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Progressive failure analysis of laminar composites under three-dimensional stress
state using layered finite elements

Abstract:

Laminar composites are extensively used in civil engendering due to their exceptional strength,
stiffness, corrosion resistance, and cost-effectiveness. They are ideal for high-reliability ap-
plications. The 21st century’s focus on environmental protection has led to increased use of
natural-based materials like cross-laminated timber (CLT) in building construction. CLT panels
have a high stiffness-to-weight ratio, making them well-suited as load-bearing elements, such as
walls and floors. The optimal design of laminar composites is often hindered by uncertainties
in failure prediction and the computational costs associated with progressive failure analysis
(PFA), particularly for larger structures.

This study introduces a novel prediction model that combines the smeared crack band (SCB)
damage model with the full layerwise theory (FLWT). The aim is to enhance the computational
efficiency of PFA in laminar composites while maintaining the accuracy of 3D finite element
models. The SCB model accurately captures the response of damaged lamina in both fiber
and matrix directions using distinct strain-softening curves, ensuring a precise representation
of post-failure behaviour. The damage law is derived based on the assumption that the total
energy required to cause failure in an element (released strain energy) is equivalent to the energy
necessary to create a crack passing through it. To alleviate mesh dependency, the fracture energy
is scaled by a characteristic element length. Failure initiation and modes are determined using
the Hashin failure criterion. Furthermore, the model is extended to consider different failure
behaviour of timber in tension and compression. This extension enhances the computational
framework’s applicability to the field of computational mechanics for bio-based composites, such
as CLT. The validity of the model is then confirmed through an extensive experimental program
carried out at the Faculty of Civil Engineering, University of Belgrade.

Application of layered finite elements for continuum damage modelling in laminar composites
remains largely unexplored in literature, particularly when combined with the SCB damage
model. The FLWT-based model accurately captures the 3D stress state within each lamina,
including continuous transverse stresses between adjacent layers, crucial for accurate prediction
of failure initiation. Furthermore, the FLWT demonstrates a weak correlation between the size
of the considered domain and the mesh, presenting a notable difference from standard finite
element models. The developed FLWT-SCB prediction model is integrated into an original
FLWTFEM framework, offering a user-friendly graphical environment for easy visualization
of input and output data. The proposed model’s efficiency has been verified using numerous
benchmark examples during progressive failure analyses of laminar composites and CLT panels
with arbitrary geometries, loading and boudary conditions and stacking sequences. The model
has demonstrated its accuracy in predicting the response of both intact and damaged laminar
composites, and valuable recommendations for future research in this field are included.

Keywords: progressive failure analysis, laminar composites, cross-laminated timber, full layer-
wise theory, smeared crack-band damage model, 3D stress field
Scientific field: Civil Engineering
Scientific subfield: Engineering Mechanics and Theory of Structures
UDC: 624.04(043.3)
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Analiza progresivnog loma kompozitnih laminata u uslovima prostornog stanja
napona primenom slojevitih konačnih elemenata

Rezime:

Zbog svojih izuzetnih materijalnih karakteristika u pogledu čvrstoće i krutosti, male sopstvene
težine, otpornosti na koroziju i niskih troškova održavanja, kompozitni laminati imaju potencijal
za upotrebu u građevinarstvu. Sa porastom svesti o zaštiti životne sredine u 21. veku, sve je
češća upotreba prirodnih materijala. U skladu sa tim, u građevinarstvu sve veću popularnost
stiče kompozitni laminat na bazi drveta - unakrsno-lamelirano drvo (CLT). Zbog visokog odnosa
krutosti i sopstvene težine CLT-a, moguće je projektovati elemente male težine i velikog raspona.
Nepouzdanost u predviđanju ponašanja oštećenih kompozitnih laminata, kao i kompleksnost
proračuna progresivnog loma znatno otežavaju njihovo projektovanje.

U okviru ove disertacije je razvijen numerički model za analizu progresivnog loma kompozitnih
laminata, koristeći model razmazane pukotine (eng. "smeared crack band" - SCB) i slojevitu
teoriju ploča. Model poseduje kapacitet trodimenzionalnih numeričkih modela uz smanjeno
trajanje proračuna, čime se povećava efikasnost numeričke analize. Kod SCB modela, ponašanje
oštećene lamine je opisano različitim krivama loma u naponsko-deformacijskom prostoru, kako
bi se u makroskopskom pogledu opisala propagacija oštećenja koje nastaje usled kidanja vlakana
i matrice, respektivno. Zakon omekšavanja materijala je određen na osnovu pretpostavke da je
oslobođena energija deformacije jednaka energiji potrebnoj da dođe do loma vlakana, odnosno
kidanja matrice. Inicijacija i oblici loma su određeni primenom Hashin-ovog kriterijuma loma.
Nakon toga, izvršena je modifikacija modela kako bi se opisalo različito ponašanje drveta pri
zatezanju i pritisku. Na taj način, mogućnosti razvijenog numeričkog modela su proširene
i na analizu progresivnog loma prirodnih kompozitnih laminata, kao što je CLT. Validnost
predloženog modela je potvrđena kroz detaljna eksperimentalna ispitivanja na Građevinskom
fakultetu Univerziteta u Beogradu.

Upotreba slojevitih konačnih elemenata u analizi progresivnog loma je u velikoj meri neistražena
u literaturi, posebno u kombinaciji sa SCB degradacijskim modelima, gde slojeviti model
ploče treba objediniti sa fenomenima mehanike loma. Numerički model, zasnovan na slojevitoj
teoriji ploča, omogućava precizno određivanje prostornog stanja napona, zadovoljavajući uslove
ravnoteže međulaminarnih napona, što je veoma bitno prilikom predviđanja inicijacije loma.
Takođe, pri modeliranju većih konstrukcija, primenom slojevite teorije ploča omogućava se
znatno smanjenje broja konačnih elemenata u poređenju sa postojećim numeričkim modelima.
Razvijeni numerički model je implementiran u FLWTFEM kod, čime je obezbeđeno puno
grafičko okruženje, pogodno za vizualizaciju ulaznih podataka i rezultata proračuna. Efikasnost
predloženog modela je verifikovana korišćenjem brojnih referentnih numeričkih primera, prilikom
analize progresivnog loma kompozitnih laminata i CLT panela sa proizvoljnom geometrijom,
opterećenjem, graničnim uslovima i orijentacijom slojeva. Potvrđena je tačnost predloženog
modela u predviđanju odgovora kako neoštećenih tako i oštećenih kompozitnih laminata, a date
su i važne preporuke za buduća istraživanja u ovoj oblasti.

Ključne reči: analiza progresivnog loma, kompozitni laminati, unakrsno-lamelirano drvo
slojevita teorija ploča, model razmazane puktine, prostorno stanje napona
Naučna oblast: Građevinsko inženjerstvo
Uža naučna oblast: Tehnička mehanika i teorija konstrukcija
UDK: 624.04(043.3)
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1 Introduction

Composite materials are those produced from two or more constituent materials on a macroscopic
scale to achieve better engineering properties in comparison with conventional building materials,
such as concrete or masonry. Specialized types of high performance laminar composites are
fiber-reinforced polymers (FRP), consisting of high strength fibers embedded in a matrix
material. The matrix keeps the fibers in the desired orientation, simultaneously acting as a
load transfer medium between fibers. For structural application, FRP are generally made in
the form of thin layers (laminae) as a fundamental building block. Since unidirectional FRP
laminae exhibit very low strength and modulus in the direction transverse to the fibers, they
must be stacked together to achieve the desired stiffness and thickness [1]. A collection of
laminae with different fiber orientation is called laminate. Due to their outstanding strength
and stiffness, corrosion resistance and low maintenance costs, FRP have been widely used in
the construction of aerospace, mechanical, marine and automotive structures which generally
require high reliability levels.

With the growing awareness of environmental protection in the 21st century, the use of natural-
based materials, like cross-laminated timber (CLT) (Figure 1.1, left), in building construction is
becoming more common [2]. CLT is a laminar composite made of odd number of timber laminas
stacked and glued together in a crosswise manner. The advantages of CLT for the building sector
are related to the ease of prefabrication, short erection time on site, high stiffness-to-weight
ratio and fire resistance. For these reasons, CLT panels are very suitable to act as load-carrying
elements in structural system such as walls and floors [3]. Also, small self-weight of CLT reduces
the required size of foundations and provides the possibility of using CLT panels in seismically
active areas.

However, optimal design with laminar composites is often not achieved due to uncertainties in
failure prediction. Failure of a structural element occurs when it cannot perform its intended
function. Due to their complex kinematics, laminar composites may fail through various
scenarios, such as fiber breakage and pull out, matrix yielding, cracking and delamination [4]. In
FRP, the damage progression often starts with matrix cracking transverse to the fibers, followed
by fiber breakage and delamination between plies. On the other hand, rolling shear brittle
failure (Figure 1.1, right) [5] due to the rotation of wood’s fibers is assumed to be the first
occurring failure mode in CLT panels, as a consequence of transverse shear strength of cross
timber layers. In real structural elements, holes and notches are often present, which further
complicates prediction of damage progression and the ultimate strength due to presence of stress
concentration zones. Furthermore, the ultimate strength and failure mechanisms depend on
geometrical factors and material properties such as specimen width, hole diameter, stacking
sequence or ply thickness [6]. Therefore, the understanding of inelastic material behaviour due
to damage propagation is crucial step towards the reliable and safe design of laminar composites.
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1. Introduction

Figure 1.1: Cross laminated timber (CLT) panel (left) and typical rolling shear failure mode of
CLT panel (right)

Initiation of damage occurs when stresses in the weakest lamina exceed the allowable fiber or
matrix strength. A suitable failure criterion is required to capture the damage initiation of
laminar composites in one or more specific failure modes. As damage progresses, progressive
failure analysis (PFA) is performed to describe the post-failure behaviour in composite materials.
Failure mechanisms often interact with each other, leading to complex crack pathways when
modelling damage propagation. For the implementation of failure initiation and propagation
algorithms within some computational (i.e. finite element) model, mathematical, so-called
damage models are required [7] such as: discrete damage models (DDM) and continuum damage
models (CDM). DDM involve explicit geometrical representation of cracks within the structure,
typically using cohesive interface elements to handle discontinuities within the finite element
(FE) mesh. On the other hand, in CDM approaches, intralaminar cracks are smeared out within
the finite element domain and the failure mechanism is then represented through material
stiffness degradation, controlled by specific damage variables.

