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Dissertation title: Uncovering Optimal Control Strategies in Human Motion through
Inverse Optimal Control

Abstract: This thesis navigates the interdisciplinary realm of human biomechanics and
optimization-based motion modeling. It focuses on inverse optimal control and its application
to resolve associated challenges in designing more accurate data-driven simulations of human
muscle force sharing during gait and human box-lifting. A thorough survey of contempo-
rary advancements in optimization-based approaches in human motion modeling and inverse
optimal control, touching on connections to inverse reinforcement learning and bi-level opti-
mization, lays the groundwork for the research. One theme of this research is formulating a
novel method designed to ascertain lower bounds on the error of inverse optimal control pro-
cesses for quadratic programming optimal control models, which possess practical potential.
Though not directly applicable to the formulation of muscle force sharing and box-lifting,
this method may be extended for this to be the case. The main themes of this research
are the biomechanical simulations of box-lifting and the sharing of muscle force in the lower
limbs during gait. Box-lifting and muscle-force-sharing simulation applications emphasize the
critical potential of optimization-based simulation methods in biomechanics and the ongoing
need for enhancements in existing models. The pertinence and potential of inverse optimal
control approaches for augmenting accuracy in human motion simulation are demonstrated
through these applications while taking a step back and exploring the difficulties in large-scale
applications. The application to box-lifting required acquiring human motion data, utilizing
advanced motion capture systems and a force plate. A detailed presentation of the collected
data, its post-processing, and its use for the final model identification has been given. In con-
trast, the application to muscle-force sharing has been made on pre-processed open-sourced
data. This dissertation consolidates and scrutinizes existing knowledge of inverse optimal
control, proposing incremental advancements in human biomechanics and motion simulation
through its use.

Keywords: biomechanics, human modeling, human motion simulation, inverse optimal
control, human motion analysis, ergonomics, muscle force analysis, box lifting

Scientific field: Electrical and Computer Engineering
Scientific subfield: Inverse Optimal Control, Biomechanics
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Наслов дисертације: Откривање Оптималних Стратегија у Људском Кретању
Путем Инверзног Оптималног Управљања

Апстракт: Ова теза се бави интердисциплинарним подручјем људске биомеханике
и моделирањем кретања заснованог на оптимизацији. Фокусира се на инверзно опти-
мално управљање и његову примену за решавање изазова у дизајнирању прецизнијих
симулација заснованих на подацима расподеле људске мишићне силе током хода и људ-
ског подизања кутија. Темељно истраживање савременог напретка у оптимизационом
моделирању људских покрета и инверзог оптималног управљања, дотичући се веза са
инверзним учењем подстицањем и оптимизацијом на два нивоа, поставља основу за ис-
траживање. Једна тема овог истраживања је формулисање новог метода за утврдјивање
доње границе грешке инверзних процеса оптималног управљања за моделе оптималног
управљања заснованих на квадратном програмирању, који поседују практичну примену.
Иако метод није директно применљива на формулацију проблема расподеле мишићне
силе и подизања кутија, овај метод се може проширити да би то био случај. Главне теме
овог истраживања су биомеханичке симулације подизања кутија и расподеле мишићне
силе у доњим удовима током хода. Примене симулације подизања кутија и расподелу
мишићне силе наглашавају критични потенцијал симулационих метода заснованих на
оптимизацији у биомеханици и сталну потребу за побољшањима у постојећим моделима.
Прикладност и потенцијал инверзних оптималних приступа управљања за повећање
прецизности у симулацији људског кретања демонстрирани су кроз ове примене док се
потешкоће у применама великих размера стављају у перспективу. Примена на подизање
кутија захтевала је прикупљање података о људском кретању, коришћењем система за
хватање покрета и платформе за мерење силе. Дат је детаљан приказ прикупљених
података, њихове накнадне обраде и употребе за коначну идентификацију модела. На-
супрот томе, примена на расподелу мишићних сила је заснована на претходно обрађеним
јавно доступним подацима. Ова дисертација консолидује и испитује постојеће знање
о инверзном оптималном управљању, предлажући инкрементални напредак у људској
биомеханици и симулацији кретања кроз њену употребу.

Кључне речи: биомеханика, људско моделирање, симулација људског покрета, ин-
верзно оптимално управљање, анализа људског покрета, ергономија, анализа мишићне
силе, дизање кутија

Научна област: Електротехника и рачунарство
Научна подобласт: Инверзно оптимално управљање, Биомеханика
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Titre de la thèse: Découvertes de Stratégies de Contrôle Optimal dans le Mouvement
Humain Grâce au Contrôle Optimal Inverse

Résumé: Cette thèse explore le domaine interdisciplinaire de la biomécanique humaine
et de la modélisation du mouvement basée sur l’optimisation. Elle se concentre sur le
contrôle optimal inverse et son application pour résoudre les défis associés à la conception
de simulations plus précises basées sur des données de la répartition de la force musculaire
humaine pendant la marche et le mouvement de levage de boîtes. Une étude approfondie des
progrès contemporains dans les approches basées sur l’optimisation dans la modélisation du
mouvement humain et le contrôle optimal inverse, abordant les liens avec l’apprentissage par
renforcement inverse et l’optimisation à deux niveaux, jette les bases de la recherche. L’un des
thèmes de cette recherche consiste à formuler une nouvelle méthode conçue pour déterminer
les limites inférieures de l’erreur des processus de contrôle optimal inverse pour les modèles de
contrôle optimal quadratiques, qui possèdent un potentiel pratique. Bien qu’elle ne soit pas
directement applicable à la formulation de la répartition de la force musculaire et du levage
de boîtes, cette méthode peut être étendue pour que ce soit le cas. Les thèmes principaux
de cette recherche sont les simulations biomécaniques du levage de boîtes et la répartition
de la force musculaire dans les membres inférieurs lors de la marche. Les applications de
simulation de levage de boîtes et de répartition de force musculaire soulignent le potentiel
critique des méthodes de simulation basées sur l’optimisation en biomécanique et le besoin
continu d’améliorations des modèles existants. La pertinence et le potentiel des approches
de contrôle optimal inverse pour augmenter la précision de la simulation du mouvement
humain sont démontrés à travers ces applications tout en prenant du recul et en explorant
les difficultés des applications à grande échelle. L’application au levage de caisses nécessitait
l’acquisition de données sur les mouvements humains, à l’aide de systèmes de capture de
mouvements et d’une plaque de force. Une présentation détaillée des données collectées, de
leur traitement et de leur utilisation pour l’identification finale du modèle a été donnée. En
revanche, l’application à la répartition de la force musculaire a été réalisée sur des données
open source prétraitées. Cette thèse consolide et examine les connaissances existantes sur le
contrôle optimal inverse, proposant des avancées progressives dans la biomécanique humaine
et la simulation du mouvement grâce à son utilisation.

Mots clés: biomécanique, modélisation humaine, simulation du mouvement humain,
contrôle optimal inverse, analyse du mouvement humain, ergonomie, analyse de la force
musculaire, levage de boîtes

Domaine scientifique: Génie électrique et informatique
Sous-domaine scientifique: Contrôle optimal inverse, biomécanique
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Chapter 1

Introduction

1.1 Subject, Aim, and Significance of the Research

In the ergonomics, biomechanics, and robotics research, understanding human motor
control has significant implications – from advancing technologies in the healthcare and reha-
bilitation sector to designing more efficient robotic assistance [141]. Even though automation
has been widely implemented in many industries, tasks cannot be fully automated because
of their flexible requirements, necessitating human-level perception, decision-making, and
operation [119]. Many of these tasks involve heavy physical work, excessive repetition, awk-
ward postures, and heavy lifting, often identified as the leading causes of Musculoskeletal
Disorders (MDs) [67]. MDs are prevalent among industrial workers, accounting for 80% of
industrial diseases with an annual increase of 3% over the past decade. MDs can lead to
early retirement and significant difficulties in accomplishing basic everyday tasks for affected
people, thus presenting significant economic and societal challenges from the point of view
of both companies and governments [116]. Human-robot collaboration and exoskeletons are
promising solutions for reducing MDs by combining the human’s superior perception and
decision-making with the robot’s physical power generation [119]. Additionally, they have
the potential to improve the future of assistive technology in rehabilitation centers [94]. How-
ever, a limited understanding of human motion and the inability of robots to algorithmically
anticipate it during collaborative or assistive tasks hinder their safe coexistence with humans
and successful task performance [59].

To overcome this challenge, a promising solution is to use data-driven Inverse Optimal
Control (IOC) to learn human-like motions from demonstrations of a human supervisor [129,
138]. IOC has yielded encouraging results in various biomechanical and robotic applications,
including torque-controlled locomotion [108], muscle-force sharing during locomotion [149],
grasping [72], and industrial screwing [97], and has the potential to become essential in
designing seamless and natural robotic assistance [112]. Furthermore, IOC can be used to
determine changes in motion control objectives and segment human motion into phases [111,
135], leading to more informative feedback in the ergonomic evaluation of task difficulty for
human workers [97, 111]. This can also lead to more accurate human simulations and, in turn,
facilitate the design of ergonomic workspaces that will reduce the risks of MDs [37]. IOC and
similar techniques have been applied in numerous fields, including but not limited to control
theory, artificial intelligence, robotics, health systems, energy systems, and marketing [120,
129, 138]. Despite efforts to survey and classify the numerous approaches [129, 138], there
seems to be no consensus on terminology, assumptions, and solution methods. Regarding
IOC, there remain questions pertaining to its resilience to noise [120, 148] or to the type of
learning loss function to be used [120, 138, 147, 148].

The research will focus on the study of human motor control via the use of data-driven IOC

1



on experimentally acquired data. The expected use cases and applications of the results are
in ergonomics, biomechanics, and robotics, with the potential for improving and advancing
assistive technologies in industry, healthcare, and rehabilitation. Moreover, the research will
partially focus on methods for data-driven IOC in and of itself, with the outputs of the
research targeting impact in related fields of control theory and artificial intelligence.

1.2 Research Hypotheses

The research will be based on the following hypotheses that are ingrained in the existing
literature:

• For a given motor task, there are invariant aspects in the motion produced by the human
motor control system, which can be measured and quantified, whether the motion is
analyzed in joint space or muscle space [72, 97, 108, 111, 112, 120, 135, 147, 148, 149],

• The invariant aspects of the motion produced by the motor control system can be
modeled as an optimization process: a process of selection among infinite possibilities
of the most appropriate motion. The invariant aspects can be identified using measured
data of human motion with IOC. Once the constant elements of the movement are
identified, they can be used in the future for predicting human motion, generating
human-like trajectories, and analysis of the motion objectives [72, 97, 108, 111, 112,
120, 135, 147, 148, 149].

These hypotheses will be explored in Chapter 4, which deals with the distribution of
muscle forces during gait, and in Chapter 5, which deals with the box-lifting motion of
humans.

1.3 Research Outline

The dissertation begins by reviewing optimal control and the optimal control-based mod-
eling of the human motor control system. Chapter 2 blend the state-of-the-art theory and
applications of data-driven IOC [129, 138], with a focus on its applications in human motion
[72, 97, 108, 111, 112, 120, 135, 147, 148, 149]. Chapter 2 and Chapter 3 will also briefly
explore the connections between IOC and theories of multi-objective optimization [26] and
bi-level optimization [99]. To illustrate the methods of IOC, the research will provide simple
computational examples and accompanying graphical illustrations. Chapter 3 will delve into
the issue of "basis function selection" in the context of IOC, with a particular emphasis
on convex quadratic basis functions [147]. Based on techniques from the field of polyno-
mial optimization [100], the research will present a procedure for finding lower bounds on
the error of an IOC approach for a given data set and basis functions [147]. Motivated by
the potential applications of IOC in designing rehabilitation technology, especially walking
exoskeletons, Chapter 4 will investigate how the human motor control system distributes
muscle forces in the lower limbs during gait. The study will use IOC to analyze hemiparetic
patient walking data, collected using Electromyography (EMG), motion capture, force-plates,
and a treadmill and open-sourced alongside a calibrated geometric model of the lower body
and extracted reference muscle forces in the lower limbs [144]. The calibrated geometric
model and the reference muscle forces will serve as a baseline, and an IOC procedure will be
applied to infer which biomechanical objectives from the literature best explain the obtained
data [149]. The study will analyze and compare the simulation results with the learned
objectives against literature baselines. Chapter 5 will include experiments on healthy human
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participants performing a box-lifting task, chosen due to an estimated 52% of work-related
MDs being caused by overloading during lifting tasks [126]. The chapter’s goal will be to
investigate the biomechanics of the specific box-lifting motor task and how one can represent
a human’s unconscious decision-making and control process using optimal control theory.
The study will use an Optitrack motion capture system, an AMTI Force Plate, the box to
be lifted during the experiments, and a table to place the box upon lifting. The obtained
experimental data will be input into the IOC framework to analyze the control objectives
of human subjects during a box-lifting task. The study will explore variations in retrieved
control objectives across subjects and trials. The learned control objectives will be used for
simulation and compared to state-of-the-art approaches from the literature [104, 134].

1.4 Research Timeline

The research was conducted to apply IOC to actual human data with different models and
tasks to learn human motion objectives. Moreover, it comprises an inquiry into IOC methods
and algorithms and their applicability to simple mathematical models in order to grasp the
intricacies of application to complex models of human motion. The objective will be to give
a biomechanical analysis of the results of the application of IOC to human motion, as well as
to design more realistic simulations of human motion and shed light on the applicability of
various IOC methods and algorithms to human motion models.

1. First phase – Familiarization The study started with analyzing the structure of the
IOC problem through a literature review of related fields. In parallel, a survey on
the modeling of human motion was performed. Popular IOC methods were tested on
simple numerical examples, and the results were reported. The advantages of different
approaches and their applicability to human motion models were evaluated and com-
pared. Particular problems of IOC were studied, like the selection of basis functions,
and contributions were published.

2. Second phase – First study – Muscle force sharing in lower limbs during gait The task
of muscle-force sharing in lower limbs during gait was chosen as a first study on the
basis of the availability of open-source clinical research data [144] and because of its
the possibility of using relatively simple mathematical models.

3. Third phase – Second study – Data collection – Box-lifting The task of box-lifting was
chosen as a second study on the basis of its essential correlation with work-related
MDs and due to its moderately complex modeling. An experiment was designed to
investigate the motor control objectives of humans when performing the box-lifting
task. The data were collected using an Optitrack motion capture and AMTI force
plate, were processed, and will be made publicly available upon publication of results.
Known IOC techniques, as well as heuristic adaptations, were applied to the data in
order to analyze it within this framework. The intricacies of the application of IOC to
more complex models were discussed.

The studies are accompanied by detailed descriptions of the mathematical models and
available datasets. The numerical methods were explained, and numerical results were
comprehensively presented in tabular and figure forms. Biomechanical interpretation of
the results alongside their implication for the design of better rehabilitation assistance and
human-robot collaboration were discussed and cross-referenced with literature.

3



1.5 Biomechanics and Motor Control

The biomechanics of human movement is the study of the structure and function of human
movement as viewed from the perspective of mechanics. This includes applying principles
from physics to understand how the body moves (kinematics) and the forces that cause
this movement (kinetics) [65]. Biomechanics often refers to the study of how the skeletal
and muscular systems work under different conditions, such as walking, running, jumping,
or lifting. It provides crucial insights into human performance and injury prevention [34,
101]. On the other hand, Motor Control is a sub-discipline of neuroscience and physiology
that aims to understand how the nervous system interacts with the environment to produce
purposeful, coordinated, or involuntary movements. It investigates how the central nervous
system integrates information from the sensory systems (like vision and proprioception) with
information about the desired action to produce motor commands [101]. Motor control
theories often categorize movements into reflex-driven or planned actions and consider the
role of feedback and feedforward control mechanisms [34]. Also, they study how motor skills
are learned and retained, known as motor learning [38, 44]. Biomechanics and Motor Control
intersect when we try to understand how the mechanical properties of the body (muscle
properties, bone structures, etc.) interact with the control signals sent from the nervous
system to produce motion. The field of Computational Neuroscience has produced models of
motor control that try to capture these complex interactions. These models can help design
better prosthetic limbs, improve outcomes in physical rehabilitation, or develop more realistic
animations in computer graphics [34].

A pioneering study by Hogan [3] argues that the tendency of the motor behavior of
primates to select a particular motor behavior during arm reaching motion is a product of
an optimization process. The straight hand paths and bell-shaped velocity profiles observed
during the reaching motion have been attributed to the minimization of elbow joint jerks
with linear dynamics. Motion was simulated by optimizing the mentioned cost function.

The minimization of jerk has been re-used as a principle for studying human motion in
[4] where the authors present a mathematical model of human arm movement coordination,
utilizing dynamic optimization theory to optimize for smoothness by minimizing jerk of a 2
Degree of Freedom (DoF) model actuated at the shoulder and the elbow, with experimental
confirmation that the model accurately predicts observed features, including straight point-
to-point motions, bell-shaped velocity profiles, and variations in curvature along trajectories.
Also considering a model actuated at the shoulder and the elbow, [22] introduce a model
that accurately predicts complex arm movement speed profiles by maximizing smoothness
along a predefined path, replacing the 2/3 power law with a jerk minimization constraint
and demonstrates that this new model outperforms existing versions of the 2/3 power law,
suggesting that the correlation between speed and curvature in arm movements may be a
result of a motor strategy for producing smoother motions.

Another pioneering study by Nelson [2] explores various optimization objectives for mo-
tion, such as movement time, distance, peak velocity, energy, peak acceleration, and jerk,
for a 1 DoF system ultimately revealing performance trade-offs in skilled movements and
demonstrating how considerations of physical economy influence movements during activities
like violin bowing.

A procedure that accounts for the formation of hand trajectories using the square of the
rate of change of torque of a 2 DoF shoulder-elbow joint model integrated over the entire
movement as an objective function has been presented in [6]. Experimental results support
that human hand trajectories are planned and controlled according to the minimum torque
change criterion.

Again using a two-link model for arm reaching (upper arm and forearm), [27] examines

4



internal representations for arm trajectory planning, comparing four computational models
minimum hand-jerk model, minimum joint-jerk model, minimum joint torque change model,
and the minimum commanded torque model (internal representation of changes in muscle
tension), and finds that the minimum commanded torque change model in an “intrinsic-
dynamic-neural” space reproduces actual trajectories best, with a key result being that longer
movement durations lead to larger trajectory curvatures and the importance of initial and
final positions in trajectory curvatures. A study [15] by the same group used a 17-muscle,
2-joint DoF model to model the arm motions of monkeys using a minimum muscle-tension
change model.

Using a 4 DoF model of the arm (3 DoF in the shoulder and one in the elbow), Soechting
et al. [14] found that it was impossible to predict the pointing motion of a human arm across
a wide range of positions and orientations by using only kinematic quantities. They found
that the minimum effort/work model, equal to the integral of joint power, produced the best
predictions across the experimental data.

An optimal control model has been proposed in [13] to simulate the non-ballistic movement
of rising from a chair, highlighting the importance of a performance criterion based on the
time derivative of muscle force to minimize peak forces developed by muscles during the
movement, ultimately showing that multi-joint coordination is influenced by both the chosen
performance criterion and motion constraints.

A theory of eye and arm movements that explains the observed smooth and stereo-
typed trajectories based on the assumption that neural control signals are affected by signal-
dependent noise has been developed in [21], with the key result being that minimizing the
variance of the final eye or arm position accurately predicts these trajectories and the speed-
accuracy trade-off, providing a unified perspective for both eye and arm movement control.
Through the study of numerous human movements, [38] develops a theory of motor coordi-
nation called stochastic optimal feedback control, which reconciles the reliability of achieving
behavioral goals with the richness of motor variability by allowing variability in redundant
dimensions and intelligently using feedback to correct deviations interfering with task goals,
providing a framework for understanding task-constrained variability, goal-directed correc-
tions, motor synergies, and other aspects of motor control. Kuo [12] introduced an optimal
control model for analyzing human postural balance, which incorporates linearized equa-
tions, state estimation, and gain-scheduling to study various control objectives, and finds
that an objective function weighting center of mass excursion and deviations from an upright
stable position, while considering system inertial parameters and musculoskeletal geometry,
produces controls that reasonably match experimental data, shedding light on how humans
select control strategies for maintaining balance.

More information can also be found in Chapter 4, which provides a review of optimal
control-based approaches for predicting the distribution of muscle forces in the lower limbs
during gait. Meanwhile, Chapter 5 provides a comprehensive and detailed review of the
optimization-based approaches for the prediction of box-lifting motion.

Optimal Control Problems (OCPs) are a ubiquitous way to model a large number of
natural phenomena related to biomechanics and motor control. A biological system chooses
to distribute its motor commands in a way that minimizes an intrinsic cost function, usually
representing a measure of smoothness of effort. The motor commands are often subjected
to physical constraints while the invariant components of the motion are encoded within an
objective function that the biological system has the task of minimizing.

A huge body of literature blending the theory of optimal control with the field of biome-
chanics and motor control has focused on finding a unifying principle for particular classes of
human motion like pointing, grasping, walking, rising from a chair, balancing, and box-lifting.
Almost as large is the set of unifying principles that have been proposed in these studies,
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although much of them are focused on expressing the tendency for biological motion to be
smooth or energy efficient.

Outside observers who wish to study or simulate the biological system’s behavior may
have direct or indirect access to measurements of the system’s motor commands, but the
biomechanical motor command objective function which is crucial for the simulation and
prediction of motion is certainly not available to the observers. From the perspective of
a simulation designer, the objective function design can sometimes prove to be very diffi-
cult. Data-driven modeling is supposed to alleviate this problem and uses observations and
measurements of the biological system’s motor commands which may be readily available to
enhance the simulation models.

This dissertation will focus on IOC, which is a data-driven technique that imputes the
objective function of a dynamical system given observation of its trajectories. IOC is, like
much of the aforementioned literature, preconceived on the assumption that the observations
are optimal with respect to some objective function that it attempts to uncover.

1.6 Thesis Contributions and Related Publications

The expected scientific contributions of the thesis are:

• The systematic overview of the literature and methods in optimization-based human
motion modeling and IOC. A partial summary of the connections to related fields of
inverse reinforcement learning, multi-objective optimization, and bi-level optimization
is provided.

• Analysis and interpretation of the properties of current IOC methods, with remarks
about practical implementations and performance.

• Design of a procedure for finding lower bounds on the error of an IOC approach for a
given data set and basis functions in the context of convex quadratic basis functions.

• Application of IOC to two actual use cases related to industrial and rehabilitation
applications. One use case is box-lifting, and another is muscle-force sharing in lower
limbs during gait.

• Experimental human box-lifting data collection using a motion capture system and a
force plate.

• Analysis of the variations in retrieved control objectives across subjects and trials for
the box-lifting task.

• Application of IOC to infer the biomechanical objectives that best explain the obtained
data on muscle force distribution in the lower limbs during gait, using data collected
from hemiparetic patient walking and a calibrated geometric model of the lower body
and comparing the results against literature baselines.

• Validation of the learned control objectives from the above two use cases through
simulation and comparison with state-of-the-art approaches from the literature.

The scientific contributions that have been achieved throughout the thesis have been
compiled and published in the following articles:

• Filip Bečanović et al. “Assessing the Quality of a Set of Basis Functions for Inverse Op-
timal Control via Projection onto Global Minimizers”. In: 2022 IEEE 61st Conference
on Decision and Control (CDC). IEEE. 2022, pp. 7598–7605,
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• Filip Becanovic et al. “Force Sharing Problem During Gait Using Inverse Optimal
Control”. In: IEEE Robotics and Automation Letters 8.2 (2023), pp–872,

• Marija Radmilović et al. Influence of muscle co-contraction indicators for different task
conditions. 2021,

• Filip Bečanović et al. Pronalazak Optimizacione Funkcije Kretanja iz Simulirane Demon-
stracije Pokreta Čučnja. 2021.
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Chapter 2

Inverse Optimal Control

There is a consensus in the literature on biomechanics, human motor control, and robotics
that a broad spectrum of human motions can be modeled and predicted using optimal control
approaches. This is especially the case for repetitive motions or tasks that are subject to
strict biomechanical constraints such as walking, jumping, or lifting. Though trends do exist,
there is no consensus on the objective function used for any particular class of human motion.
The use of IOC methods has been proposed and extensively studied to use human motion
data to infer the biomechanical objective function underlying some classes of human motion.

The field of IOC is still young, and “IOC” seems to be an umbrella term for a variety
of related, although formally different, problems. Initially, in this chapter, a very general
formulation of the IOC problem will be presented, which will attempt to consolidate as
many of the different problems under the IOC umbrella as was necessary for the author to
understand them. This unifying presentation is a byproduct of the numerous difficulties I
have experienced when researching this subject, requiring a breadth of knowledge far beyond
my initial expectations. It is an attempt to grasp the issue comprehensively.

Towards the end of the chapter, the exposition shifts towards a more narrow view of
IOC, which has been the predominant perspective in the IOC literature embedded in the
biomechanics, motor control, and robotics communities. This perspective will be adopted
throughout the rest of the manuscript and thus will be referred to generically as IOC. In
contrast, the aforementioned broader approach to IOC will be referred to as the General
Inverse Problem.

The application of IOC requires at least one observation, which is assumed to be optimal
or at least nearly optimal, and knowledge of the constraints related to the task’s biomechanics
and the human body that define the set of feasible motions. A necessary and crucial compo-
nent of IOC is a finite-cardinality set of basis objective functions, which is inextricably linked
to the variety of human motions our model will be able to produce. These basis objective
functions are combined into a single compound objective function in a convex combination
of the basis functions. The human motion produced by the model is then shaped by varying
the weights of different basis functions in the compound function. Finally, the goal of IOC is
to identify the optimal weights of this combination such that the observation output by the
model is as close as possible to the training data.

The two measures of closeness that have shaped the literature amalgamating IOC with
biomechanics, motor control, and robotics are presented in Section 2.6.

2.1 Introduction

Though [48] preceded it, the pioneering study that introduced IOC to the field of biome-
chanics and robotics and sparked an interest in the community was the study by Mombaur,
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Truong, and Laumond [69], which introduced the idea of using IOC to transfer biological
motions to robots, by demonstrating how this approach could be employed to understand
and identify the optimization criteria underlying human locomotion. The study employed
temporal, kinematic, and geometric objective basis functions. It used a bilevel approach
that combines efficient direct multiple shooting and derivative-free trust region optimization
techniques to identify the weighting coefficients of the basis functions. The study focused
on transferring the natural locomotion paths to humanoid robots through a fully holonomic
model of humanoid locomotion.

Multiple studies emerged thereafter, using IOC to analyze different human motions.
Berret et al. [72] address the question of what cost function the brain optimizes for co-
ordinating arm movements by employing a bilevel IOC method in an experimental setting
involving arm reaching with target redundancy, revealing that subjects’ arm trajectories best
fit a combination of two cost functions: the absolute work of torques and the integrated
squared joint acceleration, supporting the hypothesis that composite cost functions underlie
natural movements. Arm motion was modeled in the sagittal plane with 2 DoF, one for
the shoulder and one for the elbow, and the IOC problem was solved using a pseudospec-
tral method for solving the direct problem combined with a derivative-free approach for the
inverse problem. Albrecht, Leibold, and Ulbrich [77] also employ a bilevel IOC approach
to explore how humans plan and execute their arm movements, except they analyze a 2
DoF model of the arm in the transversal plane, considering minimum jerk and minimum
torque change models and their combinations. Sylla et al. [97] study an industrial screwing
task, combining multiple criteria such as energy expenditure and trajectory smoothness, and
demonstrating through bilevel IOC that the resulting cost function mainly consists of energy
expenditure and geodesic criteria, highlighting the relevance of using composite cost functions
in human motion planning for improving ergonomics in industrial tasks with collaborative
robots. Clever and Mombaur [108] investigate human walking, successfully using IOC to
identify weights for seven elementary criteria across different walking motions from various
subjects and observing a correlation in the optimality across subjects, despite variations in
walking styles.

Branching in the literature occurred with the publication of a methodology paper by
Keshavarz, Wang, and Boyd [74] in which a method is presented for estimating the unknown
objective function in direct optimization models by solving a convex optimization problem.
In other words, it appeared they had found a way to represent the IOC problem as a convex
optimization problem, making it many times more efficient to solve. This stimulated many
publications based on this attractive and computationally efficient method. For example,
authors of [84] model human locomotion trajectories, as in [69], but solve the IOC problem
by using the method of Keshavarz, Wang, and Boyd [74] which minimizes the extent to which
observed decisions violate first-order necessary conditions for optimality. This IOC method
has been adapted to hybrid dynamical systems with impacts [76]. It has been applied
to a dynamic bipedal climbing robot in simulation, successfully recovering cost functions
from observed trajectories consistent with different modes of locomotion. The method has
also been adapted to continuous time optimal control problems [88] by use of Pontryagin
Maximum Principle (PMP). In [91], the IOC approach was adapted to differentially flat
systems and formulated as a finite-dimensional linear least-squares minimization. It was
used to model human locomotion during stair ascent, successfully predicting joint angle
trajectories for novel stair heights and providing a basis for tuning controller parameters for
lower-limb prosthetic devices.

Panchea and Ramdani [102] were one of the first groups to wonder about the robustness of
this newfound IOC method in the presence of noise. In [102], they studied this IOC method
with a focus on scenarios where both systems and observations are imperfect and uncertain,
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introducing a framework for solving these IOC problems with bounded but unknown uncer-
tainties and disturbances, providing a set membership algorithm based on interval analysis to
compute the smallest set containing the true values of the objective function weights. In their
subsequent paper, Panchea and Ramdani [118] generalize their interval method and apply it
to a discrete unicycle robot model and a planar elastica model. The studies of [102, 118] are
the first to refer to the method of Keshavarz, Wang, and Boyd [74] as “Inverse Karush-Kuhn-
Tucker (IKKT)”. Englert, Vien, and Toussaint [115] introduce the name “IKKT” in the title
of their paper, thus paving the way for that name to stick. They emphasize that the method
assumes demonstrations satisfy the Karush-Kuhn-Tucker (KKT) conditions of an unknown
constrained optimization problem. They successfully apply the approach to a robot drawer
and door opening task by considering various task-space-related objective functions for IOC.
Panchea et al. [122] demonstrate the application of IKKT to 3D arm motion by recovering
weight values for a basis of eight biomechanical objective functions and later extending this
basis to 28 objective functions. Westermann, Lin, and Kulić Westermann, Lin, and Kulić
focus on distance jumping where the time-varying cost function is retrieved using IKKT and
analyze how different control objectives influence task success and how the control strategy
changes during the motor learning process

A method for segmenting human movement based on detecting changes in the optimiza-
tion criterion retrieved by IOC has been proposed in [111], where it is hypothesized that
human motor control relies on weighted combinations of basis cost functions that adapt
with changes in motion objectives, and the proposed algorithm successfully segments move-
ments with an accuracy of 84%, demonstrating its effectiveness in identifying human motion
patterns in a human squatting task. An extension of this is proposed in [127], where the
authors recover the cost weights of each phase and estimate the phase transition points in a
dynamical system with a multiphase cost function. The technique is applied to a simulated
robot arm and human participants performing squatting tasks by reliably retrieving the cost
function of each phase and achieving a segmentation accuracy above 90%. Within [143],
the authors develop an online incremental IOC algorithm that requires a minimal number of
observations. They introduce the concept of a recovery matrix to establish the relationship
between currently available samples and weight recoverability.

