1 f336
3 + 56700f16

1 f24
2 f240

4 + 18900f16
1 f120

2 f192
4 + 151200f16

1 f24
2 f16

3 f152
6 +

86400f16
1 f144

7 + 25200f16
1 f24

2 f80
3 f120

6 + 90720f16
1 f24

2 f48
5 f72

10 +
151200f16

1 f24
2 f16

3 f48
4 f24

6 f48
12 + 120960f16

1 f16
3 f48

5 f48
15 + 56700f8

1 f
28
2 f240

4 +
75600f8

1 f
28
2 f8

3 f
156
6 + 201600f8

1 f
4
2 f

40
3 f148

6 + 226800f8
1 f

4
2 f

12
4 f120

8 +
50400f8

1 f
4
2 f

40
3 f12

4 f20
6 f60

12 + 259200f8
1 f

4
2 f

72
7 f36

14 + 181440f8
1 f

4
2 f

12
4 f24

5 f12
10 f

36
20 +

120960f8
1 f

4
2 f

8
3 f

24
5 f4

6 f
12
10 f

24
15 f

12
30+72576f4

1 f
204
5 +226800f4

1 f
6
2 f

12
4 f120

8 +403200f4
1 f

4
3 f

112
9 +

151200f4
1 f

6
2 f

4
3 f

12
4 f38

6 f60
12 + 172800f4

1 f
4
3 f

36
7 f36

21 + 362880f2
1 f2f

6
5 f

99
10

)
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ПРИЛОЗИ

Табела 2: Un(S
′
n)

n Un(S
′
n)

1 4
2 12
3 80
4 3984
5 37333248
6 25626412338274304
7 67516342973185974328175690087661568

8 2871827610052485009904013737758920847669809829897636746529411152
822140928

9
3694832432193176008480496306824803276261529443249171800642915009
7915764404975778434223641506463855155920573293619470255890863938
030397273611247288320

10

4953960358416875848019469771795151933471056489589689629448580278
8175891701270620162825730055249459903577195352419760682875370122
1627526987104616626609340598886601691863672835167903605542837097
3173355364551517732389570098778743078711676854923840445599961007
9324080845601322040392717713887950339101949952

n број цифара првих 10 цифара последњих 10 цифара
10 302 4953960358 9101949952
11 609 8096091387 9988921344
12 1225 2180345287 1455334400
13 2457 1751637212 7853867008
14 4922 1364710731 8023431168
15 9853 1082426226 2274886656
16 19715 9575825887 9021408256
17 39443 1128556104 2152309760
18 78898 2516762987 3845659648
19 157810 2134381540 5071135744
20 315635 2770822705 7817590784
21 631286 8894525773 5920624640
22 1262591 1837243952 4797814784
23 2525201 1649576304 2207606784
24 5050422 2931082251 7359756288
25 10100866 2132169236 6736451584
26 20201755 2712162313 3467180032
27 40403535 1098718953 7726454784
28 80807095 4694593494 9141382144
29 161614218 2317068161 977035264
30 323228465 1582323159 8609016832
31 646456960 2142341745 1894662144
32 1292913952 1179367868 4055357440
33 2585827937 1109063442 6609006592
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ПРИЛОЗИ

Табела 3: Un(Gn)

n Un(Gn)

1 3
2 6
3 22
4 402
5 1228158
6 400507806843728
7 527471432057653004017274030725792

8 1121807660176751958696528198417334100592514285385548102447047165
7123840

9
7216469594127296891563469349267193899711762425516008587246722796
5434796621908173076713086669511137012532701111814714310142634744
787330002626912256