The earliest CDM approach is instantaneous softening method (ISM), in which the damaged
material is assumed to lose its entire stiffness and strength in the dominant, stresses directions
[8]. It is generally observed that the ISM underestimates laminate strength due neglecting the
fact that damage is indeed localized and a failed lamina still has some residual load-carrying
capability. Fiber-reinforced composite materials generally exhibit quasi-brittle post-failure
behaviour, resulting in a high fracture energy dissipated and therefore a more gradual propagation
of damage. An alternative approach to ISM is gradual softening method (GSM), where the
material property associated with the failure mode is degraded gradually (i.e. linearly or
exponentially) until it reaches zero [9]. Due gradually unloading of the damaged material, the
stresses can be redistributed to the remaining undamaged material. GSM are very popular due
to their simple implementation in commercial engineering software’s based on the finite element
method (FEM) and relatively low computational cost. However, the approaches outlined above
suffer from a mesh dependency problem related to strain localisation during the PFA. This
problem can be reduced by scaling the fracture energy using a characteristic element length, as
described by the crack-band theory.
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In order to capture the effect of distinct failure modes on the macro-scale, the originally fracture-
mechanics augmented smeared crack band (SCB) model was developed by Williams et al. [10].
However, the damage pattern and damage growth trajectory in orthotropic laminar composites
cannot be realistically predicted, because the above damage model does not account for any
preferred material orientation. Using the above model, the mesh orientation issue in SCB
models was improved by devolving the sub-laminate strain-softening response into equivalent
stress-strain responses in the principal lamina directions [11]. This damage law is determined
based on the assumption that the total energy needed to fail an element (released strain energy)
is equal to the energy needed to create a crack that passes through it.

Finally, SCB damage models lead to a good compromise between computational cost and solution
accuracy, and they are thus used in most of the studies dealing with composite failure modelling
in conjunction with different plate theories. However, the computational costs associated with
PFA of laminar composites can be prohibitive, even considering the relative efficiency of SCB
models, especially for larger structures. This is usually due to the requirement of refined, often
3D meshes, to obtain an accurate stress field.

This thesis aims to increase the computational efficiency of the PFA of laminar composites and
preserve the accuracy of the 3D finite element models, by using a layered finite element model
based on the full layerwise theory (FLWT) [12] in conjunction with SCB.

Figure 1.2: Graphical representation of a thesis concept [13]

The use of FLWT is also justified due to the capability to account for continuous transverse
(interlaminar) stresses between the adjacent layers in the laminate. Further incorporation of the
transverse normal stress, as proposed, is important in modelling the localized effects such as
holes, cut-outs or stress-deformation state around point supports. The layerwise expansion of
all three displacement components results in the 3D stress state in laminar composites, which
provides a very good basis for further prediction of potential damage initiation.

Within this thesis, damage progression and post-failure behaviour are modelled following the
SCB damage model with strain-softening, where the damage is smeared out within the FE
domain, and is taken into account by reducing the values of material stiffness matrix. The
material stiffness matrix degradation is controlled by damage variables, which evolution are
governed by an equivalent displacement appropriately defined for each failure mode. The mesh
dependency problem is minimized by scaling the fracture energy using a characteristic element
length. The response of damaged lamina, in both fiber and matrix direction, is described
by distinct strain-softening curves where the peak stress coincides with the fibre and matrix
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strength, respectively. The proposed strain-softening curves are then modified to account for
the different post-failure behaviour of the timber in tension and compression during the PFA of
CLT panels. It is worth highlighting that this thesis presents a significant advancement in the
field by introducing the application of the sub-laminate-based SCB damage model for the first
time in analysing the progressive failure of CLT panels. Finally, since layered finite elements
require only C0 continuity of generalized displacements along element boundaries, they can be
applied for the PFA of laminar composites of arbitrary shape, loading, boundary conditions and
stacking sequence.

Both finite element and damage model are implemented into an object-oriented FLWTFEM
framework, making the original conjunction between SCB damage model and FLWT, the so-
called FLWT-SCB prediction model (Figure 1.2). The FLWTFEM solver is written in Matlab,
while the graphical user interface for both pre- and post-processing is developed using GiD [14].
This framework was originally developed by authors in [15] and upgraded in this thesis to be
used for all numerical simulations.

The thesis is organized as follows: after the introduction, the literature overview and the
previous research in this field is elaborated in Chapter 2. Governing equations of the full-
layerwise (FLWT) theory are presented in Chapter 3. This served as a base for the derivation
of a layered FLWT-based finite element model, which is elaborated in Chapter 4. In Chapter
5, several macroscopic failure criteria that describe the initiation of the damage of laminar
composites, as well as the typical failure modes occurring in both FRP and CLT plates are
presented. After that, the mathematical formulation of the considered smeared crack-band
(SCB) damage model is described in Chapter 6. Next, the algorithm of damage evolution is
presented in order to describe the response of damaged lamina. Structure, design and capabilities
of the original object-oriented FLWTFEM framework, used for all numerical simulations within
this thesis, are explained in detail in Chapter 7. Chapter 8 consists of various validation and
benchmark examples, used to prove the applicability and benefits of the proposed model, for
both structural and progressive failure analysis of laminar composites. Finally, the conclusions
and future research recommendations in this field are provided in Chapter 9.
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2 Review of previous research

Progressive failure analysis (PFA) of laminar composites requires application of appropriate
damage model, in order to predict damage progression and post-failure behaviour in composite
materials. The first effort to model the failure behaviour of laminar composites using PFA was
made by Petit and Waddoups [16] in 1969. They used the instantaneous softening method (ISM)
for damage modelling of symmetric plane anisotropic laminates subjected to biaxial membrane
loads. In their analyses, the failure of the lamina occurs when any of the strain components
relative to the material axes exceeds the limiting strain. A failed lamina was modelled by using
negative tangent modulus. They assumed that the tangent modulus relative to one material
axis is not influenced by the presence of stresses in other directions. Ultimate failure of a
laminate is assumed to occur when stiffness matrix of the laminate becomes singular, or when a
negative sign appears on the diagonal of laminate stiffness matrix. Following a similar approach,
Sandhu et al. [17] developed a nonlinear total strain energy criterion for failure prediction of
unidirectional and angle- ply laminates. The piecewise cubic spline interpolation functions were
used to represent experimentally obtained stress-strain curves of lamina. Abu-Farsakh and
Abdel-Jawad [18] introduced a similar failure criterion based on an energy concept, but instead
of a whole area, the triangular area under the stress-strain curve was used as the total strain
energy density. However, the failure modes could not be identified for any criterion which poses
difficulties for material degradation modelling and failure propagation.

Engelstad et al. [19] studied progressive failure behaviour of graphite-epoxy panels in axial
compression, using both the Tsai–Wu [20] and the maximum stress criteria for failure predictions.
They formulated the damage model based on the dominant stress appearing in the criterion.
Starting from [19], Singh and Kumar [21] performed the PFA of symmetric thin laminates
under uniaxial compression and uniaxial compression combined with in-plane shear loads. The
modified Tsai–Hill criterion [22] was used for failure prediction, while the maximum stress
criterion was used to predict delamination. Ochoa and Engblom [23] presented a PFA for
laminar composites in uniaxial tension using Hashin failure criterion [24].

A 3D finite element model was first used for the PFA by Lee [25] in 1982. He applied the original
failure criterion to predict failure modes of a biaxial loaded composite laminate with a central
hole. Subsequently, Hwang and Sun [26] followed a similar 3D model and used a modified form
of Hashin criterion to predict fiber breakage and matrix cracking, in conjunction with both
the criteria of Lee and Chang and Springer [27] for delamination prediction. In [25, 26], the
same ISM damage model was used for stiffness reduction. However, Lee [25] defined fiber failure
as a complete failure of an element, while Hwang and Sun [26] defined a combined fiber and
matrix failure as complete failure of an element. In either case, the stiffness matrix of the failed
element was reduced to zero.
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2. Review of previous research

The previous studies showed that an instantaneous degradation of particular material properties
to zero can lead to some computational problems such as lack of convergence. That can
be avoided by using a constant small value for degradation factors instead of zero. Tolson
and Zabaras [28] developed a seven degree of freedom plate element based on the HSDT to
study progression of failure in graphite/epoxy composite laminates. They used five failure
criteria, namely the maximum stress, the Lee, the Hoffman [29], the Tsai–Wu, and the Hashin
criteria,respectively, to predict failure mode. The so-called stiffness reduction factor (R) was
used for material degradation, and its value showed to depend on the number of failed Gaussian
integration points. If failure occurs in only one point then R=0.75, and if all the four points
have failed then R=0.0.