In a more recent context, Colombel, Daney, and Charpillet [148] have questioned the
reliability of IKKT methods for human motion analysis, proposing an approach based on
Singular Value Decomposition of the recovery matrix to assess reliability. It provides a
methodology to make IOC results more reliable by analyzing properties of matrices under
various conditions and noise levels, emphasizing the importance of ensuring the trustworthi-
ness of IOC outcomes. One key finding is the low noise threshold for which IKKT becomes
unreliable. In their following paper, Colombel, Daney, and Charpillet [150] have come to the
same conclusion as we will in our study detailed in Chapter 3. They refer to their framework
as Projected Inverse Optimal Control, in which IOC is viewed as a projection of trajectories
in the solution space of Direct Optimal Control (DOC) problems.

Amidst this abundance of new ideas about uses of IOC brought by the appearance of
a computationally more efficient method, the bilevel approach has been abandoned in the
literature on biomechanics and robotics due mostly to its long execution time. However, the
bilevel approach has been known to have the merit of dealing with relatively noisy input data.
Aswani, Shen, and Siddiq [120] had been applying IOC in the field of healthcare systems.
They emerged with an Operations Research paper, which provided a grounded mathemat-
ical analysis of both the bilevel and the IKKT method. Through the lens of probability
and statistics, the IOC algorithms were regarded as estimators of unknown underlying cost
function weights. The key takeaway from the paper is that the bilevel IOC algorithm is
a consistent estimator while the IKKT algorithm is an inconsistent estimator. This means
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that, as more data is input into the algorithms for weight estimation, the bilevel IOC will
converge to the true values of the underlying weights while the IKKT is not guaranteed to
converge. This conclusion raised suspicion about the reliability of the IKKT method, which
led to the development of reasonably trivial numerical examples in Bečanović et al. [147] and
Becanovic et al. [149] where the IKKT method severely underperforms. Details about those
examples are given in Chapter 3 and Chapter 4.

Finally, Chan, Mahmood, and Zhu [138] provide a comprehensive review of IOC ap-
proaches that have been in use far beyond the domains of biomechanics and robotics.

The aforementioned IOC literature focuses primarily on inverting DOC models, which are
expressed and formulated as trajectory optimization problems. A prosperous decade older
literature on Inverse Reinforcement Learning [33, 40] develops inverse conditions for optimal
control problems formulated using Dynamic Programming (DP). Ng, Russell, et al. [33] focus
on the problem of Inverse Reinforcement Learning in Markov decision processes, where the
objective is to extract a reward function from observed optimal behavior to understand the
reward function of natural systems. The paper presents three algorithms for IRL, addressing
scenarios with known policies and observed trajectories, and proposes heuristics to address
degeneracy issues. Abbeel and Ng [40] treat the problem of IRL where an expert’s optimal
behavior is observed and used to learn a reward function expressible as a linear combination
of known features. The key result is the development of an algorithm that successfully learns
the demonstrated task, even without explicitly recovering the expert’s reward function, and
yields a policy achieving performance close to that of the expert, as measured with respect
to the expert’s unknown reward function.

2.2 General Direct Problem

Many processes in physics, engineering, and biology, whether natural or artificial, are
easily modeled as optimization problems [41]. Optimal control problems can also be expressed
as optimization problems, and they represent straightforward models for many problems. The
standard notation for a constrained optimization problem is given in equation (2.1).

min
xxx∈Rn

f(xxx) (2.1a)

subject to ggg(xxx) ≤ 0 (2.1b)
hhh(xxx) = 0 (2.1c)

where xxx ∈ Rn is the vector decision variable, f : Rn 7→ R is the scalar-valued objective
function, ggg : Rn 7→ Rq is the vector-valued inequality-constraint function, and hhh : Rn 7→ Rr is
the vector-valued equality-constraint function.

The semantics of an optimization problem is that one desires to find a value xxx∗ for the
decision variable xxx such that the objective function evaluated at that value f(xxx∗) attains its
minimum p∗ on the set described by a finite number of inequality and equality constraints,
ggg(xxx) ≤ 0 and hhh(xxx) = 0 respectively.

If we interpret the equation (2.1) as a direct formulation of an OCP then xxx is a vector
describing the state and control trajectories, f(xxx) is an approximation of the cost functional
of the OCP, ggg(xxx) is an approximation of the control limits and algebraic path-constraints,
and hhh(xxx) is an approximation of the boundary conditions and dynamics equation.

Parametric Optimization: Depending on the circumstances, the particular instance of
the problem to solve may vary. For example, one may want to solve the same trajectory
optimization problem but with different initial conditions. In another scenario, one may want
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Figure 2.1: Diagram of a human box-lifting motion. The illustration contains a planar model of a
human performing the motion, annotating the ankle, knee, and hip joint angles. The geometric
parameters of the environment are also annotated and described in Example 2.2.1, as are the

geometric and inertial parameters of the human model.

to solve the same trajectory optimization problem but with a different obstacle disposition.
In general motion-generation problems, the value of the cost functional and the values of the
constraints will be influenced by the state of the environment. The essential aspects of the
environment can be described by a vector θθθ.

Treating the environment variables θθθ as static, and separately from the trajectory variables
xxx, can ease the computational burden of the trajectory optimization and is essentially justified
the environment variables are not expected to change under the influence of the agent acting
out the optimized trajectory. In such cases, we can describe the cost functional f(xxx; θθθ) and
the constraints ggg(xxx; θθθ) and hhh(xxx; θθθ) as being functions of the environment variables θθθ. The
optimization model from equation (2.1) becomes a parametric optimization problem, with
parameter θθθ.

Example 2.2.1. Human Box-Lifting Motion

Consider Figure 2.1 for this example. The trajectory variables xxx describe the joint-angle
trajectories (q1(t), q2(t), q3(t), . . .) of the human model performing the box-lifting motion.
The static environment variables θθθ describe the aspects of the task that need not be treated
as variables as they are not expected to change throughout the task. Such are the table
width wt, the table height ht, the box width wb, the box height hb, the distance of the table
from the human’s feet dt, and the initial distance of the box from the human’s feet db. These
parameters may change between different task instances but never during the task itself. In a
similar vein, the person performing the task can change. As such, the geometrical and inertial
parameters of the human model fulfilling the task need to be adjusted accordingly. Change
occurs for parameters of link i of the model, namely, its length li, its mass mi, its inertia Ii,
and the position of its center of mass in the segment proximal reference frame C⃗i. Thus, the
generated motion depends not only on the disposition of the objects in the environment but
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also on the geometry and inertia of the person performing the motion. In essence, knowing
the mapping between the environment state θθθ and the produced human trajectory yyy would
allow prediction of the box-lifting motion under varying circumstances in terms of geometric
disposition of the environment, but also in terms of the inertial parameters of the person
performing the motion. This example has been picked as a case study for this thesis and is
described in extensive detail in Chapter 5.

In general IOC [138], the idea is to represent the mapping between the external/environ-
ment parameters θθθ and the expert behavior yyy, through the means of an optimization problem.
As mentioned in the introduction of this chapter, it has been demonstrated that human mo-
tion is well-modeled as an optimization problem. Thus, it is believed in the literature that it
is possible to learn the mapping between the environmental parameters and human behavior
through IOC. Therefore, the direct problem is often represented as a parametric optimization
problem described in (2.2),

ŷyy(θθθ) = argmin
xxx∈Rn

f(xxx; θθθ) (2.2a)

subject to ggg(xxx; θθθ) ≤ 0 (2.2b)
hhh(xxx; θθθ) = 0 (2.2c)

with ŷyy(θθθ) being the prediction given by the direct model for the static task environment
parameter θθθ. More precisely, we can define the direct optimization map.

Definition 2.2.1. The feasible region map X is a set-valued map, from the space of static
task environment parameters Θ to the task decision space Rn,

X : Ω ⇒ Rn

and is defined by the vector of parametric inequality constraints ggg(xxx; θθθ), ggg : Rn×Θ 7→ Rr and
the vector of parametric equality constraints hhh(xxx; θθθ), hhh : Rn × Θ 7→ Rq. This mapping maps
the static task environment parameter vector θθθ to the feasible region X(θθθ) of the input
space Rn, where the constraints are satisfied.

X(θθθ) = {xxx ∈ Rn | hhh(xxx; θθθ) = 0, ggg(xxx; θθθ) ≤ 0} , θθθ ∈ Θ,

Definition 2.2.2. The direct model map D is a set-valued map, from the space of static
task environment parameters Θ to the task decision space Rn,

D : Θ ⇒ Rn

and is defined by the parametric objective function f(xxx; θθθ), f : Rn × Θ 7→ R, the vector of
parametric inequality constraints ggg(xxx; θθθ), ggg : Rn × Θ 7→ Rr and the vector of parametric
equality constraints hhh(xxx; θθθ), hhh : Rn ×Θ 7→ Rq. This mapping maps a static task environment
parameter vector θθθ to the set of the inequality and equality-constrained local minima of the
function f(xxx; θθθ).

D(θθθ) = argmin
xxx∈X(θθθ)

f(xxx; θθθ)

To achieve the goal of IOC, of learning the mapping D between θθθ and yyy through an OCP
(2.2), it is supposed that there are available measurements of pairs (θθθ, yyy). The mapping is
then indirectly inferred by learning the cost and/or constraint functions. The types of the
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cost and constraint functions are described within equation (2.3).

f : Rn × Rp 7→ R (2.3a)
ggg : Rn × Rp 7→ Rq (2.3b)
hhh : Rn × Rp 7→ Rr (2.3c)

The set of all continuous cost and constraint functions is infinite-dimensional. As a con-
sequence, one must usually opt for a parametric representation and introduce a vector of
parameters ωωω to represent a class of cost and constraint functions. The optimal control
model is then parametrized by the parameter ωωω, as is the mapping between the static task
external/environment parameters θθθ and the decisions yyy, which is shown in equation (2.4).

ŷyy(θθθ, ωωω) = argmin
xxx∈X(θθθ,ωωω)

f(xxx; θθθ, ωωω) (2.4a)

subject to ggg(xxx; θθθ, ωωω) ≤ 0 (2.4b)
hhh(xxx; θθθ, ωωω) = 0 (2.4c)

From here on, ωωω will be referred to as the task model parameters, θθθ as the static task
environment parameters, and yyy as the task output.

The introduction of task model parameters ωωω as parameters in the constraint functions
of the optimal control model implies that the feasible region of the OCP will depend on it.

Definition 2.2.3. The parameteric feasible region map is a set-valued map Xωωω, from
the space of static task environment parameters Θ to the task decision space Rn, parametrized
by the task model parameters ωωω ∈ Ω,

Xωωω : Θ ⇒ Rn

and is defined by the vector of parametric inequality constraints ggg(xxx; θθθ, ωωω), ggg : Rn×Θ×Ω 7→ Rr

and the vector of parametric equality constraints hhh(xxx; θθθ, ωωω), hhh : Rn × Θ × Ω 7→ Rq. For a
given value ωωω of the task model parameter vector, this mapping maps static task environment
parameters θθθ to the subset Xωωω(θθθ) of the input space Rn, called the parametric feasible
region, where the constraints are satisfied.

Xωωω(θθθ) = {xxx ∈ Rn | hhh(xxx; θθθ, ωωω) = 0, ggg(xxx; θθθ, ωωω) ≤ 0} , θθθ ∈ Θ, ωωω ∈ Ω,

Moreover, the direct optimization model map also becomes dependent on the task model
parameters. By adjusting task model parameters, we will thus be able to modify the predicted
trajectories across all values of the static task environment parameters θθθ.

Definition 2.2.4. The parametric direct optimization model map Dωωω is a set-valued
map, from the space of static task environment parameters Θ to the task decision space Rn,
parametrized by the task model parameters ωωω ∈ Ω,

Dωωω : Θ ⇒ Rn

and is defined by the parametric objective function f(xxx; θθθ, ωωω), f : Rn × Θ × Ω 7→ R, the
vector of parametric inequality constraints ggg(xxx; θθθ, ωωω), ggg : Rn × Θ × Ω 7→ Rr and the vector
of parametric equality constraints hhh(xxx; θθθ, ωωω), hhh : Rn × Θ × Ω 7→ Rq. For a given value ωωω of
the task model parameter vector, this mapping maps static task environment parameters θθθ to
the set of the inequality and equality-constrained local minima of the parametrized function
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f(xxx; θθθ, ωωω), called the constrained direct optimal decisions.

Dωωω(θθθ) = argmin
xxx∈Xωωω(θθθ)

f(xxx; θθθ, ωωω)

2.3 General Inverse Problem

Mathematically, the task model parameters ωωω ∈ Ω ⊆ Rm belong to a set Ω ⊆ Rm which
can be described by a finite number m of scalar quantities. The static task environment
parameters θθθ ∈ Θ ⊆ Rp belong to a set Θ ⊆ Rp which can be described by a finite number p
of scalar quantities, while the task output yyy ∈ X(θθθ, ωωω) ⊆ Rn belongs to a set X(θθθ, ωωω) ⊆ Rn

that is dependent on the task model parameters ωωω and the static task environment parameters
θθθ and that can be described by a finite amount n of scalar variables.

With the previously mentioned context, we hope to learn or extract the objective function
of the task decision-maker from measurements of its behavior, whether its behavior is truly,
or nearly, optimal. At our disposal are measured instances of the task

(θθθ(1), yyy(1)), . . . , (θθθ(D), yyy(D)) (2.5)

with varying static task environment parameters and task outputs. Early research in IOC
often considered the case when only a single data point was available (D = 1) but the class
of cost functions considered was fixed (e.g. linear, quadratic, . . .).

Briefly, the task of IOC is to extract plausible cost and/or constraint functions

f(xxx; θθθ, ωωω) : X(θθθ, ωωω)×Θ× Ω 7→ R (2.6a)
ggg(xxx; θθθ, ωωω) : X(θθθ, ωωω)×Θ× Ω 7→ Rq (2.6b)
hhh(xxx; θθθ, ωωω) : X(θθθ, ωωω)×Θ× Ω 7→ Rr (2.6c)

which could have generated an available data set of points (2.5). The parametric representa-
tions of the cost and constraint functions reduce the problem of extracting a plausible value
for the task model parameters ωωω, which could have generated the available data set.

Naturally, the concept of consistency emerges. One can define the notion of consistency
of an optimization problem model for a test point and for a data set (2.5).

Definition 2.3.1. We say that an optimization problem, defined by its cost function f(xxx; θθθ, ωωω),
and vector-function constraints ggg(xxx; θθθ, ωωω) and hhh(xxx; θθθ, ωωω) defining the feasible set X(θθθ, ωωω), is
consistent with a test point (θθθ, yyy) if

yyy = argmin
xxx∈X(θθθ,ωωω)

f(xxx; θθθ, ωωω) (2.7)

We also say that a value of the task model parameter ωωω is consistent with the test point
(θθθ, yyy) if the previous affirmation holds.

Definition 2.3.2. We say that an optimization problem, defined by its cost function f(xxx; θθθ, ωωω),
and vector-function constraints ggg(xxx; θθθ, ωωω) and hhh(xxx; θθθ, ωωω) defining the collection of feasible sets
X(θθθ(1), ωωω), . . . , X(θθθ(D), ωωω), is consistent with the data-set (θθθ(1), yyy(1)), . . . , (θθθ(D), yyy(D)) if

yyy(d) = argmin
xxx∈X(θθθ(d),ωωω)

f(xxx; θθθ(d), ωωω), d = 1, . . . , D (2.8)

15



We also say that a value of the task model parameter ωωω is consistent with the data-set
(θθθ(1), yyy(1)), . . . , (θθθ(D), yyy(D)) if the previous affirmation holds.

Section 2.5 will be dedicated to verifying consistency.
Often, we cannot find a value for the parameter ωωω that is consistent with our data set (2.5).

The reason why is well formulated by Aswani, Shen, and Siddiq (2018) [120]. Real-world
data is noisy because

1. the data collection introduces measurement noise,

2. the decision-maker deviates from optimal decisions,

3. there is a mismatch between the parametric form of the model and the true underlying
decision-making process.

IOC with actual data is therefore done by minimizing a cumulated loss function
∑D

d=1 ℓ(ωωω, yyy
(d), ŷyy(d))

over the data-set, and represents a sort of regression. The general formulation of an IOC
problem is given in equation (2.9).

ω̂ωω = argmin
ωωω∈Ω

D∑
d=1

ℓ(ωωω, yyy(d), ŷyy(d)) (2.9a)

subject to ŷyy(d) = argmin
xxx∈Rn

f(xxx; θθθ(d), ωωω), d = 1, . . . , D (2.9b)

subject to ggg(xxx; θθθ, ωωω) ≤ 0 (2.9c)
hhh(xxx; θθθ, ωωω) = 0 (2.9d)

A graphical description of the IOC process with loss function is given in Figure 2.2.

Definition 2.3.3. The inverse optimization map I[(θθθ(1), yyy(1)), . . . , (θθθ(D), yyy(D))] is a set-
valued map, from the space of the data set (Θ× Rn)× . . .× (Θ× Rn)︸ ︷︷ ︸

D

to the space of task

model parameters Ω,
I : (Θ× Rn)× . . .× (Θ× Rn)︸ ︷︷ ︸

D

⇒ Ω

and is defined by the direct parametric optimization problem (2.4) through its objective
function f(xxx; θθθ, ωωω), f : Rn × Θ × Ω 7→ R, its vector of parametric inequality constraints
ggg(xxx; θθθ, ωωω), ggg : Rn×Θ×Ω 7→ Rr and its vector of parametric equality constraints hhh(xxx; θθθ, ωωω), hhh :

Rn ×Θ× Ω 7→ Rq. It is also defined by the inverse optimization loss function ℓ(ωωω, yyy(d), ŷyy(d)).
This mapping maps the measured data set (θθθ(1), yyy(1)), . . . (θθθ(D), yyy(D)) to the task model param-
eters ωωω producing the least cumulative loss across the data set.

I[(θθθ(1), yyy(1)), . . . , (θθθ(D), yyy(D))] =

{
ωωω ∈ Ω

∣∣∣∣ ωωω solves (2.9)
}

(2.10)

Section 2.4 will treat the most common direct optimization model structure treated in
the literature. The general form is given by equation (2.4). Section 2.5 will explain how one
can verify the consistency of the direct optimization models described in Section 2.4. Section
2.6 will explain two different choices for the loss function ℓ(ωωω, yyy(d), ŷyy(d)), the properties of the
solutions of the problem with those loss functions, and the solution methods.
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Figure 2.2: Simple schematic of the optimization-based trajectory prediction process and the inverse
optimization-based identification.

2.4 Direct and Inverse Optimal Control

The most common parametrization found in the literature for inverse optimization, par-
ticularly in motion-generation tasks [69, 72, 77, 78, 84, 102, 108, 111, 115, 118, 122, 127, 132,
135, 143], will be presented in this section. This parametrization assumes that constraints
represent some known physical limitations of the task and are thus known in advance. This
implies that the number of constraint functions q and r, as well as the constraint functions
themselves, hhh and ggg do not depend on the parameter ωωω, as is shown below.

ggg(xxx; θθθ, ωωω) = ggg(xxx; θθθ) ∈ Rq q(ωωω) = q

hhh(xxx; θθθ, ωωω) = hhh(xxx; θθθ) ∈ Rr r(ωωω) = r

The goal will be to find the objective function f(xxx; θθθ). If the objective function is
considered in its non-parametric form, the set of conceivable functions f(xxx; θθθ) : X(θθθ)× θθθ 7→
R is an infinite-dimensional vector space, and is increasingly difficult to represent as the
dimensions of xxx and θθθ increase. Because this set is so large, many trivial solutions exist, and
finding a proper solution is complex and redundant as infinitely many consistent solutions
can be constructed from a single one. These two problems can be identified:

1. Curse of dimensionality The simplest way to represent a general function f(xxx; θθθ) in
a non-parametric way is to grid the input space (xxx, θθθ) and assign a value for each grid
point. This way of non-parametric function representation is subject to the curse of di-
mensionality, meaning that the complexity of this representation increases exponentially
with the number of dimensions of the input space.
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2. Existence of trivial solutions The problem is ill-posed in the general sense, as there
are infinitely many (trivial) solutions to this problem. Namely, as long as a data point
xxx is feasible with respect to its constraints ggg and hhh, it is optimal with respect to a
constant cost function f = c.

3. Redundancy of non-trivial solutions Moreover, even when a non-constant cost
function f is identified, for which a given yyy is optimal, yyy will also be optimal with
respect to the composition γ ◦ f of that function with any convex non-decreasing
function γ : R 7→ R, of which there are infinitely many.

To solve the curse of dimensionality problem, it is customary to adopt a parametric
representation for the function f(xxx; θθθ) = f(xxx; θθθ, ωωω). The most common is the weighted basis
function parametrization, given in equation (2.12). A key role in IOC is played by the
basis function vector ϕϕϕ = (ϕ1, . . . , ϕm), and choosing the best basis function vector, or even
a sufficiently good basis function vector, is an unsolved problem in the field. A study on
quantifying the quality of a chosen vector of basis functions will be discussed in Chapter
3. Once a basis function vector ϕϕϕ is chosen, the objective function is treated as a linear
combination of the basis function vector components. This is equivalent to applying the
scalarization technique [26, 68] to a multi-objective optimization problem with the vector
objective equal to ϕϕϕ, which is why this is sometimes referred to as Inverse Multiobjective
Optimization [140].

f =
m∑
i=1

ωiϕi = ωωωTϕϕϕ (2.12)

In this nonconstrained state, where ωi ∈ R, i = 1, . . . ,m, this parametrization still suffers
from the existence of trivial solutions and the redundancy of non-trivial solutions.

1. Existence of trivial solutions The weighted sum of basis functions still contains
a trivial solution. Namely, as long as a data point xxx is feasible with respect to its
constraints ggg and hhh, it is optimal with respect to the parametrization ωωω = 000.

The basis may also contain two basis functions ϕi and ϕj (i ̸= j) which are affinely
related ϕi = cϕj + d. A trivial non-zero solution may then be to set ωωω according to the
relation

ωk =


0, k ̸= i, j

−c, k = i

1, k = j

2. Redundancy of non-trivial solutions Moreover, even when a parameter ωωω describ-
ing cost function f for which a given yyy is optimal is identified, yyy will also be optimal
with respect to f ′ = c · f corresponding to parameter ωωω′ = c · ωωω, c ≥ 0.

Assuming that the basis functions are chosen such that no two basis functions ϕi and ϕj

(i ̸= j) are affinely related ϕi = cϕj + d we can resolve both the trivial solution problem and
redundancy problem by fixing the L1 or the L2 norm of the parameter vector to 1 [74, 102],

m∑
i=1

|ωi| = 1,

m∑
i=1

|ωi|2 = 1,

or to fix a particular basis function ϕi weight ωi = 1 to one. To preserve the local convexity of
the basis functions, the parameters are frequently constrained to be non-negative ωi ≥ 0, i =
1..m. In this thesis, the consideration will be narrowed to the parameter non-negativity
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condition and the L1-norm condition. Together, these two conditions yield the probability-
simplex condition described in equation (2.13).

ωωω ∈ ∆m ⇐⇒ ωi ≥ 0, i = 1, . . . ,m and
m∑
i=1

ωi = 1 (2.13)

The goal of the inverse optimization problem then becomes identifying the parameter
ω ∈ ∆m corresponding to a given vector ϕϕϕ of basis functions ϕi, i = 1..m, which is consistent
with a particular test point, or with a data-set (2.5). The inverse problem is sometimes
referred to as inverse multi-objective optimization [140].

The rest of this text will focus on this parametric manner of treating inverse optimization,
referred to as IOC.

Given a vector of basis objective functions ϕϕϕ = (ϕ1, . . . , ϕm), a vector of fixed inequality
constraint functions ggg = (g1, . . . , gr) and a vector of fixed equality constraints hhh = (h1, . . . , hq)
we can formally define a direct optimization model and an inverse optimization model.
Consider all mentioned functions to be maps of type Rn × Θ 7→ R that are continuous and
twice continuously differentiable.

Considering the discussion in the previous section, we can formulate the direct optimiza-
tion model in Equation (2.14).

ŷyy(ωωω, θθθ) = argmin
xxx∈Rn

f(xxx; θθθ, ωωω) =
m∑
i=1

ωiϕi(xxx; θθθ) (2.14a)

subject to ggg(xxx; θθθ) ≤ 0 (2.14b)
hhh(xxx; θθθ) = 0 (2.14c)

All these concepts are defined with respect to a particular vector of basis functions ϕϕϕ, and
particular vectors of inequality and equality constraint functions ggg and hhh.

2.5 Verifying Inverse Optimality

Verifying if a data-point (θθθ, yyy) is consistent with our direct optimization model (2.14)
can be simple in the convex unconstrained case but more complicated in the non-convex
constrained case. We will define the concept of exact inverse optimality, which is com-
plementary to the idea of consistency defined in definitions 2.3.1 and 2.3.2. This section
will present formulations for the problem of finding a consistent parameter ωωω for the di-
rect optimization model (2.14), for both convex and non-convex, and both constrained and
unconstrained formulations of the direct optimization problem. In the convex case, both con-
strained and unconstrained, the verification/feasibility of exact inverse optimization can be
expressed as a Linear Programming (LP). For the non-convex case, the verification/feasibility
of exact inverse optimization can be expressed as a Conic Program.

Given a vector of basis functions ϕϕϕ = (ϕ1, . . . , ϕm), an inequality constraint function vector
ggg = (g1, . . . , gr), and arbitrary equality constraint functions hhh = (h1, . . . , hq), we can conceive
a direct optimization model Dωωω : Θ ⇒ Rn by referring to equation (2.14) and definition 2.2.2.

Definition 2.5.1. A measurement (θθθ, yyy) ∈ Θ × Rn is said to be exactly inversely optimal
with respect to a direct optimization model (2.14) if there exists a parameter ωωω ∈ ∆m that is
consistent with it.
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2.5.1 Convex Unconstrained Case
Let the vector of basis functions be ϕϕϕ = (ϕ1, . . . , ϕm), and let every member ϕi be

convex. Moreover, let there be no inequality and equality constraints i.e. ggg = ∅ and hhh = ∅.
Checking whether a given pair (θθθ, yyy) ∈ Θ × Rn is exactly inversely optimal for the direct
optimization model defined by ϕϕϕ, means checking if there exists an ωωω ∈ ∆m such that
yyy = argminxxx∈Rn f(xxx; θθθ, ωωω), where f(xxx; θθθ, ωωω) =

∑m
i=1 ωiϕi(xxx; θθθ). As ∇xxxf(xxx; θθθ, ωωω) = 000 is a

necessary and sufficient condition for global (thus local) optimality, it is only necessary to
solve the following query problem

find
ω∈∆m

s.t. ∇xxxf(xxx; θθθ, ωωω) = 000. (2.15)

Because of the linearity of the gradient, due to the affine parameterization (2.14),

∇xxxf(yyy; θθθ, ωωω) =
m∑
i=1

ωi∇xxxϕi(yyy; θθθ) =
[
∇xxxϕ1(yyy; θθθ) . . . ∇xxxϕm(yyy; θθθ)

]
ωωω = ∇xxxϕϕϕ(yyy; θθθ)ωωω (2.16)

the query problem in (2.15) reduces to a LP.

min
ωωω∈∆m

0

subject to ∇xxxϕϕϕ(yyy; θθθ)ωωω = 0
(2.17)

2.5.2 Convex Constrained Case
Let the vector of basis functions be ϕϕϕ = (ϕ1, . . . , ϕm), and let every member ϕi be convex.