10

4837851912516480320331513449018703060030328603114931278758379178
5328019239540891229811987263397524710917730613279530479674889403
5902180840179154115872092179421411467930179433328765201301849256
1851538251644816770219522292397852574024537890863067617933002992
8029851949150824420513845475723945124560896

n број цифара првих 10 цифара последњих 10 цифара
10 299 4837851912 5124560896
11 606 3953169623 5342686208
12 1221 5323108612 750578688
13 2453 2138229019 1343455232
14 4917 8329533272 4552316928
15 9848 3303302691 3095042048
16 19711 1461155073 2680714240
17 39437 8610199770 5539312640
18 78892 9600688886 305708032
19 157804 4071009712 7233422336
20 315629 2642462449 5842946048
21 631280 4241240393 7344691200
22 1262584 4380330926 7257129984
23 2525194 1966448193 742640640
24 5050415 1747061164 9936671744
25 10100858 6354359498 8437796864
26 20201747 4041436781 9259187200
27 40403526 8186094118 4533050368
28 80807087 1748872360 3056640000
29 161614209 4315875770 9895513088
30 323228456 1473653279 5694676992
31 646456950 9976056151 5984594944
32 1292913942 2745929800 2205485056
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ПРИЛОЗИ

Табела 4: Un(GLn)

n Un(GLn)

1 4
2 8
3 20
4 92
5 2744
6 950998216
7 2076795963681989019155896
8 21651217007530946175606768762255421159692845640522169779616

9
1916462551853379582766174110869540018019140561558963848311295550
4956683835092273159898364755826684230506355795035616608356302228
832

10

4905830316810577128023859641843377229352029519868792263629992237
0129342277464335912644920551075287953232312823012344145613031448
9524693644509400515146782406559276357130984160509363119708042014
0607565901724635683530896109320237486691120078358833895901926849
39351717155567658637040

n број цифара првих 10 цифара последњих 10 цифара
10 279 4905830316 7658637040
11 581 4207365905 6572193664
12 1191 1621278206 9330775296
13 2416 5046879208 2793767272
14 4874 4101701154 4104127792
15 9797 9089842394 9140513216
16 19652 5991437479 68327744
17 39371 1397463015 8191174216
18 78817 1632615069 1255183584
19 157719 1914071374 8381355576
20 315533 9039728539 3320916320
21 631174 2771144219 127424288
22 1262467 1431647594 3849171584
23 2525064 8402718102 5818113536
24 5050273 2546108234 2336345472
25 10100703 8225091972 2961040320
26 20201579 1208031732 9812269296
27 40403344 1466976913 9423820352
28 80806889 4871278129 9770368640
29 161613996 4838068238 9015843840
30 323228227 1719411692 1467008448
31 646456705 3129719385 8924464888
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ПРИЛОЗИ

Табела 5: Un(AGL(n))

n Un(AGL(n))

1 3
2 5
3 10
4 32
5 382
6 15768919
7 16224999167506438730294
8 84575066435667906978109556031081616704183639810103015118

9 3743090921588631997590183810292071781042846067942809230428008257
9018500064631097026597863697259931801933484260185559925420090026

10

4790849918760329226585800431487673075539091327996867444951164293
9579436034123162518369322883615259300043087073397364756587432595
3529940377811130038575926765372370447759627109606902989971984053
7057021771231410993576387552059303730030873644839300959028776787
89627725054625735636

n број цифара првих 10 цифара последњих 10 цифара
10 276 4790849918 4625735636
11 578 2054377883 2319137590
12 1187 3958198745 4399802540
13 2412 6160741221 9267197860
14 4870 2503479708 8164662120
15 9793 2773999754 4318369670
16 19647 9142208068 7797494578
17 39366 1066179669 1556775942
18 78811 6227932240 2843918576
19 157713 3650801419 2921525334
20 315527 8620956935 5464109194
21 631168 1321384534 6380185388
22 1262460 3413313853 2376167938
23 2525058 1001682055 9442791822
24 5050266 1517598769 3850662760
25 10100696 2451268426 5174999328
26 20201571 1800107556 9459030448
27 40403336 1092982972 2205058216
28 80806881 1814692515 1922641604
29 161613987 9011604335 7273576092
30 323228218 1601326923 6000148420
31 646456696 1457389158 792141128
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ПРИЛОЗИ

Табела 6: Vn(S′
n)

n Vn(S
′
n)

1 2
2 7
3 1172
4 36325278240
5 18272974787063551687986348306336

6 2447664586919061807550798405385060995056953516804366382059507218
44523539763881615360