Tan et al. [30–32] proposed a 2D progressive damage model for laminates containing central
holes subjected to in-plane tensile or compressive loading, using Tsai-Wu criterion. They used a
parametric study to evaluate the appropriate values of the stiffness degradation factors, assumed
to be different for failure modes in tension and compression. This is justified by the fact that
crack surfaces under tensile loading are traction free, whereas under compressive loadings they
can still carry some load. The proposed damage model agreed with experimental results, but
the predicted ultimate strength values were very sensitive to the selected values of degradation
factors. A very similar approach with degradation factors assigned to different failure modes was
developed by Camanho and Matthews [33] and implemented in 3D FE framework in ABAQUS
[34]. They used Hashin failure criterion to predict damage progression. A comparison of
ISM-based models against the experimental results confirmed that the predicted failure occurs
at a substantially lower load than the experimentally determined one, underestimating the
laminate strength and neglecting the fact that the damage is indeed localized and a failed lamina
still has a residual capability.

An alternative approach to ISM is gradual softening method (GSM). Most early works on GSM
[35–38] used the Weibull distribution, based on fiber bundle failure theory [39] to model fiber
failure of open-hole laminar composites under uniaxial and biaxial tension. Reddy et al. [40]
developed a 3D GSM to study the failure of laminar composites under tensile or bending load.
They proposed a gradual stiffness reduction scheme which resulted in the partial unloading of
elements and allowed accumulation of damage in the element. The proposed damage model
agreed with experimental results, but the predicted ultimate strength values were very sensitive
to the selected values of stiffness reduction coefficient (SRC).

Barbero et al. [41] proposed a CDM based on irreversible thermodynamics considerations.
Damage propagation was modelled via second-order damage tensor, whose eigenvalues represent
the density of distributed microcracks. The degradation factors were calibrated from experiments
in order to determine the material softening laws. McGregor et al. [42] developed a GSM model
of nonlinear constitutive behaviour to model the compressive failure of notched composites.
In order to represent the complete force-displacement response of a representative volume
element of the material, an analog model composing of spring, gap, fuse and slider elements
was constructed. However, this model is given as a predefined nonlinear force–displacement
relationship which is difficult to determine. Hallett and Wisnom [43] and Abisset et al. [44]
included delamination in their models by introducing cohesive elements inserted between plies.
In [43] a global criterion based on Weibull’s statistical model was used to determine fibre failure
of the entire structure, while Abisset et al. [44] used an ISM for fibre breaking and a GSM model
for matrix cracking. Their models gave good predictions on the interaction between matrix
cracks and delamination which shows that cohesive elements are adaptable for delamination
modelling. However, their studies were limited to mainly quasi-isotropic laminates.
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The approaches outlined above suffer from a mesh dependency problem related to the strain
localization during the PFA, which can be reduced by scaling the fracture energy using a
characteristic element length, as described by the crack-band theory [45]. Camanho et al.
[46] investigated the size effects in notched composites via an energy-regularized CDM model,
whereby the stiffness matrix of the damage material was degraded gradually based on an
energy criterion. Some other works based on the CDM approach include the impact analysis of
composite plates [47], and PFA of composite pressure vessels [48].

Crack propagation can be more rigorously predicted through discrete damage models (DDM),
typically using cohesive interface elements to handle discontinuities within the finite element
(FE) mesh [49–51]. Other discrete approaches have also been proposed for the progressive failure
modelling of laminar composites, such as: eXtended Finite Element Method (XFEM) [52–54],
Phantom Node Method (PNM) [55–57], Augmented Finite Element Method (AFEM) [58, 59]
or Floating Node Method (FNM) [60–63]. Generally, discrete techniques lead to models that
can accurately predict crack propagation with high fidelity, but at the cost of excessively high
computational effort.

A popular approach for damage modelling in laminar composites is a combination of CDM model
to describe intralaminar damage within the ply and DDM based approach to model delamination
[64, 65]. Accordingly, Chen et al. [66] employed the CDM for in-plane failure progression and
cohesive elements for delamination modelling, to study the size effects of open-hole composite
laminates under tensile loading (OHT). Ridha et al. [67] followed the same approach in
order to predict the OHT strengths and failure progression for notched composite laminates.
The proposed damage model was incorporated into ABAQUS user subroutine UMAT for 2D
conventional shell elements. The most important feature of this model is the novel material
softening approximation using a zig-zag curve. On the other hand, Su et al. [68] developed a
computational CDM for the progressive damage modelling of open-hole laminar composites
under compressive loading (OHC). The proposed model was based on the OHT-associated model
by Ridha et al. [67], with some modifications related to compressive deformation. Ladevèze et
al. [69] developed a plane-stress CDM damage model that describes stiffness degradation by
matrix micro-cracking, fiber/matrix debonding and brittle fiber failure of unidirectional laminar
composites.

In order to capture the effect of matrix cracking and fibre breakage on the macro-scale, the
originally sub-laminate based smeared crack-band (SCB) model was developed in [10] and
applied to the simulation of braided composite tubes under axial crushing [42]. Since the above
damage model do not account for any preferred material orientation, it cannot realistically
predict damage pattern and damage growth trajectory in orthotropic laminar composites. The
mesh orientation issue in SCB models was improved by devolving the sub-laminate strain-
softening response into equivalent stress-strain responses in the principal ply directions [11].
Reiner et al. [70] investigated the progressive intra-laminar damage in notched IM7/8552 CFRP
laminar composites under tension via SCB and Ladevèze damage models [69], to assess their
predictive capabilities and limitations. The Ladevèze’s damage model was enhanced by defining
a fracture-mechanics-based post-peak softening law for the fiber direction. Both models are able
to predict size-effects in a large number of center-notched quasi-isotropic laminar composites
with reasonable accuracy, but Ladevèze damage model showed some path-dependency problem
with respect to the transverse and shear response. Forghani et al. [71] proposed a non-local
averaging scheme that is specially designed to capture the preferred path of damage in laminar
composites, consisting of strongly orthotropic layers, via SCB damage model. Yoon et al. [72]
used SCB damage model to study failure behaviour of notched composite laminates under
tension and compression, while strain distribution was recorded via a digital image correlation
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(DIC) system. Finally, smeared crack-band (SCB) models lead to a good compromise between
computational cost and solution accuracy, and they are thus used in most of the studies dealing
with composite failure modelling in conjunction with different plate theories. The computational
costs associated with PFA of laminar composites can be prohibitive, even considering the relative
efficiency of smeared crack-band models, especially for larger structures. This is usually due
to the requirement of refined, often 3D meshes, to obtain an accurate stress field. Therefore,
Nagaraj et al. integrated the SCB damage model with higher-order theories based on Carrera
unified formulation (CUF) to develop a numerical framework for the PFA of unidirectional
fiber-reinforced composites loaded in tension [73] and compression [74].

In recent years, the phase-field model (PFM) has emerged as a promising technique to ensure
the computational efficiency of the PFA for laminar composites [75–82]. The ability to capture
damage initiation and evolution direction without any additional ad-hoc criteria and crack
tracking strategies has made the PFM to be one of the most popular and effective approaches
in modelling fracture problems with unknown crack paths. A detailed critical review on the
developments and recent applications of regularized phase field models for failure problems in
laminar composites was outlined by Bui and Hu [83].

Most damage models available in the literature generally focus on the PFA of fiber-reinforced
laminar composites, and the application of these models for the PFA of CLT panels is relatively
rare due their unpredictable and unconventional failure mechanisms. Nie [84] pointed out that
the variation of annual ring pattern in the orthogonal layers is directly linked to the propagation
of failure. The main structural issue relating to the failure behaviour of CLT is the low
transverse shear strength of cross layers. This leads to the rotation of wood’s fibers and so-called
rolling shear brittle failure [85]. This phenomenon becomes more expressive with decreasing the
slenderness ratio and initiates failure in the longitudinally oriented fibers, which in turn causes
fiber tension failure. Mestek et al. investigated a small-scaled CLT elements reinforced against
shear failures at their support [86]. Zhou et al. [87] pointed out that CLT beams or panels with
low span-to-depth ratios suffer from rolling shear failure. For all investigations, the estimation
of failure behaviour is limited to surface information of the specimens, and the main focus was
on the structural behaviour up to the elastic limit. A detailed evaluation of plate-bending tests
on CLT elements was performed by Hochreiner et al. [5] in order to accurately determine failure
modes within the CLT panels. The global load-displacement behaviour as well as the observed
failure modes within the plates were experimentally obtained and discussed. Recently, Franzoni
et al. investigated the bending behaviour of CLT panels [88] by means of the linear elastic exact
solution from Pagano [89] and van der Put failure criterion [90]. Nairn included the effect of
environmental stresses in failure prediction of notched CLT plate [91], while Navaratnam et al.
used the digital image correlation for identifying failure characteristics of CLT under transverse
loading [92]. Also, failure behaviour of CLT panels loaded with combined out-of-plane bending
and compression [93], as well as a deep CLT lintels subjected to concentric and eccentric loading
[94], was analysed.

Material stiffness degradation due to the post-failure behaviour in cross layers can be modelled
by treating the cross layers as mechanical joints that connect the longitudinal layers [95].
However, the material stiffness depends on the joint efficiency of the cross layers which are
theoretically determined by the cross layer shear properties and the bonding degree, which
cannot be quantitatively evaluated due to the complexity of the shear damage mode [94]. In
order to overcome this problem, current design codes employ effective bending stiffness to
account for the stiffness degradation [96]. This method was originally developed in [97] for
calculating the bending stiffness of composite I-shape or T-shape beam.
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Analysing the post-failure behaviour of CLT structures in conventional ways requires extensive
experimental testing. Consequently, there is a need to employ numerical methods for the analysis
of CLT structures in order to address the most commonly occurring scenarios in practical
applications, particularly regarding PFA. However, the application of numerical methods for
the damage modelling of CLT structures is relatively scarce. Qui et al. developed XFEM
based models to simulate the crack propagation behaviour of wood [98]. Lavrenčič and Boštjan
used the nonlinear finite element method for structural modelling and SCB damage model for
stimulation of failure propagation of CLT plate with ribs [99]. Ma et al. [100] investigated the
feasibility of CLT panels fabricated from salvaged dead standing trees after the beetle outbreak,
by evaluating the flexural and shear properties through mechanical tests and computational
analysis.