Let the vector of inequality constraint functions be ggg = (g1, . . . , gr), and let every member gj
be convex. Let the vector of equality constraint functions be hhh = (h1, . . . , hq), and let every
member hk be affine. Checking whether a given pair (θθθ, yyy) ∈ Θ × Rn is exactly inversely
optimal for the direct optimization model defined by ϕϕϕ, ggg, and hhh means checking if there
exists an ωωω ∈ ∆m such that yyy = argminxxx∈X(θθθ) f(xxx; θθθ, ωωω), where f(xxx; θθθ, ωωω) =

∑m
i=1 ωiϕi(xxx; θθθ)

and X(θθθ) is the feasible set defined by ggg and hhh. Here, too, it becomes only necessary to solve
a query problem, but the query problem is harder to formulate and requires stating the KKT
conditions. The first-order KKT conditions are given in equation (2.18),

∃λλλ ∈ Rq, µµµ ∈ Rr (2.18a)
∇xxxL(yyy, λλλ, µµµ; θθθ, ωωω) = 000 (2.18b)
hhh(yyy; θθθ) = 0 (2.18c)
µµµ⊙ ggg(xxx) = 0 (2.18d)
ggg(yyy; θθθ) ≤ 0, (2.18e)
µµµ ≥ 0, (2.18f)

while the Linear Independence Constraint Qualification (LICQ) is formulated in equation
(2.19),

rank([∇xxxhhh(yyy; θθθ) ∇xxxgggA(yyy; θθθ)]) = q + rA, rA = |IA(yyy)|, (2.19)

where IA(yyy) = {j | gj(yyy; θθθ) = 0} is the index-set of active inequality constraints, and
gggA(yyy; θθθ) = {gj(yyy; θθθ) | j ∈ IA(yyy)} is the set of active inequality constraints for a particular
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feasible point yyy.
Because of the convexity of members of ϕϕϕ and ggg, and affinity of members of hhh, the KKT

conditions along with the LICQ are necessary and sufficient conditions for global (thus local)
optimality, therefore it is only necessary to solve the following query problem for ωωω, λλλ and
µµµ, with W = ∆m × Rq × Rr

+,

find
(ωωω,λλλ,µµµ)∈W

s.t. ∇xxxL(yyy, λλλ, µµµ; θθθ, ωωω) = 0

µµµ⊙ ggg(yyy; θθθ) = 0
(2.20)

assuming that the rest of the KKT conditions and the LICQ are satisfied for (θθθ, yyy) ∈
Θ× Rn:

hhh(yyy; θθθ) = 0

ggg(yyy; θθθ) ≤ 0

rank([∇xxxhhh(yyy; θθθ) ∇xxxgggA(yyy; θθθ)]) = q + rA, rA = |IA(yyy)|
(2.21)

.
Because of the linearity of the gradient due to the affine parameterization (2.14),

∇xxxL(yyy, λλλ, µµµ; θθθ, ωωω) =
m∑
i=1

ωi∇xxxϕi(yyy; θθθ) +

q∑
j=1

λj∇xxxhj(yyy; θθθ) +
r∑

k=1

µk∇xxxgk(yyy; θθθ)

= [∇xxxϕϕϕ(yyy; θθθ) ∇xxxhhh(yyy; θθθ) ∇xxxggg(yyy; θθθ)]

ωωωλλλ
µµµ

 (2.22)

and the independence of ggg(yyy; θθθ) with respect to the parameters ωωω, λλλ, and µµµ,

µµµ⊙ ggg(yyy; θθθ) = diag(ggg(yyy; θθθ))µµµ = [0 0 diag(ggg(yyy; θθθ))]

ωωωλλλ
µµµ

 (2.23)

the query problem in (2.20) reduces to a LP.

min
(ωωω,λλλ,µµµ)∈W

0

subject to [∇xxxϕϕϕ(yyy; θθθ) ∇xxxhhh(yyy; θθθ) ∇xxxggg(yyy; θθθ)]

ωωωλλλ
µµµ

 = 0

[0 0 diag(ggg(yyy; θθθ))]

ωωωλλλ
µµµ

 = 0

(2.24)

2.5.3 Non-Convex Unconstrained Case
Let the vector of basis functions be ϕϕϕ = (ϕ1, . . . , ϕm), and let at least one member ϕi

be non-convex. Moreover, let there be no inequality and equality constraints i.e. ggg = ∅
and hhh = ∅. Checking whether a given pair (θθθ, yyy) ∈ Θ × Rn is exactly inversely optimal for
the direct optimization model defined by ϕϕϕ, means checking if there exists an ωωω ∈ ∆m such
that yyy = argminxxx∈Rn f(xxx; θθθ, ωωω), where f(xxx; θθθ, ωωω) =

∑m
i=1 ωiϕi(xxx; θθθ). As ∇xxxf(xxx; θθθ, ωωω) = 0 and

∇2
xxf(xxx; θθθ, ωωω) > 0 (⇔ ∃δ > 0 : ∇2

xxf(xxx; θθθ, ωωω) − δI ≥ 0) are sufficient conditions for local
optimality, it is also sufficient to solve the following query problem for ωωω and δ
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find
(ωωω,δ)∈∆m×R++

s.t. ∇xxxf(yyy; θθθ, ωωω) = 0

∇2
xxf(yyy; θθθ, ωωω)− δI ≥ 0

(2.25)

Because of the linearity of the gradient and the hessian, due to the affine parameterization
(2.14),

∇xxxf(yyy; θθθ, ωωω) =

m∑
i=1

ωi∇xxxϕi(yyy; θθθ) (2.26a)

∇2
xxf(yyy; θθθ, ωωω) =

m∑
i=1

ωi∇2
xxϕi(yyy; θθθ) (2.26b)

the query in (2.25) reduces to a conic programming problem (with the introduction of QQQ
as a matrix variable from the space of symmetric n× n matrices Sn).

min
(QQQ,ωωω,δ) ∈ Sn×∆m×R++

0

subject to [∇xxxϕϕϕ(yyy; θθθ)]ωωω = 0

QQQ =
m∑
i=1

ωi∇2
xxϕi(yyy; θθθ)

QQQ− δI ≥ 0

(2.27)

2.5.4 Non-Convex Constrained Case
Let the vector of basis functions be ϕϕϕ = (ϕ1, . . . , ϕm). Let the vector of inequality

constraint functions be ggg = (g1, . . . , gr). Let the vector of equality constraint functions be
hhh = (h1, . . . , hq). Let at least one of the following be true (i) at least one ϕi is non-convex (ii)
at least one gj is non-convex (iii) at least one hk is non-affine. Checking whether a given pair
(θθθ, yyy) ∈ Θ×Rn is exactly inversely optimal for the direct optimization model defined by ϕϕϕ, ggg,
and hhh means checking if there exists an ωωω ∈ ∆m such that y = argminxxx∈X(θθθ) f(xxx; θθθ, ωωω), where
f(xxx; θθθ, ωωω) =

∑m
i=1 ωiϕi(xxx) and X(θθθ) is the feasible set defined by ggg and hhh. The first-order

KKT conditions along with the LICQ are given in (2.18) and (2.19).
The second order KKT condition is

∀ddd ∈ N ([∇xxxhhh(yyy; θθθ) ∇xxxgggA(yyy; θθθ)]
T ) dddT∇2

xxL(xxx, λλλ, µµµ; θθθ, ωωω)ddd > 0. (2.28)

which we can substitute with the stronger condition

∇2
xxL(xxx, λλλ, µµµ; θθθ, ωωω) > 0 ⇔ ∃δ > 0 : ∇2

xxL(xxx, λλλ, µµµ; θθθ, ωωω)− δI ≥ 0. (2.29)

As the first-order KKT conditions along with the LICQ and the second-order KKT
condition are necessary and sufficient condition for local optimality, it is only necessary to
solve the following query problem for ωωω, λλλ, µµµ, and δ with Wc = ∆m × Rq × Rr

+ ×R++,

find
(ωωω,λλλ,µµµ,δ)∈Wc

s.t. ∇xxxL(yyy, λλλ, µµµ; θθθ, ωωω) = 0

µµµ⊙ ggg(yyy; θθθ) = 0

∇2
xxL(xxx, λλλ, µµµ; θθθ, ωωω)− δI ≥ 0

(2.30)

assuming that the rest of the KKT conditions and the LICQ are satisfied at y ∈ Rn, as in
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(2.21).
Because of the linearity of the gradient and of the hessian, due to the affine parameteri-

zation (2.14),

∇xxxL(yyy, λλλ, µµµ; θθθ, ωωω) =
m∑
i=1

ωi∇xxxϕi(yyy; θθθ) +

q∑
j=1

λj∇xxxhj(yyy; θθθ) +

r∑
k=1

µk∇xxxgk(yyy; θθθ) (2.31a)

∇2
xxL(yyy, λλλ, µµµ; θθθ, ωωω) =

m∑
i=1

ωi∇2
xxϕi(yyy; θθθ) +

q∑
j=1

λj∇2
xxhj(yyy; θθθ) +

r∑
k=1

µk∇2
xxgk(yyy; θθθ) (2.31b)

and the independence of ggg(yyy; θθθ) with respect to the parameters ωωω, λλλ, and µµµ, (2.23), the
query in (2.30) reduces to a conic programming problem, withWc

Q = Sn×∆m×Rq×Rr
+×R++

min
(QQQ,ωωω,λλλ,µµµ,δ)∈Wc

Q

0

subject to [∇xxxϕϕϕ(yyy; θθθ) ∇xxxhhh(yyy; θθθ) ∇xxxggg(yyy; θθθ)]

ωωωλλλ
µµµ

 = 0

[0 0 diag(ggg(yyy; θθθ))]

ωωωλλλ
µµµ

 = 0

QQQ =
m∑
i=1

ωi∇2
xxϕi(yyy; θθθ) +

q∑
j=1

λj∇2
xxhj(yyy; θθθ) +

r∑
k=1

µk∇2
xxgk(yyy; θθθ)

QQQ− δI ≥ 0

(2.32)

2.6 Approximate Optimality

Most commonly, it is not known if a given observation (θθθ, yyy) ∈ Θ×Rn or a given data-set

(θθθ, yyy(1)), . . . , (θθθ, yyy(D)) ∈ (Θ× Rn)× . . .× (Θ× Rn)︸ ︷︷ ︸
D

was generated by an optimization process, and even if it were, we don’t know if the mea-
surement noise during the measurement process or inaccuracies during the modeling process
render the data suboptimal.

In Section 2.4, the most common parametrization of the direct optimization model was
presented: the weighted multiobjective parametrization. As shown in Section 2.5, one can
verify whether a given data set is inversely optimal with respect to a given weighted multi-
objective direct optimization model through Linear Programming and Conic Programming.
Exact inverse optimality is tightly related to the cost function basis ϕϕϕ, so we can practically
say that a data set is exactly inversely optimal with respect to an objective function basis ϕϕϕ.

When the data is not exactly inversely optimal with respect to a proposed objective func-
tion basis ϕϕϕ, or when we know it isn’t, we can formulate approaches to inverse optimization
that are based on minimizing some loss function ℓ(ωωω, ŷyy, yyy) across the data set. As this is
almost always the case, most inverse optimization research is focused on it.
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2.6.1 Minimum Euclidian Distance Loss
We can formulate the inverse optimization as a minimum-distance projection problem

onto the local/global optima set. This function was first proposed in [69] and was used in
many studies like [72, 77, 97, 108]. The loss function is the Euclidian distance between the
measured behavior yyy(d) and the model output behavior ŷyy(d). This loss function gives rise to
the most commonly encountered bilevel IOC in the literature.

ℓ(ωωω, yyy(d), ŷyy(d)) = ∥ŷyy(d) − yyy(d)∥22
Given a collection of test points (θθθ, yyy(1)), . . . , (θθθ, yyy(D)), one needs to find the parametriza-

tion ωωω ∈ Rm and a collection of predictions ŷyy(1), . . . , ŷyy(D) by the DOC model such that sum
of distances between pairs of predictions ŷyy(1), . . . , ŷyy(D) and data yyy(1), . . . , yyy(D) be the smallest
possible in terms of Euclidian distance.

min
ωωω∈∆m, xxx∈Rn

D∑
d=1

∥yyy(d) − ŷyy(d)∥22

subject to ŷyy(d) = argmin
xxx∈Rn

m∑
i=1

ωiϕi(xxx; θθθ
(d)) d = 1, . . . , D

subject to hj(xxx; θθθ
(d)) = 0, j = 1..q

gk(xxx; θθθ
(d)) ≤ 0, k = 1..r

(2.33)

We can reformulate bi-level formulation from equation (2.33) into a single-level problem
using the KKT conditions of the inner optimization. This is a standard procedure in bilevel
optimization [99] and has been applied by [77]. However, the dimensionality of the prob-
lem becomes enormous for a large data set. Moreover, regularity problems arise with the
constraint qualifications of the single-level problem (2.34) [99].

min
(ωωω,ŷyy(1),...,ŷyy(D),λλλ(1),...,λλλ(D),µµµ(1),...,µµµ(D))

D∑
d=1

∥yyy(d) − ŷyy(d)∥22

subject to ∇xxxL(ŷyy(d), λλλ(d), µµµ(d); θθθ(d), ωωω) = 0, d = 1, . . . , D

hhh(ŷyy(d); θθθ(d)) = 0, d = 1, . . . , D

µµµ(d) ⊙ ggg(ŷyy(d); θθθ(d)) = 0, d = 1, . . . , D

µµµ(d) ≥ 0, d = 1, . . . , D

ggg(ŷyy(d); θθθ(d)) ≤ 0, d = 1, . . . , D

ωωω ∈ ∆m

(2.34)

According to [120], this loss function provides a statistically consistent parameter estima-
tion.

2.6.2 Minimum Optimality Condition Violation Loss - IKKT method

This loss function was first proposed in [74], and was subsequently extensively used
throughout the literature [76, 84, 88, 91, 102, 111, 115, 118, 122, 127, 135, 143]. As it was
formulated in [74], the loss function could have been any norm of the residuals of the KKT
conditions. However, as it was appropriated in the biomechanics and robotics literature,

24



the customary loss function became the L2 norm of the residual of the KKT stationarity
condition (2.22) summed with the L2 norm of the KKT complementary slackness condition
(2.18d) which yields the expression in equation (2.35).

ℓ(ωωω, yyy(d), ŷyy(d)) = ∥∇xxxL(yyy(d), λλλ(d), µµµ(d); θθθ(d), ωωω)∥22 + ∥µµµ(d) ⊙ ggg(yyy(d); θθθ(d))∥22 (2.35)

Solving the IOC problem with the IKKT algorithm then corresponds to solving the opti-
mization problem from equation (2.36), where the KKT stationarity (2.18b) and complemen-
tary slackness (2.18d) residual norms are minimized, where the KKT dual feasibility (2.18f)
is enforced as a constraint, and where the primal feasibility equality (2.18c) and inequality
(2.18e) are assumed to be satisfied at each data-point.

min
(ωωω,λλλ(1),µµµ(1),...,λλλ(D),µµµ(D))

D∑
d=1

∥∇xxxL(yyy(d), λλλ(d), µµµ(d); θθθ(d), ωωω)∥22

+ ∥µµµ(d) ⊙ ggg(yyy(d); θθθ(d))∥22
subject to ωωω ∈ ∆m

µµµ(d) ≥ 0, d = 1, . . . , D

(2.36)

By exploiting the linearity of the Lagrangian (2.22) and of the complementary slackness
constraints with respect to the objective function weights and the dual variables, as well as the
fact that the L2 norm of the residuals is minimized, one can reformulate the IKKT problem
as a constrained least squares problem, a subclass of Quadratic Programmings (QPs). This
reformulation is presented in some existing papers [91, 102, 118, 122]. It is similar to the QP
reformulation by [115], which goes one step further by pre-computing the dual variables.

min
(ωωω,λλλ(1),µµµ(1),...,λλλ(D),µµµ(D))

D∑
d=1

∥R(yyy(d); θθθ(d))

 ωωω

λλλ(d)

µµµ(d)

∥22
subject to ωωω ∈ ∆m

µµµ(d) ≥ 0, d = 1, . . . , D

The matrix R(yyy(d); θθθ(d)) that appears in the constrained least-squares reformulation of
IKKT will be referred to as the recovery matrix. Though related to the concept of recovery
matrices in [127, 135, 143], it is not the same and should not be confused.

R(yyy(d); θθθ(d)) =

[
∇xxxf(yyy

(d); θθθ(d)) ∇xxxhhh(yyy
(d); θθθ(d)) ∇xxxggg(yyy

(d); θθθ(d))

0 0 diag(ggg(yyy(d); θθθ(d)))

]
According to [120], this loss function does not estimate a statistically consistent parameter.

2.6.3 Other Loss Functions

Other loss functions can be found in Chan, Mahmood, and Zhu [138], where a compre-
hensive summary of the existing IOC methods is given. Apart from those listed here, they
include the absolute sub-optimality, the relative sub-optimality, and the variational inequality
loss functions.
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2.7 Conclusion

This chapter provided a broad and comprehensive overview of the literature in IOC that
is in relation to human biomechanics and robotics, with related fields having been touched
on.

A very broad and general formulation of the direct and the inverse problems was given in
Section 2.2 and in Section 2.3, and was accompanied by a discussion of the involvement of
parametric optimization and parametric mappings.

An introduction to the more common notions of DOC and IOC was given in Section
2.4. A comprehensive overview of what it implies for a data point to be exactly inversely
optimal was given in Section 2.5. The overview is divided into cases according to whether the
DOC model is convex or non-convex, and constrained or unconstrained, as the verification
of optimality becomes vastly different. Finally, the most common loss functions for IOC are
introduced in 2.6 i.e. the bilevel minimum distance loss and the IKKT loss functions. This
chapter has thoroughly described the different aspects of IOC.
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Chapter 3

Bounding Errors via Polynomial
Optimization

In studies combining IOC with human motion analysis, a recurring theme is the choice
of basis functions and how excluding or including a particular basis function affects the
end-model quality [118, 135, 139]. When applying IOC to a specific task of human motion,
the basis functions are taken from previous optimal-control-based studies of that task [122,
135]. On the one hand, it is advantageous to include all possible basis functions in the IOC
formulation as it will increase the number of parameters and the expressive power of the
DOC model and will allow one to achieve better fitting [139]. On the other hand, because
of the considerable computational requirements of bilevel optimization, it is desirable to
have as few parameters to identify as possible in order to render the identification procedure
computationally tractable.

Moreover, the objective function seems task-dependent and may vary between individuals
with different skill levels in performing the task [135]. For some tasks where this is particularly
pronounced, one may have to retrieve separate objective functions for each subject, which will
require computing many solutions to different bilevel optimization problems. The quality of
the retrieved objective function lies in the accuracy with which it predicts human-like motion
and is inextricably linked to the choice of the included basis functions [97, 111, 118, 122,
139]. This chapter will focus on calculating upper and notably lower bounds on the accuracy
with which the input human motion data can be learned and predicted. Knowing the bounds
on accuracy allows for discarding bases that are guaranteed not to be good enough. The
advantage of this approach is the bounds can be computed much more efficiently than the
original problem can be solved.

As a step towards tackling the aforementioned conflict, this chapter will introduce a
computationally tractable procedure for quickly testing the quality of a collection of quadratic
basis functions within QP direct models. The main idea will be to relax the bilevel IOC
problem and use the minimal value of the loss function of the relaxation as a measure of the
quality of the basis. This would allow one interested in applying IOC to learn a particular
task objective to quickly test multiple collections of basis functions and discard ones whose
’quality’ is judged poor. Once the poor bases are discarded, there are fewer bases for which the
inverse optimal problem must be solved. The procedure relies on Semidefinite Programming
(SDP) [41], which is commonly used to relax Quadratically Constrained Quadratic Programs
(QCQPs) [71], as will be the case here.

A central concept of this chapter will be that of a set of global minimizers for a convex
DOC model, which is the set of all possible trajectories the DOC model can produce as
we vary the objective function parameters. The chapter will also inquire into the analytic
properties of this set. Multiple properties that can be analytically shown to hold for QP
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models are of interest in the general nonlinear case and thus represent a stepping stone
towards tackling the general nonlinear case.

3.1 Introduction

This section starts by re-introducing the IOC problem alongside the problem of finding
bounds on the IOC problem’s solution. It subsequently introduces the concept of the set of
global minimizers in the context of IOC with convex direct models. The set of global mini-
mizers is a concept analogous to the Pareto optimal set [26] in multiobjective optimization
or to the set of parametric minimizers [123] in parametric optimization. It represents the
set of all trajectories one can obtain by solving the DOC problem while varying the model
parameters.

Once the set of global minimizers is conceptualized, the IOC is reformulated as a projec-
tion problem onto that set. Namely, if the measured trajectories lie outside the set, solving
the IOC problem corresponds to finding the closest point from the set and the matching
parametrization for which it is optimal.

3.1.1 Projection onto the Set of Global Minimizers
Recall the concept of basis functions ϕϕϕ = (ϕ1, . . . , ϕm) from Chapter 2, and how they

are used to parametrically represent the DOC objective function f =
∑m

i=1 ωiϕi as a convex
combination of basis functions, like in equation (2.12), where the parameters ωωω belong to
∆m, the m-dimensional probability simplex ∆m = {ωωω ∈ Rm | ωωω ≥ 0,

∑
i ωi = 1}. Moreover,

recall the concept of a feasible set for the DOC, let it be denoted with X, and let it be a
subset of a finite-dimensional vector space X ⊆ Rn. The analysis that permeates through
the chapter will be based on the following assumption pertaining to the basis functions and
the feasible set (the same setting as used in [74]),

Assumption 1 (Convexity). Each ϕi is a C1 convex function, and X is a convex set.

Under this assumption, we can justify the word “global” when defining the set of global
minimizers within Definition 3.1.1. Informally, one can tell the set of global minimizers is
the set of all possible minimizers one can obtain by solving an optimization problem with an
objective function being a convex combination of the basis functions.

Definition 3.1.1 (Set of Global Minimizers). Given a vector of basis functions ϕϕϕ and a
feasible set X, and under assumption 1, one can define the set of global minimizers of the
vector of basis functions ϕϕϕ as in equation (3.1) below.

G =

{
xxx
∣∣∣ ∃ωωω ∈ ∆m : xxx ∈ argmin

xxx‘∈X

m∑
i=1

ωiϕi

}
(3.1)

The set of global minimizers from Definition 3.1.1 can be characterized by the first-order
optimality conditions [41] for convex optimization problems, which will be explored in Section
3.1.2 for the case of unconstrained optimization and in Section 3.1.3 for the case of constrained
optimization. Section 3.2 will characterize sets of global minimizers in the case of quadratic
programming direct models, will dive into some of its analytical properties, and will provide
numerical examples.

This whole chapter is primarily concerned with Problems 1, 2, and 3 listed below.
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Problem 1 (Feasibility). Does there exist an ωωω ∈ ∆m such that yyy is a global optimum?

find
ωωω∈∆m

yyy ∈ argminxxx∈X
∑m

i=1 ωiϕi(xxx) (3.2)

Problem 1 is essentially asking whether a given basis ϕϕϕ = (ϕ1, . . . , ϕm) can represent a
measurement yyy. In other words, is it possible to obtain yyy as the solution to an optimization
problem where the objective function is a convex combination of the basis functions? Within
the context of multiobjective optimization [26], one could re-frame this question as whether
yyy belongs to the Pareto optimal set of the multiobjective optimization problem with vector
objective ϕϕϕ. From the point of view of Parametric Optimization [123], one could ask whether
yyy belongs to the set of parametric minimizers of the optimization problem with the parametric
objective function f =

∑m
i=1 ωiϕi(xxx) with parameter vector ωωω ∈ ∆m.

The answer to the question asked by Problem 1 is either ’yes’ or ’no.’ If the answer is
’yes,’ the parameter vector ωωω, which solves the problem is provided alongside the answer.
Once the parameter vector of parameters is known, one can solve the DOC problem to obtain
the corresponding DOC solution xxx. If it has been established that the answer is ’no,’ then
Problem 2 becomes of interest.

Problem 2 (Projection onto Global Minimizers (PGM)). What is the distance from yyy to the
set of global optima?

p∗ = min
xxx∈X
∥yyy − xxx∥22 (3.3a)

∃ωωω ∈ ∆m | xxx ∈ argminxxx′∈X
∑m

i=1 ωiϕi(xxx
′) (3.3b)

Problem 2 is essentially asking what is the error (i.e. L2 distance) with which a given
basis ϕϕϕ = (ϕ1, . . . , ϕm) can represent a measurement yyy. In other words, what is the smallest
error (i.e. L2 distance) to yyy one can obtain from the solution of an optimization problem
where the objective function is a convex combination of the basis functions? Within the
context of multiobjective optimization [26], one could re-frame this question as what is the
L2 distance from yyy to the Pareto optimal set of the multiobjective optimization problem with
vector objective ϕϕϕ. From the point of view of Parametric Optimization [123], one could ask
what the L2 distance of yyy to the set of parametric minimizers of the optimization problem
with the parametric objective function f =

∑m
i=1 ωiϕi(xxx) with parameter vector ωωω ∈ ∆m is.

The answer to the question asked by Problem 2 is a positive real number p∗ representing
the aforementioned minimum L2 distance, with the parameter vector ωωω and the closest
element xxx which solve the problem provided as well. However, solving this problem requires
solving a bilevel optimization problem that may be computationally intensive. An alternative
but relevant question is raised within Problem 3.

Problem 3 (Lower Bound on Projection Distance). Is it possible to find a positive real
number p− that is inferior to the distance of yyy to the set of global optima?

find
p−∈R+

p− ≤ p∗ (3.4a)

where p∗ = min
xxx∈X
∥yyy − xxx∥22 (3.4b)

∃ωωω ∈ ∆m | xxx ∈ argmin
xxx′∈X

m∑
i=1

ωiϕi(xxx
′) (3.4c)

Problem 3 is essentially asking for any positive real number p− which is inferior to the
error with which a given basis ϕϕϕ = (ϕ1, . . . , ϕm) can represent a measurement yyy. In other
words, provide a lower bound on the distance to yyy one can obtain from the solution of
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an optimization problem where the objective function is a convex combination of the basis
functions.

The answer to Problem 3 is a positive real number p− representing a lower bound on the
aforementioned distance, and may be accompanied by ω̂ωω and x̂xx which represent guesses for
the parameter vector ωωω and the closest element xxx which solve the Problem 2.

Problem 1 under Assumption 1 may be decided by analyzing the feasibility of a simple
n-dimensional LP in ωωω. Problem 2 is a bilevel optimization problem that assesses the quality
of the basis ϕϕϕ from (2.12) in characterizing yyy as an optimal point. A large distance p∗ from
Program (3.3) indicates that the basis ϕϕϕ does not accurately describe yyy as a global minimum
and therefore ϕϕϕ should be redesigned. Problem 2 is a generically nonconvex and nontrivial
problem even under Assumption 1. Local search and trust-region methods may be used to
find upper bounds for p∗, but the exact computation of p∗ is typically intractable. Problem
3 may be solved for instance by relaxing the bilevel optimization Problem 2. Within this
chapter, the problem will be relaxed to an Linear Matrix Inequality (LMI) in order to obtain
lower bounds for p∗, and this LMI relaxation is tight to p∗ if the Positive Semidefinite (PSD)
matrix solution is rank-1.

There also exists a hierarchy among the problems. If ωωω solves the feasibility program
from Problem 1, then the objective from Problem 2 will necessarily be p∗ = 0 with xxx = yyy and
there will be no need to solve Problem 2 nor Problem 3. If ωωω and xxx solve the PGM Problem
2 with objective p∗ > 0, then Problem 1 will be unfeasible and the strictest possible answer
to Problem 3 will be p∗, so there will be no need to solve it. If p− > 0 is the solution to
Problem 3, then Problem 1 will be unfeasible so there will be no need to solve it. The answer
to Problem 2 will be p∗ ≥ p−. So if p− is greater than a desired value for p∗, one does not
need to solve Problem 2 but instead needs to redesign the basis functions ϕϕϕ. The existence
of the hierarchy implies the following Algorithm 1 when dealing with IOC problems.

Algorithm 1: IOC procedure
Input: yyy, ϕϕϕ, p∗des
Output: p, ωωω, xxx,Flag

1 (∃ωωω), ωωω, xxx← Solve Problem 1
2 if (∃ωωω) then
3 p∗ ← 0
4 return p∗, ωωω, xxx, “Solved”

5 p−, ω̂ωω, x̂xx← Solve Problem 3
6 if p− > p∗des then
7 return p−, ω̂ωω, x̂xx, “Desired bounds cannot be met”

8 p∗, ωωω, xxx← Solve Problem 2 approximately using local search
9 if p∗ > p∗des then

10 return p∗, ωωω, xxx, “Approximately solved, bounds unmet”

11 return p∗, ωωω, xxx, “Approximately solved, bounds met”

We conclude that by using this framework for IOC, four outcomes are possible:

(a) Problem 1 is exactly solved, in which case there is nothing more to do,

(b) the solution to Problem 3 guarantees that the desired bounds cannot be met, in which
case we need to change the model,

(c) Problem 2 is approximately solved via local search, but the bounds are unmet, in which
case we may need to change the model or approximately solver Problem 2 multiple
times from different starting points hoping to get better bounds,
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(d) Problem 2 is approximately solved using local search, and the desired bounds is met
and there is nothing more to do.

3.1.2 Unconstrained Global Minimizers Characterization
This subsection uses the first-order optimality conditions to characterize the set of global

optima when the feasible set X is the whole space Rn i.e. when the optimal control model
is unconstrained. Due to repeated usage throughout this section, the symbol W will denote
Rn ×∆m, which is the Cartesian product of the feasible trajectory set X = Rn with the set
of feasible parameters ∆m. Denoted as “the extended set of global optima and weights”, Ĝ is
associated with a basis ϕϕϕ and set mixed cost functions fωωω =

∑m
i=1 ωiϕi as in (2.12), and given

Assumption 1 it can be characterized as

Ĝ = {(xxx, ωωω) ∈ W | ∇xxxfωωω(xxx) = 0}. (3.5)

The convexity of fωωω implies that every local minimizer xxx satisfying the first-order optimal-
ity condition ∇xxxfωωω(xxx) = 0 [17, 29, 41] is also a global minimizer. Therefore, if the measured
trajectory yyy is optimal, it must satisfy ∇xxxfωωω(yyy) = 0. This condition can be simplified as in
equation (3.6).

∇xxxfωωω(yyy) = 0

∇xxx

(
m∑
i=1

ωiϕi(yyy)

)
= 0

m∑
i=1

ωi∇xxxϕi(yyy) = 0[
∇xxxϕ1(yyy) ∇xxxϕ2(yyy) . . . ∇xxxϕm(yyy)

]
ωωω = 0(

∂

∂xxx
ϕϕϕ(yyy)

)T

ωωω = 0

(3.6)

As the optimality condition is linear in ωωω, as well as the ωωω ∈ ∆m condition defined in
(2.13), the feasibility Problem 1 given yyy ∈ Rn may be posed as an LP in ωωω, as proposed in
Problem 4.

Problem 4 (Unconstrained Feasibility). There exists an ωωω ∈ ∆m such that yyy is a global
optimum if and only if there exists an ωωω ∈ ∆m which is solution to the LP in equation (3.7).

find
ωωω∈∆m

(yyy, ωωω) ∈ Ĝ ⇐⇒
min
ωωω∈∆m

0

subject to
(

∂

∂xxx
ϕϕϕ(yyy)

)T

ωωω = 0
(3.7)

The unconstrained PGM problem for the same yyy is,

Problem 5 (Unconstrained PGM).

p∗ = min
(xxx,ωωω)∈Ĝ

∥yyy − xxx∥22 ⇐⇒

min
xxx∈Rn, ωωω∈∆m

∥yyy − xxx∥22

subject to
(

∂

∂xxx
ϕϕϕ(xxx)

)T

ωωω = 0
(3.8)
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3.1.3 Constrained Global Minimizers Characterization
This section will extend 3.1.2 to consider the case when the feasible set X is a constrained

convex subset of the whole space Rn.
The following assumption and representation are required,

Assumption 2. There exists matrices Aeq ∈ Rq×n, beq ∈ Rq and C1 convex functions
{gk(xxx)}rk=1 such that,

X = {xxx ∈ Rn | Aeqxxx = beq, gk(xxx) ≤ 0 ∀k = 1..r}. (3.9)

Assumption 3 (Slater’s Condition). There exists a point xxx′ ∈ Rn such that Aeqxxx
′ = b and

gk(xxx
′) < 0 ∀k = 1..n, meaning X is non-empty.

Define µµµ ∈ Rr
+ and λλλ ∈ Rq as dual variables against the inequality and equality constraints

describing X, respectively. The KKT necessary conditions are sufficient to classify all optimal
(minimizer) points of fωωω(xxx) given a weighting ωωω ∈ ∆n and Assumptions 1, 2, 3 [41]:

∇xxxfωωω(xxx) +AT
eqλλλ+

r∑
k=1

µk∇xxxgk(xxx) = 0 (3.10a)

Aeqxxx = b (3.10b)
gk(xxx) ≤ 0, µk ≥ 0 ∀k = 1..n (3.10c)∑

k

µkgk(xxx) = 0. (3.10d)

Define the symbol Wc = Rn ×∆n × Rr
+ × Rq as the resident set containing (xxx, ωωω, µµµ, λλλ).

The optima-weight set in the constrained case is,

Ĝc = {(xxx, ωωω, µµµ, λλλ) ∈ Ŵ | KKT conditions (3.10) hold} (3.11)

Gc = πxxxĜc. (3.12)

The feasibility LP to check if a yyy ∈ Rn is constrained-optimal (similar to (3.7) for the
unconstrained case) is,

Problem 6 (Constrained Feasibility).

findωωω∈∆m, µµµ∈Rr
+, λλλ∈Rq (yyy, ωωω, µµµ, λλλ) ∈ Ĝc, (3.13)

with a constrained PGM program,

Problem 7 (Constrained PGM).

p∗ = min
(xxx,ωωω,µµµ,λλλ)∈Ĝc

∥yyy − xxx∥22. (3.14)

The structure of the feasibility problem remains the same in both the unconstrained and
the constrained cases: it is a LP. The structure of the PGM remains in both cases a bilevel
optimization problem, but in the constrained case contains as many more variables as there
are constraints in the direct model. Constrained models are much more difficult to treat
because of this.