7

1518095247396149934396561893437671802632484211979653211919046057
2419587843882495858528287600864911303830870768143309448109933903
4671518287392649956419149356667671350869456395141802513832187897
09596490606182400

8

5276597828377707101367890406517408260932514587414557669716521611
6877815555488359331784236239083574487580007591939126392761504001
8821216278774202023997397079366824661489931236149172145693732111
5003924305620092278668775086984681215549370125014517000731969158
5121394921465596217271765454069675365920014984558985618461211811
0722871947349006968239825032973991355317680321485829624176524898
6666164958696461300204071805602521076844115062550144859238782331
06586773392428630175571150605101668259332096000000

9

2640674186057734420991930928315688562870683196704918129080678559
5207919579157820374379500499800694343931935665638585660056771001
4711080138640649077160404172738505092500185193919142842736546598
0322259719527963963017018081392784395765197637618931124840513448
6464649524304424873096846336593869765529329153737879398307495299
0710361271944889122793368550058901512007397664533157286038662914
5652477807342113170881758146654835228711419604133228326470608445
5234725637339730861912511010904750121966886667998077807262166444
0855318152480776920392080852178579766887332338861885660254769972
1455950314400375882402318803277582933395768107346528702683280953
7781813786493896438530257922744141156357711162050661213209508862
6377113807622856129578420710344181832189204911264827583469568519
1676343780054159603877237634095410762777710784700411489926524851
7156168427686364450408622817282651956321382848649241836424750480
0661684726454045647372343309018751738150295146135226912754254972
7818772970022094457947312392115780436373203535202115844856315831
5772461447566153105732547034758874469385351519604787474193765667
3533964435465856256595927257366771432995467331495494942720000000
0000

129



ПРИЛОЗИ

Табела 7: Vn(S′
n)

n Vn(S
′
n)

10

4114862427175757036403116892495020741440331195248975279385766697
0830050665441950110137092500214020210200432751801980512359031961
6308760643301053643813406392723013201132049474654101188657366316
8425344894336998146552442963676612155972720614115757551337396899
3760311776830735943088452124245345673739672154325772688573835588
2086043468864617831742495088112740700976780544733195167479947979
3078753442439192394867696744532207220341155945977217398653371362
3723532783745420048750076111003601327760166716652578266312925695
9579857359328990333582684652843807455812609378969118873151104651
1278590362886185088364667545691898358365562585880464465712657252
5445637193897990261076289247605361750450938338120766451941245252
0016156930232586650703321036510760492647335013069539905444897925
9078582032449160809205325896384897518448259032134447847353228741
7963054582666748503388045375586768796070863798041382502674236319
4269984586507173107630599550503687572768429876685381998968548095
1661946369626914371287382807400114671666850461794790074082289474
5030529159221154135394675585100351157409547201738482090467997875
4944604647654460923190668170605161285790671133374414684851805849
0721696801976890069895887759334240679492419794395157901027019197
8966931499988973595689593747444388857062749796425830622274906852
4115828982629496572753965506222606184318542100385693498177383541
2182689097579255479401865665979629625071206424631562074232792614
8825028762766743365650014809054201316266511388877503629926960911
9697865037455187868615789702351251374086903792621861561107148323
0011395844518336137489563295269086064162228631191709130678006913
5499307279658448726785600455689160784484471650981630136565045966
7821472118725238561765425839719314160238580097302533273861316514
5264217374015224027268486887059911371718204945996491231607514928
8802031652492429620300823224143314076188802646669853253640575491
5664211671882599943401893945722241545896269678314416925107389883
3044368029202047924014682525188766836797970250356906884364115962
0820397373369799464025506435049357338176155307968790633312001740
3335962736911003249262705163138309388563641460718494666859748488
9730640583319312705399294935277013151014113574276936272611543104
3965745590513617382826047830895084018180946874232261294584032580
8413219706052031054067038475206495480515518139871550378948812216
2776501343028838638328791895124877788688982177461597314409184250
2974647494925936029520010543236335987133680627205969617198068622
5874905374236590769136748738470163485433436625435038282857389432
9277961240985934815725031208916681446669225147600998871557451921
4469782439384026366251352331259571195152879258173440000000000000
000
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n број цифара првих 10 цифара последњих 10 цифара
10 2627 4114862427 0000000000
11 5880 1049795063 0000000000
12 13003 1587646520 0000000000
13 28484 3290418747 0000000000
14 61915 1588471133 0000000000
15 133710 5317439265 0000000000
16 287168 1179393167 0000000000
17 613813 1863951032 0000000000
18 1306562 3406544315 0000000000
19 2770976 3769853709 0000000000
20 5857633 2761541679 0000000000
21 12346602 2562746290 0000000000
22 25955848 2849687196 0000000000
23 54436954 2278420247 0000000000
24 113924391 2133771053 0000000000
25 237949713 1277495638 0000000000
26 496101249 6187971910 0000000000
27 1032606106 7039012220 0000000000
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Табела 8: Vn(Gn)