From the plate theory point of view, the global behaviour of laminar composites (including
CLT as a natural-based multilayer plate) may be accurately predicted using Equivalent Single
Layer (ESL) theories [101–103], especially for very thin laminates. However, if a highly accurate
assessment of the 3D stress field is needed (e.g., for consideration of local damage effects or in
the 3D stress state), refined theories are recommended [104–106]. In addition, the prediction of
damage initiation and further progression begins with the accurate determination of the 3D
stress fields at the lamina level. The Generalized Laminated Plate Theory (GLPT), originally
designed to capture the laminate-specific mechanical characteristics, became the basis for the
development of layered finite elements, capable to deliver accurate results for thick laminar
composites even under concentrated loadings [107]. The application of partial layerwise theories
served as the basis in the development of numerical solution for global response prediction of
intact laminar composites and sandwich plates [108]. Marjanović and Vuksanović [109] used
this model to account for delamination kinematics and further applied it for calculation of
fundamental dynamic characteristics [110], as well as for the geometrically nonlinear transient
analysis of delaminated laminar composites and sandwich plates [111].

However, the partial layerwise theories neglect the interlaminar normal stress (due to the
assumption that deflection is constant through the thickness), which is important in modelling
the localized effects such as holes, as well as for the prediction of damage initiation. In order to
overcome these limitations, a family of layered quadrilateral finite elements based on the FLWT
has been developed in author’s previous work [112] and applied for structural analysis of CLT
panels. While many researchers focused their attention on the analysis of laminar composites
using layered finite elements, there is still a lack of investigations regarding their application
for the PFA of laminar composites, especially in conjunction with SCB damage model and
applications for real-size elements in civil engineering. Consequently, Jočić and Marjanović
presented the original incorporation of the (SCB) damage model within the FLWT framework
for PFA of open-hole laminar composites [13], which served as a strong foundation of this
dissertation.
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3 Full layerwise theory for 3D analysis
of laminar composites

3.1 Introduction

Unlike homogenous isotropic plates, the heterogeneous anisotropic constitution of laminar
composites often results in the appearance of many unique phenomena that can occur on
different geometric scales. Global deformation of laminar composites is characterized by the
coupling between bending, extension, and shear, while at the lamina level, laminar composites
exhibit transverse stress concentrations near material and geometric discontinuities, resulting in
different forms of damage, i.e. fiber breakage or matrix cracking. Also, the strength and stiffness
of laminar composites are increased without a corresponding increase in weight [113], resulting
in a rapid change of displacement field slopes at the interface of adjacent layers.

In contrary to prediction of global laminate response, previously mentioned ESL theories are
often inadequate for determining the 3D stress field at the lamina level, since they assume
that the displacements are continuous functions of thickness coordinate. As a result of such
assumption, the interlaminar stresses (τxz, τyz, σz) are discontinuous across interfaces between
different materials, which does not satisfy the continuity conditions between the stress fields of
the adjacent layers. This deficiency is especially evident in thick laminates, or in localized regions
where the damage initiation is likely to occur. In order to obtain the three-dimensional (3D)
stress state and kinematically correct representation of cross-section warping, refined theories
are recommended, such as: layerwise theories (LWT) or a 3D elasticity theory.

In contrast to the ESL theories, the layerwise theories assume a unique displacement field,
that exhibits only C0 continuity through the laminate thickness. This results in continuous
displacement components at the interfaces between the adjacent layers, allowing for the possibility
of discontinuous derivatives of displacement components with respect to the thickness coordinate.
The LWT are generally of two types: the partial layerwise theories (PLWT) and the full
layerwise theories (FLWT). While PLWT assume the pice-wise expansion only for the in-plane
displacement components within each material layer; the FLWT go one step further by using
the pice-wise expansion for all displacement components through the thickness. Thus, the
continuity conditions of stresses at the interfaces between adjacent layers are satisfied: the
in-plane stresses are discontinuous, while the transverse (interlaminar) stresses are continuous
through the thickness. Also, it is noticed that FLWT can provide such accurate 3D stress fields
as a conventional 3D models, with reduced computational costs.

11



3. FLWT for 3D analysis of laminar composites 3.2. Theory formulation

3.2 Theory formulation

A laminated composite plate made of n perfectly bonded orthotropic layers is considered in this
study (Figure 3.1). The total plate thickness is denoted as h, while the thickness of the kth

lamina is denoted as hk.

Figure 3.1: Laminated composite plate made of n material layers and with N numerical
interfaces [13]

The plate is supported along the portion Γu of the boundary Γ and loaded with arbitrary
loadings qt(x, y) and qb(x, y) acting to either top St (z = h/2) or the bottom surface Sb (z =
−h/2) of the plate.

In the formulation of Full Layerwise Theory (FLWT), the following assumptions are used:

1. Each layer of which the laminate composite plate is made is homogeneous and orthotropic.
Orthotropy originates from high-strength fibers that are oriented in the appropriate
direction and equally distributed in a homogeneous base material (matrix).

2. All material layers are perfectly bonded together.

3. The relation between strain and displacement is linear, i.e. the assumption of geometric
linearity holds.

4. Deflection is a variable function across the laminate thickness, i.e. the assumption of
transverse normal extensibility with respect to the mid-plane of the plate holds.

5. Material of each layer is linearly elastic until the initiation of damage in the weakest
lamina occur; after that the composite material exhibits strain-softening behaviour, i.e.
the relationship between stress and strain becomes non-linear.

6. Material non-linearity is taken into account by gradual degradation of the stiffness of the
damaged lamina, i.e. quasi-brittle material behaviour is assumed after the initiation of
failure.

7. The damage can only propagate within the plane of the laminate, in either the fiber or
matrix direction, i.e. there is no damage at the interface between adjacent layers of the
laminate (delamination).
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3.3 Displacement and strain fields

Piece-wise linear variation of all three displacement components through the laminate thickness
is imposed, leading to the 3D stress description of all material layers. The displacement field
(u, v, w) of an arbitrary point (x, y, z) of the laminate is represented as product of functions of
in-plane coordinates and functions of thickness coordinates:

u(x, y, z) =
N∑

i=1
U I(x, y)ΦI(z)

v(x, y, z) =
N∑

i=1
V I(x, y)ΦI(z)

w(x, y, z) =
N∑

i=1
W I(x, y)ΦI(z)

(3.1)

In Eq. (3.1), UI(x, y), VI(x, y) and WI(x, y) are the displacement components in the I th

numerical layer of the plate in directions x, y and z, respectively, while N (N = n + 1) is
the number of interfaces between the layers including Sb and St. ΦI(z) are selected to be
one-dimensional linear Lagrangian functions of the z-coordinate, defined over the considered
layer (Figure 3.2):

Φ1(z) = 1 − z̄

h1
, 0 ≤ z̄ ≤ h1,

ΦI(z) =



z̄

hI−1
, 0 ≤ z̄ ≤ hI−1

1 − z̄

hI

, 0 ≤ z̄ ≤ hI

, I = 2, 3, ..., N − 1,

ΦN(z) = z̄

hN

, 0 ≤ z̄ ≤ hN

(3.2)

In Eq. (3.2), z̄ is the local coordinate in thickness direction defined through the considered
layer, while hI denotes the thickness of I th layer.

Figure 3.2: Linear lagrangian functions ΦI(z) and corresponding displacements distribution
through laminate thickness
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As the consequence of the assumed displacement field, all displacement components are piece-
wise continuous through the laminate thickness. Also, the independent in-plane and through
the thickness discretization of the laminate is achieved.

The linear strain field associated with the previously shown displacement field from Eq. (3.1)
can be written as follows:

εx(x, y, z) =
N∑

i=1

∂U I(x, y)
∂x

ΦI(z),

εy(x, y, z) =
N∑

i=1

∂V I(x, y)
∂y

ΦI(z),

εz(x, y, z) =
N∑

i=1
W I(x, y)dΦ

I(z)
dz

,

γyz(x, y, z) =
N∑

i=1
V I(x, y)dΦ

I(z)
dz

+ ∂W I(x, y)
∂y

ΦI(z),

γxz(x, y, z) =
N∑

i=1
U I(x, y)dΦ

I(z)
dz

+ ∂W I(x, y)
∂x

ΦI(z),

γxy(x, y, z) =
N∑

i=1
(∂U

I(x, y)
∂y

+ ∂V I(x, y)
∂x

)ΦI(z)

(3.3)

3.4 3D constitutive equations of lamina

In order to establish a 3D constitutive model of lamina, two reference coordinate systems (Figure
3.3) must be defined: global coordinate system (xyz), which is unique for the whole laminate,
and material coordinate system (123) which is set for each lamina.

Figure 3.3: Global (laminate) coordinate system (xyz) and material (lamina) coordinate system
(123)

As can be seen from the Figure 3.3, directions 1, 2 and 3 represent: fiber direction, direction
transverse to the fiber but in the plane of the laminate, and direction transverse to both the
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fiber and to the laminate, respectively. Cartesian orthogonal coordinate system xyz is adopted
as a global coordinate system of laminate.