In the next subsection, the special case of QP direct models will be considered. Because
of their special structure and additional assumptions one is able to say something about their
sets of global minimizers.
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3.2 Inverse Quadratic Programming

A QP is an optimization problem with a quadratic objective function and linear con-
straints. Although important in its own right, QP arises as a subproblem in a variety of
numerical methods for general constrained optimization like Sequential Quadratic Program-
ming or Augmented Lagrangian Methods [29] and is crucial in a variety of applications, such
as finance, engineering, machine learning, operations research, and statistics. The versatility
and efficiency of QP, along with its tractability, have made it a fundamental tool in these
and many other disciplines.

In this section, we will characterize unconstrained and constrained sets of global minima
for QP models of DOC. A standard form convex QP is given in equation (3.15),

min
xxx∈Rn

1

2
xxxTQQQxxx+ φφφTxxx (3.15a)

subject to AAAeqxxx = bbbeq (3.15b)
AAAxxx ≤ bbb (3.15c)

for matrices QQQ ∈ Sn
+, φφφ ∈ Rn, AAAeq ∈ Rq×n, bbbeq ∈ Rq, AAA ∈ Rr×n, and b ∈ Rr such that

Assumption 3 (Slater) holds. Under this assumption, the standard form QP always has
at least one solution but can have infinitely many under certain conditions related to the
relationship of the different matrices that are present in the QP.

3.2.1 Unconstrained Quadratic Programming
Further analysis in this section will require the following assumption,

Assumption 4 (Strictly Convex Quadratics). Functions in ϕϕϕ are strictly convex quadratics
with,

ϕi(xxx) = (xxx− xxxϕ
i )

TQQQi(xxx− xxxϕ
i )/2 ∀i = 1..m (3.16a)

∇xϕi(xxx) = QQQi(xxx− xxxϕ
i ) ∀i = 1..m. (3.16b)

where all elements in (QQQi, xxx
ϕ
i ) are bounded and QQQi ∈ Sn

++ for all i = 1..m.

Following from the first-order sufficient and necessary condition for the characterization
of a minimum of a convex function presented in equation (3.5) the optima-weight sets Ĝ(xxx, ωωω)
and G(xxx) under Assumption 4 is,

Ĝ = {(xxx, ωωω) ∈ W | (
∑

i ωiQQQi)xxx =
∑

i ωiQQQixxx
ϕ
i } (3.17)

G = πxxxĜ. (3.18)

Remark 1. Letting {eeej}mj=1 be the standard basis vectors in Rm, the points {(xxxϕ
i , eeej)}mj=1 are

all members of Ĝ.

Remark 2. All descriptor constraints in Ĝ from (3.17) have polynomial degree at most two,
and there is a bilinearity between (ωωω, xxx).

The mapping κ : ∆m → G with κ(ωωω) = xxx∗
ωωω in terms of finding an optimal xxx minimizing

fωωω is single-valued, and has an expression,

κ(ωωω) = xxx∗
ωωω = (

∑
i ωiQQQi)

−1
(∑

i ωiQQQixxx
ϕ
i

)
. (3.19)
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Remark 3. Conversely, the mapping κ−1 : G ⇒ ∆m is set-valued. Its values are the compact
polytopic sets containing feasible points of the program (3.7).

Theorem 3.2.1. The map κ(ωωω) from (3.19) is a continuous surjection from ∆m onto G
under Assumption 4.

Proof. Surjection holds by definition of Ĝ in (3.17): xxx is only a member of Ĝ if there exists
an ωωω′ ∈ ∆m such that xxx = xxx∗

ωωω′ . Continuity of xxx∗
ωωω is based on continuity of the matrix inverse

AAA−1 for all nonsingular matrices AAA ∈ Rn×n.

Definition 3.2.1 (Compact). A set X ∈ Rn is compact if it is closed and bounded (Heine-
Borel). A consequence is that X is compact if there exists a finite R > 0 such that X is a
subset of the ball with radius R : {xxx | ∥xxx∥2 < R} [32].

Theorem 3.2.2. Under Assumption 4, the set Ĝ is compact.

Proof. There exists a finite quantity R > 0 that satisfies maxj∥xxxϕ
i ∥2 < R due to boundedness

of xxxϕ. It is implied that maxωωω∈∆m∥
∑m

j=1 ωixxx
ϕ
i ∥2 < R by convexity of the norm ∥·∥2. Let Λ be

the solution to,
Λ = min

ωωω∈∆m
λmin (

∑
i ωiQQQi) . (3.20)

It holds that Λ > 0 because Positive Definite (PD) matrices form a convex (non-pointed)
cone. The maximum norm of any global-optimal point in G is bounded above by,

∥κ(ωωω)∥2 = ∥(
∑

i ωiQQQi)
−1
(∑

i ωiQQQixxx
ϕ
i

)
∥2 (3.21a)

≤ (1/Λ)∥
(∑

i ωiQQQixxx
ϕ
i

)
∥2 ≤ R/Λ <∞. (3.21b)

The compact set {(xxx, ωωω) ∈ W | ∥xxx∥2 ≤ R/Λ} is a superset of Ĝ from (3.17), which proves
that Ĝ is compact.

Definition 3.2.2 (Path-Connected). A set X is path-connected if for every two points
xxx0, xxx1 ∈ X there exists a continuous path (curve) ω : [0, 1] → X with ω(0) = xxx0, ω(1) = xxx1

such that ω(t) ∈ X ∀t ∈ [0, 1] [32].

Theorem 3.2.3. Under Assumption 4, the set G is path-connected.

Proof. Let xxx0, xxx1 be a pair of distinct points in G. Choose ωωω0 ∈ κ−1(xxx0) and ωωω1 ∈ κ−1(xxx1) as
weights generating the optimal points xxx0, xxx1. A path ω : [0, 1]→ ∆m may be drawn between
the points by ω(t) : ωωω0t+ωωω1(1− t). The path (ω(t), κ(ω(t))) remains inside Ĝ for all t ∈ [0, 1]
by continuity of κ from Theorem 3.2.1. This containment holds for all pairs (xxx0, xxx1), so G is
path-connected.

Remark 4. No conclusions can be drawn in this manner about path-connectedness of Ĝ.

Figure 3.1 depicts the set of unconstrained global minima G for xxx ∈ R3, generated by 5
different basis functions, thus ωωω ∈ ∆5. Optimal points of the individual basis functions, as well
as the 1-level-sets of the quadratics, are plotted, in order to give a sense of pairs (QQQi, xxx

ϕ
i )

5
j=1

involved. The black edges connecting pairs of xxxϕ
i correspond to edges of the geometric shape,

but also to sets of global minima of pairwise function combinations. Compactness and path-
connectedness are visually obvious in this example. The numerical values of QQQ1:5 and xxxϕ

1:5

used to generate these meshes are given within equation (3.22) below.

34



QQQ1 =

 2.175 −0.037 −0.251
−0.037 0.836 0.117
−0.251 0.117 0.795

 xxxϕ
1 =

−1.521−2.342
−3.135

 (3.22a)

QQQ2 =

 1.627 −0.178 0.439
−0.178 1.782 −0.160
0.439 −0.160 1.727

 xxxϕ
2 =

 3.754
−0.449
−1.387

 (3.22b)

QQQ3 =

 1.883 0.425 −0.482
0.425 0.750 −0.176
−0.482 −0.176 1.642

 xxxϕ
3 =

−1.363−2.765
1.823

 (3.22c)

QQQ4 =

 1.656 0.068 0.012
0.068 2.016 0.271
0.012 0.271 1.818

 xxxϕ
4 =

 1.125
−1.152
3.332

 (3.22d)

QQQ5 =

 1.272 −0.484 0.223
−0.484 1.508 −0.051
0.223 −0.051 1.366

 xxxϕ
5 =

 3.380
1.614
−1.831

 (3.22e)

Figure 3.1: A set of unconstrained global optima in 3D
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3.2.2 Constrained Quadratic Programming
We note that the special case of QP involves candidate functions and a constraint set,

ϕi = xxxTQQQixxx/2 + φφφi
Txxx, ∀i = 1..m (3.23a)

X = {xxx ∈ Rn | AAAeqxxx = bbbeq, AAAxxx ≤ b}, (3.23b)

for matrices {QQQi ∈ Sn
+, φφφi ∈ Rn}i=1..m and AAAeq ∈ Rq×n, bbbeq ∈ Rq, AAA ∈ Rr×n, b ∈ Rr such that

Assumption 3 (Slater) holds.
The constrained-optimal solution map given ωωω and the parameters in (3.23) is,

κc(ωωω) = argminxxx∈X
∑m

j=1 ωiϕi(xxx). (3.24)

Remark 5. Due to possible weak convexity of some cost functions in ϕϕϕ, there may exist
points ωωω ∈ ∆m such that κc(ωωω) is set-valued rather than single-valued. This will occur when
Qωωω = (

∑m
j=1 ωiQQQi) is rank-deficient and (

∑m
j=1 ωiφφφi) is orthogonal to Qωωω’s nullspace.

In this case, the possibly discontinuous selection (translation of the minimum map),

s(κc(ωωω)) = argmin
xxx∈κc(ωωω)

∥yyy − xxx∥22, (3.25)

will denote a constrained-optimal point in κc(ωωω) that is closest to yyy. Finding a selection
s(κc(ωωω)) requires solving a second QP over the X-intersected subspace of solutions of (3.24).
This two-step approach involving a minimal selection was also performed in [57].

Figure 3.2 depicts constrained global optima Gc, and its unconstrained version G generated
from the same basis function set ϕϕϕ. Here 2 variables, 3 cost functions, and 4 inequality
constraints with (xxx, ωωω, µ) ∈ R2 × ∆3 × R4

+ are considered. Unconstrained and constrained
optimal points of the individual basis functions, xxxϕ

1:5 and xxxf,c
1:5, are shown as colored dots. The

black square denotes the feasible region. The blue ellipses are the level sets of the quadratic
cost functions, chosen to highlight the spots where they are tangential to the constrained set
boundary (implying the position of their constrained minima). The red box highlights the
spot where the intersection of Gc and the complement of G is non-empty.

The numerical values of QQQ1:3, φφφ1:3 and xxxϕ
1:3 used to generate these meshes are given within

equation (3.26) below.

QQQ1 =

[
1.284 −0.348
−0.348 0.858

]
φφφ1 =

[
1.346
−0.883

]
xxxϕ
1 =

[
−0.864
0.679

]
(3.26a)

QQQ2 =

[
0.593 −0.001
−0.001 0.553

]
φφφ2 =

[
0.292
−0.505

]
xxxϕ
2 =

[
−0.491
0.911

]
(3.26b)

QQQ3 =

[
1.056 −0.033
−0.033 1.056

]
φφφ3 =

[
−0.874
0.753

]
xxxϕ
3 =

[
0.807
−0.689

]
(3.26c)

The 4 inequality constraints are described by the matrices AAA and bbb given in equation
(3.27) below.

AAA =


1 1
−1 1
1 −1
−1 −1

 bbb =


1
1
1
1

 (3.27)
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Figure 3.2: The set Gc is not necessarily a subset of G

3.3 Numerical Methods

This section will present numerical approaches to find upper and lower bounds for the
unconstrained PGM 5 and constrained PGM 7.

3.3.1 Upper Bounds
Upper bounds of p∗ may be computed through sampling and local search optimization.

The PGM problems may be formulated solely in terms of ωωω through the use of the optimiza-
tion maps κ(ωωω) and κc(ωωω) for ωωω ∈ ∆∗ (bi-level optimization).

The objective in 5 and its gradient with respect to ωωω is,

F (ωωω) = ∥κ(ωωω)− yyy∥22 (3.28)

∇ωωωF (ωωω)j = 2(κ(ωωω)− yyy)T (
∑

i ωiQQQi)
−1QQQj(xxx

ϕ
j − κ(ωωω)).

(3.29)

A Hessian for F may be similarly derived in closed form (omitted due to space constraints).
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Local solvers such as fmincon in MATLAB or Manopt1 [93] may be given this value and
derivative information to perform optimization over ωωω ∈ ∆m (e.g. L-BFGS, trust-region).

∇ωωωωωωF (ωωω)jk =

2(κ(ωωω)− yyy)T (
∑

i ωiQQQi)
−1
[
QQQj (

∑
i ωiQQQi)

−1QQQk(xxx
ϕ
k − κ(ωωω)) +QQQk (

∑
i ωiQQQi)

−1QQQj(xxx
ϕ
j − κ(ωωω))

]
2(xxxϕ

k − κ(ωωω))TQQQk (
∑

i ωiQQQi)
−2QQQj(xxx

ϕ
j − κ(ωωω))

(3.30)
The constrained objective in 7 may be expressed as,

F c(ωωω) = ∥s(κc(ωωω))− yyy∥22. (3.31)

The constrained objective (3.31) is not generally differentiable with only the weak con-
vexity assumption. Two possible options to minimize F c(ωωω) include gridding ∆m, and using
fmincon in terms of (xxx, ωωω, µµµ, λλλ) ∈ Ĝc directly on the constrained optimization Problem 7.

3.3.2 Lower Bounds
Lower bounds plow ≤ p∗ to Problems 5 and 7 in the quadratic case may be acquired

through SDP. The presented method in this subsection is a QCQP that is equivalent to the
degree-1 moment-Sum of squares (SOS) hierarchy LMI enriched by additional constraints.

Unconstrained Lower Bound

Every point (xxx, ωωω) ∈ W defines a rank-1 PSD matrix MMM = [1 xxx ωωω][1 xxx ωωω]T . Setting
MMM ∈ S1+n+m

+ indexed by (1, xxx, ωωω) as a matrix variable,

MMM =

M11 M1xxx M1ωωω

Mxxx1 Mxxxxxx Mxxxωωω

Mωωω1 Mωωωxxx Mωωωωωω

 , (3.32)

the objective ∥yyy − xxx∥22 may be converted into an affine expression,∑n
i=1 (Mxxxixxxi

− 2yyyiM1xxxi
) + ∥yyy∥22 (3.33)

Containment in Ĝ from (3.17) may be expressed as,∑m
j=1Mωj1 = 1 (3.34a)

Mωj1 ≥ 0 ∀j = 1..m (3.34b)∑m
j=1QQQjMxxxωj

− (QQQjxxx
ϕ
j )M1ωj

= 0. (3.34c)

Valid constraints are a set of relations that are always satisfied by an MMM generated by the
1As ∆m is not a manifold, the Hadamard parameterization ∆m = {z⊙ z | ∥z∥22 = 1} may be employed [145].
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optimal point (xxx∗, ωωω∗) solving Problem 5. These valid constraints include,

Mωi1 =
∑m

j=1 Mωiωj
∀i ̸= j (3.35a)

Mωiωj
≥ 0 ∀i ̸= j (3.35b)

Mωiωj
≤ ωi, Mωiωj

≤ ωj ∀i ̸= j (3.35c)
Mωiωi

≤M1ωi
∀i = 1..m (3.35d)

Mωiωj
≤ 1/4 ∀i ̸= j. (3.35e)

Constraints (3.35a)-(3.35b) arise from multiplying together defining constraints for the
simplex. The diagonal entryMωiωi

will automatically be positive byMMM ∈ S1+n+m
+ . Constraints

(3.35c)-(3.35e) originate from observations about the simplex ∆m. Because ωωω ∈ ∆m ⊊ [0, 1]m,
coordinate-wise multiplication will satisfy ωiωj ≤ ωi for all i, j ∈ 1..n.

Constraint (3.35e) results from the fact that elementary symmetric polynomials on the
probability simplex ∆σ are maximized at the vector 1/σ. The elementary symmetric poly-
nomial applied to ωωω′ ∈ ∆σ is eσ2(ωωω

′) =
∑

1≤i<j≤n ω
′
iω

′
j, and admits the maximum value of

max eσ2 =
(
σ
2

)
1
σ2 . The valid inequality derived from σ = 2 with max eσ2 = 1

4
is written in

(3.35e). Valid inequalities with higher σ may be written at the cost of including a combina-
torially increasing number of constraints.

Algorithm 2: Unconstrained LMI
Input: yyy, QQQ, xxxf

Output: p∗low, MMM (or Infeasibility)
1 Solve (or find infeasibility certificate):

p∗low =min
MMM

Objective (3.33) (3.36a)

Optimality (3.34), Valid (3.35) (3.36b)
M11 = 1, MMM ∈ S1+n+m

+ . (3.36c)

A rank-1 matrix solution MMM of Algorithm 2 certifies that p∗low = p∗. The optimal entries
(xxx, ωωω) can then be read from the solution’s entries (M1xxx, M1ωωω). Adding valid inequalities
(3.35) can encourage rank-1 solutions of LMI lower bound problem, refer to [136] for further
examples of this phenomenon.

Constrained Lower Bounds

The lower bound SDP for the QP setting in Section 3.2.2 requires a matrix MMM ∈ S1+n+m+r
+

and a vector λλλ ∈ Rq such that the entries of MMM are indexed by [1, xxx, ωωω, µµµ]. The equality
multipliers λλλ may be ommited from MMM because there is no multiplication in (3.10) between
terms that contain xxx and λλλ. The affine constraint interpretation of the KKT conditions in
(3.10) is, ∑m

j=1(QQQjMxxxωj
+ φjMωj1) +AAAT

eqλλλ+AAATMµµµ1 = 0 (3.37a)

AAAeqMxxx1 = bbbeq (3.37b)
AAAMxxx1 ≤ bbb Mµµµ1 ≥ 0 (3.37c)

− bbbTMµµµ1 +
∑r

k=1 AkMxxxµk
= 0. (3.37d)

The notation Ak in the complementary slackness constraint (3.37d) indicates row k of the
matrix AAA. Valid inequalities for the constrained QP case include (with inequality constraint
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indices (k, ℓ)),

Mµkµℓ
≥ 0 ∀k ̸= ℓ (3.38a)

Mµkωi
≥ 0 ∀k = 1..r, i = 1..m. (3.38b)

Mµkωi
≤Mµk1 ∀k = 1..r, i = 1..m. (3.38c)

Both ωωω ∈ ∆m and µµµ ∈ Rr
+ are nonnegative, so their multiplications should also be

nonnegative. The QP-lower-bounding LMI is,

Algorithm 3: Constrained LMI
Input: yyy, QQQ, φφφ, AAA, bbb, AAAeq, bbbeq
Output: p∗low, MMM (or Infeasibility)

1 Solve (or find infeasibility certificate):

p∗low = min
λλλ∈Rq , MMM

Objective (3.33) (3.39a)

Simplex (3.34a)-(3.34b), KKT (3.37) (3.39b)
Valid (3.35), (3.38) (3.39c)
M11 = 1, MMM ∈ S1+n+m+r

+ (3.39d)

The accuracy of p∗low ≤ p∗ from Algorithm 3 may be improved if an upper bound for µ2
k

(Mµkµk
) was known for each k. Bisection-based approaches with convex cost heuristics may

also be applied to the presented LMIs [83].

3.4 Numerical Examples

This section contains small-scale toy examples with visuals, to develop intuition. The
examples will showcase flaws in the approximate projection method [74] when an inconsistent
basis is supposed, and the robustness of the bi-level method. The proposed distance-bounding
methods will also be displayed. Future works will showcase the method for larger-scale
examples and will be applied to real data.

Assume that an observed human decision (or trajectory) can be represented by a vector
y ∈ R2, or by a vector yc ∈ X ⊂ R3 and that it is generated via an unknown process
(as is actually the case in real-world applications). Assume bases ϕϕϕ and ϕϕϕc contain 5 and
3 quadratic cost functions respectively, believed to be underlying the decision-making (or
trajectory-generation). Figure 3.3 depicts the 2-dimensional test point y ∈ R2, and the
set of unconstrained global optima G which is generated using ϕϕϕ. Figure 3.4 depicts the
3-dimensional test point yc ∈ R3, the feasible set X, and the set of constrained global optima
Gc generated by using ϕϕϕc.

For the example shown in Figure 3.3, the numerical values of the matrices of the examples
are given in equation (3.41) below. The test point and the numerical values of the retrieved
points are given in equation (3.40) below.

yyy =

[
6
2

]
xxxProjG(yyy) =

[
2.205
0.662

]
xxxProjGM =

[
2.216
0.631

]
xxxKeshavaraz =

[
−0.750
1.287

]
xxxLMI =

[
2.845
0.727

]
(3.40)
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QQQ1 =

[
0.615 0.033
0.033 1.400

]
xxxf
1 =

[
−2.559
2.245

]
(3.41a)

QQQ2 =

[
2.102 1.035
1.035 1.426

]
xxxf
2 =

[
0.541
3.946

]
(3.41b)

QQQ3 =

[
1.124 0.019
0.019 0.898

]
xxxf
3 =

[
2.378
−3.303

]
(3.41c)

QQQ4 =

[
1.205 0.262
0.262 1.450

]
xxxf
4 =

[
1.551
−2.319

]
(3.41d)

QQQ5 =

[
1.527 −0.192
−0.192 1.440

]
xxxf
5 =

[
1.909
−0.705

]
(3.41e)

Figure 3.3: Comparison of the projection onto an unconstrained set of optima G.

Both in Figure 3.3 and 3.4 the actual minimum distance projection ProjG(y) is shown as
reference and is computed by a combined brute-force grid search and local bi-level search on
the cost function parametrization ωωω ∈ ∆5 and ωωω ∈ ∆3 respectively. The minimum distance
local bi-level formulation result, initialized with ωi = 0.2, is annotated as ProjGM and
shown, alongside the Keshavaraz minimum KKT-constraint violation formulation [74]. The
Mx1 entry of the PSD matrix output by Algorithm 2 is also shown.
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Figure 3.4: Comparison of the projection onto a constrained set of optima Gc.

From Figures 3.3 and 3.4 it is possible to see that the approximate Keshavaraz method
can impute a strongly inconsistent objective if the test point is outside the set of global
optima G.

The numerical values used in the example from Figure 3.4 are given in equation (3.42)
below.

QQQ1 =

 1 0 0
0 1 0
0 0 1

 φφφ1 =

00
0

 xxxf
1 =

00
0

 xxxf,c
1 =

2.3332.333
2.333

 (3.42a)

QQQ2 =

 1 0 0
0 3 0
0 0 1.300

 φφφ2 =

−20
0

 xxxf
2 =

20
0

 xxxf,c
2 =

 3
1.209
2.791

 (3.42b)

QQQ3 =

 0.500 0 0
0 1.600 0
0 0 2

 φφφ3 =

 0
−6.400

0

 xxxf
3 =

04
0

 xxxf,c
3 =

33
1

 (3.42c)

The inequality constraint matrices from the example from Figure 3.4 are given in equation
(3.43) below.
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AAA =


1 1 −1
1 −1 −1
−1 1 −1
−1 −1 −1

 bbb =


5
−1
−1
−7

 (3.43a)

The LMI Algorithms 2 and 3, are designed to invalidate a proposed set of basis functions
with respect to a data set. In other words, the algorithm is able to say whether IOC with
proposed basis functions can be successfully applied to a given data set.

Given a data set of 100 points y ∈ R2 generated by adding Gaussian noise to the shown
test point in Figure 3.3, the distance of each of them to the set of global optima is calculated
via different methods. The mean distance to the set of global optima for different methods
is, in ascending order, dLMI = 3.78, dProjGM = 4.09 and dKeshavaraz = 6.98, the true value being
dProjG(y) = 4.09.

In practice, for higher-dimensional data, running the bi-level method may be expensive.
If the Keshavaraz method does not produce a zero or extremely close-to-zero error, it is useful
to be able to run the LMI algorithm to check the lower bound of the distance from the set
of global optima. If the lower bound is higher than the desired error in data replication, we
can conclude that the proposed set of basis functions ϕϕϕ is not good enough to represent the
data.

MATLAB (2021b) code to replicate figures and experiments is publicly available at https:
//github.com/jarmill/inverse-optimal. Dependencies include Mosek [130] and YALMIP
[42].

3.5 Extensions

This section will detail extensions of the current work and some discussion of future
research directions.

3.5.1 Piecewise Functions and Convex Lifts

The method of convex lifts [7, 87] may be applied to solve the PGM problem over some
classes of piecewise-defined costs ϕj. Assume there exists a set of C1 functions {ξjℓ(xxx)}

Lj

ℓ=1

with Lj finite such that the convex ϕj satisfies,

ϕj(xxx) = max
ℓ∈1..Lj

ξjℓ(xxx). (3.44)

Remark 6. Convexity is preserved under the pointwise maximum operation (though not
under the pointwise minimum).

Remark 7. The class of convex piecewise affine functions with ξjℓ(xxx) = βjℓTxxx − γjℓ for
βjℓ ∈ Rn×1, γjℓ ∈ R may be expressed as an instance of (3.44).

New variables τj may be added for every max-representable function ϕj(xxx), forming the
equivalent optimization problems with equal objectives:
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f ∗ = min
xxx∈xxx

∑m
j=1 ϕj(xxx) (3.45a)

⇐⇒
f ∗ = min

xxx∈xxx, τ∈Rm

∑m
j=1 τj

subject to αjξjℓ(xxx) ≤ τj, ∀ℓ = 1..Lj, j = 1..m.
(3.45b)

The formerly non-differentiable objectives ϕj(xxx) from Equation (3.45a) are lifted into the
constrained problem from Equation (3.45b) where each ξjℓ(xxx) is differentiable for all xxx ∈ xxx.
KKT equations may then be written for (3.45b) and then utilized in (3.11) to describe the
cone Ĝc(xxx, τ, ωωω, µµµ, λλλ) for use in the constrained PGM Problem 7.

Remark 8. Minimization of the L1 norm ∥xxx∥1 may be expressed as min
∑n

i=1 ti : −ti ≤
xi ≤ ti in 2n inequality constraints by adding n new variables {ti}ni=1 for use in constrained
PGM. Lp norms with rational p ∈ [1,∞) admit second-order-cone representations [39] through
lifting, and can therefore be members of the dictionary ϕϕϕ.

A rank-1 solution M of (3.36) certifies that p∗low = p∗ from (3.8), and the optimal (xxx, ωωω)
may be read from Mxxx1 and Mωωω1

3.5.2 Projection onto Local Minimizers
This paper was restricted to convex cost functions in ϕϕϕ and convex sets xxx, with an addi-

tional polynomial requirement for PGM. Problem 2 may be extended to finding the minimum
distance p∗ between y and some local minimizer of fωωω(xxx). Theorem 12.6 (Eq. (12.65)) of
[28] outlines second-order necessary conditions for a point xxx∗ to be a local minimizer. In the
unconstrained case, the Hessian matrix ∇2

xfωωω(xxx) must be PD in addition to (xxx, ωωω) satisfy-
ing the first-order condition ∇xfωωω(xxx) = 0. The constrained case with non-convex functions
requires more delicacy, as the quadratic form w → wT∇2

xfωωωq(xxx)w must be positive for all
w ̸= 0 vectors inside the Critical Cone (Eq. (12.53) of [28]) formed by (xxx, λλλ, µµµ).

3.5.3 Polynomial Optimization
The PGM programs 5 and 7 are instances of Polynomial Optimization Problems when

ϕj(xxx), gk(xxx) are all convex polynomial functions of xxx. The sets Ĝ(xxx, ωωω), Ĝc(xxx, ωωω, µµµ, λλλ) are
basic semialgebraic sets, and their projections G(xxx),Gc(xxx) are in turn semialgebraic sets.
The projections G(xxx),Gc(xxx) may be analyzed by quantifier elimination algorithms such as
the Cylindrical Algebraic Decomposition [79]. The moment-SOS hierarchy is a method that
yields a rising sequence of lower bounds to the distances p∗ by solving a sequence of LMIs
in combinatorially increasing size [63]. Theorem 3.2.2 assures (under mild conditions) that
the moment-SOS relaxations of the unconstrained Problem 5 will converge at a finite degree.
Convergence of the moment-SOS hierarchy for bilevel Polynomial Optimization Problems
is established in [110]. The LMI presented in Section 3.3.2 is an instance of the degree-1
moment-SOS hierarchy as enriched with valid constraints.

Given arbitrary convex polynomials ϕj(xxx), gk(xxx), all constraints in Ĝ(xxx, ωωω) are affine w.r.t.
ωωω. Likewise, the describing constraints of Ĝc(xxx, ωωω, µµµ, λλλ) are affine in (ωωω, µµµ, λλλ) all together. A
theorem of alternatives may be used to eliminate the affine-dependent groups (ωωω) or (ωωω, µµµ, λλλ),
yielding a set of linked LMI constraints of smaller size that solely depend on xxx [98]. This
reduction in the number of variables decreases the computational burden of solving LMIs
as the degree increases. A full presentation and application of polynomial optimization for
PGM will take place in sequel work.
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3.6 Conclusion

This chapter proposed to use the solution of IOC to express how well a basis of cost
functions ϕϕϕ of an optimization-based model can represent a given measurement yyy. To make
this concept intuitive, the concept of the set of global minimizers Gc (G) has been introduced.
Evaluating a basis of cost functions ϕϕϕ has been formulated as the minimum-distance pro-
jection from the observation yyy to the set of global minima Gc (G) generated by ϕϕϕ, which is
equivalent to finding the global minima of the general non-convex bi-level IOC problem with
no reliable way of finding global solutions. Under the assumption that the optimization-based
model is a QP, which is satisfied for many practical models, one can derive a lower bound on
this distance by using Algorithm 3, through the use of LMI. Medium-sized LMIs are readily
solved, which makes this approach applicable to problems of moderate sizes. As the distance
between any point from Gc to yyy yields an upper bound on the minimum distance, one should
strive to make the bound tighter by picking at least a local minimum of the bi-level problem.
Important considerations for the implementation of the local search for the bi-level problem
were presented in Section 3.3.1.

A basis function set invalidation interpretation of the PGM problem was introduced within
Algorithm 1 and further explained through numerical examples in Section 3.4. The geometry
of the set of global minimizers Gc (G) was explored in the constrained and unconstrained
cases of convex QP direct models in Section 3.2. Numerical algorithms were implemented
to compute the upper and lower bounds on the PGM optima in Section 3.3, and they have
been applied to numerical examples, the results of which have been presented and explained
in detail in Sections 3.4.

The restriction of the consideration to QP direct models has been discussed. Moreover,
three possible extensions to this framework have been proposed i.e. allowing for max-
representable functions to the basis, allowing for polynomial objective functions in the basis,
and finally relaxing the convexity requirements on the basis functions which would make the
analytical characterization of global minimizers impossible. This last extension would lead
to an interpretation of IOC as a projection onto the set of local minimizers. Apart from the
first, for which the introductory work has already been laid out in Section 3.5, the extensions
are highly non-trivial and would require a very thorough familiarization with the theory of
polynomial optimization [100] and with the theory of nonlinear programming [17].

The application even to simple biomechanical models where constraints are convex would
require the polynomial extension mentioned above, but for more complex mechanical systems
the full extension of this framework is necessary. Therefore, the proposed method should be
applied to convex polynomial IOC problems.