n Vn(Gn)

1 1
2 2
3 52
4 142090700
5 17844701940501123640681816160

6 5975743620407865741090816419397133039670957269381635361075808507
4676243846093824

7

9265718062720641689432140462876414810989283520383625561029333845
4709398461196919722089744755049426896140944946215252828577600507
1532226159798384649365038150756391193832099360403268370959565678
719148097536

8

8051449323086100923718094492366650788776419963706295272394594744
3966393364697813921789911253484458141448986193754770496767431643
4968896909750674475093684508311194857009782770003011248081667377
3031525943759636133967534404137645108690422435606954120109764977
7439162059207315039985601585178596054326231774107401260913760880
3048625240864588986189385348144718856291494232389720029875144657
1724444597026311924121957081382659014712216362125914243816688677
511835612255058844196796528479430356919910400

9

1007337259696096199414036151243472504757188109094588519699355529
6023528892195823812248039436264302957127355829482492698691090012
1578628592926272993911897343726541554451059415404946457953089369
9768928420840440354544455750043023832613066725776264619766431216
6772708711358804654349077734601543337070209180350448378870962257
0308823117044406556241366786979256253054579797566664614119973340
8223143694817395467455006088729056020198494474387472263759526904
8887669378353935770175948064778229103996439574470866989347580043
2400990216239745396261880087912119195882938262316617897911837367
1325942232683815332615947726319472391261470084748583549260385202
6371683137416860402778790713390798589961503722390572144031170252
4908024345622534234505330286686594015070972459365271374860259670
7690303092538274074396044726332939289148821624184476886263691658
3076259639814801951471948564537230020808534302441648053149695379
5627860548896524075529909927217892408782325736367999294582200080
2372852735879997268793694223090279903732283089286536590721971621
1059446534264873133381637269635978705904929294140287485550498365
602477789344570879452123046246915561048364618954057990537216000
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Табела 9: Vn(Gn)

n Vn(Gn)