The stresses for the kth orthotropic layer, in material coordinate system (123 ), can be computed
from the 3D constitutive equations for each lamina:

σ1

σ2

σ3

τ23

τ13

τ12



(k)

=



C11 C12 C13 0 0 0
C21 C22 C23 0 0 0
C31 C23 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66



(k)

ε1

ε2

ε3

γ23

γ13

γ12



(k)

(3.4)

where Cij are the stiffness matrix coefficients in the material (1, 2, 3) coordinates. Since the
laminate is generally made of several orthotropic laminae, with their material axes oriented
arbitrarily with respect to the global coordinates, the constitutive relations for each lamina
must be transformed from the material (123) to the global (xyz) coordinate system [12]. The
stiffness matrix for the kth layer in global coordinate system will be of the form:

C̄(k) = T(k)−1C(k)T(k) (3.5)
where T(k) is the transformation matrix of the kth layer:

T(k) =



cos2 θ sin2 θ 0 0 0 2 sin θ cos θ
sin2 θ cos2 θ 0 0 0 −2 sin θ cos θ

0 0 1 0 0 0
0 0 0 cos θ − sin θ 0
0 0 0 − sin θ cos θ 0

− sin θ cos θ sin θ cos θ 0 0 0 cos2 θ − sin2 θ



(k)

(3.6)

Therefore, 3D constitutive relations for the kth orthotropic layer, in global coordinate system
(xyz), can now be written as:



σx

σy

σz

τyz

τxz

τxy



(k)

=



C̄11 C̄12 C̄13 0 0 C̄16

C̄21 C̄22 C̄23 0 0 C̄26

C̄31 C̄32 C̄33 0 0 C̄36

0 0 0 C̄44 C̄45 0
0 0 0 C̄54 C̄55 0
C̄61 C̄62 C̄63 0 0 C̄66



(k)

εx

εy

εz

γyz

γxz

γxy



(k)

(3.7)

3.5 Governing equations of motion

The governing equations of motion for the FLWT are derived by using the principle of virtual
displacements (note that virtual kinetic energy δK is equal to zero for the static problems):

δU + δV = 0 (3.8)
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The virtual strain energy (virtual work of internal forces)) is given as:

δU =
∫
Ω

[∫ h/2

−h/2
(σxδεx + σyδεy + σzδεz + τyzδγyz + τxzδγxz + τxyδγxy)dz

]
dxdy (3.9)

where δεx, δεy, δεz, δγyz, δγxz and δγxy are corresponding virtual strains obtained from the
previously derived strain field (Eq. (3.3)) and given in [12].

In order to reduce the 3D model to a 2D one, the z-coordinate is eliminated by the explicit
integration of stress components multiplied with the corresponding functions ΦI(z), introducing
the stress resultants in the I th layer as:



N I
x

N I
y

N I
xy

QI
y

QI
x


=

n∑
k=1

∫ zk
t

zk
b



σx

σy

τxy

τyz

τxz



(k)

ΦIdz,


Q̄I

y

Q̄I
x

Q̄I
z

 =
n∑

k=1

∫ zk
t

zk
b


τyz

τxz

σz


(k)

dΦI

dz
dz (3.10)

where zk
b and zk

t are coordinates of the bottom and top of the kth layer.

After the incorporation of virtual strains and stress resultants (Eq. (3.10)), the virtual strain
energy is obtained in the following form [12]:

δU =
∫
Ω

N∑
I=1



N I
x

∂δU I

∂x
+N I

y

∂δV I

∂y
+N I

xy(∂δU
I

∂y

∂δV I

∂x
)+

+QI
x

∂δW I

∂x
+QI

y

∂δW I

∂y
+ Q̄I

xδU
I + Q̄I

yδV
I + Q̄I

zδW
I


dxdy (3.11)

After the integration by parts for the surface integral, done to eliminate the derivations of virtual
displacements, all members corresponding to the specific virtual displacement are grouped.
Consequently, the following form of the virtual strain energy is obtained:

δU =
∫
Ω

N∑
I=1



δU I

∂N I
x

∂x
+
∂N I

xy

∂y
− Q̄I

x

+

+δV I

∂N I
y

∂y
+
∂N I

xy

∂x
− Q̄I

y

+

+δW I

∂QI
x

∂x
+
∂QI

y

∂y
− Q̄I

z




dxdy (3.12)

The virtual work of external forces is given as:

δV =
∫
Ω

(
qbδW

1 + qtδW
N
)
dxdy (3.13)

In Eq. (3.13), δW1 and δWN are virtual displacements at the Sb and St, respectively (see Figure
3.1).
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3. FLWT for 3D analysis of laminar composites 3.6. Laminate constitutive equations

Finally, the system of 3N Euler-Lagrange governing equations of motion for the FLWT are
derived using the principle of virtual displacements (Eq. (3.8)), by satisfying the equilibrium
of the virtual strain energy δU (Eq. (3.12)) and the work done by the applied forces δV (Eq.
(3.13)):

∂N I
x

∂x
+
∂N I

xy

∂y
− Q̄I

x = 0

∂N I
y

∂y
+
∂N I

xy

∂x
− Q̄I

y = 0

∂QI
x

∂x
+
∂QI

y

∂y
− Q̄I

z + qb + qt = 0

(3.14)

3.6 Laminate constitutive equations

The laminate constitutive equations in the FLWT are derived by substituting the constitutive
equations of the single lamina (Eq. (3.7)) into expressions for stress resultants (Eq. (3.10)):


N I

x

N I
y

N I
xy

 =
n∑

k=1

∫ zk
t

zk
b


C̄11 C̄12 C̄13 C̄16

C̄21 C̄22 C̄23 C̄26

C̄61 C̄62 C̄63 C̄66


(k)


εx

εy

εz

γxy



(k)

ΦIdz =

=
N∑

J=1


AIJ

11 AIJ
12 ÃIJ

13 AIJ
16

AIJ
21 AIJ

22 ÃIJ
23 AIJ

26

AIJ
61 AIJ

62 ÃIJ
63 AIJ

66





∂UJ

∂x
∂J I

∂y
W J

∂UJ

∂y
+ ∂V J

∂x



(3.15)

QI
y

QI
x

 =
n∑

k=1

∫ zk
t

zk
b

C̄44 C̄45

C̄54 C̄55

(k)γyz

γxz


(k)

ΦIdz =

=
N∑

J=1

ÃIJ
44 ÃIJ

45

ÃIJ
54 ÃIJ

55

V J

UJ

+
N∑

J=1

AIJ
44 AIJ

45

AIJ
54 AIJ

55



∂W J

∂y
∂W J

∂x


(3.16)
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3. FLWT for 3D analysis of laminar composites 3.6. Laminate constitutive equationsQ̄I
y

Q̄I
x

 =
n∑

k=1

∫ zk
t

zk
b

C̄44 C̄45

C̄54 C̄55

(k)γyz

γxz


(k)
dΦI

dz
dz =

=
N∑

J=1

ĀIJ
44 ĀIJ

45

ĀIJ
54 ĀIJ

55

V J

UJ

+
N∑

J=1

 ¯̄AIJ
44

¯̄AIJ
45

¯̄AIJ
54

¯̄AIJ
55



∂W J

∂y
∂W J

∂x


(3.17)

{
Q̄I

z

}
=

n∑
k=1

∫ zk
t

zk
b

[
C̄31 C̄32 C̄33 C̄36

](k)



εx

εy

εz

γxy



(k)

dΦI

dz
dz =

=
N∑

J=1

[
¯̄AIJ

31
¯̄AIJ

32 ĀIJ
33

¯̄AIJ
36

]


∂UJ

∂x
∂V I

∂y
W J

∂UJ

∂y
+ ∂V J

∂x



(3.18)

The laminate stiffness components in (Eq. (3.15)- Eq. (3.18)) are defined as [12]:

AIJ
ij =

n∑
k=1

∫ zk
t

zk
b

C̄
(k)
ij ΦIΦJdz, ĀIJ

ij =
n∑

k=1

∫ zk
t

zk
b

C̄
(k)
ij

dΦI

dz

dΦJ

dz
dz

ÃIJ
ij =

n∑
k=1

∫ zk
t

zk
b

C̄
(k)
ij ΦI dΦJ

dz
dz, ¯̄AIJ

ij =
n∑

k=1

∫ zk
t

zk
b

C̄
(k)
ij

dΦI

dz
ΦJdz

(3.19)

For the linear interpolation function ΦI through the laminate thickness, the elements of laminate
stiffness matrices are:

A1,1
ij = C̄

(1)
ij

h1

3 , A1,2
ij = C̄

(1)
ij

h1

6 , AN−1,N
ij = C̄

(N−1)
ij

hN−1

6 , AN,N
ij = C̄

(N−1)
ij

hN−1

3

AI−1,I
ij = C̄

(I−1)
ij

hI−1

6 , AI,I
ij =

C̄
(I−1)
ij hI−1 + C̄

(I)
ij hI

3 , AI,I+1
ij = C̄

(I)
ij

hI

6

(3.20)

Ā1,1
ij =

C̄
(1)
ij

h1
, Ā1,2

ij = −
C̄

(1)
ij

h1
, ĀN−1,N

ij = −
C̄

(N−1)
ij

hN−1
, ĀN,N

ij =
C̄

(N−1)
ij

hN−1

ĀI−1,I
ij = −

C̄
(I−1)
ij

hI−1
, ĀI,I

ij =
C̄

(I−1)
ij

hI−1
+
C̄

(I)
ij

hI

, ĀI,I+1
ij = −

C̄
(I)
ij

hI

,

(3.21)
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3. FLWT for 3D analysis of laminar composites 3.6. Laminate constitutive equations

Ã1,1
ij = −

C̄
(1)
ij

2 , Ã1,2
ij =

C̄
(1)
ij

2 , ÃN−1,N
ij = −

C̄
(N−1)
ij

2 , ÃN,N
ij =

C̄
(N−1)
ij

2

ÃI−1,I
ij = −

C̄
(I−1)
ij

2 , ÃI,I
ij =

C̄
(I−1)
ij + C̄

(I)
ij

2 , ÃI,I+1
ij =

C̄
(I)
ij

2 ,

¯̄A1,1
ij = −

C̄
(1)
ij

2 , ¯̄A1,2
ij = −

C̄
(1)
ij

2 , ¯̄AN−1,N
ij =

C̄
(N−1)
ij

2 , ¯̄AN,N
ij =

C̄
(N−1)
ij

2

¯̄AI−1,I
ij =

C̄
(I−1)
ij

2 , ¯̄AI,I =
C̄

(I−1)
ij + C̄

(I)
ij

2 , ÃI,I+1
ij = −

C̄
(I)
ij

2 ,

(3.22)