On the theoretical side, apart from tackling the aforementioned extensions, sensitivity
methods from the set-valued mathematical analysis could be applied to determine which
properties of G and Ĝ are preserved when assumptions are lifted (e.g. does Theorem 3.2.3
hold when all ϕj are strongly convex rather than strongly convex quadratic?). The continuity
properties of the solution map (3.24) and its selection (3.25) should also be explored for
broader classes of direct models [30, 62].

An interesting future application could include performing cost-function discovery in order
to generate candidate functions ϕj(xxx) that would reduce the distance p∗ from (3.3) when
added to the set of cost functions ϕϕϕ.
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Chapter 4

Force Sharing During Gait

This chapter addresses the problem of muscle force sharing in the lower limbs during
human gait. Muscle force patterns of human gait have been extensively researched from both
medical and engineering viewpoints to comprehend and rectify pathologies. Nonetheless,
answering the question of muscle-force sharing remains necessary due to the complex nature
of acquiring precise measurements of individual muscle forces, often necessitating the use of
intrusive devices. A substantial body of literature, employing diverse objective functions,
has postulated that muscle-force sharing might be a consequence of an optimization process.
This chapter advocates the utilization of optimal control to determine muscle force sharing.

IOC is used to determine an objective function. The bilevel and the IKKT methods,
two prevalent methods of IOC, were examined. The identified objective functions were
subsequently applied to predict muscle forces during gait, and their precision was compared
with a comprehensive array of biological cost functions found in the existing literature.
The best prediction was attained by the objective function retrieved by the bilevel IOC
method, registering a Root Mean-Squared Error (RMSE) of 176N (162N) and a correlation
coefficient of 0.76 (0.68) during the stance (swing) phase of the gait cycle. Following this,
these predictions of muscle force were leveraged to calculate Joint Stiffness (JS), exhibiting
an average RMSE of 42 Nm.rad−1 and a correlation coefficient of 0.90 in contrast to the
reference.

The bilevel method prevailed over its counterpart, the IKKT method, which notably
underperformed on this task. An elaboration on this issue has been provided through a
reduced and simplified numerical example.

4.1 Introduction

Addressing mobility impairments in individuals afflicted by neuromuscular disorders con-
stitutes a challenge, necessitating comprehensive rehabilitation strategies to facilitate gait
restoration [125]. To this end, a variety of assistive robots have been innovated to support
individuals with impediments in walking [82, 125]. In the context of controlling a robot
while interacting closely with a human, a crucial challenge is developing a robust controller
capable of realizing adaptive impedance behavior: recognizing and responding to impedance
requirements effectively. A critical aspect of human-robot interaction is the formulation of a
sturdy controller, able to modulate JS [125]. This chapter is concerned with the prediction
of the distribution of muscle forces as a mechanism for interpreting JS, acting as a fixed com-
ponent of mechanical impedance [5]. Co-contraction, or the concurrent activation of muscles
within antagonistic settings relative to a joint, alters the level of JS. It is a pivotal mecha-
nism employed by the central nervous system to control movement precision, stability, speed,
and energy utilization. Since the muscle groups operating a joint outnumber the degrees
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of freedom implicated in a motion, co-contraction presents a mathematically indeterminate
problem [8]. This study will leverage constrained optimization methodologies, a conventional
approach to addressing indeterminate problems [20].

Measurements of muscle forces can be conducted employing invasive electromyographic
sensors, coupled with sophisticated identification methodologies necessitating individual-
specific calibration [103]. The complexities in estimation have motivated the application
of optimization techniques [56] to solve the muscle force sharing problem. In light of the
emergence of approaches that are based on model predictive control [142], possessing an
optimization-centric model for the distribution of muscle force represents a substantial ad-
vantage [125].

The literature proposes several optimization objectives related to muscle endurance and
energy [80]. They can be classified into minimizing muscle activations [66], muscle forces
[109], and muscle stresses [81] with different physiological scaling factors. The muscle force
norms, from L1 to L5, are the most commonly used minimization objectives, as experimental
studies showed that muscle endurance is inversely related to these objectives [128]. The
muscle stress criterion accounts for the capacity of muscles to produce different amounts of
force by normalizing the muscles’ forces by their physiological cross-sectional area. Some
objective functions also account for the fact that maximal muscle force is variable at each
time sample depending on the muscle’s length and velocity.

However, even if these objectives were widely compared with actual human data, they
were evaluated separately using various metrics, usually considering muscles actuating a
single joint and over the whole gait cycle. As of today, there is no consensus on which
objective function best predicts muscle force sharing during gait. This study shows that a
hybrid objective function would be more suitable for predicting human muscle force sharing.
This is supported by the literature on human motor control and robotics which has shown
that repetitive and constrained human motions such as gait could be modeled and predicted
using an optimal control process with a hybrid objective function [69, 77, 108, 111]. However,
this has never been done for the muscle force-sharing problem.

The use of IOC methods has been extensively studied to determine the objective function
used by humans to generate motion. IOC methods rely on parametric representations of the
objective function, most often as affine combinations of interpretable basis functions. Studies
usually refer to the parameters of this affine combination as basis or objective function
weights and attempt to identify them from data [69, 77, 111, 122]. Because of its structure,
one standard IOC method is referred to as the bilevel [99] approach. This approach consists
of two nested optimization processes and it aims to identify the basis function weights that
minimize the RMSE between observed motions and motions predicted by the DOC process
with the given basis function weights. This approach suffers from its long execution time [69,
77].

A second, approximate solution method for the IOC problem was proposed based on a
relaxation of the KKT optimality conditions [74, 88], reducing IOC to a convex minimization
over the basis function weights [122]. Studies have referred to this method as the IKKT
[115, 139]. These studies argue that the KKT residual presents a reasonable heuristic to
minimize, boasting its fast execution time [74, 88, 122, 140]. Aswani et al. [120] were
probably the only ones that severely questioned this approach and showed that, contrary to
the bilevel approach, the IKKT approach does not yield a statistically consistent estimation
of the objective function in the presence of noisy data. Furthermore, Colombel et al. [139]
recently demonstrated that a small value of the KKT residual does not imply a consistent
objective function identification. As such, it does not represent a good metric to assess the
quality of the identified objective function. In this context, this study will show that IKKT
was not applicable to the muscle-force sharing problem with the underlying model and data.
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Figure 4.1: (a) Force sharing problem. (b) Gait cycle definition.

Moreover, a counterexample to the IKKT procedure was designed to show that identifying a
DOC model using IKKT may result in the largest distance between model predictions and
data.

This chapter proposes to evaluate how well a basis of objective functions proposed in the
literature on biomechanics predicts muscle forces during gait. The muscle forces can then be
used to assess JS. The main contributions of this work can be summarized as follows:

• Solving the muscle force sharing problem using different competing objective functions,

• using IOC to identify a hybrid objective function based on human data,

• comparing bilevel and IKKT approaches in Section 4.3.1,

• counterexample to the IKKT approach in Section 4.3.2.

4.2 Methods

4.2.1 Muscle-force Sharing Problem
As represented in Figure 4.1.a, for a musculoskeletal model with nj joints and nm muscles,

the force sharing problem consists in finding the vector of instantaneous muscle forces fff t ∈
Rnm

+ that is generated to produce a vector of instantaneous joint torques τττ t ∈ Rnj . At a
particular instant in time t, muscle forces and joint torques can be related by the following
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linear relation:
AAAtfff t = τττ t (4.1)

where AAAt ∈ Rnj×nm is the matrix of instantaneous muscle moment-arms about the joints’
rotation axes. As represented in Fig 4.1.a a muscle can articulate multiple joints thus the
columns of matrix AAAt may have multiple non-zero elements.

Given torque and moment-arms, τττ t and AAAt, there are an infinite number of force-vectors
fff t that could produce the torque τττ t, as this is a redundant problem with nm > nj.

4.2.2 Objective Functions Basis
The literature provides many biologically plausible criteria to predict muscle forces during

gait. Table. 4.1 presents the 15 retained objective functions ϕ1, . . . , ϕ15 [20, 36, 51]. All of
these objective functions are convex functions of the muscle force vector.

The time-dependent parameters of the objective functions in Table 4.1 are: fffmint minimal
muscle forces (equal to the passive forces); fffmaxt maximal muscle forces; vmtt muscle tendon
velocities; τττmaxt

1 maximal muscle torques (with all muscle forces set to 0 except one set to
its maximum fffmaxt). The time-constant parameters of the objective functions in Table 4.1
are: fff 0 maximal muscle isometric force; pcsa muscle physiological cross-sectional areas; m
muscle masses. All musculoskeletal parameters involved in the computation of the objective
functions, and later on, the JS, were obtained from the study of Li et al. [144] and correspond
to calibrated values.

The basis objective functions corresponding to indices i = 1, 2, 3, 4 are norms of the
unscaled muscle force amplitude vector and are guided by the assumption that the central
nervous system (CNS) attempts to minimize load in muscles during motion [11, 20, 36]. These
objective functions were previously linked to energy minimization [20]. Stronger muscles will
tend to be more affected by these objective functions, in particular as we consider higher-
order norms of the muscle amplitudes vector. In principle, when minimizing ϕ1 all muscle
amplitudes will be equally minimized, but minimizing ϕ3 implies prioritizing minimization
of the muscle amplitudes of the few strongest muscles while minimizing ϕ4 prioritizes only
the strongest muscle. As such ϕ1 will stimulate behavior where all unscaled muscle force
amplitudes are kept as low as possible. In contrast, ϕ4 will stimulate behavior where the
strongest muscles’ force amplitudes will be controlled, but the weaker muscles will have the
freedom to adjust.

Guided by similar assumptions of the CNS tending towards minimal load, basis objective
functions with indices i = 5, 6, 7, 8 correspond to norms of the muscle activation vector [20,
36]. These objective functions consider scaled muscle force amplitudes. The scale factors
render the minimization independent of the muscles’ relative strength, minimizing only how
much a muscle is pulling compared to the maximum it can do. Moreover, the dependence of
the maximum muscle force upon the current muscle state (i.e. current muscle length lmti,
current muscle velocity vmti, ...) rendering these objectives more physiologically realistic [20].
Minimizing ϕ5 favors activating as few muscles as possible and allows for high activations
in individual muscles while minimizing ϕ8 favors low activations for individual muscles and
allows for the activation of many muscles.

Indexed by i = 9, 10, 11, 12 are the norms of the muscle stress vector [11, 20, 36, 51]. Mus-
cle stresses have been linked to muscle endurance, and minimizing muscle stresses is therefore
correlated to conserving endurance [20]. These objective functions represent the norms of
the scaled muscle force amplitude vector, where each muscle force is scaled according to the
inverse of its size (i.e. cross-sectional area). Thus the minimization of these functions pre-

1τττmaxti = AAAt

[
0 . . . fmaxi . . . 0

]T
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vents muscles from producing forces disproportionately large compared to their size. Similar
to previous analyses, ϕ9 favors few muscles pulling with disproportionate strength but allows
for large disproportionality, while ϕ12 favors small disproportionalities but allows for many
muscles to pull with disproportionate strength.

The objective function ϕ13 minimizes the L2 norm of instantaneous muscle powers [11],
and relates to total work done by the muscles, promoting energy efficiency. The objective
function ϕ14 minimizes the L2 norm of the vector containing muscle forces scaled by the
maximal muscle moments [20]. The maximal muscle moment is the sum of absolute values
of the moments in all joints that the muscle could produce at maximum contraction. This
objective function is informed by the state of the muscle, as the maximal muscle moments
depend on muscle length and velocity. Moreover, the body state is also taken into account as
maximal muscle moments take into account the instantaneous geometry of the musculoskele-
tal system. Finally, the objective function ϕ15 expresses an approximation of the total energy
consumption of the muscle obtained by considering muscle metabolism [51, 106]. It is com-
posed of two terms corresponding to two major energy-consuming processes in the muscle.
One component is related to the attachment and detachment of cross-bridges between myosin
and actin during muscle contraction. The number of bridges is proportional to the muscle
force, and inversely to physiological cross-sectional area. The other component approximates
the energy consumed during the re-uptake of calcium in the sarcoplasmic reticulum, which
can be related to the ratio of muscle force to maximal isometric muscle force.

All of the objective functions that contain radical expressions (i.e. n-th roots) are usually
presented without the radical within the literature. The radicals have been introduced to
make the sensitivity of the minima of the affine combination of these functions (i.e.

∑m
i=1 ωiϕi)

more uniform. This implies that no matter the current value of parameters ωωω, similar changes
in the parameters of the affine combination ∥∆ωωω∥ produce a similar change in the solution to
the optimization problem ∥∆fff ∗∥. The introduction of radicals does not modify the minima
of the individual radicand expressions. Furthermore, introducing radicals does not affect the
convexity of the radicand expressions, as all the radicand expressions are positive definite
and their polynomial degree is equal to that of the radical. Effectively, all of the radical
expressions scale linearly with muscle force vector amplitude.

Therefore, introducing radicals did not fundamentally modify what the radicand expres-
sions mean, nor did they modify their mathematical properties. Radicals simply reduce the
need for a fine-grain grid search when performing IOC.

4.2.3 Direct Optimal Control
Supposing that at a particular time t the joint torques τττ t and the matrix of instanta-

neous moment arms AAAt are known, along with a vector of other parameters θθθt ∈ Θ (like
instantaneous muscle velocity vmtt or the physiological muscle cross-sectional area pcsa),
the prediction of the muscle forces can be obtained by solving the following optimization
problem:

min
fff t

J(θθθt, fff t)

subject to AAAtfff t = τττ t

fffmaxt ≥ fff t ≥ fffmint

(4.2)

Solving this DOC requires determining muscle forces fff t, that minimize a certain para-
metric criterion J(θθθt, fff t) : Θ × Rnm 7→ R, that can produce desired joint torques τττ t with
physical limitations such as that a muscle can only pull and have a stiffness (fff t ≥ fffmint) and
that a maximal potential force exists (fffmaxt ≥ fff t). Parameters fffmint and fffmaxt correspond
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Table 4.1: Investigated 15 most common objective functions from the biomechanics literature [20,
36, 51].

Name Symbol Formula

Sum of muscle forces ϕ1

1

n

n∑
i=1

fti

Sum of squares of muscle
forces

ϕ2

(
1

n

n∑
i=1

ft
2
i

) 1
2

Sum of cubes of muscle
forces

ϕ3

(
1

n

n∑
i=1

ft
3
i

) 1
3

Maximum muscle forces ϕ4
max

i=1,...,n
fti

Sum of muscle activations ϕ5

1

n

n∑
i=1

fti − fminti

fmaxti − fminti

Sum of squares of muscle
activations

ϕ6

(
1

n

n∑
i=1

(
fti − fminti

fmaxti − fminti

)2
) 1

2

Sum of cubes of muscle
activations

ϕ7

(
1

n

n∑
i=1

(
fti − fminti

fmaxti − fminti

)3
) 1

3

Maximum muscle
activations

ϕ8 max
i=1,...,n

fti − fminti

fmaxti − fminti

Sum of muscle stresses ϕ9

1

n

n∑
i=1

fti
pcsai

Sum of squares of muscle
stresses

ϕ10

(
1

n

n∑
i=1

(
fti

pcsai

)2
) 1

2

Sum of cubes of muscle
stresses

ϕ11

(
1

n

n∑
i=1

(
fti

pcsai

)3
) 1

3

Maximum of muscle
stresses

ϕ12 max
i=1,...,n

fti
pcsai

Sum of squares of muscle
powers

ϕ13

(
1

n

n∑
i=1

(ftivmtti)
2

) 1
2

Sum of squares of
musculo-tendon forces

scaled by maximal muscle
moments

ϕ14

(
1

n

n∑
i=1

(
fti

∥τττmaxti∥1

)2
) 1

2

Metabolic energy-related
function

ϕ15

(
1

n

n∑
i=1

mi

2

(
fti − fminti

f0i
+

(
fti − fminti

pcsai

)2
)) 1

2

to activation 0 and 1 and depend on the contraction dynamics parameters (i.e., Hill-type
model) at each instant of time: fffmint (at activation 0) is the muscle passive force, therefore
fff t − fffmint is the muscle active force and fff t−fffmint

fffmaxt−fffmint
stands for the instantaneous activation

(between 0 and 1). Due to the contraction dynamics, instantaneous fmaxti can be superior to
the constant maximal isometric force f0i of the i-th muscle.

In Section 4.2.4, it will be supposed that J(θθθt, fff t) is the objective at the origin of the
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collected human force data. A hybrid objective function form [69, 74, 120] is assumed which
takes the shape of a non-zero conic combination of known features ϕi(θθθt, fff t) with a weight
vector ωωω ∈ Rnϕ

+ \{0}.

J(θθθt, fff t) = J(ωωω, θθθt, fff t) =

nϕ∑
i=1

ωiϕi(θθθt, fff t) (4.3)

One can suppose that a particular value of ωωω ∈ Rnϕ

+ \{0} exists which generated the
measured data. Thus, it is assumed that the data is, at each time t, a solution of the
parametric optimization problem from Equation (4.2) with the objective function J(θθθt, fff t) =
J(ωωω, θθθt, fff t) for fixed ωωω. Minimizing J(ωωω, θθθt, fff t) can be interpreted as a scalarization of the
multi-objective optimization problem, the objectives being the features ϕi, i = 1, . . . , nϕ. As
such, the minimum of such a scalarized problem depends only on the ratios ωi

ωj
, i ̸= j and not

on their absolute values ([41] Ch. 4.7.5). As such, it is sufficient to restrict the consideration
of the weight vector ωωω to the nϕ-dimensional simplex ∆nϕ =

{
ωωω ∈ Rnϕ | ωωω ≥ 0, 111Tωωω = 1

}
.

All cost functions, constraints, their gradients, and their hessians have been computed using
automatic differentiation through the use of CasADi [124], and all DOC instances throughout
the study have been solved using the CasADi interface for the IPOPT [53] solver.

As it will be important in the Subsection 4.2.4, please note that program (4.2) is a
nonlinear programming problem, and its solution fff ∗

t must satisfy the first-order necessary
conditions of optimality, under certain constraint qualifications ([41] Ch. 5.2.3). The condi-
tions for problem (4.2) given in (4.4a)-(4.4f) are that for an optimal solution fff ∗

t there must
exist lagrangian multipliers λλλ∗

t , where λλλ∗
t ∈ Rnj , and µµµ∗

t , ννν
∗
t , where µµµ∗

t , ννν
∗
t ∈ Rnm , such that

∇fff t
Φ(θθθt, fff

∗
t )ωωω +AAAT

t λλλ
∗
t − µµµ∗

t + ννν∗
t = 0 (4.4a)

AAAtfff
∗
t = τττ t (4.4b)

fffmaxt ≥ fff ∗
t ≥ fffmint (4.4c)

µµµ∗
t ≥ 0, ννν∗

t ≥ 0 (4.4d)
(µµµ∗

t )i(−fff
∗
t + fffmint)i = 0 i = 1, . . . , nm (4.4e)

(ννν∗
t )i(fff

∗
t − fffmaxt)i = 0 i = 1, . . . , nm (4.4f)

where ∇fff t
Φ(θθθt, fff t) =

[
∇fff t

ϕ1(θθθt, fff t) , . . . ,∇fff t
ϕnϕ

(θθθt, fff t)
]
is the matrix whose columns are

gradients of the features, thus ∇fff t
Φ(θθθt, fff t)ωωω corresponds to the gradient of the objective

function ∇fff t
J(θθθt, fff t).

4.2.4 Inverse Optimal Control
The goal of the IOC process will be to identify the value of the objective function weights

ωωω that can reproduce the measured data fff
(d)
t with t = 0, . . . , T being the time index and

d = 1, . . . , D being the index of reference data sample (i.e. gait cycle). These weights may
not exist, meaning that no combination of weights ωωω will produce the data as the exact
solution to the optimization problem (4.2). Multiple effects are then in play [120]:

1. Measurement noise in our data may drive the data away from optimal points of our
features.

2. Modeling errors in our features may render them incapable of representing human
objectives well enough.

3. Bounded rationality in humans suggests that the data may be sub-optimal for a given
model, even should measurements be accurate.
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Figure 4.2: Two investigated approaches for solving the IOC problem.

As represented in Figure 4.2, two standard IOC techniques will be compared to investigate
how they cope with these effects.

Bilevel IOC

The first is a bilevel formulation [69, 77, 97, 120] that minimizes the sum of squares of
L2-norms between model predictions and the data in an outer loop, subject to the constraint
that model predictions are solutions of an inner optimization problem. The identified ω̂ωω are
then the weights producing the least squared error:

ω̂ωω = argmin
ωωω

D,T∑
d=1
t=0

∥fff (d)
t − fff

∗,(d)
t ∥22

subject to fff
∗,(d)
t = argmin

fff t

nϕ∑
i=1

ωiϕi(θθθ
(d)
t , fff t)

subject to AAA
(d)
t fff t = τττ

(d)
t

fffmaxt ≥ fff t ≥ fffmint

(4.5)

To solve the bilevel programming problem, a global optimization approach in the outer
loop is used. By constructing a grid over the probability-simplex ∆nϕ , assigning to ωωω the
values of the grid points, then calculating the outer-loop objective function, a rough global
search is performed [92]. A local gradient-based search is then initiated N times from the
N best points ωωω0 obtained in the grid search. The justification for the gradient-based search
is that the set of optimal solutions of the inner-loop, parametrized by ωωω is connected and
continuous if the inner-loop objective function features are convex [120].The grid-search has
been implemented using a self-implemented simplex grid-point generating function. The local
search has been implemented using MATLAB’s constrained optimization software fmincon
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[31].

Inverse KKT IOC

The second technique is a recently widespread method based on a least-squares formula-
tion [74, 88, 111, 139] that minimizes the violation of the satisfaction of the KKT stationarity
constraint (4.4a). For simplicity, let us define the stationarity residual of the d-th observation
at time t as the left-hand side of Equation (4.4a), where µµµ

(d)
t Amin

and ννν
(d)
t Amax

represent La-
grangian multiplier vectors whose elements corresponding to inactive constraints have been
hard-set to 0.

r
t,(d)
stat (ωωω, λλλ

(d)
t , µµµ

(d)
t , ννν

(d)
t ) = ∇fff t

Φ(θθθ
(d)
t , fff

(d)
t )ωωω +AAAT

t λλλ
(d)
t

− µµµ
(d)
t Amin

+ ννν
(d)
t Amax

(4.6)

The least squares-squares formulation then stems from the minimization of squares of
L2-norm of the stationarity residuals as follows:

ω̂ωω = argmin
ωωω,ΛΛΛ,MMM,NNN

D,T∑
d=1
t=0

∥rt,(d)stat (ωωω, λλλ
(d)
t , µµµ

(d)
t , ννν

(d)
t )∥22

subject to ωωω ≥ 0

µµµ
(d)
t ≥ 0, d = 1, . . . , D

ννν
(d)
t ≥ 0, d = 1, . . . , D

(4.7)

As the residual is a linear function of the basis function weights ωωω and stacked equality
and inequality lagrangian multipliers, ΛΛΛ, MMM , and NNN , the constrained minimization of the sum
of squares of residual norms can be reformulated as a constrained least-squares regression to
a vector of zeros [115, 122, 139]. All instances of the IKKT have been solved using lsqlin,
MATLAB’s constrained least-squares solver [31].

4.2.5 Human Observations

Previously published human reference data was used in this study [117, 144]. To our
knowledge, it is the only available source providing a reference estimate of muscle forces
during gait. A total of 10 gait cycles were collected on a treadmill at a self-selected speed of
0.5m/s.

Joint torques were computed with data from a motion capture system and force-plates
[117, 144]. Measurements also included EMG of 16 muscles in each leg using a combination of
surface and fine-wire electrodes. The reference muscle forces were obtained after calibrating
a state-of-the-art EMG-driven model using the aforementioned data [117]. The calibrated
model parameters included those defining the conversion of raw EMG into muscle excitation,
muscle excitation into muscle activation via activation dynamics, muscle activation into
muscle force via contraction dynamics using a Hill-type muscle-tendon model with rigid
tendon, and conversion of muscle force into joint torque via muscle moment-arms [117, 144].
Note that these estimated muscle forces are computed without any objective function for the
muscle force-sharing problem.

Gait cycles were segmented automatically and two different phases of the gait cycle were
considered as described in Figure 4.1.b: the stance phase from 0 to 60% and the swing phase
from 61 to 100% of the gait cycle. Overall the variability of the muscle forces was relatively
low, with an average standard deviation of 29.98N across all 35 muscles, all gait cycles, and
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Figure 4.3: Mean (blue lines) and standard deviation (gray areas) of the muscle forces estimated during 10
gait cycles for the 35 investigated muscles [117], with gait-cycle separation (dashed red lines). Estimated
muscle forces (dashed black lines) of the 8th gait cycle [117] and the proposed prediction-by-optimization

(dashed green lines). Muscles are: i = 1 add. brevis; i = 2 add. longus; i = 3 add. magnus distal; i = 4 add.
magnus ischial; i = 5 add. magnus middle; i = 6 add. magnus proximal; i = 7 gluteus max. superior; i = 8
gluteus max. middle; i = 9 gluteus max. inferior; i = 10 gluteus medius ant.; i = 11 gluteus medius middle;
i = 12 gluteus medius post.; i = 13 gluteus min. ant.; i = 14 gluteus min. middle; i = 15 gluteus min. post.;
i = 16 iliacus; i = 17 psoas; i = 18 semimembranosus; i = 19 semitendinosus; i = 20 biceps femoris long;

i = 21 biceps femoris short; i = 22 rectus femoris; i = 23 vastus medialis; i = 24 vastus intermedius; i = 25
vastus lateralis; i = 26 lateral gastronemius; i = 27 medial gastronemius; i = 28 tibialis ant.; i = 29 tibialis
post.; i = 30 peroneus brevis; i = 31 peroneus longus; i = 32 peroneus tertius; i = 33 soleus; i = 34 extensor

digitorum longus; i = 35 flexor digitorum longus.

all time samples. This is a strong point to validate the hypothesis stating that muscle force
sharing during gait is the result of an optimal process.

4.3 Results

4.3.1 Muscle-Forces Sharing Estimation
Table 4.2 shows the comparison of the average RMSE and Pearson CC across the 35

muscles and 10 gait cycles, between the reference muscle forces and their predictions obtained
when solving the DOC with individual objective functions extracted from the literature (see
Table 4.1), and with the hybrid objective functions identified by the bilevel approach and the
IKKT approach. Additionally, Table 4.2 also contains the standard deviation of the RMSE
and CC over the 10 gait cycles, averaged over the 35 muscles.

The best results for both gait phases were obtained from the bilevel approach with an
RMSE 16% lower than the one obtained from the IKKT approach. Interestingly, some
individual objective functions, such as the sum of squares of muscle activations (ϕ6) or the
sum of squares of muscle stresses (ϕ10), provide a smaller RMSE than the IKKT approach,
which supports the claim that the KKT residual is not a good metric to minimize in cost
function retrieval [139].

Figure 4.3 shows the mean and standard deviation of muscle forces produced by the
subject across 10 gait cycles, together with a typical comparison between the reference muscle
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Table 4.2: Results of the average RMSE and Correlation Coefficient (CC) calculated between the
reference muscle forces and the predicted ones when using the DOC and different objective functions.

Number Stance phase Swing phase
- RMSE [N] CC RMSE [N] CC

JIKKT 210 ± 23 .61 ± .16 218 ± 14 .58 ± .22
JBilevel 176 ± 25 .76 ± .15 162 ± 19 .68 ± .22
ϕ1 258 ± 38 .46 ± .20 200 ± 24 .43 ± .23
ϕ2 223 ± 23 .54 ± .17 196 ± 18 .42 ± .22
ϕ3 223 ± 24 .53 ± .17 194 ± 19 .42 ± .21
ϕ4 224 ± 25 .51 ± .17 194 ± 19 .41 ± .20
ϕ5 228 ± 29 .66 ± .18 177 ± 19 .60 ± .19
ϕ6 184 ± 23 .73 ± .14 164 ± 14 .67 ± .22
ϕ7 187 ± 22 .71 ± .13 164 ± 14 .67 ± .22
ϕ8 201 ± 29 .70 ± .16 172 ± 17 .63 ± .20
ϕ9 252 ± 28 .56 ± .19 200 ± 24 .44 ± .21
ϕ10 202 ± 22 .66 ± .15 192 ± 17 .46 ± .23
ϕ11 196 ± 22 .68 ± .15 188 ± 17 .49 ± .23
ϕ12 192 ± 21 .69 ± .16 183 ± 18 .52 ± .23
ϕ13 301 ± 37 .32 ± .17 222 ± 30 .29 ± .21
ϕ14 212 ± 24 .63 ± .16 173 ± 17 .61 ± .22
ϕ15 236 ± 21 .49 ± .16 203 ± 17 .36 ± .21

Figure 4.4: Bar graph of individual muscle force average RMSE across the 10 gait cycles depending
on the objective function used for prediction.

forces and their prediction obtained from the DOC with the bilevel hybrid objective functions
for a selected gait cycle. The RMSE was 159N, and the CC was 0.77 for this particular cycle.
The forces developed by the most important muscles, such as the rectus femoris, vastii, and
gastronemi (i = 23 to 27), were well predicted, contrary to muscles that contribute less such
as adductors (i = 1 to 6). The individual objective functions that provide the best results
are ϕ6 and ϕ7 (sum of squares and cubes of muscle activations).

The hybrid objective functions identified for the stance and swing phases using the bilevel
IOC process are given in Table 4.3. Note that the selected objective functions are those that
include time-varying parameters such as instantaneous minimal and maximal muscle forces
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Table 4.3: Identified objective function parameters using the bilevel approach

.
ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8 ω9 ω10 ω11 ω12 ω13 ω14 ω15

ωωωStance 0 0 0 0 0.22 0.18 0 0 0 0.05 0 0 0.33 0.22 0
ωωωSwing 0 0 0 0 0 0 0.61 0 0 0 0 0.25 0.15 0 0

( fffmint and fffmaxt), instantaneous maximal muscle torques (τττmaxt), or instantaneous muscle
velocity (vmtt) as opposed to constant parameters such as muscle cross-sectional area (pcsa)
or maximal isometric force (fff 0). The objective function with the highest weight (ωωω = 0.61) is
the sum of cubes of muscle activations (ϕ7) during the swing, which was one of the objective
functions with the lowest RMSE when using the DOC.

Figure 4.4 shows the RMSE for all muscle forces and objective functions. Objectives
function are ranked by average RMSE (on the whole gait cycle) and reveal that the worst
results typically correspond to the highest RMSE on the forces of i = 10 gluteus medius
anterior, i = 17 psoas, and i = 33 soleus. These are the muscles with the highest forces
during gait. This is interesting to see that with the objective functions ϕ13 (sum of squares
of muscle powers), ϕ1 (sum of muscle forces), and ϕ9 (sum of muscle stresses), other hip
and ankle muscles forces are deteriorated such as i = 29 tibialis posterior, i = 27 medial
gastronemius, or i = 8 gluteus maximus middle.