10

3924238612342602764514080898757000676575022883652663497339026162
2266817727510404691826908588613529405785019637872677337988883935
5763207095433286327184111016009343339092301821378804386765829388
4682984251343725344231074298550235897038193334689862777078053378
4637748505430923407638980983968110727061912683797619522641978824
8144191235413186866514678085434666348435192627652354400138805369
6707490389289085764758774513752181263295322366692750357297297823
3073742660279674576520992384914017989883581844952181116402555175
7411820754364958127577480938762481170475587252587431786681275035
0264158594976601684918086572353266104093134485130753007614762547
0586430734537115346027650115590440512133539522286192371312375308
9920193605644785547927208935271034710547766697949924378819368291
7669851334046517190175367256531617659042605430731246802666882268
7113813955942867759120984435641068264075149343530066031082736315
8680629151399980423301618256523629291723581788683607419243486496
7625820431909315574042325454008548553878988305315817388251170293
6845932134325295296487884305989038739790973434639396734210153999
9443976749344203077178423096905071515241545895822126901348381723
6152001769172977596883197902864453509287817082155367808161456267
4483213595456709977660294579278347718787551216083161683309233857
4287488399277252769184585001537352854685250475673019708536049467
6042363386074826527516293871289917394576565950032779028880650322
3520938742068048210592990298733929078105259419802312979747221727
8804048834215647980070276345782993394120816923332926850464394443
3500892107687733513569865924727460593783211212865735136576824882
1703083378657442575539267242179437777840110565386709947883917832
2925855295032219386143353343351856020827832299038434714195196679
4416360077184262994039393895610031367101669401233232649866743495
8742188594541801155742204406847901038279731662556889781548586488
8518118941752434275200908072626056902139508720920416561060801154
2041981204114764918117742273971531484004488340116515243814376550
9793302900563952405137576719066726183857786665293528328091732955
2943664408430190606847254999789101145355101027587807818547652263
1838967228619422649028585178725545407296816469483948585193063210
3764518670791834254611816931557919535411085897467778303616817154
4082727082980593280185172185846102379177946700471765392593967717
0945014203149786049459452290598141198061626635185124028184221895
6956341748901869248722444348489277382915149643982073844588583662
3280532600058184987124281494369143241527314914126445691335662871
3327223980280618443360975419936139529132077665226553792557329171
2347088083535527172319326673279295362048195811820437504000000
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n број цифара првих 10 цифара последњих 10 цифара
10 2621 3924238612 7504000000
11 5873 2502906472 6800000000
12 12995 9463110690 0000000000
13 28476 4903106015 0000000000
14 61906 5917516104 0000000000
15 133701 4952251226 0000000000
16 287158 2745988702 0000000000
17 613803 1084962296 0000000000
18 1306551 4957174409 0000000000
19 2770965 1371464790 0000000000
20 5857621 2511607525 0000000000
21 12346589 5827010433 0000000000
22 25955835 1619859629 0000000000
23 54436940 3237829912 0000000000
24 113924376 7580677610 0000000000
25 237949698 1134644057 0000000000
26 496101234 1374005778 0000000000
27 1032606090 3907436718 0000000000
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Табела 10: Vn(GLn)

n Vn(GLn)

1 2
2 2
3 10
4 52246
5 2631645209645100680144

6 3122420813859255942865111133846073604322601781283387320137132349
78712

7
1436373021963471088286228730014233953881153604941874111297310947
9380501248438614858055780777590843369729785783414473254052215660
114768266334649978477216840098011627456146315389838462070816

8

2999175551333938142449818345504089591339094361041780135109042435
2005935408570677281944779101252802445753936764533667633524010565
3562322784650797285198597633256714777503750173888398351210460811
4229039259930644681454151047771319290933667105204996976945379120
0180218494467009568116632390326013876296881683901560415329357329
5850802688677280174858834736056999735792939052276519396778444591
2989987739676323835462154760069036663343180949867919951897604292
0305003099624933468656

9

7104377018952410667814205621135656611953807712475317870702472173
5463313779082238537930282423791422098865305312425607614214836916
2514356896535038902120049684933593659424958357822840996725381419
2108600819683134717999507645294401725200098423275976849263195978
7053935391456111219583850951853095623638424601537024254343840901
8520353879210238808543854687323050504170144249214715551724721421
2490029541083315340922105275127528600315569075312038173210181641
2165165809512047781462891221267260551131403503250548741299176179
5807977230974897594087075169172237888977847849897397215039948188
1118452635585031605336506118870139931827732156937370094617453517
8947738815342755828523187256336357471379175830203200753588975503
4664799421304898247505406849956446445223367044013221381845864302
9471745951545847250936169642343869725401009559434421462848365911
2315322927610865492310388319184618156714877162704356241471596257
0666005631101843286900725074465997052535257338149139011299578185
8217340167008391915650694407078259439309697513557626149194227822
5960589546236304345856147989782218871216027934053466075619086067
3248283724362278792163545448244
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Табела 11: Vn(GLn)

n Vn(GLn)