¯̄A1,1
ij = −

C̄
(1)
ij

2 , ¯̄A1,2
ij = −

C̄
(1)
ij

2 , ¯̄AN−1,N
ij =

C̄
(N−1)
ij

2 , ¯̄AN,N
ij =

C̄
(N−1)
ij

2

¯̄AI−1,I
ij =

C̄
(I−1)
ij

2 , ¯̄AI,I =
C̄

(I−1)
ij + C̄

(I)
ij

2 , ÃI,I+1
ij = −

C̄
(I)
ij

2 ,

(3.23)

For the sake of simplicity, the following deformations vectors are introduced:

{
εI
}

=



∂UJ

∂x
∂V I

∂y
W J

∂UJ

∂y
+ ∂V J

∂x


,

{
ε̄I
}

=



V I

U I

∂W J

∂y
∂W J

∂x


(3.24)

Constitutive relations of the laminate now can be re-written in the matrix form:



N I
x

N I
y

Q̄z
I

N I
xy


=


AIJ

11 AIJ
12 ÃIJ

13 AIJ
16

AIJ
21 AIJ

22 ÃIJ
23 AIJ

26
¯̄AIJ

31
¯̄AIJ

32 ĀIJ
33

¯̄AIJ
36

AIJ
61 AIJ

62 ÃIJ
63 AIJ

66





∂UJ

∂x
∂J I

∂y
W J

∂UJ

∂y
+ ∂V J

∂x


(3.25)



QI
y

QI
x

Q̄I
y

Q̄I
x




ÃIJ

44 ÃIJ
45 AIJ

44 AIJ
45

ÃIJ
54 ÃIJ

55 AIJ
54 AIJ

55

ĀIJ
44 ĀIJ

45
¯̄AIJ

44
¯̄AIJ

45

ĀIJ
54 ĀIJ

55
¯̄AIJ

54
¯̄AIJ

55





V J

UJ

∂W J

∂y
∂W J

∂x


(3.26)

i.e. in abbreviated form:
{
N I
}

=
N∑

J=1

[
AIJ

1

] {
εJ
}
,

{
QI
}

=
N∑

J=1

[
AIJ

2

] {
ε̄J
}

(3.27)

In Eq. (3.27),
{
N I
}

and
{
QI
}

are stress resultants vectors, while [AIJ
1 ] and [AIJ

2 ] are corre-
sponding stiffness matrices.
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4 Layered FLWT-based finite element

4.1 Introduction

Analytical solution of the FLWT exists only for the relatively simple plate geometries, boundary
and loading conditions. However, for the structural analysis of laminar composites of arbitrary
shape, loading, boundary conditions or stacking sequence, numerical models are required.

The finite element method (FEM) is a powerful computational technique for solving problems
which are described by partial differential equations [114]. A domain of interest is approximated
as an assemblage of simple geometric shapes, i.e., finite elements (FE). The approximation
functions, also called the interpolation functions [12], are determined in terms of nodal values of
a requested physical field. In that manner, a continuous physical problem is transformed into a
discretized finite element problem with unknown nodal values. By utilizing FEs to approximate
physical fields in a piece-wise manner, it is possible to obtain a high level of accuracy even with
basic approximating functions. Additionally, precision can be further enhanced by increasing
the number of elements. Also, the localization of the approximation results in equation systems
that are sparse for a discretized problem. This sparsity is beneficial when solving problems that
involve a large number of nodal unknowns.

It should be noted that this Chapter is based on work published by the author [15].

4.2 Development of the layered element stiffness matrix

The system of 3N Euler-Lagrange governing equations of motion, derived in previous chapter,
serve as a basis for the development of a numerical solution based on FEM. Applying the
procedure presented in [12], the "weak" formulation of the Euler-Lagrange governing equations
of layered finite element can be written in the following form:

∫
Ωe

[
∂δU I

∂x
N I

x + ∂δU I

∂y
N I

xy − Q̄I
xδU

I

]
dΩe = 0

∫
Ωe

[
∂δV I

∂y
N I

y + ∂δV I

∂x
N I

xy − Q̄I
yδV

I

]
dΩe = 0

∫
Ωe

[
∂δW I

∂x
QI

x + ∂δW I

∂x
QI

y − Q̄I
zδW

I − qbδW
1 − qtδW

N

]
dΩe = 0

(4.1)
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4. Layered FLWT-based FE 4.2. Development of the layered element stiffness matrix

where Ωe is layered finite element domain.

The Eqs. (4.1) can be re-written in matrix form, by grouping all stress resultants corresponding
to the same virtual deformations vectors:∫

Ωe

 N∑
I=1

{
δεI

}T {
N I
}

+
N∑

I=1

{
δε̄I

}T {
QI
}

− qbδW
1 − qtδW

N

 dΩe = 0 (4.2)

The solution of the weak formulation is sought in layered finite element domain, defined by the
interpolation functions. Accordingly, the displacement field can be assumed in the following
form:

U I(x, y) =
m∑

j=1
U I

j ψj(x, y),

V I(x, y) =
m∑

j=1
V I

j ψj(x, y),

W I(x, y) =
m∑

j=1
W I

j ψj(x, y)

(4.3)

In Eq. (4.3), m is the number of nodes per 2D element, U I
j , V I

j , W I
j are the nodal values of

displacements U I , V I and W I , respectively, in the jth node and I th numerical interface of the
layered finite element. Finally, ψj(x, y) are the 2D Lagrange interpolation polynomials (shape
functions for quadrilateral domains) associated with the jth element node. For the sake of
simplicity, the Eq. (4.3) is re-written in matrix form:


U I(x, y)
V I(x, y)
W I(x, y)

 =



m∑
j=1

U I
j ψj(x, y)

m∑
j=1

V I
j ψj(x, y)

m∑
j=1

W I
j ψj(x, y)


=
[
ψ
] {

∆I
}

(4.4)

where
{
∆I
}

is displacement vector in I th numerical interface:

{
∆I
}

=



U I
1

V I
1

W I
1

...


3m×1

(4.5)

while, [ψ] is the matrix of Lagrangian interpolation functions:

[
ψ
]

=


ψ1 0 0
0 ψ1 0 . . .

0 0 ψ1


3×3m

(4.6)

The strain field is interpolated in the usual manner, by incorporating Eq. (4.4) in the kinematic
relations of the FLWT from Eqs. (3.24), and is given in matrix form as:{

εI
}

4×1
=
[
B
]

4×3m

{
∆I
}

3m×1

{
ε̄I
}

4×1
=
[
B̄
]

4×3m

{
∆I
}

3m×1

(4.7)
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In Eqs. (4.7), [B] and [B̄] represent kinematic matrices:

[
B
]

4×3m
=



∂ψ1

∂x
0 0

0 ∂ψ1

∂y
0 . . .

∂ψ1

∂y

∂ψ1

∂x
0

0 0 ψ1


4×3m

,
[
B̄
]

4×3m
=



ψ1 0 0

0 ψ1 0 . . .

0 0 ∂ψ1

∂x

0 0 ∂ψ1

∂y


4×3m

(4.8)

Based on Eqs. (4.7), the corresponding virtual strain matrices are:

{
δεI

}
4×1

=
[
B
]

4×3m

{
δ∆I

}
3m×1

{
δε̄I

}
4×1

=
[
B̄
]

4×3m

{
δ∆I

}
3m×1

(4.9)

The distributed forces qt(x, y) and qb(x, y) are interpolated using the same degree of interpolation
as in displacement field components (Eqs. 4.3):

{
qt

}
=
{

m∑
j=1

qt,jψj(x, y)
}

=
{
ψ̄
}{

QN
}

{
qb

}
=
{

m∑
j=1

qb,jψj(x, y)
}

=
{
ψ̄
}{

Q1
} (4.10)

where {Qt} and {Qb} are the vectors of external nodal loading at St and Sb, respectively, while{
ψ̄
}

is the vector of Lagrangian interpolation functions:

{
QN

}
=



QN
x,1

QN
y,1

QN
z,1
...


3m×1

,
{
Q1
}

=



Q1
x,1

Q1
y,1

Q1
z,1
...


3m×1

,
{
ψ̄
}

=
{
ψ1 ψ1 ψ1 . . .

}
1×3m

(4.11)

Finally, the discretized weak formulation is obtained by substituting the matrix form of the
laminate constitutive equations from Eqs. (3.27), together with Eqs. (4.9) and Eqs. (4.10) into
Eqs. (4.2):

∫
Ωe



N∑
I,J=1

{
δ∆I

}T [
B
]T [

AIJ
1

] [
B
] {

∆J
}

+

+
N∑

I,J=1

{
δ∆I

}T [
B̄
]T [

AIJ
2

] [
B̄
] {

∆J
}

−

−
{
δ∆1

}T {
ψ̄
}T {

ψ̄
}{

Qb

}
−
{
δ∆N

}T {
ψ̄
}T {

ψ̄
}{

Qt

}


dΩe = 0 (4.12)
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Collecting the coefficients of each layer displacement vectors
{
∆I
}

from the previous equations,
the matrix form of the finite element model is obtained:

[K11] [K12] . . . [K1N ]
[K21] [K22] . . . [K2N ]

... ... . . .
[K2N ] [KN2] . . . [KNN ]



e

{
∆1
}{

∆2
}

...{
∆N

}



e

=



{
F 1
}

0
...{
FN

}



e

(4.13)

or in abbreviated form: [
K
]e

3mN×3mN

{
d
}e

3mN×1
=
{
f
}e

3mN×1
(4.14)

In Eq. (4.14), [K]e is layered element stiffness matrix, {d}e is the vector of generalized
displacements and {f}e is the layered element force vector. In this study, linear (Q4) and
quadratic serendipity (Q8) layered quadrilateral finite elements have been considered. To prevent
shear locking, reduced integration is employed (2 × 2 points for Q8 and 1 × 1 point for Q4
element).