Figure 4.5 depicts the mean and standard deviation of JS produced by the subject across
10 gait cycles, alongside a comparison of the reference and predicted stiffness computed by
the identified model of force distribution for a given gait cycle. JS was computed from muscle
forces and other Hill-type muscle-model parameters using equation (4.8) derived from the
usual Ktj = −∂τtj

∂θtj
[144] where τtj is the torque produced by the muscle forces around the

j-th joint axis and θtj is angular displacement at time t.

Ktj = −
n∑

i=1

(
∂rtji
∂θtj

fti − rt
2
ji

∂fti
∂lmtti

)
(4.8)

The terms rtji and lmtti represent, at time t, the instantaneous moment arm of the i-th
muscle about the j-th joint and the instantaneous muscle-tendon length of the i-th muscle.

Computations of JS show that an RMSE of about 170N in the muscle forces obtained
with the bilevel approach turns into relatively low differences of 43 Nm.rad−1 in the JS. The
global patterns of the JS at the hip, knee, and ankle are preserved, but the amplitudes are
almost systematically underestimated.

4.3.2 Numerical Example
When the data is exactly optimal with respect to the underlying basis objective functions,

we say it is consistent with the basis, and the solutions of the bilevel (4.5) and IKKT (4.7)
should coincide. In practice, the data is rarely consistent with the basis for the reasons
mentioned in Section 4.2.4. This subsection presents a toy counterexample to the IKKT
method when the data is not consistent, proving it may yield maximal distance between
measurements and model predictions.

In particular cases, such as this example, the cost function retrieved by IKKT may provide
the largest possible RMSE with respect to the data out of all retrievable cost functions, which
will be shown using the "max-bilevel" method maximizing error between model predictions
and data, i.e. the same as the bilevel method (4.5) but with a minus in the outer-loop cost
function. In contrast, the bilevel method always provides locally minimal distance estimates.
Omitting index t, suppose that at a particular instant, the constraints of our model are
described by equations 4.9a-4.9b,
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Figure 4.5: Mean (solid blue lines) and standard deviation (gray areas) of the JS estimated during
all gait cycles. Reference (dashed black lines) and predicted (dashed-dotted green lines) JS. Joints
are: j = 1 hip flexion-extension; j = 2 hip abduction-adduction; j = 3 knee flexion-extension; j = 4

ankle plantar-dorsal flexion.

AAA = [1 1 1] , τττ = 1 (4.9a)

fffmin = [0 0 0]T , fffmax = [1 1 1]T (4.9b)

and that the features are given in equations (4.10a) and (4.10b).

ϕ1 =
1

2
fffT

[
5 0 0
0 1.25 0
0 0 1

]
fff (4.10a)

ϕ2 =
1

2
fffT

[
1.25 0 0
0 5 0
0 0 1

]
fff (4.10b)

The feasible set of instantaneous forces fff is the unit simplex and is shown in Figure 4.6.
The constrained minima of ϕ1 and ϕ2 ((4.10a) and (4.10b)) are shown as a blue and green dot,
respectively. The black line represents the Pareto efficient solutions of the multi-objective
optimization with objectives ϕ1 and ϕ2. In other words, it represents the set of all minima
obtained by letting ωωω take all values from ∆2.

IOC was performed using the IKKT (4.7), the bilevel (4.5), and the max-bilevel methods
with the given measurement (test point) fff ∗ = 1

3
(1, 1, 1) which is shown in yellow on the figure.

IKKT (silver square), bilevel (pink diamond), and max-bilevel (red triangle) predictions are
shown, with their projection lines being displayed for easier visualization.

Numerically, the bilevel method returned ωωωBilevel = (0.0124, 0.9876), which after solving
the DOC (4.2) with given ωωωBilevel returned the point fffBilevel = (0.3909, 0.1023, 0.5068) which
is a distance of dBilevel = 0.2946 away from the test point fff ∗. The IKKT method returned
ωωωIKKT = (0.5, 0.5) with a KKT-residual of r = 0.0830, which after solving the DOC (4.2)
returned the point fff IKKT = (0.1951, 0.1951, 0.6098) which is a distance of dIKKT = 0.3385
away from the test point fff ∗. The max-bilevel method returned the same ωωωMaxBilevel and
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Figure 4.6: Three muscles forces f1, f2, f3 ∈ [0, 1] generate joint torque τ = 1. Two features ϕ1, ϕ2,
and a single measurement fff∗ are considered. The bilevel, max-bilevel, and IKKT predictions

fffBilevel, fffMaxBilevel, fff IKKT are shown.

fffMaxBilevel as IKKT
∥ωωωMaxBilevel − ωωωIKKT∥∞ = 9.28e− 06

∥fffMaxBilevel − fff IKKT∥∞ = 2.33e− 06

which practically means IKKT produced the largest prediction error with respect to the
L2-norm.

Therefore, minimizing the residual of the KKT constraints is not a reliable heuristic to
minimize when we want to achieve a small distance between data and model predictions.

4.4 Limitations and Perspectives

Because of sparsely available open-source EMG data, this study was based on multiple
trials of a single subject. Obviously, the generalization potential of the findings is limited.
However, some preliminary conclusions can be drawn, as done in Section 4.5. Analysis
of intra-subject and inter-subject objective function variability should be subject to future
studies with more subjects, so as to examine generalization capabilities.

Table 4.1 presented the most commonly investigated objective functions in the biome-
chanics literature. An extended basis may be investigated, with objectives sampled from an
even larger body of literature. Research on a feature selection tool for IOC may prove useful
in dealing with larger bases of objectives.

The bilevel method described in equation (4.5) and further implemented to generate
results in Section 4.3 is based on the outer-loop minimization of the sum of squares of L2-
norms between muscle forces generated by the optimization model, and the data. Minimizing
(resp. maximizing) other measures of difference (resp. similarity) ought to be attempted,
and mathematically analyzed.

The counterexample in Section 4.3.2 shows that one should not expect to obtain model
predictions close to the data in terms of the L2-norm, using the IKKT method [139]. This
method’s more formal treatment and analysis are in order, as it may have other virtuous
properties.
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4.5 Conclusion

This chapter systematically compared standard objective functions used for solving the
force-sharing problem during gait via an optimization approach in the biomechanical lit-
erature. Two IOC techniques were used to identify a hybrid objective function for the
force-sharing problem, one of them outperforming the existing individual objective functions.
The bilevel method outperformed IKKT by 16% in the average RMSE metric, which was also
outperformed even by some individual objective functions. This result was explained through
a counterexample, showing that minimizing the KKT residual may result in maximization
of the distance between model predictions and observations. This effectively invalidates the
unverified claim some authors make that IKKT will provide a model whose predictions are
"at least close" to the data. Future applicative studies should avoid the IKKT technique and
resort to more robust formulations like the bilevel technique.

The bilevel hybrid objective function achieved the best RMSE, with 176N for the stance
and 162N for the swing phase. The corresponding CCs were 0.76 and 0.68 showing that this
objective function was not fully efficient in reproducing some of the muscle patterns. For
instance, for some muscles (i = 5 adductor magnus middle and i = 30 peroneus brevis), the
estimated forces are virtually null for the whole gait cycle which negatively affects the CC
but not the RMSE (see Figure 4.4) as the force amplitude was very low. Therefore, as for the
objective function used to solve the force-sharing problem, the choice of the error function
(model predictions vs. data) in the outer loop of the IOC is an open question. The sum of
squares of L2-norms, as classically used in the present study, tends to minimize errors on the
peaks of the maximal forces among muscles (e.g. i = 10 gluteus medius anterior or i = 33
soleus) as shown in Figure 4.4. This error function also resulted in some quite sparse solutions
in the present case where the different objective functions are not independent. The hybrid
objective function revealed that minimization of the sum of activations is an appropriate
choice, but a simultaneous selection of the sum of activations at powers 1, 2, and 3 was not
observed. It seems from the DOC that the results of objective functions ϕ6 and ϕ7 were very
close and that a sparse solution for the minimum of the sum of squares of L2-norms included
one or the other depending on the gait cycle phase. Another choice for the error function
could have somewhat changed the selection or the objective function weights ω but it is very
unlikely that the objective functions with the worst results from the DOC would have been
selected. The hybrid objective function revealed that minimization of the sum of muscle
forces or stress (at power 1, 2, 3, or taking the maximum) is not an appropriate choice.
Conversely, minimizing the sum of muscle activations provided lower RMSE, especially at
power 3, as confirmed by the DOC results. In the literature, using forward dynamics optimal
control with the minimization of the sum of cubes of muscle activations yielded the best
correlations with EMG measurements and knee contact forces measured by an instrumented
prosthesis [128]. This study confirms that minimizing the sum of muscle forces or stress is less
accurate [128]. Minimizing the sum of squares of muscle powers or muscle forces normalized
by maximal muscle moments is rarely studied in the literature, but the results of both
DOC and IOC suggest these objective functions can provide reliable results. Generally, all
the objective functions that introduce instantaneous variation of parameters such as muscle
velocities or moment-arms provide better results. This supports the claim that control made
by the central nervous system is likely based on the knowledge of the current body state
rather than constant values of the physiological cross-sectional area or maximal isometric
force. JS is also controlled by the central nervous system and demonstrates typical patterns
during gait [144]. As represented in Figure 4.5, the two classical peaks of JS occurring during
the stance phase of gait, at loading response and pre-swing, and the progressive decreases
during the swing phase were observed and reproduced. However, when using our estimated
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muscle forces, the JS was under-estimated, showing a lack of co-contraction. During the
swing phase, the JS seems to better match with the reference, except for the ankle. It is well
known that many objective functions, such as the sum of forces, activations, or stresses at
power 1, do not allow the prediction of co-contraction. Future studies with IOC can discard
objective functions based on muscle force or stress, especially at power 1, while maximization
of JS can be an interesting objective function to test for the force-sharing problem. In the
future, the JS prediction should be used to develop a human-in-the-loop control strategy
when using an assistive device.
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Chapter 5

Box Lifting

This chapter studies the box-lifting task, an important human movement that is well-
studied both in the “human” fields of biomechanics and ergonomics, as well as in (humanoid)
robotics. In particular, this chapter analyzes human motion generation for the box-lifting
task, through the lens of constrained multi-objective optimization. Data-driven inverse opti-
mization is used to identify, from collected motion data, the trade-offs between the different
objective functions hypothesized to give rise to human-like box-lifting motion in the literature.

The motion planning for the box-lifting task was modeled as a constrained OCP using
a planar 6 DoF model for the human body. The kinematic and dynamic parameters of the
human body model were identified from the data before proceeding with the investigation.
After establishing a biomechanically-inspired constrained optimal control model for motion
generation, a collection of various bio-mechanical objective functions from the literature were
investigated as possible generators of the motion, whose plausibility has been measured by
the RMSE between the predicted motion and the measured data.

From a single sample of the lifting motion, data-driven IOC was used to infer the best
trade-off between these different objective functions i.e. to identify one compound objective
function that is most consistent with the measured data in terms of RMSE. The objective
retrieved by the data-driven inverse optimization approach has been evaluated on the whole
data set with an RMSE of 21◦ in the joint angle trajectory space.

5.1 Introduction

5.1.1 Significance of Lifting
Manual handling of heavy objects is a basic but crucial task for any job performed in

manufacturing, supermarkets, and warehouses. Lifting is also important in the construction
and shipping industries. It is well known that the repetitive exertion of demanding tasks
can lead to musculoskeletal disorders. In particular, lifting heavy objects and dropping them
with accuracy put a lot of strain on the operator. Such tasks can increase ergonomics risks
such as low back problems [47]. Thus, there is a need to propose robotic assistance for
physically demanding tasks. Assistive robots can be exoskeletons or collaborative robots
but both should provide personalized, subject-specific, assistance to the operator. Due to
anthropometry changes between the subjects it is not possible to use directly averaged joint
trajectories [97, 111]. Moreover, even when performing a simple task such as lifting and
dropping an object the human central nervous system, as the controller of the body, can
choose from an unlimited number of joint trajectories thanks to the high redundancy of the
human musculoskeletal system. In addition, humans can handle constraints, eventually, ones
that can vary with time, and plan ahead a series of tasks to be performed [44].
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Over 40% of the workforce in Europe experience musculoskeletal disorders related to
their jobs, including pain in the lower back, neck, or shoulder, even with continual endeavors
to enhance workplace conditions. Work-related Musculoskeletal Disorders (WMSDs) arise
primarily due to strenuous physical activities involving repetitive motions (61%), improper
postures (44%), and handling of heavy materials (31%). These disorders account for 3%–6%
of time off from work, imposing an average economic burden amounting to 2.5% of the Gross
Domestic Product throughout Europe. Amongst all the WMSDs, 52% are attributed to
strain during lifting activities, with 65% impacting the back [126].

In comparison, in the United States, such disorders are frequently the origin of occupa-
tional injuries, leading to substantial lost workforce hours due to sick leaves, and resultant
disability insurance payouts, reflecting notable economic repercussions [134]. Specifically,
manual lifting is intricately linked with low-back discomfort; in the US, its occurrence is
presumed to surpass 60%, generating an annual expense exceeding $100 billion [50].

Elevated stress on the lumbar spine is recognized as the primary contributor to lower
back pain [104, 126]. Various lifting strategies can be adopted, contingent upon individual
anthropometry and the weight, shape, and position of the item to be lifted. Prevalent
strategies explored in studies encompass squat and stoop (back) lifts. While squat lifting is
generally deemed safer regarding the stress it puts on the lumbar spine compared to stoop
lifting, some research contradicts this, finding higher peak spinal loads in squat lifting [126].

Simulation of human lifting can produce postures and movements under diverse task
conditions and is thus a valuable tool in deepening our understanding of the mechanisms
of lower back pain injuries. It assists in enhancing the design of lifting tasks and holds the
potential to decrease the occurrence of work-related lower back pain [70, 104, 134].

High loads in the lumbar spine have been identified as the main cause of lower back pain.
Many strategies for lifting can be chosen depending on human anthropometry, as well as
on the weight, shape, and position of the object to lift. Major strategies discussed in the
literature include the squat and back (stoop) lift [126]. Human lifting simulation is capable
of generating postures and motions under varied task scenarios and thus may help better
understand lower back pain injury mechanisms, improve lifting task designs, and eventually
reduce occupational lower back pain incidence [104].

Human motion simulation is important, but challenging, as it provides a way to obtain
unmeasurable quantities such as torques, forces, and stresses. Chumacero-Polanco and Yang
[107] distinguish between (i) optimization-based approaches to human motion simulation
where the goal is to use an optimization procedure to generate a path between initial and
target positions, and (ii) control-based approaches where the goal is to find the required
input (joint torques) such that the output (joint angle trajectories) tracks a given reference.
Numerous studies are based on the idea that the CNS resolves the motor-control redundancy
problem by using optimization [38, 44, 104]. Human motion simulation is regarded as an
effective ergonomic tool to predict major risk factors associated with occupational injuries.
More accurate simulations can help improve the assessment of the risk of occupation injuries
[70, 104, 134].

Consequently, the development of accurate and robust human motion simulations, i.e.,
establishing universal representations of human motion that are effective across diverse body
morphologies and task situations, is invaluable. This approach not only facilitates a deeper
understanding of the critical factors contributing to occupational injuries and aids in reducing
the incidence of such injuries but is also pivotal in advancing the quality of robotic aid and
rehabilitation systems [34].
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Table 5.1: Segments and actuating DoFs of the most common planar sagittal 5 DoF human body
model for the box lifting task.

Segment foot shanks thighs torso arms forearms

Actuating
DoF

-
ankle plantar

flexion/
dorsiflexion

knee
flexion/
extension

hip
flexion/
extension

shoulder
flexion/
extension

elbow
flexion/
extension

DoF on
Figure 5.1 - q1 q2 q3 q4 q5

ଵ

ଶ

ଷ

ସ

ହ

ଵ

ଶ

ଷ

ହ

଺

଻
ସ

𝑿 axis
𝒀 axis
𝒁 axis (out of sheet) 

Local segment frames

Figure 5.1: Representative sagittal plane models of the human body with 5 DoF (on the left) and 7
DoF (on the right).

5.1.2 Optimization-Based Approaches
A review of the approaches used for human motion simulation and prediction in lifting

tasks has been given in [107]. The authors observe that the most common human skeletal
models across the reviewed literature have been two-dimensional in the sagittal plane, but
that some three-dimensional models have been used.

The most extensively used model is the sagittal plane model with five planar DoFs.
Because of its widespread use, Table 5.1 has been dedicated to describing its links and corre-
sponding actuating DoFs, and the left part of Figure 5.1 has been dedicated to representing
it graphically. This model has been the most extensively used throughout lifting motion
generation studies [9, 23, 24, 35, 46, 90, 104, 113] because of its relatively low complexity, in
comparison to full-body 3D models, and its high degree of fidelity in capturing the essence
of the lifting motion.

The most widely used model is the 5 DoF sagittal plane model, however, the use of sagittal
plane models with some extra DoFs is pretty common. One example would be the seven DoF
sagittal plane model from [75] shown on the right side of Figure 5.1. Compared to the 5
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DoF, the torso has been split up into the pelvis, the thoracic spine, and the cervical spine,
and two additional DoFs are added corresponding to the lumbar spine flexion/extension and
the thoracic spine flexion/extension [75], i.e. to q4 and q5 on Figure 5.1. Another example
would be the robot model from Arisumi et al. [55] and Arisumi et al. [58], who use a seven
DoF sagittal plane model which has an additional DoF in the back, like the 6 DoF model
presented in Figure 5.2, and another DoF in the wrist joint. On the other hand, Rakshit,
Xiang, and Yang [134] endow the model with three global DoFs, allowing for the translation
and rotation of the whole Figure in the sagittal plane, and moreover add an additional DoF in
the spine, and an additional DoF in the metatarsophalangeal joint in the foot, allowing for a
more precise study of the Ground Reaction Wrench (GRW). Meanwhile, the use of 3D models
in lifting simulations has been pioneered by Xiang et al. [61, 70, 85, 86], who have conducted
multiple studies of lifting motion generation using a 55 DoF 3D full-body human model. The
main advantage of 3D models is their more apparent similarity to a real human body and the
possibility of capturing small details and eventual asymmetries that may exist in real human
motion. However, Xiang et al. used criteria that were side-neutral and produced symmetrical
motion, and moreover, Xiang et al. analyze the lifting motion joint space kinematics through
6 main joints: the ankle, knee, hip, spine, shoulder, and elbow, i.e. the ones most commonly
found in sagittal plane models.

So as to maintain a reasonable level of complexity in the lifting motion generation al-
gorithm, the study conducted in this chapter rests upon a 6 DoF sagittal plane model,
as presented in Figure 5.2. The simplification of the motion to the sagittal plane brings
the advantage of simpler equations of motion with far fewer variables to consider, allowing
for more reasonable computation times, in light of the computational requirements of IOC.

ଵ

ଶ

ଷ

ଵ

ସ

ହ

଺

ଶ

ଷ

ସ ହ

଺

𝑿 axis
𝒀 axis
𝒁 axis (out of sheet) 

Local segment frames

Figure 5.2: Two-dimensional 6DoF human biomechanical model for lifting with annotated segment
axes and joint angles. Segments are the shanks, thighs, pelvis-abdomen, thorax-neck-head, upper

arm, and forearm whose lengths are denoted by l1 through l6. These segments are connected by the
ankle, knee, hip, back, shoulder, and elbow joints whose angles are denoted by q1 through q6.
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Compared to the standard 5 DoF model, the spine/back joint was introduced as spine load
is a frequently studied parameter in the traditional ergonomic and biomedical literature on
box-lifting motion [73, 126, 133]. Moreover, the spine joint is the most frequent addition to
the standard 5 DoF model, alongside the wrist joint, and is present in Arisumi et al. [55, 58],
Rakshit, Xiang, and Yang [134], and Xiang et al. [61, 70, 85, 86]. On the other hand, the
wrist joint was omitted for simplicity, which implied that the hand and the box were assumed
to be rigidly linked to the forearm.

For optimization-based lifting motion prediction and simulation, the authors of [107]
identify a multitude of minimization criteria used in the literature. These criteria have been
gathered alongside their symbolic representation and description within Table 5.2. Every
criterion listed in the cost function table expresses a preference for either energy-efficient
motion, smooth motion, posturally stable motion, or load minimizing (i.e. pain, effort
minimizing) motion.

Total muscular effort was one of the earliest objective functions optimized for predictive
dynamic simulations of the lifting motion in studies such as [9, 18, 23], but remains in use
in modern studies as well [104, 113]. While Hsiang and McGorry [18] analyze the differences
in predictions provided by the minimization of total muscular effort, of total hand jerk, and
of total center of mass jerk on a 5 DoF sagittal plane model, the work of Song, Qu, and
Chen [113] generates trajectories by minimizing a mixture of total muscular effort and total
hand jerk. The total torque and the static balance minimization were investigated in [16].
Xiang et al. [70] use a three-dimensional model with 24 segments and 55 DoF to generate
trajectories using multi-objective minimization of two criteria viz. the dynamic effort and
the dynamic balance criterion, while in [61] the maximum later shear force is investigated.
The minimization objectives are normalized to eliminate the dependence on units. Within
[90] the authors use a two-dimensional sagittal plane 5 DoF model to generate trajectories
by minimizing ankle torque, which acts as a measure of instability. Arisumi et al. [58], who
worked with a 7 DoF robot model and minimized a total energy criterion to generate the
motion. As an interesting alternative, in [134] the authors study maximum weight-lifting
simulation, where the motion is generated by selecting a motion pattern that maximizes the
weight of the box the subject can lift by using that pattern. The majority of these objective
functions, which are task-independent, have been studied for different tasks within the IOC
literature [72, 77, 97].

As a compromise between maintaining consistency with the literature on box lifting and
the literature on IOC, and the computational complexity of the IOC procedure, only a
subset of the objective functions in Table 5.2 have been chosen and implemented in the study
described in this Chapter. This subset has been augmented with a few related but simpler
objective functions and is described in detail within Subsection 5.3.3.

Constraints are a very important part of optimization-based motion generation and sim-
ulation, as they ensure the physical consistency of the generated motion i.e. physical limits
of the system are respected. Authors of [107] review some of the most commonly employed
constraints in use in optimization-based motion prediction and simulation. Based on this
review, a majority of the encountered constraints in the literature have been consolidated in
Table 5.3, with a description of their purpose, a symbolic representation when applicable,
and a classification of their commonality.

Xiang et al. [61] impose boundary conditions on the hand position in ambient space and
on the joint velocities in joint space, as well as joint angle limits and joint torque limits.
Collision avoidance constraints between the box and the body are also imposed. At the same
time, hand orientation is constrained to match the perpendicular to the box edge and the

1S is the support polygon, and ∂S is its boundary. This notation has been borrowed from mathematical
analysis.
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Table 5.2: Most common objective functions from the literature on the biomechanics and motion
generation of human box-lifting motions.

Name Symbolic Description
Total muscular
effort or muscle
utilization ratio.

∫ T

0

τττTSSS−2(qqq)τττ dt

Minimization of the total time integral of the sum of
squared ratios of joint torques divided by the joint

position-dependent joint torque capacity.
Dynamic effort or
minimum effort.

∫ T

0

∥τττ∥22 dt
Minimization of the total time integral of the sum of

squared joint torques.

Ankle torque.
∫ T

0

τ 2
ankle dt

Minimization of the total time integral of the
squared ankle torque.

Dynamic balance
or stability.

∫ T

0

d(ZMP, ∂S) dt 1
Minimization of the total time integral of the sum of
squared distances from the ZMP to the foot support

boundaries.
Maximum shear

force and
maximum

pressure force at
spine joint(s).

∫ T

0

∥fffx,y, spine∥22 dt∫ T

0

f 2
z, spine dt

Minimization of the total time integral of the sum of
squared forces felt at one or multiple spine joints.

Minimal hand,
load, or

center-of-mass
jerk.

∫ T

0

...
ppp T ...

ppp dt

Minimization of the total time integral of the
squared Cartesian jerk of the corresponding object;

is supposed to produce smooth trajectories.

Total torque.
∫ T

0

∥τττ∥1 dt
Minimization of the total time integral of the sum of
absolute torques; is supposed to produce trajectories

where a small number of joints are loaded.

Static balance.
∫ T

0

∥τττball − τττheel∥1 dt
Minimization of the maximum difference in torque
applied at the ball of the foot and at the heel; is

supposed to prevent falling over.
Energy

consumption

∫ T

0

∥q̇qq ⊙ τττ∥1 dt
Minimization of the total time integral of the sum of

joint powers.

vision vector (perpendicular to the forehead) has been constrained to point toward the center
of the box. Within [70], Xiang et al. impose the same constraints as in [61], with the physical
workspace layout and ground penetration constraints imposed explicitly in both studies [61,
70], but are implicit in almost all other literature.

In [23, 24], the authors impose joint angle limits, joint torque limits, collision constraints,
and static postural stability constraints. Arisumi et al. [58] impose torque limits and dynamic
postural stability constraints, while they also impose an interesting constraint preventing
the joint torque and joint velocity from aggregating more than a 100% their maximum
values simultaneously i.e. | q̇qq

q̇qqmax
+ τττ

τττmax
| ≤ 1. This constraint is interesting as it is known

that the maximum joint torque is dependent on the position and on the velocity of the
joint, and decreases as the velocity increases [89], but this concrete formulation is fairly
restrictive. Shoushtari [90] assume that the box is rigidly attached to the wrist with a
horizontal orientation. They enforce boundary conditions in terms of the box’s initial and
final position in Cartesian space, joint angles and torques are lower and upper bounded, the
dynamics are implemented as a constraint while the joint torques are treated as a variable.
Collision avoidance constraints are present as well. Another constraint dubbed wrist elevation
is implemented, enforcing a non-decrease in wrist height during the movement. Song, Qu,
and Chen impose standard joint angle, joint torque, and collision avoidance constraints are
imposed within [104], as well as [113]. Static postural stability is imposed by forcing the
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projection of the center of mass of the body-load system to be within the foot support
area. Data-driven joint velocity limits were also included because they have been previously
shown to be dependent upon the load weight, destination height, and subject age [96]. The
dependence is identified from the data by using quadratic regression. Biological joints are
different from robotic ones, their torque capacity is dependent on the muscles that actuate
it, whose own force-producing capabilities depend on moment-arms, force-length, and force-
velocity properties of the muscle itself. To capture that relationship, Rakshit, Xiang, and
Yang [134] propose to identify joint-angle and joint-velocity dependent model of joint-torque
production capacity, and use it to estimate safe maximal load weight.

So as to respect the baseline of physical and biomechanical consistency, the joint angle
limits, the joint torques, and the collision avoidance constraints have been implemented in
the study this chapter describes. The most physically accurate postural stability condition,
i.e. the dynamic postural stability constraint, has been implemented as it is a necessary
condition for postural stability [43, 45]. With the goal of allowing greater freedom in the
choice of trajectories, the final boundary condition was concerned with the wrist position,
while the initial condition was concerned with the joint angle configuration so as to provide
a consistent comparison with the collected data i.e. as it is desirable that the simulated
trajectories start from the exact same configurations as the real trajectories. The physical
layout and ground penetration are taken into account implicitly.

Xiang et al. Xiang et al., Xiang et al., Xiang, Arora, and Abdel-Malek, Xiang, Arora, and
Abdel-Malek formulate the OCP in joint space using B-splines and is solved using sequential
quadratic programming. The authors monitored the error between the simulated trajectories
and the experimental data across 6 DoFs which determine the lifting motion the most i.e.
hip flexion/extension, knee flexion/extension, ankle plantar/dorsiflexion, trunk flexion/exten-
sion, shoulder flexion/ extension, and elbow flexion/extension and found that the simulated
trajectories best fitted experimental data when the weights placed on normalized dynamic
effort and normalized stability are in a ratio of 0.1 to 0.9 [70]. The accuracy of the joint angle
trajectory prediction yielded by the model in [70] with respect to the data is not quantified
numerically, but is shown to be within the 95 % confidence interval of the data collected
on 5 subjects. Formulations of the OCP in [23, 24] are in the joint space using polynomial
trajectories, and are solved using a general-purpose nonlinear optimization software written
in FORTRAN called GRG2. Within [90], in which the authors use B-splines to formulate the
OCP, it is shown that the movement obtained by minimizing the ankle torque is stable in the
sense that the ZMP remains within the polygon of support. The authors provide a graphi-
cal comparison of predicted and experimental joint angle trajectories. Multiple innovations
are provided by [104] by including data-driven joint velocity constraints, recruiting subjects
from different age groups, measuring maximum lifting capacity by using a dynamometer,
and varying task parameters like box weight and table height. The OCP is formulated using
B-splines. A comparison of the simulated trajectories with respect to the experimental mea-
surements yielded an approximately constant RMSE in the vicinity of 11◦ independently of
load weight or destination height. The model yielded more accurate predictions for younger
subjects than for older ones.

This chapter opts for a spline representation of trajectories, because of multiple advantages
compared to polynomials i.e. they are less prone to oscillations, allow local control (modi-
fying one part of the spline doesn’t affect the whole trajectory), tend to preserve curvature
better thus allowing for smoother trajectories, and avoid the problem of raising floating-point
numbers to high powers. This is not only advantageous numerically but naturally fits the na-
ture of the human’s very smooth box-lifting motion. Modern software solutions were used for
implementation, with automatic differentiation software CasADi [124] used for the compu-
tation of derivatives and Hessians in the OCP formulation, while the nonlinear optimization
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Table 5.3: Most common constraint functions from the literature on the biomechanics and motion
generation of human box-lifting motions.

- Name Symbolic Description

C
om

m
on

Joint angle limits. qqqmin ≤ qqq ≤ qqqmax

Ensures that the joint angles remain within
limits consistent with a human’s biological

range of motion.

Joint torque limits. τττmin ≤ τττ ≤ τττmax

Ensures that the joint torques remain
within limits consistent with a human’s

biological muscle force capacity production
range.

Boundary
conditions.

qqq(0) = qqqi, qqq(T ) = qqqf
q̇qq(0) = 0, q̇qq(T ) = 0

[pppwrist(0) = pppi,

pppwrist(T ) = pppf ]

Ensures that the starting and ending
configurations are consistent with the
experimental parameters. Ensures the
motion starts and ends with a static
position. [Sometimes, only the wrist

position is imposed.]
Collision avoidance

constraints.
di,j ≥ 0, ∀i, j Ensures that no pair of collidable objects

are in collision.

U
nc
om

m
on

or
U
ni
qu

e

Static postural
stability.

ProjfloorCOM ∈ S

Ensures that the projection of the center of
mass stays within the polygon of support;
guarantees postural stability in the static

case.
Dynamic postural

stability. ZMP ∈ S

Ensures that the ZMP stays within the
polygon of support; guarantees postural

stability in the dynamic case.
Joint velocity

limits.
q̇qqmin ≤ q̇qq ≤ q̇qqmax

Ensures that the joint velocities remain
within bounds extracted from the data.

Wrist elevation
constraint.

hwrist(ti+1) ≥ hwrist(ti)
Ensures that the wrist height is

non-decreasing during the movement.