10

403529520472407545801732043045753912583847446579906763163413466
8593937255233999994380354869864734743678319160670546647022602283
1506191809026152042297164859246423497933605450870946270170260887
6215704531579781355177220439603357672011093512166175176273823698
7000446685470962682690987899526163732963143833280447957368657652
2273456986852358966199170911171003791072180740599950435867683987
4978089813799635785997184940835086263053663990549839998675653725
9469577093505249081122290985955221309687884878676566654463499293
1511111811232327834370122889698268947008114332703834447084334631
3253299940010449012433571056742669313149553414053148450529660829
6924361349502489144704797713501804811220977977718318343273294463
6516287519781899706212675600644591655779667091031191575099438321
9529129476433767275987458176217502493717082763144986563478285044
7824634362290598149459469332690917466064798134075999501601057292
1272575775171366886463559546265703061667378764469474720876633302
9562564350722311651753301638757726343394287857604557740215763209
1515114133258750405547952572696660887330109255938297990096308433
3076442207663967702812794716501599055269629498594330992640876190
9114744243971272169220502547154200626989465645828337452852082796
0641611596175187053514923156105425376002001245661867993535923938
0586261266507325308004058221643165879171750890420325034901694804
4372880233936340369716096892106531858315837214284384637406743765
8816441174435394582501069024732500132367865672385702447348587941
5288180314422652276192096510326527003029032918556306339738320642
2591712856311482764487702008131613460626923121923088345767113574
2986697798769359593977122754026522727061725944222528213485850124
5541523985745697770151455994386159543635170459781804972772717613
2993752799094446926290651991758051725995507383256900405600720547
8205713202410275739019518484529563399974204353942099312158103817
4717945101769473997054661434781751080357361992315057790024390554
9907599795048710232604417831564801744349714550566574306843084831
2584362901618560186678388114401791354322929378505687551978785274
1715399505147436810243800954749292608158807038331977787786538421
0569526711712291863233941070906386080151575404168994749557568540
7497688084682297925343483461646479365361914893068629495044813824
3363671889613103643260309296067289468321884077380831957026479442
1625628263958019794336925418812172851020887684263381503569676406
7095571714743108891322772057677746032903155389402126794705558475
1924065271403621841173940698071953537264248255162634266290439881
6736271201288118445552677288794746208245899976658578705593892620
0147794436580815474552

136



ПРИЛОЗИ

n број цифара првих 10 цифара последњих 10 цифара
10 2581 4035295204 556274552
11 5823 2835138562 1711309456
12 12934 8778460400 2514365872
13 28403 2731546928 5468862764
14 61820 1434914895 5093195336
15 133600 3749890897 8800780244
16 287041 4617088394 7968498528
17 613669 2858043513 4986107452
18 1306400 1433497724 9474881392
19 2770794 3031772726 6324155232
20 5857430 2939306698 6366481984
21 12346377 2487586979 5154199188
22 25955600 1730357318 6353803904
23 54436681 5911920703 2908073808
24 113924093 1610072865 3548122880
25 237949388 1901067799 0713797456
26 496100897 1227647445 9349521944
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Табела 12: Vn(AGLn)

n Vn(AGLn)

1 1
2 1
3 4
4 302
5 2569966041123963092

6 7623097690086074079260525229364625238314362739096568515312475786
4

7
8766925182882513966590751525965783409919150420787805855086126391
2234504696438118649313555277121383225892125476929696389550785555
3188386908204901473878725895316404384316228470586133104

8

4576378709921170261306485512548964830534506776491974083113162895
5087181714737971926795622407917484200674341986898296559942643074
5792118506852412849729305470667594570165634422121146541561779731
3916484570994726010389819287752020161919094244475332436922760187
3447213962999125312178273355492317285644454540295371746399879033
8005413615981738509216600422072967645280863434558442606389215899
9987690212024912463050778962678230286830044851161778968014665909
34522276904039712