Vision constraint. α ≤ ∠(−→nnn eye,
−→rrr eye,box) ≤ β

Ensures that the “vision” vector
(perpendicular to the eye) is within a cone
around the vector connecting the eye to the

box center of mass.

Hand distance and
orientation.

−→nnn hand ×−→vvv box,edge = 0
−→
TTT hand ×−→vvv box,handle = 0

Ensures that the hand’s normal vector is
along the box’s edge and that the hand’s
tangential vector is along the box’s handle.
The distance is enforced to the box width.

Im
pl
ic
it Physical workspace

layout.
- Enforces the geometry of the load and the

table, and where they will be placed.
Ground

penetration.
- Ensures that all the links are above the

ground.

software IPOPT [53] is used to solve the OCP.
Some studies [86, 104, 134] also opt for a hybrid approach where they use information from

the motion capture data directly in the motion simulation procedure in order to guide the
simulation trajectories to be more human-like. Multiple hybrid approaches can be found in
the literature that are consolidated in [86] and can be classified under the following categories:

(a) minimizing the tracking error with respect to the data,

(b) minimizing a multi-objective criterion, where one criterion is the tracking error with
respect to the data, while the other criterion is related to the biomechanics of the task,

(c) constraining the tracking error with respect to the data, while minimizing a biomechan-
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(a) (b)

Figure 5.3: (a) The 6DoF planar biomechanical model of the human. (b) A randomly selected
participant while performing one repetition of standard and squat box lifting. Note that one

repetition includes both upward (floor-to-table) and downward (table-to-floor) lifting movements.

ical task criterion,

(d) constraining the tracking error with respect to the data, while minimizing a multi-
objective criterion composed of the tracking error and some biomechanical task crite-
rion.

Using these approaches, the predictions may attain and surpass the threshold of 15◦ of RMSE,
which is considered an accurate prediction.

While these results are very interesting from the point of view of accuracy, they require
subject-specific and task-specific data collection in order to implement the tracking error
costs or constraints. On the other hand, there is evidence of the existence of a general
biomechanical task criterion [38, 44, 52] which is minimized by a human moving. The
study in this chapter uses only biomechanical task criteria and biomechanical constraints,
described previously and further in Section 5.3.3 and Section 5.3.2, to formulate the OCP
of human box-lifting motion generation. The motion capture data is however used to infer
the optimal weighting of the various biomechanical task criteria, by optimizing the RMSE
of the predictions. The result of this process is an optimal control model that contains only
biomechanical task criteria and biomechanical task constraints and is independent of the data
at the time of the motion generation but is inferred from data so as to be optimal in terms
of accuracy.
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5.2 Model and Data

5.2.1 Biomechanical Model
The human body is modeled as a linkage of rigid bodies connected by joints. The symme-

try of the task has been leveraged to simplify the model, as the motion is happening uniquely
in the sagittal plane of the human body, leading to a planar model which is illustrated in Fig-
ure 5.3a, and whose diagram is given in Figure 5.2. Symmetric parts of the body have been
fused, and will hereafter be referred to with singular nouns. Moreover, the pelvis-abdomen
pair is treated as rigidly linked, as are the forearm-hand pair and the thorax-neck-head triple.
The base of the human model is the foot, while its segments are the shank, the thigh, the
pelvis-abdomen pair, the thorax-neck-head triple, the upper arm, and the forearm-hand pair.
The base and segments, in the same order, are connected by joints at the ankle, the knee, the
hip, the back, the shoulder, and the elbow. These joints together provide six planar DoFs to
the model, meaning the configuration of the model at a particular time is described by six
joint angles.

Within the model-based trajectory generation algorithm, many kinematic and dynamic
quantities are computed from the trajectory and taken into account. Dependance on time
is dropped for compactness. The kinematics and the dynamics are calculated numerically
via symbolically generated functions using the software package SYMORO+ [19]. Joint and
torque limits have been assumed fixed and determined from previous studies [89].

End-effector and Box Kinematics

The end-effector (wrist) position 0pppW = 0 FKMW (qqq) is calculated using the forward-
kinematic model of the mechanism representing the human, while the end-effector velocity
0vvvW = 0JW (qqq)q̇qq can be calculated using the Jacobian of the forward-kinematic model.

For brevity of exposition, authors [49] usually introduce shortened notation. A variant of
this notation is introduced in equation (5.1).

S1 : i = sin

(
i∑

j=1

qj

)
(5.1a)

C1 : i = cos

(
i∑

j=1

qj

)
(5.1b)

The forward kinematic equations of a planar manipulator are fairly simple and are given in
equation (5.2) for the 6 DoF planar manipulator model of a human that has been adopted
within this study.

0pppW =

[
0pWx
0pWy

]
= 0 FKMW (qqq) =

6∑
i=1

Li ·

cos(∑i
j=1 qj

)
sin
(∑i

j=1 qj

) =
6∑

i=1

Li ·
[
S1 : i

Ci : i

]
(5.2)

The Jacobian of the forward kinematic model is computed by deriving the forward kinematic
model equations with respect to time and then factoring out the joint velocities in order to
be left with the matrix representing the Jacobian. For completeness, the Jacobian of the
forward kinematic model is given within equation (5.3).
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0JW (qqq) =

[
−
∑6

i=1 Li · S1 : i −
∑6

i=2 Li · S1 : i . . . −
∑6

i=5 Li · S1 : i −L6 · S1 : 6∑6
i=1 Li · C1 : i

∑6
i=2 Li · C1 : i . . .

∑6
i=5 Li · C1 : i L6 · C1 : 6

]
(5.3)

The box is assumed to be rigidly linked to the wrist with a constant position vector 0rrrW,B

as no angular wrist motions greater than ±5◦ have been observed in the data. As such the
box position is calculated as 0pppB = 0pppW + 0rrrW,B.

Torques and Ground Reaction Wrenches

The joint torques are related to the trajectory by the equations of motion of an actuated
mechanism

τττ = M(qqq) q̈qq +C(qqq, q̇qq) q̇ +G(qqq) + J(qqq)T wwwext (5.4)

and are influenced by the box’s weight mBggg
2 which requires an external wrench

wwwext = −(mBggg,
0rrrW,B ×mBggg)

to be exerted by the human, at the wrist.
The joint torques are computed using an automatically generated [95] Recursive Newton-

Euler Algorithm (RNEA) implementation of the equations of motion

(τττ , wwwgrw) = RNEA(qqq, q̇qq, q̈qq, wwwext) (5.5)

which also outputs the GRWs wwwgrw.

The Zero-Moment Point

The ZMP can be computed from the GRWs. If we separate the GRWs into force and
moment components wwwgrw = (fff grw,mmmgrw), we can obtain the position of the ZMP in the
sagittal plane.

ZMP = mgrw
Z / f grw

Y (5.6)

Collisions

The collisions are treated using collision spheres [70] in order to obtain a differentiable
representation of collisions. A collision sphere S = (r, C FKM) is characterized by its radius
r and the forward-kinematic model of its center C FKM. At a given configuration qqq, the
distance d(S1,S2) between two spheres S1 and S2 can be computed as

d(S1,S2) = ∥C1ppp− C2ppp∥2 − (r1 + r2) (5.7)

where Cippp = Ci FKM(qqq) (i = 1, 2) are the positions of the centers of the spheres. The no-
collision constraint between the two spheres is readily imposed by requiring d(S1,S2) ≥ 0,
and is differentiable with respect to the joint configurations by virtue of the differentiability
of the norm ∥.∥2 and of the forward-kinematic model FKM.

Each segment of the human’s body is assigned a sphere Sseg, which is centered at the
segment’s estimated center of mass Cseg = COMseg, with a radius rseg = φLseg equal to a
factor φ ∈ (0, 1

2
] times the segment length Lseg. The box is assigned a sphere SB which is

centered at the box CB = B with a radius rB = 1
2
max(BW , BL) equal to half the maximum

2mB is the box’s mass and ggg = (0,−9.81, 0) is the gravity vector.
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Distal phalanxCalcaneus

Lateral malleolus

Lateral femoral
epicondyle

Great trochanter

T10 vertebrae

Acromion
Lateral humeral

epicondyle Ulnar styloid

Figure 5.4: Diagrammatic representation of marker placement.

between the width and length of the box. The table is assigned multiple spheres3 Stab whose
centers Ctab and radii rtab are chosen such that the union of the spheres approximates the
surface of the table. The position of the table spheres is independent of the joint angles qqq, so
their center does not have a Forward Kinematic Model (FKM) but a constant instead.

5.2.2 Experiments

Experimental Setup

Experimental data were collected from six healthy young adult males who performed four
sets of five box lifting-lowering motions at their self-selected speed and at their self-selected
distance from the box using a motion capture system and a force plate, yielding a set of 120
total captured motions.

The objective of the experiments was to study repetitive load lifting from the floor to
support located at 0.75m and vice-versa. Participants stood vertically at a comfortable
self-selected distance from the table. They manually lifted a 10 kg box (42.7x28.4x21.9cm),
located at the center between the force plate and the table. A stereophotogrammetric sys-
tem (six Flex 13 cameras, 100 Hz, Optitrack) and a force plate (100Hz, AMTI) recorded
synchronously 3D positions of nine retro-reflective markers and GRWs, respectively. Markers
were located at the following right anatomical landmarks: distal phalanx, calcaneus, lat-
eral malleolus, lateral femoral epicondyle, great trochanter, t10 vertebrae, acromion, lateral
humeral epicondyle, and ulnar styloid. The marker placement is diagrammatically repre-
sented in Figure 5.4.

3In the implementation there are 5 spheres, so tab ∈ {1, . . . , 5}.
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Experimental Procedure

Seven healthy male volunteers (age: 26.9 ± 4.7 years, height: 179.4 ± 7.6cm, weight:
77 ± 44.9Kg) with no history of musculoskeletal disorders, neurological injuries, or back
pain, participated in the study after giving informed consent. Before data recording, each
participant underwent a familiarization session with the whole experiment. Thereafter, three
main trials were recorded for each participant. First, in order to identify the Body Segment
Inertial Parameterss (BSIPs), participants were asked to perform upper and lower limbs
excitation motions in the sagittal plane [105]: squat-like and pendulum-like motions, shoulder
flexion/extension, and elbow flexion/extension motions. For each type of motion, fifteen
repetitions were performed by increasing the execution speed each time. Figure 5.5 displays
snapshots of a subject performing the said identification movements.

After a self-selected rest time, the box lifting task started by asking the participants to
stand in a neutral posture on the force plate and lift the plastic box with both hands holding
the handles. Two lifting motions were conducted: standard lifting and squat lifting. In the
first case, participants performed four sets of five repetitions each, separated by 2min of rest.
Whereas squat lifting consisted of only one set of five repetitions. Note that a repetition
consists of picking up the box from the floor to the table, and then lifting it back to the floor
(see Figure 5.3b).

Kinematic and Dynamic Identification

Finally, both kinematic and dynamometric data were introduced into the dynamic iden-
tification pipeline for BSIPs estimation [25]. Within the model-based trajectory generation
framework founded upon the optimization of dynamic quantities, like effort or torque, it is
important to perform the dynamic identification of the model i.e. to identify the BSIPs as
the torque estimates can deviate up to 50% with respect to real values [105].

The raw motion capture data (i.e. X,Y, Z coordinates of all markers) was captured at
100 Hz and has been filtered using a 5th order zero-phase filter with a bandpass frequency of
3 Hz. The raw force plate data (i.e. FX , FY , FZ ,MX ,MY ,MZ all components of force and
moment) was captured at 100 Hz and has been filtered using a 5th order zero-phase filter
with a bandpass frequency of 1.5 Hz.

By solving the problem from Equation (5.8), the segment lengths LLL and joint trajectories
qqqi (i = 0, . . . , N) were extracted from marker data. The measured marker positions are
denoted with 0pppmi , where m represents indices of markers and i the indices of time, while
the predicted positions of the markers are denoted 0p̂ppmi and are computed using the forward-
kinematic model 0p̂ppmi = 0 FKMm(qqqi).

minimize
LLL,qqq

∑
i,m

∥0pppmi − 0p̂ppmi ∥22 + λ∥∆qqqi∥22 (5.8a)

subject to LLL− ≤ LLL ≤ LLL+ (5.8b)
qqq− ≤ qqqi ≤ qqq+, i = 0, . . . , N (5.8c)

The regularization term λ∥∆qqqi∥22 serves to mitigate discontinuities and noise in joint trajec-
tories.

By solving the problem from Equation (5.9), the segment masses MMM , the segment cen-
ter of mass position vectors COM, and the segment inertias III were extracted from the
AMTI force plate data. Problem (5.9) also identifies the offset vector rrr between the lo-
cal frame of the model base and the local frame of the force plate. The measured GRWs
are denoted with FPFFF grw

i = (FPfff grw
i , FPmmmgrw

i ), while the predicted GRWs are denoted with
0F̂FF

grw

i = (0f̂ff
grw

i , 0m̂mmgrw
i ), both being composed of three forces and three moments. The mea-
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(a) Squatting.

(b) Trunk bending.

(c) Pendulum-like body swinging.

(d) Arm raises.

(e) Forearm swings.

Figure 5.5: Dynamically exciting movements performed for the dynamic identification of the model.

sured GRWs are natively expressed in the local frame of the force plate but are readily
transformed to the local frame of the model base4, hence the dependence on rrr.

40FFF grw
i = (0RFP

FPfffgrw
i , 0RFP

FPmmmgrw
i + 0rrr0,FP × 0RFP

FPfffgrw
i ) where 0RFP is the matrix describing the

rotation of the local frame of the force plate in the local frame of the model base
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Figure 5.6: Statistics of the joint angle trajectories extracted from the data of all subjects. The
mean of all joint angle trajectories is shown as a full black line, while the three standard deviations

are depicted as the gray-shaded area. Three individual joint angle trajectories are shown,
representing the trajectories that are the closest (dashed blue line), the median (dotted-dashed green
line), and the farthest (dotted red line) from the mean joint angle trajectory in terms of the mean

squared error.

minimize
MMM,COM,III,rrr

∑
i

∥0FFF grw
i − 0F̂FF

grw

i ∥2U (5.9a)

subject to MMM− ≤MMM ≤MMM+ (5.9b)
COM− ≤ COM ≤ COM+ (5.9c)

III− ≤ III ≤ III+ (5.9d)
rrr− ≤ rrr ≤ rrr+ (5.9e)
τττ− ≤ τττ i ≤ τττ+, i = 0, . . . , N (5.9f)

In order to accommodate the difference in units between forces and moments, the norm in
(5.9a) is computed with respect to U = diag(1, 1, 0, 0, 100).

The predicted GRWs are computed alongside joint torques τττ i using a RNEA [49], where
the joint trajectories and their derivatives qqqi, q̇qqi, q̈qqi are the output of problem from Equation
(5.8).

(τττ i,
0F̂FF

grw

i ) = RNEA(qqqi, q̇qqi, q̈qqi, www
ext = 000 |MMM,COM, III)

In the problems from Equations (5.8) and (5.9), the bounds LLL± (5.8b), MMM± (5.9b), COM±

(5.9c), and III± (5.9d) represent ±20% the values drawn from the anthropometric tables [121].
The bounds qqq± (5.8c) have been chosen in accordance with literature [131]. The bounds rrr±

(5.9e) have been chosen as ±5cm with respect to the expected offset given the experiment
setup (OptiTrack global frame and AMTI force plate placement). The bounds τττ± (5.9f) have
been drawn from studies on the maximum joint torque capacities [89].
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5.3 Methods

This section describes the optimization-based trajectory generation procedure in three
steps, ending with describing the IOC based objective function identification. Section 5.3.1
the spline representation of the trajectories is described. Section 5.3.2 describes the exact
formulation of the trajectory generation problem, using the kinematic and dynamic quantities
that were previously described in Section 5.2. Finally, Section 5.3.3 describes the objective
function identification via IOC.

5.3.1 Spline Trajectory Representation
For a general model with n DoFs enacted as joints, motion can be thought of as a trajec-

tory within the n-dimensional configuration space of joints. Trajectories, being continuous
functions of time, are inherently infinite-dimensional. A finite-dimensional spline representa-
tion is adopted here.

A spline is a continuous and smooth piece-wise polynomial. It is characterized by the
degree d of the polynomials and by the C + 1 control points consisting of time-configuration
pairs

(tσ0, qqqσ0), (tσ1 , qqqσ1), . . . , (tσC , qqqσC) (5.10)

which are used to compute the polynomial coefficients and interpolate the configurations in
between. The spline trajectory qqq(t | tttσ, qqqσ) is defined as the concatenation of C polynomials,

∀k = 0, . . . , C − 1 :

qqq(t | tttσ, qqqσ) = qqqk(t | tttσ, qqqσ), for tσk ≤ t ≤ tσk+1 (5.11a)

qqqk(t | tttσ, qqqσ) =
d∑

i=0

ccc
(k)
i ti, for tσk ≤ t ≤ tσk+1 (5.11b)

where each polynomial qqqk(t | tttσ, qqqσ) is determined by its coefficients ccc(k)i = ccc
(k)
i (tttσ, qqqσ) which

depend on the control point times tttσ = (tσ0, . . . , tσC) and depend linearly on the control point
configurations qqqσ = (qqqσ0, . . . , qqqσC).

By fixing the control point times tttσ ∈ RC+1, the trajectory qqq(t | qqqσ) becomes uniquely
defined by the concatenated vector of control point configurations qqqσ ∈ R(C+1)n. With a choice
of degree d = 5 and because of its piece-wise polynomial structure, the time-derivatives of
the trajectory q̇qq(t), q̈qq(t),

...
qqq (t) are smooth and easily computed.

5.3.2 Optimization
The trajectory generation problem is formulated as a constrained optimization problem.

The decision variables of the trajectory generation problem are control point configurations
qqqσ ∈ R(C+1)n, since trajectories are represented as splines. The constraint functions guarantee
adherence to the task description and the physical consistency of the motion. They are:

• initial configuration constraints (eq. (5.12b)),

• final wrist position in Cartesian space (eq. (5.12c)),

• joint angle limits (eq. (5.12d)),

• torque limit constraints (eq. (5.12e)),

• ZMP constraints (eq. (5.12f)),
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• collision constraints (eq. (5.12g) and eq. (5.12h)).

The objective function encodes a preference for certain types of trajectories. In this work,
it is supposed that the objective function is unknown and that it will be retrieved from
data. However, it is supposed that the function has a parametric form f(qqqσ, ωωω), and it is the
parameters ωωω that will be identified. The parametric form and the identification procedure
will be described in Section 5.3.3.

The trajectory generation is encoded as the following parametric optimization problem.

minimize
qqqσ∈R(C+1)n

f(qqqσ, ωωω) (5.12a)

subject to qqq(0) = qqqi (5.12b)
Wppp(T ) = Wpppf (5.12c)

qqq− ≤ qqq(t) ≤ qqq+ ∀t ∈ [0, T ] (5.12d)
τττ− ≤ τττ(t) ≤ τττ+ ∀t ∈ [0, T ] (5.12e)
ZMP− ≤ ZMP(t) ≤ ZMP+ ∀t ∈ [0, T ] (5.12f)
d(Sseg(t),SB(t)) ≥ 0, ∀seg ∀t ∈ [0, T ] (5.12g)
d(Stab(t),SB(t)) ≥ 0, ∀tab ∀t ∈ [0, T ] (5.12h)

The dependence of the quantities upon control points qqqσ has been left out for clarity.
The requirement that the constraints hold ∀t ∈ [0, T ] is very difficult to handle, and as such,
they will be relaxed and required to hold at a finite number of times ti = i

N
T (i = 0, . . . , N).

For future reference, let the subscript i denote that a quantity is evaluated at time ti, i.e.
qqqi = qqq(ti).

5.3.3 Inverse Optimal Control

Using knowledge from the literature, in Equation (5.13) we propose a set of features5,
a.k.a. basis functions, that encode preferences for certain types of trajectories. The mini-
mization of the time-integrals

∑
i ϕ

m
i (qqq

σ) of some of these features has been shown to produce
human-like motion trajectories [23, 24, 61, 70].

ϕ1
i (qqq

σ) = q̇qqTi q̇qqi (5.13a)

ϕ2
i (qqq

σ) = q̈qqTi q̈qqi (5.13b)

ϕ3
i (qqq

σ) =
...
qqq T

i

...
qqq i (5.13c)

ϕ4
i (qqq

σ) = WvvvTi
Wvvvi (5.13d)

ϕ5
i (qqq

σ) = WaaaTi
Waaai (5.13e)

ϕ6
i (qqq

σ) = τττT
i τττ i (5.13f)

ϕ7
i (qqq

σ) = (τττ ⊙ q̇qqi)
T (τττ ⊙ q̇qqi) (5.13g)

When each feature sum
∑

i ϕ
m
i = ϕm is treated as a single feature and is assigned a single

weight, the dimensionality of the parameter space dimωωω = dimϕϕϕ is equal to the dimension-
ality of the feature vector. The objective function of the problem from Equation (5.12) has

5⊙ is the vector component-wise product.
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the parametric form given in Equation (5.14).

f(qqqσ, ωωω) =
∑
m

ωm
∑
i

ϕm
i (qqq

σ) (5.14)

IOC as a Bilevel Program

The measured human trajectory denoted with qqqχ(t) will be the data from which we will
learn i.e. identify the parameters ωωω by solving the problem from Equation (5.15). The loss
function is the mean-squared-error6 between the measured trajectory and the predicted tra-
jectory qqq(ωωω). The cost function identification, i.e. the IOC problem, is a bilevel optimization
problem [99] as the constraint (5.15c) includes the result of an optimization process. The
feasible weight set is Ω = Rdimϕϕϕ

++ when the parametric function form is chosen as (5.14) .

minimize
ωωω∈Ω

MSE(qqqχ, qqq(ωωω)) (5.15a)

subject to qqq(ωωω) = from eq. (5.11) using qqqσ(ωωω) (5.15b)
qqqσ(ωωω) = solution of (5.12) (5.15c)

Bilevel problems are particularly hard to solve as they are generically non-convex [99],
and contain computationally intensive constraints.

5.3.4 Software Implementation
This section presents and quantifies the results and solutions of the different optimiza-

tion problems described in Sections 5.2 and 5.3. These problems are the model kinematic
identification (5.8c), the model dynamic identification (5.9f), the DOC problem of motion
generation (5.12), as well as the problem of motion generation parameter identification (5.15)
i.e. the IOC problem. The IOC problem (5.15) also requires solving multiple DOC motion
generation problems (5.15c).

All of these optimization problems fall under the category of continuous nonlinear pro-
gramming problems [17, 29] and have continuously differentiable objective functions and
constraints. Except for the IOC problem (5.15) which is a bilevel problem, these problems
are solved numerically using the open-source IPOPT software [54] for nonlinear program-
ming, based on a primal-dual interior point method which is a highly robust optimization
approach for solving large-scale nonlinear optimization problems.

The primal-dual interior point method can be interpreted as solving a sequence of (loga-
rithmic) barrier problems, i.e. problems where the inequality constraints are integrated into
the cost function through a scaled logarithmic barrier function, with a decreasing sequence
of barrier scaling parameters converging to 0. Alternatively, one can think of it as solving
the primal-dual equations via a homotopy method [54]. All barrier problems are solved using
essentially Newton’s method. Various heuristics and safeguards are implemented, such as
optimality error scaling, adaptive update of the primal-dual step sizes and the barrier pa-
rameter, a line-search filter, and second-order corrections, rendering the method very robust
for a wide range of problems [54].

The DOC and IOC models were built using the software package CasADi [124], which is
built upon symbolic-like data structures that act as model variables and parameters. These
data structures, referred to as SX (scalar) and MX (matrix) variables in the CasADi paper
[124], are propagated through the model functions to construct a computational graph of

6MSE(qqqχ, qqq) = 1
N+1

∑N
i=0 ∥qqq

χ
i − qqqi∥22
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the different cost and constraints functions involved in the DOC and IOC models. From the
computational graph, CasADi uses algorithmic differentiation [60] to infer first and second-
order derivatives of the cost and constraints of the DOC model, which are the main building
blocks of local-search-based nonlinear programming solvers [29]. The functions and their
derivatives are provided to the IPOPT [54] nonlinear programming solver, which is used to
compute the solution to the DOC problem (5.12) to generate predictions.

The IOC problem instances were solved using combined grid-search and local search. The
grid search is initialized by constructing a point-grid Gm

r , over the m-simplex ∆m containing
parameter ωωω, which partitions each simplex edge into r − 1 parts. The grid search proceeds
by computing the DOC solution qqqσ,(ℓ) for each parameter value ωωω(ℓ) from the set of grid points
Gm

r =
{
ωωω(ℓ) | ℓ = 1, . . . ,

(
m+r−2
m−1

)}
, and then checking which one has the smallest error with

respect to the data. More details about grid search over the m-simplex, along with some
examples, can be found within Appendix A.

5.4 Results

5.4.1 Model Identification
Across various subjects and trials, the results of the kinematic identification, depicted

by Equation (5.8), have been tabulated in Table 5.4, representing the mean and standard
deviation of the distance between the model-predicted marker positions and those measured
by the motion capture system, involving markers corresponding to the knee, hip, back,
shoulder, elbow, and wrist. These markers correspond respectively to the markers depicted
in Figure 5.4 as the lateral femoral epicondyle, great trochanter, T10 vertebrae, acromion,
Lateral humeral epicondyle, and the ulnar styloid markers. As mentioned in Section 5.2.2,
the sample comprises 6 subjects.

Similarly, the outcomes of the dynamic identification as expressed by Equation (5.9) are
summarized in Table 5.5. This table illustrates the mean and the standard deviation of the
RMSE between the GRWs anticipated by the model and the GRWs ascertained by the force
plate, focusing on the ground reaction forces in the X and Y directions, and the ground
reaction moment in the Z direction, with the same sample size of 6 subjects.

Table 5.4: The mean and standard deviation of the distance between the marker positions predicted
by the model and the marker positions measured by the motion capture system. The sample size is 6

subjects.

Marker Knee Hip Back Shoulder Elbow Wrist
RMSE [cm] 1.11± 0.17 1.00± 0.16 1.67± 0.31 1.91± 0.42 1.67± 0.36 1.63± 0.34

Table 5.5: The mean and standard deviation of the RMSE between the GRWs predicted by the
model and the GRWs measured by the force place. The sample size is 6 subjects.

Force/Torque Force X Force Y Torque Z
RMSE [N/N.m] 10.87± 4.47 27.1420± 14.19 16.79± 5.70

The results of the kinematic and the dynamic identification procedures in terms of identi-
fied parameters have been presented in Figures 5.7, 5.8, 5.9, and 5.10 for a randomly selected
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Figure 5.7: Fitting of the force plate measurements with the identified BSIPs.

subject, i.e. subject 2. In Figure 5.7, the fitting of the force plate measurements with the
identified BSIPs is depicted, providing visual insights into the accuracy and reliability of
the measurement approach and the identification process. Figure 5.8 presents a comparative
analysis of the identified body segment masses against the values anticipated by anthropo-
metric tables [121]. Similarly, Figure 5.9 contrasts the identified body segment inertias in
the link frame against the predictions made by anthropometric tables [121]. Lastly, Figure
5.10 provides a comparative overview between the identified body segment center of mass
positions and those forecast by anthropometric tables [121]. This comparison is crucial to
validate the identified values and to ensure they conform to established anthropometric data.
For a description of the segment frames, recall Figure 5.2.

5.4.2 Motion Generation
Using a single box-lifting trial and IOC, weights for the box-lifting objective function

were identified, and were sparse, with only ω3 = 0.96 and ω6 = 0.04. The DOC problem
instances were initialized using the measured trajectories qqqχ, which were feasible with respect
to the constraints of the problem (5.12). The IPOPT solver was run with default tolerance
parameters, with options for numerical derivative and regularity checking turned on. The
average computation time of the DOC would be around 30s, on a Dell Inspiron 15 7 with an
Intel®Core™i5-10400H CPU @ 2.60GHz 8.

A series of regularly timed snapshots of the model configuration in Cartesian space
throughout the trajectory is given in Figure 5.11. The figure contains two characters, of
which one animates the measured trajectory of the human subject while the other animates
the trajectory predicted for that human. Each snapshot contains the entire path of the wrist,
displayed as a dashed line for both characters. During the first third of the movement, the
difference between the predicted and measured postures is negligible. During the second

7Dell’s site link for specifications.
8Intel’s site link for specifications.
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Figure 5.8: Comparison of identified body segment masses compared to values predicted by
anthropometric tables [121].
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Figure 5.9: Comparison of identified body segment inertias (w.r.t link frame) compared to values
predicted by anthropometric tables [121].
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Figure 5.10: Comparison of identified body segment center of mass positions compared to values
predicted by anthropometric tables [121].

third of the movement, the postures start to diverge most visibly, which can be explained by
a difference in the strategy retrieved by the IOC and the one used by the human. We hy-
pothesize that the actual human chooses to maintain a higher margin of safety when avoiding
collision with the table. At about 65% of the movement, the postures regain their similarity
and maintain an approximately constant error during the last third of the movement. Over-
all, the postures within the snapshots differ visibly but remain visually similar across the
majority of the movement.

Figure 5.12 provides a comparison of the joint angle trajectories separately for each joint.
One can notice the magnitude of the errors for the ankle, knee, and hip joints remains
relatively small in comparison to the magnitude of the errors for the shoulder and elbow
joints. The magnitude of the errors in the back joint is also relatively large towards the last
part of the trajectory.

RMSE [◦] Subject1 Subject2 Subject3 Subject4 Subject5 Subject6
Ankle 5± 2 6± 3 7± 3 4± 1 11± 4 5± 2
Knee 18± 11 18± 10 33± 18 16± 6 24± 3 16± 6
Hip 21± 10 19± 8 29± 10 16± 6 23± 4 16± 6
Back 11± 8 7± 3 11± 5 10± 4 21± 6 16± 3

Shoulder 33± 14 25± 9 48± 14 27± 6 32± 12 38± 12
Elbow 32± 11 27± 9 43± 9 28± 7 22± 7 38± 11

Mean 20± 6 17± 5 28± 7 17± 3 22± 3 22± 4

Table 5.6: Rounded mean RMSEs (± standard deviations of RMSEs) of the joint angle trajectories
of the predicted motions compared to the joint angle trajectories of the measured motions for all

subjects. The sample size for each subject is 20 trials.

Table 5.6 gives us further insight into the distribution of RMSEs of the predictions across
joints and across subjects. The RMSE increases as we progress in the kinematic chain from
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Figure 5.11: Twelve isochronous snapshots of the human’s configuration during the lifting motion, at
0%, 9.09%, . . . , 90.91%, and 100% of the lifting motion (left-to-right, up-to-down). Both the

measured motion (in blue) and the predicted motion (in red) for a single representative trial of a
single subject are showcased. Dashed lines represent the trajectory of the human wrist, which is

treated as the end-effector in this study.
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Figure 5.12: Individual joint angle trajectories during the lifting motion. Both the joint angles of the
measured motion (blue full lines) and the joint angles of the predicted motion (red dashed lines) for
a single trial of a single subject are showcased. The RMSEs for each joint angle trajectory is given

above the corresponding plot. The maximum differences between measured and predicted joint angle
trajectories are highlighted with green vertical lines and their numerical values are given.

the ankle to the elbow joint. The average RMSE is relatively similar across subjects, except
for subject number 3, which has been identified as an outlier in terms of height/weight
ratio. Table 5.7 exhibits the mean correlation coefficients of the predictions across joints
and subjects. The CC decreases throughout the kinematic chain. Similar to the RMSE, the
CC remains similar for all subjects, bar subject 3. The RMSE of the predictions is higher
than state-of-the-art approaches using data-driven modeling [104, 134], indicating that the
chosen objective function basis does not do a good enough job of explaining the motion of
the subjects.
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CC [1] Subject1 Subject2 Subject3 Subject4 Subject5 Subject6
Ankle .47± .54 .51± .28 .91± .07 .73± .12 .54± .25 .82± .14
Knee .86± .37 .52± .62 .76± .34 .70± .16 .84± .13 .90± .03
Hip .97± .03 .88± .02 .92± .05 .91± .06 .85± .23 .87± .05
Back .85± .15 .86± .07 .71± .47 .71± .17 .76± .11 .84± .11

Shoulder .38± .43 .56± .28 −.22± .38 .58± .22 .44± .38 .40± .41
Elbow .15± .59 .08± .37 −.44± .28 .35± .35 −.01± .33 −.00± .47

Mean .61± .15 .57± .21 .44± .14 .66± .12 .57± .17 .64± .14

Table 5.7: Mean correlation coefficients (± standard deviations of correlation coefficients) of the
joint angle trajectories of the predicted motions compared to the joint angle trajectories of the

measured motions for all subjects. The sample size for each subject is 20 trials.

This distribution of errors can be partially explained by the inadequate modeling of the
back joint. The entirety of the spine is modeled using only 1 DoF which is not enough
to capture all of the variability of the spine-induced motion. The human spine is a com-
plex structure consisting of 24 articulating vertebrae each containing nominally 3 DoFs (i.e.
flexion-extension, lateral bending, axial rotation) but which are simultaneously constrained
by the intervertebral discs and ligaments, and certain vertebraes connection to the ribs.
When considering the whole spine as a singular unit, the entire motion of the spine is most
often modeled using a 6 DoFs model with 3 translational and 3 rotational DoFs [114]. Even
though the lifting motion we are studying is constrained to the plane, 1 DoF is not enough
to encompass all motion details, which subsequent joints must compensate.

Even though the task is planar within the sagittal plane, the upper arm tends to move in
the frontal and transversal planes due to the shoulder joint’s multiple-DoFs nature. For this
reason, previous research has outlined a need for modeling all the DoFs of the shoulder joint
to account for all possible variations in the measured and predicted motions [105].

Some errors are also incurred in the elbow joint angle and elbow joint torque because
of the simplified modeling of contact between the box and the human. The contact is
assumed to be rigid and non-actuated at the wrist, which implies that the elbow joint angle
(alongside other joint angles) must compensate for the motion introduced by the wrist joint.
Moreover, the external wrench applied by the box is assumed constant in Cartesian space
thus its variations are not taken into account during the motion, which implies that there
is a discrepancy between the required external wrench in the model and the one in reality,
inducing errors in the applied joint torques.

Because the body is modeled as a chain of rigid bodies, errors in the joint angles of joints
closer to the chain’s base tend to propagate to the joints closer to the chain’s end. As such,
the errors previously described and incurred in the earlier joint angles of the ankle, knee,
hip, and back tend to propagate to the shoulder and elbow joints. To a certain extent, this
justifies the large errors we observe in the shoulder and elbow joints. Moreover, joint torque
errors incurred near the chain’s end tend to propagate backward to joint torques of joints
closer to the chain’s base. This yields errors in the torque which is enforced in the dynamic
equation of the model (5.4) implemented via the RNEA (5.5).

On the other hand, Figure 5.13 illustrates the extremes of box-lifting predictions. It
provides an overlay of the best (Figure 5.13a), median (Figure 5.13b), and worst predictions
(Figure 5.13c) in terms of RMSE on data of joint angle trajectories gathered from all subjects.
In each sub-, the mean of all the joint angle trajectories is delineated by a solid black line, and
the area shaded in gray is the 99.7% confidence interval, the dashed colored lines represent
the joint trajectory prediction for that particular trial, while the full colored lines represent
the reference joint trajectory. Figure 5.13a highlights that the best prediction lies entirely in
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the confidence interval, while Figure 5.13b highlights that the median prediction lies mostly
in the confidence interval. Even the worst predicted trajectory on Figure 5.13c stays in
the confidence interval for the ankle, back, and elbow joints, but is far outside of it for the
knee, hip, and shoulder joints. While the current model does not achieve high accuracy, the
fact that the median prediction remains within the confidence intervals indicates that it still
makes relatively sensible predictions of the lifting motion in more than half the cases.

5.5 Conclusion

This chapter presented an approach to biomechanical lifting simulation based on data.
The importance of biomechanical simulations for lifting has been highlighted and optimization-
based simulation approaches for biomechanical lifting have been reviewed. A 6 DoF model,
consistent with the literature, was used in order to biomechanically model the human body.
The methodology and results of kinematic and dynamic identification of BSIP have been
presented. Trajectories were represented as B-splines, while the optimization-based motion
generation model was supplied with standard constraints from the literature. When appli-
cable, less constraining versions of the constraints have been imposed (i.e. constraining the
final end-effector position instead of the final joint configuration, dynamic stability instead
of static stability, ...). A set of basis objective functions has been established, in accordance
with the trends from the literature, but restricted and curated by complexity. These ob-
jective functions were investigated as instigators of human motion using data-driven IOC.
The optimal weighting of these objectives in terms of RMSE between the motion prediction
they generated and the data that was input. The training set consisted of one sample. The
prediction results were presented and analyzed on all samples.

The final accuracy obtained on the data set was not on par with other data-based ap-
proaches from the literature. An argument could be made, however, that the approach is
much less restrictive in terms of the way the data is integrated within the model. Data-
based approaches from the literature use the collected data in a direct manner within the
optimization-based motion generation procedure, by constraining or tracking the error be-
tween the prediction and the data, whereas the approach presented in this chapter uses the
data to identify the inversely optimal objective function which is then used independently of
the data for later predictions.

Improvements are warranted in the domain of accuracy. From the perspective of IOC, this
would require training on larger sets of training data and more objective functions within
the basis. Current approaches are not fast enough to be able to handle that amount of
computation. A necessary condition for this is the improvement of the IOC solution method,
which would require a thorough inquiry into the bilevel optimization methods state-of-the-art
and the use of efficient and robust bilevel solvers capable of handling general nonlinear bilevel
problems, which to the best of the author’s knowledge, do not currently exist.

From the perspective of human modeling and experiment design, it would seem that a
different model of the spine would induce less error in the distal joints of the 6 DoF model,
while more detailed modeling of the wrist joint may account for less error in the elbow joint
trajectory predictions, due to inaccuracies in the box’s position and thus in the perceived
collision constraints. Moreover, designing the experiment or the model in a way that takes
into account the drift of the elbow joints from the sagittal plane could decrease the large
prediction errors that are seen in the distal joints of the model.
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(c) Worst prediction.

Figure 5.13: Extremes of box lifting predictions: best, median, and worst predictions of joint angle
trajectories overlaid with statistics extracted from all subjects’ data. The overall mean is the solid

black line and the gray-shaded area represents three standard deviations.
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Chapter 6

Conclusion and Future Works

6.1 Summary

This thesis is a study in optimization-based human motion simulation and IOC. The goal
has been to advance data-driven IOC theory and to apply data-driven IOC to further the
accuracy of human motion simulations which are applicable in rehabilitation, ergonomics and
workplace design, and humanoid robotics.

Chapter 2 is dedicated to the IOC problem, which naturally arises as a method to increase
optimization-based human motion simulation accuracy by using data. This chapter delves
into the broad literature on the subject, focusing predominantly on applications of IOC in
human motion analysis, lending itself to a formalization of the IOC problem and elucidating
different approaches.

The introduction provides a recollection of the emergence of IOC in the field of human
motion analysis, tracing the development of two fairly popular methods, referred to in this
manuscript as the bilevel method and the IKKT method. Surveying the applications of IOC,
the section summarizes the main findings of each article and sorts the literature into two
opposing stances i.e. in favor of, or not in favor of IKKT. The general formalization of IOC
required setting up a framework where the DOC is thought of as a constrained parametric
optimization problem, and the argmin operator is thought of as a set mapping. The general
DOC formalization was done in the section on the general direct problem. The general
inverse problem section proceeds to formalize general IOC as a type of complex, set-valued,
non-linear regression problem. Perfect fitting of the data by the model is described by a
property named consistency and is defined as a property of the model itself when the data
set is fixed, and is very important later in the chapter. By exposing the issues one would
encounter by attempting to do general IOC in a non-parametric way, the section on direct
and inverse optimal control introduces the predominant and specific variety of IOC models
that are used throughout the rest of the manuscript and much of the literature. What we
refer to IOC relies on representing the DOC objective function as a weighted combination
of basis objective functions. IOC then uses data to infer the optimal weighting of these
objective functions, such that the optimization-based prediction is the most accurate. The
section on the verification of inverse optimality unveils how KKT conditions may be used
for determining when a DOC model is consistent with the data, for both convex and non-
convex DOC models, in both the unconstrained and constrained case. Checking if a model is
consistent with the data requires solving a linear or a conic programming problem, in the case
of an unconstrained or a constrained DOC model respectively. The chapter culminates with
the presentation of the two most popular “approximate” IOC methods as regression problems
with different loss functions in the final section approximate optimality, where the bilevel
method regresses with the mean-squared-error loss and the IKKT method regresses with the
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KKT residual loss. This presentation included common analytic and algebraic manipulations
used to reformulate these regression problems in literature.

Therefore, Chapter 2 contributes a novel formalization of the general DOC and general
IOC problems. It introduces general IOC as a complex set-valued regression problem with
different loss functions, introducing key concepts such as the KKT conditions, the parametric
direct optimal mapping, and model-to-data consistency. Though it provides an introduction
to both the bilevel and the IKKT methods, the chapter positions itself in favor of the bilevel
method which sets the tone for the rest of the chapters as well.

Chapter 3 was dedicated to developing a method for computing lower bounds on the error
of IOC for QP models of the DOC. The developed method can be used in the process of
feature selection.

The first section delves into how the optimality conditions may be used to characterize
the set of global optima of a parametrized optimization problem and presents Algorithm 1 for
feature selection. The spotlight is focused on QP models in the following two sections. Global
optima sets of unconstrained QP models are precisely characterized, and their compactness
and path-connectedness properties are proven under strict convexity assumptions. This
result is very important to theoretically justify using local-search algorithms to solve the
bilevel IOC problem arising from unconstrained QP models of DOC. For global optima
sets of constrained QP models the strict convexity assumption is lifted, and only their
characterization is provided as the aforementioned properties require additional assumptions
to prove. The heart of the chapter lies in the numerical methods section. After introducing
gradients and Hessians needed to solve the bilevel IOC problem in the QP model case,
the section focuses on LMI methods to compute lower bounds on the optimal value of the
IOC objective function, i.e. the error between data and predictions. The main algorithms
of this chapter are Algorithm 2 and Algorithm 3 for lower-bounding the IOC error, in
the unconstrained and the constrained QP case respectively. A section is dedicated to
numerical examples showcasing the results of the local search algorithm and the lower-
bounding algorithms for both unconstrained and constrained cases. Important extensions
are also discussed in the last section of the chapter.

The chapter formalizes the global optima sets for QP models of DOC and explores its an-
alytical properties, of which compactness and path-connectedness are particularly important
for justifying the use of local-search procedures to solve bilevel IOC problems. Using LMI
relaxations of bilevel IOC problems to compute lower bounds and perform feature selection is
a novel idea in the IOC literature. Therefore, the chapter opens the door to future methods
for feature selection in IOC, and in particular ones based on relaxations of the bilevel IOC
problem.

Chapters 4 and 5 are oriented towards practical applications and present analyses of two
tasks related to human biomechanics and motor control. The tasks were chosen to have
industrial and rehabilitation connotations so that the thesis results would have the potential
for the development of future real-world solutions.

Chapter 4 studied the task of muscle force sharing during gait, which is widely studied in
the literature on biomechanics and rehabilitation. IOC is applied to learn a DOC model of
muscle force prediction during gait, which also allows for the prediction of joint stiffness.

The methods section formalizes the muscle force sharing problem as a DOC problem.
Basis objective functions are sampled from the literature on optimal control-based muscle
force sharing studies and are introduced in Table 4.1. The corresponding IOC problem is
formalized using both the bilevel and the IKKT formalism. By using open-source muscle
force data, optimization models of the muscle force sharing are identified with both IOC
methods. Figure 4.3 showcases the central result: a comparison of the bilevel IOC muscle
force predictions and muscle force data, contextualized by the overlaid data statistics. Table
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4.2 showcases that using bilevel IOC significantly improves predictions compared to any
individual objective function, which is not the case for the IKKT method of IOC. The JS
is also well predicted as shown in Figure 4.5. A reduced numerical example of force-sharing
shows that the IKKT method can produce pessimal results, supporting the overall preference
for the bilevel method throughout the thesis. One of the limitations of the study is the need
for validation on large data sets, which is hindered by the difficulty of collecting EMG data.

Besides contributing an identified optimal control model for muscle force sharing, which
provides the best muscle force predictions during gait as measured by RMSE, the chapter
contributes predictions and comparisons of joint stiffness. The stiffness prediction shows a
lack of co-contractions, as it is systematically underestimated. This points to the lack of
objective functions in the function basis that would favor co-contraction since the only way
muscle agonist-antagonist pairs are linked is through the model constraints on torque. One
key takeaway is that the CNS seems to favor minimizing muscle activations (L1 and L2 norms
during stance, and L3 norm during swing) and muscle power. Both of these quantities are
dependent upon the state of the muscle, implying that there is a proprioceptive component
to the contraction commands of the CNS. In the context of IOC, this chapter demonstrated
the failure of the IKKT method and provided an example where it gave pessimal results
when considering the bilevel IOC objective.

Chapter 5 studied the human box-lifting motion, a widely studied task in the literature on
ergonomics and workplace design. A thorough examination of the literature on optimization-
based approaches for lifting motion simulation has been presented at the beginning of the
chapter, culminating in Table 5.3 and Table 5.2, respectively grouping constraints and objec-
tive functions most frequently encountered. The tables present a contribution in their own
right. Subsequently, a 6 DoF biomechanical model in the sagittal plane has been adopted.
Data collection was carried out with 6 healthy male subjects, using a motion capture sys-
tem and single force plate. The data was processed using standard kinematic and dynamic
identification procedures, yielding a marker tracking RMSE of 1.5 cm, a force GRW force-
tracking RMSE of 19 N and moment-tracking 16.79 N. The fairly large error in moment
tracking is attributed to frequent deviation of the identification movements from the sagittal
plane. Using spline representations for trajectories, the motion generation algorithm has
been formalized as a DOC containing joint, torque, and zero-moment-point limits, as well as
boundary constraints and collision constraints. A small and computationally simple basis of
objective functions was sampled from a large body of objective functions from the literature.
Using bilevel IOC and a single sample of the experimentally collected data, the optimal
weights of the objective functions were identified, and tested on the collected box-lifting data
set. The resulting angular RMSE between the predicted and the measured joint trajectories
across the whole data set was about 21◦, but going as low as 9◦ for the best predictions. The
best, median, and worst predictions are showcased in Figure 5.13. The median prediction
falls within three standard deviations of the dataset. While the best of predictions would be
considered at the state-of-the-art level, the median and average accuracy does not match the
state-of-the-art in data-driven box-lifting motion simulation.

This chapter provided an initial inquiry into the capabilities of IOC when dealing with
complex optimization-based models of DOC. The results indicated that the basis objective
functions presented in Equation 5.13 are not expressive enough to generate human-like mo-
tions on average, but may attain state-of-the-art performance in the best cases. Including
more biomechanically and physiologically realistic objective functions in the basis may help
alleviate this problem, like for instance total muscular effort or dynamic balance. However,
out of the considered optimization-based models the minimum-jerk model seems to work
the best, as is commonly shown for arm motions in the literature. Body proportions may
have a definitive influence on strategies used during lifting. This is indicated by the average
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prediction RMSE and CC being similar across all subjects except subject 3, which is the only
subject with significantly different body proportions.

A systematic overview and analysis of the literature and methods related to human motion
modeling, IOC, muscle force sharing, and box-lifting were provided throughout all of the main
chapters. Throughout the dissertation, the use of bilevel IOC and rejection of the much more
popular IKKT method, because of its lack of robustness, was advocated. Although the bilevel
method is much less computationally efficient, its results can be trusted in situations with
much measurement noise and uncertain models, which is not the case for IKKT, which was
demonstrated through examples in Chapters 3 and 4.

The general research hypotheses have been validated. On the one hand, the data analysis
of the human box-lifting motion in joint space and the muscle force sharing during gait
in muscle space has provided conclusive evidence of invariant aspects in the motions. The
similarity of the trends in box-lifting joint angle trajectories across all subjects has been
convincing, considering the different body proportions between the subjects. The muscle force
sharing has shown a more striking similarity between different trials, but only one subject
was considered. On the other hand, some invariant aspects of the motion produced by the
motor control system have been captured in the optimization model, both in the muscle force-
sharing problem and the box-lifting problem. A subset of muscles in the muscle force problem
was extremely well-tracked by the simulation. As for the box-lifting, it was showcased that
the median prediction in terms of RMSE did lay within the confidence intervals. The obtained
results have shown the capability of the proposed models and methods to capture the inherent
complexity of human movements and decisions using optimization with a compound objective
function.

6.2 Future Works

The identified gaps and limitations in this thesis and in existing approaches accentuate
the potential of further explorations in IOC, bilevel optimization, and the applications of IOC
in biomechanics. The gaps include the establishment of analytic properties of the global or
local optima sets of our biomechanical DOC models and reliable and efficient feature selection
methods in the general case. Though local-search was applied to the IOC problem in the
box lifting chapter, its path-connectedness and compactness were not guaranteed, and the
algorithm could, and did easily encounter difficulties. Moreover, the features for the lifting
motion were not optimally selected as manifested by the average accuracy of the model.

The most prominent limitation is the computational complexity of bilevel IOC. The box
lifting IOC training procedure took over a day in computation time. Improvements in the
accuracy and computational efficiency of bilevel program solution methods, as well as the
existence and availability of reliable open-source software for solving bilevel programs, are
essential and would be the most beneficial to current developments in IOC.

As IOC is still a relatively young field of research, and although valiant efforts have been
made to collect and classify terminology [129, 138], the field could benefit from more papers
that identify the most important research directions, standardize terminology, and connect
the field to the related field of Inverse Reinforcement Learning which has benefited from more
widespread interest.

The differences in the loss function used in IOC have been only rarely explored, though
a multitude of different ones have been suggested. As such, understanding the properties
of these different loss functions and designing new but useful ones in the future is an open
challenge. Similarly, IOC is rarely combined with probability and statistics, in the sense
that no probability distributions are placed upon the input data, the static task environment
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parameters, or the model parameters. One way to arrive at more useful loss functions for
IOC could be by fusing these two theories. However, being able to grapple with these ideas
will require a very high degree of mathematical sophistication.

Another difficulty with IOC is the enormous complexity it requires to be trained on a
data set. As presented in Equation (2.9), training IOC on a whole data set requires solving
a bilevel problem with as many inner loop optimization problems as there are data points.
As such, current IOC methods are usually required to limit themselves to only one training
example in the case of complex models. Being able to simplify such training procedures using
a decomposition of some sort would be a huge step forward for the field.

A natural continuation to the work developed in this thesis is the extension of the IOC-
error lower-bounding methods to include max-representable and polynomial objective func-
tions, by using the theory of polynomial optimization. It is the case that if the DOC model
is a polynomial optimization problem, then the single-level IOC problem resulting from the
application of the KKT conditions to the inner loop of the bilevel IOC problem will also
be a polynomial optimization problem. Therefore, one can use the first step of the Lasserre
hierarchy [100] to get an LMI providing an easy lower bound on the IOC error of the poly-
nomial IOC problem. The extension of the IOC-error lower-bounding method to non-convex
objective functions appears particularly difficult and may not submit to the application of
LMIs for the lower-bounds. It will probably require case-specific relaxations of the DOC
optimality requirement.

On the other hand, the field of IOC could benefit from the development of more feature
selection methods that have mathematical guarantees. At the moment, there exist feature
selection algorithms with no guarantees, based on the IKKT method. To the best of the
author’s knowledge, the feature selection algorithm for QP models is one of the few with
some sort of mathematical guarantee.

Future endeavors should aim to refine the choice of error and objective functions in muscle
force problems, enhancing the models’ ability to reflect human physiology and biomechanics
accurately by including objective functions that reflect the current muscle state, or the current
body state. The use of higher-order temporal characteristics of the muscle forces within the
basis of objective functions could be of interest. In a similar vein, objective functions based
on joint stiffness, or agonist-antagonist muscle pairs, could be worth studying.

Concerning the box lifting motion, as well as general whole-body human movements,
cornering the most important individual features before running the lengthy IOC procedure
seems to be of great importance. Extending the box lifting study of this thesis could be done
by including more biomechanically realistic functions like total muscle effort or dynamic
balance. Higher-level, task-oriented features like distance to the goal, maximum collision
margin, or completion time, could provide a much richer DOC representation of the box-
lifting motion. However, including these features in the study would be more interesting if
simultaneously modeling the human perception system, and will certainly require access to
powerful computers.

On the other hand, consideration of time-varying features is another possibility for future
research. The way human subjects bring the box close to their body during the first part
of the box-lifting motion is indicative of the minimization of joint torques. Moreover, the
changing nature of the important features is supported in the muscle force sharing study
where different weights were found for the objective functions in the stance and the swing
phase. Literature in this direction already exists, but is focused on the IKKT method, which
has played an antagonistic role in this manuscript.

Finally, traditional research in the biomechanics field has been focusing on optimization-
based approaches to motion prediction, leaving a legacy on today’s research in human motion.
Eventually, a paradigm shift to reinforcement learning and its corresponding IRL for modeling
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human motion in biomechanical studies may bring about some interesting insights.
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Appendix A

Grid Search on the Simplex

Challenging optimization problems, often characterized by cost or constraint functions
that are difficult to compute, and even more challenging to compute derivatives of, are often
solved using derivative-free optimization methods. Examples of derivative-free methods are
the grid search method and the Nelder-Mead simplex [1]. Randomized search algorithms like
Simulated Annealing and Evolutionary Algorithms are often used. Another example includes
the many derivative-free algorithms devised by Powell [64] which often rely on approximations
and interpolations of the function being optimized.

Standard Grid Search

Equation (A.1) gives a placeholder constrained optimization problem that contains bound
constraints ωωω− ≤ ωωω′ ≤ ωωω+ on the optimization variable ωωω′.

ωωω = argmin
ωωω′∈Rm

f(ωωω′)

subject to hhh(ωωω′) = 0

ggg(ωωω′) ≤ 0

ωωω− ≤ ωωω′ ≤ ωωω+

(A.1)

The most simple and direct method to solve such optimization problems is the grid-search
method. To satisfy the bound constraints, each of the coordinates ωi, i = 1, . . . ,m of the
optimization variable should be contained within a finite-length interval [ω−

i , ω+
i ] ⊂ R. Grid

search is based on the idea of discretization of each of those intervals into a finite amount of
points.

In standard grid-search, the interval is subdivided into r− 1 (r > 1) subintervals of equal
length, obtaining points

ω
(j)
i = ω−

i +
j

r
(ω+

i − ω−
i ), j = 0, . . . , r,

as the subinterval endpoints. Combining the subinterval endpoints once they are computed,
a regular grid

G = {(ω(j1)
1 , . . . , ω(jm)

m ) | ji = 0, . . . , r (i = 1, . . . ,m)}

over the finite coordinate box {ωωω | ωωω− ≤ ωωω ≤ ωωω+} ⊂ Rm is formed and contains rm points,
which we will denote with ωωω(ℓ) with ℓ = 1, . . . , rm. One then computes the value of the cost f
and of the constraints hhh, ggg for each value of ωωω(ℓ), yielding f (ℓ), hhh(ℓ), ggg(ℓ). Subsequently, one
simply chooses the grid point ℓ with the smallest f (ℓ) where the constraints hhh(ℓ) = 0, ggg(ℓ) ≤ 0
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are satisfied i.e.
ℓ∗ = argmin

ℓ=1,...,rm
{f (ℓ) | hhh(ℓ) = 0, ggg(ℓ) ≤ 0}.

Simplex Grid Search

There are certain cases under which the constraints impose a special structure upon the
decision variable, which allows the construction of a more efficient grid. When the special
simplex constraint ωωω ∈ ∆m occurs, where

∆m = {ωωω | ωi ≥ 0 (i = 1, . . . ,m),

m∑
i=1

ωi = 1}

is the m-simplex (or probability simplex), one can construct a slightly more efficient grid
than the standard one. Equation (A.2) gives a placeholder constrained optimization problem
that contains the simplex constraint on the optimization variable ωωω′.

ωωω = argmin
ωωω′∈∆m

f(ωωω′)

subject to hhh(ωωω′) = 0

ggg(ωωω′) ≤ 0

(A.2)

Constructing a grid Gm
r on the m-simplex ∆m with r − 1 partitions of each simplex edge

can be reformulated as a combinatorial problem. First, let us describe the grid points using
integer variables. The set of grid points is equivalent to the set of all m-tuples of non-negative
integers whose components sum to r − 1,

(ω1, . . . , ωm) =
(j1, . . . , jm)

r − 1
, ji ∈ N, ji ≥ 0 (i = 1, . . . ,m),

m∑
i=1

ji = r − 1,

and finding them can be reformulated as the problem of finding all the ways r− 1 items may
be distributed amongst m categories, which is colloquially referred to as the “Stars and Bars”
problem. Such a grid contains |Gm

r | =
(
m+r−2
m−1

)
grid points [10].

Once the grid points are generated, the search for the optimal point proceeds as per
usual, by checking the value of the cost function and of the constraints at each grid point
and choosing the one where the function value is the least, while the constraints are satisfied.

Figure A.1 presents two examples of regular grids G3
4 and G3

7 on the 3-simplex ∆3 with
r − 1 = 3 and r − 1 = 6 partitions along each edge, respectively. Grid G3

4 contains
(
5
2

)
= 10

points, while the grid G3
7 contains

(
8
2

)
= 28 points. The G3

7 grid contains the G3
4 grid as a

subset G3
4 ⊂ G3

7, even though it is in general not true that Gm
r ⊂ Gm

s when r < s.
The individual grid points for G3

4 and G3
7 are given in equation (A.3), with G3

4 ={
ωωω(1), . . . , ωωω(10)

}
while G3

7 =
{
ωωω(1), . . . , ωωω(10), ωωω(11), . . . , ωωω(28)

}
. The grid points from the figure

have been generated using Algorithm 4.
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(a) A regular grid on the 3-simplex ∆3 with 3
partitions along each edge (m = 3, r = 4), yielding(

3+4−2
3−1

)
=
(
5
2

)
= 10 grid points.

(b) A regular grid on the 3-simplex ∆3 with 6
partitions along each edge (m = 3, r = 7), yielding(

3+7−2
3−1

)
=
(
8
2

)
= 28 grid points.

Figure A.1: Examples of grids with different partitions ((a) r = 4, (b) r = 7) on a 3-simplex ∆3.

ωωω(1) =
[
0.000 0.000 1.000

]T
ωωω(2) =

[
0.000 0.333 0.667

]T
ωωω(3) =

[
0.000 0.667 0.333

]T
ωωω(4) =

[
0.000 1.000 0.000

]T
ωωω(5) =

[
0.333 0.000 0.667

]T
ωωω(6) =

[
0.333 0.333 0.333

]T
ωωω(7) =

[
0.333 0.667 0.000

]T
ωωω(8) =

[
0.667 0.000 0.333

]T
ωωω(9) =

[
0.667 0.333 0.000

]T
ωωω(10) =

[
1.000 0.000 0.000

]T
ωωω(11) =

[
0.000 0.167 0.833

]T
ωωω(12) =

[
0.000 0.500 0.500

]T
ωωω(13) =

[
0.000 0.833 0.167

]T
ωωω(14) =

[
0.167 0.000 0.833

]T

ωωω(15) =
[
0.167 0.167 0.667

]T
ωωω(16) =

[
0.167 0.333 0.500

]T
ωωω(17) =

[
0.167 0.500 0.333

]T
ωωω(18) =

[
0.167 0.667 0.167

]T
ωωω(19) =

[
0.167 0.833 0.000

]T
ωωω(20) =

[
0.333 0.167 0.500

]T
ωωω(21) =

[
0.333 0.500 0.167

]T
ωωω(22) =

[
0.500 0.000 0.500

]T
ωωω(23) =

[
0.500 0.167 0.333

]T
ωωω(24) =

[
0.500 0.333 0.167

]T
ωωω(25) =

[
0.500 0.500 0.000

]T
ωωω(26) =

[
0.667 0.167 0.167

]T
ωωω(27) =

[
0.833 0.000 0.167

]T
ωωω(28) =

[
0.833 0.167 0.000

]T

(A.3)

Algorithm 4 describes a procedure for generating a list containing all the grid points of an
m-simplex with r partitions. The procedure is recursive, with the function SimplexGrid being
the base case which initializes the required variables, and the function SimplexGridRecur-
sion being the recursive function. The algorithm generates points of the grid Gm

r inside a
list in a programming language, by calling SimplexGrid with the desired parameters m and
r.

Algorithm 4 assumes the existence of a method add for lists, which appends an element
to the end of the list, as well as a language capacity for vector algebra with the existence
of the method zeros which creates a vector of zeros of a given dimension, and scalar-vector
multiplication with expressions such as jjj/(r − 1) within SimplexGridRecursion.

111



Algorithm 4: Simplex Grid Generation by Recursion
Input: m, r
Output: Gm

r

1 Function SimplexGrid(m, r):
// Initialize recursion inputs

2 d = 0 // Current component index
3 jjj = zeros(m, 1) // Integer component vector
4 Σ = 0 // Component sum
5 Gm

r = list() // Grid point list
// Start recursion

6 Gm
r = SimplexGridRecursion(d, m, r, jjj, Σ, Gm

r )
7 return Gm

r

8

9 Function SimplexGridRecursion(d, m, r, jjj, Σ, Gm
r ):

// If the last component is reached
10 if d ≥ m− 1 then
11 jjj[d] = (r − 1)− Σ // Last component completes integer sum
12 Gm

r .add(jjj/(r − 1)) // Normalized vector added to list
13 return Gm

r

14

// Traverse all possible values for current component
15 for i = 0, . . . , (r − 1)− Σ do
16 jjj[d] = i // Set current component value
17 Σi = Σ+ i // Update current sum value
18 Gm

r = SimplexGridRecursion(d+ 1, m, r, jjj, Σi, Gm
r ) // Call recursion for

next component with updated sum

19

20 return Gm
r
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