9

2710104758816684977651293037847769398480914196958663128167141789
8354840766556640067264664620892113532587167859049075170217451826
5729658850301757393692035554860532249231322615746628187837746207
8898849799988988768768122728460083665924109811125174274163511649
5915960461218304145654240017644155740218515244116601659524475441
6854993392643065951745550036362858010929162692724119396867645805
8353435341339286867773118678062544311481240574644814686407902408
4270156142338423438262793302288679450645364501905751323676206917
1610588993579350020118298089460045569033453841242296619948614221
7294689175540989072931481974367030726607010312274516125162050510
7771249505860349434668960370694169809491963580864959023135510093
7897077688479091345056885561368337574922773746310253321096589609
4653562630038741637342145511762990069068720128277040317918117827
0297392708082184542696924136177354499912062787082402416950233530
6004526298922866053993599472258705810064135461178303618784837419
6807764365146810829301972475916580632995130813937183626576119780
4168381173843020485581429782258064328979166734993368978867958637
90079697382469010782524820
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Табела 13: Vn(AGLn)

n Vn(AGLn)

10

3848357395862651308076210432488955617750620332526271468767294567
6745770027484893745235012720725390850814048392014948339677832442
7663724985372085974666260330642924289070181378087485028936966778
0072255435750783492824749370606972427473960038816215288866269099
2359606604299189402494315142881047563201368649296264241873337290
0709695690654363309852322684965169821473891645431045874287452578
5237215173717840061160897644377577429329528718470001208073174724
0730067191174021540854368075897420021895264422193209213862412387
3816602814029005378438214203818025083619254424131721945613237679
7230719947914590954147062842776005870337995663196072106644256874
9660123343491450736091591963785217392167835023101027901394791256
4432978818720814764143711096235195691868468199073711157793410510
5677885784471199760317403566527390420122935897302499422819948623
4899848578363400930971806837948965702674847929829344898712265566
3458782509875017616412514395925285737490934424820710553829706779
1782233336550733479230088159128665517814974896586400829466704543
4468771851186861674011984617925076335313516762280996374927797240
7313792054274726788724294485966554804169148717956399421664591558
9727186908443856253708358043302859568607960934000519318348453489
5961617019817681855253802764188249125040738037934365527634282516
9977487328116322372379443765115238561739379005720840347781089156
8147105544462471746761856668946371206228315619001137361284833114
4499309700818343234513339439972943713298279375023232599734564865
8668639574487043371877637585757182282628260755207943648796114892
4433308956113534310109446321455922700093676667645579162239112766
9488986980954067276449256445988482521005577476214644192137361945
0530955880519853665445735531979424146029385693804264117507425500
3354461843247610879917156936886263795329343601768856548540024712
8164251811699684494051300244948202176349151269663540131589844049
7320662694944910212533912744425504844482225289445427335492893684
9343819829900778719197302061786496282724653510589891062339015910
6329675462533874443299761086657650348442212229333749701351571545
1160070465597071884645675510572737935691389770070592943321674670
2408326349554450899780190693436949285176492593140821683439603742
8423662088699742967847085824881268412822432671660703800269739991
6623366584577723887981790333508309048230333443464644938620151264
3200230522119948004359749449055684186135541609087423137520670630
2571477328304692134010295970516109599987481279425091715918849561
3956834276276234902460021746777965366288607903087255556500722177
9408637347252895525418636014842436270846841761304993672772302346
990195373013096
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n број цифара првих 10 цифара последњих 10 цифара
10 2575 3848357395 5373013096
11 5816 6759497076 1388898128
12 12927 5232370138 6510709872
13 28395 4070322109 2019236076
14 61811 5345474538 0337949752
15 133591 3492358045 1887072228
16 287032 1074999662 4654857232
17 613659 1663600276 5129944956
18 1306389 2086013736 6765878752
19 2770783 1102952492 6608829104
20 5857418 2673283869 5968073120
21 12346364 5656117945 8673738084
22 25955586 9835942582 8084733936
23 54436667 8401344620 3990364880
24 113924078 5720127892 6974739456
25 237949373 1688487393 7418378832
26 496100881 2725924920 7259532696

Изворни кôд 5.1: Директно рачунање Un(S
′
n)

n = 20; (*the value of n is chosen here*)

e = Table[2, {n}];(*the sequence e*)

Do[DD = Divisors[k];

e[[k]] = (2^k - Sum[DD[[ј]] e[[DD[[ј]]]], {ј, 1, Length[DD] - 1}])/

k, {k, 2, n}]

PP = IntegerPartitions[n];

npp = Length[PP];(*the list of partitions of n*)

(*decompositions of n corresponding to partitions*)

P = Table[0, {i, npp}, {ј, n}];

Do[Do[P[[ipp, PP[[ipp, i]]]]++, {i, Length[PP[[ipp]]]}], {ipp, npp}];

Un = 0;

Do[(*the main loop through all partitions of n*)PPP = PP[[p]];

np = Length[PPP];

(*current partition*)

divsets = {};

nd = 1; br = 0;

Do[(*k is the index of the current Partition element*)

DD = Divisors[PPP[[k]]];

AppendTo[divsets, DD];
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nd *= Length[DD], {k, 1, np}];

(*divsets is the list of the sets of divisors of cycle lengths in \

sigma*)

Descartes = Tuples[divsets];

(*nd is the length of Descartes*)

Do[(*loop through Descartes product*)product = Descartes[[id]];

npr = Length[product];

lcm = 1; prx = 1; pry = 1;

Do[lcm = LCM[lcm, product[[ipr]]];

prx *= product[[ipr]];

pry *= e[[product[[ipr]]]], {ipr, npr}];

br += prx*pry/lcm, {id, nd}];

denominatorr = Product[i^P[[p, i]] P[[p, i]]!, {i, n}];

Un += (2^br)/denominatorr ,

{p, npp}];

Print[{"U_n=", Un}];

Изворни кôд 5.2: Директно рачунање Vn(S
′
n)

n = 20; (* the value of n is chosen here *)

e = Table[2, {n}]; (*the sequence e*)

Do[

DD = Divisors[k];

e[[k]] = (2^k - Sum[DD[[ј]] e[[DD[[ј]]]], {ј, 1, Length[DD] - 1}])/

k, {k, 2, n}]

PP = IntegerPartitions[n];

npp = Length[PP]; (*the list of partitions of n*)

(*the maximum length of a cycle in sigma’*)

mlcm = Apply[Max, Table[Apply[LCM, PP[[p]]], {p, npp}]];

(*decompositions of n corresponding to partitions*)

P = Table[0, {i, npp}, {ј, n}];

Do[Do[P[[ipp, PP[[ipp, i]]]]++, {i, Length[PP[[ipp]]]}], {ipp, npp}]

EmptyList = Table[0, {ј, mlcm}]; (*used to initialize spec(sigma ’)*)

Vn = 0; Do[(*the main loop through all partitions of n*)

PPP = PP[[p]]; np = Length[PPP]; (*current partition*)

Spec = EmptyList; (*initialization of spec(sigma ’)*)

divsets = {};

nd = 1;

Do[(*k is the index of the current Partition element*)
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DD = Divisors[PPP[[k]]];

AppendTo[divsets, DD];

nd *= Length[DD], {k, 1, np}];

(*divsets is the list of the sets of divisors of cycle lengths in \

sigma*)

Descartes = Tuples[divsets]; (* nd is the length of Descartes *)

Do[ (*loop through Descartes product *)

product = Descartes[[id]];

npr = Length[product];

lcm = 1; prx = 1; pry = 1;

(* Theorem 2 *)

Do[

lcm = LCM[lcm, product[[ipr]]];

prx *= product[[ipr]];

pry *= e[[product[[ipr]]]], {ipr, npr}];

Spec[[lcm]] += prx*pry/lcm, {id, nd}];

(* Theorem 1 *)

numerator = Product[i^Spec[[i]] Spec[[i]]!, {i, Length[Spec]}];

denominatorr = Product[i^P[[p, i]] P[[p, i]]!, {i, n}];

sum = numerator/denominatorr^2;

Vn += sum, {p, npp}]

Print[{"V_n=", Vn}]
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