The element stiffness submatrices [KIJ ] (I, J = 1, ..., N) are derived as:[
KIJ

]
=
∫

Ωe

([
B
]T [

AIJ
1

] [
B
]

+
[
B̄
]T [

AIJ
2

] [
B̄
])
dΩe (4.15)

while, the element force subvectors
{
F 1
}

and
{
FN

}
are obtained as:

{
F 1
}

=
∫

Ωe

({
δ∆1

}T {
ψ̄
}T {

ψ̄
}{

Q1
})

dΩe,{
FN

}
=
∫

Ωe

({
δ∆1

}T {
ψ̄
}T {

ψ̄
}{

QN
})

dΩe
(4.16)

Once the characteristic element matrices have been derived, the assembly procedure is performed
using the optimized algorithm explained in [115, 116]. The mathematical model at the structural
level is ultimately derived as:

Kd = f (4.17)

4.3 Relationship between FLWT-based finite element
model and 3D finite element model

As the present FLWT-based FE model aims to offer the same modelling capability as a
conventional 3D FE model of laminar composites, it is worth examining the resemblances and
contrasts between these two models [117]. Firstly, let’s compare the principles used to formulate
each model. The conventional 3D FE model utilizes the elasticity theory, and Navier’s equations
represent the related governing equations of motion. On the other hand, the FLWT-based
FE model is established by a set of 3N partial differential equations, which can be seen as a
semi-discretized version of Navier’s equations. Although the governing equations of motion of the
current FLWT-based FE model are an approximation to the exact 3D equations of motion, the
approximation can be made more accurate by enhancing the number of subdivisions throughout
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4. Layered FLWT-based FE 4.4. Assignment of loads and boundary conditions

the laminate thickness or elevating the order of interpolation throughout the thickness. While the
governing equations of motion for these two theories differ, both FE models are fully discretized
versions of their respective theories. As a result, the modelling capabilities of the two FE models
are essentially equivalent.

Same as 3D finite elements, the layered finite elements (Figure 4.1) require only C0 continuity
of generalized displacements along element boundaries, because only translational displacement
components in three orthogonal directions are adopted as the nodal degrees of freedom (DOFs).
As can be seen from Figure 4.1, the number of DOFs is layer dependent and is equal to 3mN ,
where m is the number of nodes per 2D element. Although the FLWT-based FE model is similar

Figure 4.1: Quadratic serendipity Q8 layered finite element with corresponding Gauss
quadrature points and nodal degrees of freedom

to a conventional 3D FE model in terms of interpolation capability and problem size, the FLWT
formulation allows for the 2D data structure similar to the FE models of the ESL theories,
due to independent in-plane and through the thickness discretization of the laminate. Thus, a
numerous benefits can be obtained over conventional 3D models. These benefits include: (i)
reduced volume of input data, (ii) the out-of-plane interpolation can be refined independently
of the in-plane one, and (iii )increased computational savings during the construction of the
element stiffness matrix, which increase with the number of elements and interfaces through the
plate thickness.

4.4 Assignment of loads and boundary conditions

Considering the introduced translational DOFs, it is possible to specify the following sets of
boundary conditions along the edges of the laminate:

1. Simply-supported edge parallel to X−axis: U I = W I = 0

2. Simply-supported edge parallel to Y−axis: V I = W I = 0

3. Clamped edge: U I = V I = W I = 0

In addition, the displacements U1, V 1, W 1, UN , V N or WN could be constrained, simulating
the supports along either the bottom (1) or top surface (N) of the laminate.
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Due to symmetry in geometry, stacking sequence, loading and boundary conditions, only a half,
quarter or eighth of laminate could be modelled to reduce the number of DOFs. Accordantly,
the removed parts must be replaced with appropriate symmetry constraints:

1. Symmetry plane parallel to the XZ−plane: V I = 0

2. Symmetry plane parallel to the Y Z−plane: U I = 0

3. Symmetry plane parallel to the XY−plane: W I = 0

Considering the possible loading assignments, point forces F 1
x , F 1

y , F 1
z , FN

x , FN
y or FN

z or
distributed loadings q1

x, q1
y, q1

z , qN
x , qN

y or qN
z can be assigned on either the bottom (1) or top

surface (N).

4.5 Post-Computation of interlaminar stresses

The assumed piece-wise linear interpolation of displacement field through the laminate thickness
results in discontinuous stresses across the interface between adjacent layers. After obtaining
the nodal displacements from Eq. (4.17), the stresses in each layer can be computed from 3D
constitutive relations (Eq. (3.7)):



σx

σy

σz

τxy



k

b

=


C̄11 C̄12 C̄16

C̄21 C̄22 C̄26

C̄31 C̄32 C̄36

C̄61 C̄62 C̄66



(k)

m∑
j=1



∂ψj

∂x
0

0 ∂ψj

∂y

∂ψj

∂y

∂ψj

∂x




U I

j

V I
j

+

+



C̄13

C̄23

C̄33

C̄36



k

m∑
j=1

ψj(W I+1
j −W I

j ) 1
hk

(4.18)
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

σx

σy

σz

τxy



k

t

=


C̄11 C̄12 C̄16

C̄21 C̄22 C̄26

C̄31 C̄32 C̄36

C̄61 C̄62 C̄66



(k)

m∑
j=1



∂ψj

∂x
0

0 ∂ψj

∂y

∂ψj

∂y

∂ψj

∂x




U I+1

j

V I+1
j

+

+



C̄13

C̄23

C̄33

C̄36



k

m∑
j=1

ψj(W I+1
j −W I

j ) 1
hk

(4.19)

τyz

τxz


k

b

=
C̄44 C̄45

C̄54 C̄55

(k)
m∑

j=1



∂ψj

∂x

∂ψj

∂y


W I

j +

+
C̄44 C̄45

C̄54 C̄55

(k)
m∑

j=1

ψj 0
0 ψj




U I+1

j

V I+1
j

−


U I

j

V I
j



 1
hk

(4.20)

τyz

τxz


k

t

=
C̄44 C̄45

C̄54 C̄55

(k)
m∑

j=1



∂ψj

∂x

∂ψj

∂y


W I+1

j +

+
C̄44 C̄45

C̄54 C̄55

(k)
m∑

j=1

ψj 0
0 ψj




U I+1

j

V I+1
j

−


U I

j

V I
j



 1
hk

(4.21)

As the interlaminar stresses (red color in Figure 4.2) computed in this way do not fulfill a
continuous distribution throughout the thickness of the laminate, they are re-calculated (blue
color in Figure 4.2) by assuming a quadratic distribution within each layer for each stress
component (s = xz, yz or z):

{
τ̄ k
}

=


τ̄ k

xz

τ̄ k
yz

σ̄k
z

 = ak
s z̄

2 + bk
s z̄ + ck

s , k = 1, ..., N, 0 ≤ z̄ ≤ hk (4.22)
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Figure 4.2: Distribution of interlaminar stresses through the laminate thickness : red color:
from constitutive relations (Eqs. (4.18-4.21)); blue color: re-computed from (Eq. 4.22)[112]

.

For each of the interlaminar stresses, a total of 3N equations are needed, where N represents
the number of interfaces, including Sb and St. The following conditions can be used to obtain
these equations:

1. Satisfying the traction boundary conditions at Sb and St (2 equations)

τ̄ 1(z̄ = 0) = qb, τ̄N(z̄ = hN) = qt (4.23)

2. Providing the continuity of interlaminar stresses along interfaces (n− 1 equations)

τ̄ k−1(z̄ = hk−1) = τ̄ k(z̄ = 0) (4.24)

3. Assuming the interlaminar stresses from the constitutive equations to be average interlam-
inar stresses within a considered layer (n equations)

hk∫
0

τ̄ k(z)dz = τ̄ k
b + τ̄ k

t

2 hk (4.25)

4. Computing the jump gap in interlaminar stresses at each interface utilizing the 3D
equations of equilibrium in terms of stresses (n− 1 equations)

∂τ̄ k−1(z̄ = hk−1)
∂z̄

− ∂τ̄ k(z̄ = 0)
∂z̄

= ∂τ̄ k−1
3D

∂z
− ∂τ̄ k

3D

∂z
(4.26)

where {
τ3D

}
=
{
τ 3D

xz τ 3D
yz σ3D

z

}T (4.27)

is the vector of interlaminar stresses obtained from 3D equilibrium equations:

∂τ 3D
xz

∂z
= −

(
∂σx

∂x
+ ∂τxy

∂y

)
,

∂τ 3D
yz

∂z
= −

(
∂τxy

∂x
+ ∂σy

∂y

)
,

∂σ3D
z

∂z
= −

(
∂τxz

∂x
+ ∂τyz

∂y

)
(4.28)
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The derivates of interlaminar stresses ∂τ
3D
xz

∂x
,
∂τ 3D

yz

∂y
and ∂σ3D

z

∂z
are calculated as:



∂τ 3D
xz

∂z

∂τ 3D
yz

∂z



k

b

= −

C̄11 C̄12 C̄16

C̄61 C̄62 C̄66

(k)
m∑

j=1



∂2ψj

∂x2 0

0 ∂2ψj

∂x∂y

∂2ψj

∂x∂y

∂2ψj

∂x2




U I

j

V I
j

−

−

C̄13

C̄63


(k)

m∑
j=1

∂ψj

∂x
(W I+1

j −W I
j ) 1
hk

−

C̄61 C̄62 C̄66

C̄21 C̄22 C̄26

(k)

m∑
j=1



∂2ψj

∂x∂y
0

0 ∂2ψj

∂y2

∂2ψj

∂y2
∂2ψj

∂x∂y




U I

j

V I
j

−

C̄63

C̄23


(k)

m∑
j=1

∂ψj

∂y
(W I+1

j −W I
j ) 1
hk

(4.29)



∂τ 3D
xz

∂z

∂τ 3D
yz

∂z



t

b

= −

C̄11 C̄12 C̄16

C̄61 C̄62 C̄66

(k)
m∑

j=1



∂2ψj

∂x2 0

0 ∂2ψj

∂x∂y

∂2ψj

∂x∂y

∂2ψj

∂x2




U I+1

j

V I+1
j

−

−

C̄13

C̄63


(k)

m∑
j=1

∂ψj

∂x
(W I+1

j −W I
j ) 1
hk

−

−

C̄61 C̄62 C̄66

C̄21 C̄22 C̄26

(k)
m∑

j=1



∂2ψj

∂x∂y
0

0 ∂2ψj

∂y2

∂2ψj

∂y2
∂2ψj

∂x∂y




U I+1

j

V I+1
j

−

−

C̄63

C̄23


(k)

m∑
j=1

∂ψj

∂y
(W I+1

j −W I
j ) 1
hk

(4.30)
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{
∂σ3D

z

∂z

}k

b

= −
{
C̄55 C̄54 C̄44

}(k) m∑
j=1



∂2ψj

∂x2

2 ∂
2ψj

∂x∂y

∂2ψj

∂y2



{
W I

j

}
−

−
{
C̄55 C̄54 C̄44

}(k) m∑
j=1



∂ψj

∂x
0

∂ψj

∂y

∂ψj

∂x

0 ∂ψj

∂y





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where ∂2ψj

∂x2 , ∂
2ψj

∂y2 and ∂2ψj

∂x∂y
denotes the second derivative of ψj with respect to x, y and xy,

respectively.
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5 Failure criteria and failure modes in
laminar composites

5.1 Introduction

Although the global-level static elastic response of an undamaged laminate can be predicted
directly, from laminate constitutive equations, comprehending the inelastic material behaviour
resulting from damage is crucial for the secure and efficient use of laminar composites in the
construction sector. Under service conditions, laminar composites can develop various failure
intralaminar mechanisms [4], such as fiber breakage and pull-out, matrix yielding and cracking,
and fiber-matrix debonding (Figure 5.1). These mechanisms cause a permanent loss of integrity
within the laminate, and ultimately results in reduced stiffness and strength of the composite
material. Consequently, the load-carrying capacity and service life of the structure are reduced.
To ascertain the load carrying capacity and service life of a laminar composites, it is essential to
predict the initiation and progression of failure.

Figure 5.1: Typical intralaminar failure modes in laminar composites

The main challenge in mathematical modelling of damage arises from the presence of different
geometric scales during failure initiation and progression. At a microscopic level, the failure of
laminar composites is attributed to molecular-level damage. According to [118], damage refers
to a group of permanent microstructural alterations that result from a set of irreversible physical
or chemical processes caused by thermo-mechanical loads. The behaviour of laminar composites
at the macro-level can be inferred by examining their behaviour at the micro-level, as stated in
[119]. However, in practical scenarios, the macroscopic behaviour is often determined solely by
analysing load-displacement data from test specimens, without getting insight the microscopic
level details.

31
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Initially, a failure typically begins at a micro-level and gradually progresses into a macro defect
or failure mode. Nonetheless, when the aim is to predict the failure behaviour of a laminate, it
becomes excessively challenging to concentrate on the occurrences happening at the micro-level.
As a result, in analysing the failure of laminar composites, the focus is directed towards failures
at the lamina-level.

Failure initiation occurs when stresses in the weakest lamina overstep the allowable fiber or
matrix strength. To effectively identify the onset of damage in laminar composites within
particular failure modes, it is necessary to establish an appropriate failure criterion. Lamina
failure criteria consist of equations with parameters that are tailored to match experimental
data on the failure of single-lamina composites [1]. These criteria are then utilized in design
situations where experimental data is not available, including the design of laminar composites.
The use of lamina failure criteria in PFA of laminar composites is restricted to prediction of
First-Ply Failure (FPF). After the initiation of damage, these criteria become inadequate in
providing useful information for predicting the evolution of damage, redistribution of stress to
other laminae, and the ultimate failure load. The lamina failure criteria for composite materials
rely on the tensile, compressive, and shear strengths of unidirectional lamina, and they are
typically grouped into two categories: non-interactive and interactive.

5.2 Non-interactive failure criteria

Non-interactive failure criteria, such as maximum Stress and maximum Strain failure criteria, do
not take into account interactions between stress or strain components. Instead, they compare
these components separately to their respective material strength values. These criteria have
rectangular failure surfaces in both stress and strain spaces (Figure 5.2), and they are suitable
for uniaxial stress state.

Figure 5.2: Failure surface for max stress failure criterion (left) and max strain failure criterion
(right)

32



5. Failure criteria and modes 5.3. Interactive failure criteria

5.2.1 Maximum stress failure criterion

In this criterion, failure of a lamina is assumed to occur when at least one of the stresses in
material (1, 2, 3) coordinates exceeds the corresponding strength value:

σ1 > XT , σ2 > YT , σ3 > ZT ,

|τ23| > R, |τ13| > S, |τ12| > T
(5.1)

In Eq. (5.1), XT , YT and ZT are the normal tensile strengths of the lamina in the 1, 2 and
3 directions, respectively, while R, S and T represent shear strengths in the 23, 13 and 12
material planes, respectively. When normal stresses (σ1, σ2, σ3) are of compressive nature, then
their absolute value should be compared with the normal compressive strengths of the lamina,
XC , YC , and ZC , respectively.

The maximum Stress Criterion has the benefit of providing insight into the failure mode.
However, it tends to overpredict the strength of the structure, when dealing with stress states
that aren’t primarily influenced by a single stress component [120].

5.2.2 Maximum strain failure criterion

The maximum strain criterion predicts initiation of failure when the maximum strain in a
material coordinates reaches a critical value. This criterion assumes that failure initiation occurs
when any of the following conditions are satisfied:

ε1 > XεT , ε2 > YεT , ε3 > ZεT ,

|γ23| > Rε, |γ13| > Sε, |γ12| > Tε

(5.2)

where XεT , YεT and ZεT are the normal tensile strain strengths of the lamina in the 1, 2 and
3 directions, respectively, while Rε, Sε and Tε represent shear strain strengths in the 23, 13
and 12 planes, respectively. In case of negative normal strains (ε1, ε2, ε3), their absolute value
should be compared with the normal compressive strain strengths of the lamina, XεC , YεC , and
ZεC , respectively.

The maximum strain criterion is commonly used in the design of ductile materials, such as
metals, which typically fail due to excessive plastic deformation. However, this criterion may
not be suitable for quasi-brittle materials, such as laminar composites, which tend to fail due to
the formation and propagation of cracks [1].

5.3 Interactive failure criteria

The failure criteria in Section 5.2 consider each mode of failure independently from the others.
This means that a multiaxial state of stress is viewed as a set of independent, uniaxial states of
stress. If any of these uniaxial states of stress surpass their corresponding strength values, the
material is considered to have failed, regardless of the fact that the material is being subjected to
combined stresses. This approach may result in designs that overestimate or even underestimate
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the failure like in case when multiple modes of failure interact to cause failure at a stress state
that is lower, or higher, than what would be predicted by each failure mode acting independently.

Interactive failure criteria, in contrast to non-interactive failure criteria, take into account
the interactions between stress and strain components. The Tsai-Hill, Hoffman, and Tsai-Wu
criteria, which are quadratic polynomial criteria, belong to this category. These criteria utilize
a polynomial function based on the material strengths to describe an ellipsoidal-shaped failure
surface (Figure 5.3).

Figure 5.3: Failure surface for quadratic polynomial failure criteria

5.3.1 Tsai-Hill failure criterion

Tsai et al.’s research in 1966 was a pioneering effort to develop failure criteria for composite
materials [121]. They based their approach on Hill’s theory from 1948 [22], which was originally
formulated to describe the yielding and plastic deformation of anisotropic metals. Hill observed
that when metals undergo processes such as rolling, drawing, and extrusion, they develop a
preferred orientation due to the alignment of crystalline planes. To generalize Hill’s theory for
orthotropic materials, a mathematical extension of the Von Mises yield criterion, originally
developed for isotropic metals, was proposed. This extension was based on two assumptions:
first, the absence of the Bauschinger effect, implying that the yield stress remains constant in
both tension and compression, and second, the independence of the plastic potential from the
superposition of hydrostatic pressure. Therefore, the following form of Tsai-Hill criterion was
obtained:

ϕ = F (σ2 − σ3)2 +G(σ3 − σ1)2 +H(σ1 − σ2)2 + 2(Lτ 2
23 +Mτ 2

31 +Nτ 2
12) = 1 (5.3)

where ϕ is maximum failure index, F, G and H are material constants obtained through uniaxial
tests imposed along the material directions 1, 2 and 3 of the single lamina (Figure 5.4):
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Figure 5.4: Uniaxial tests imposed along the material directions 1, 2 and 3 of the single lamina
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(5.4)

The material constants L, M and N from Eq. (5.3) are obtained from pure shear tests in the
three orthogonal symmetry planes 23, 13 and 12 respectively (see Figure 5.5):

Figure 5.5: Pure shear tests in the three orthogonal symmetry planes 12, 13 and 23

L = 1
2

1
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2
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T 2 (5.5)
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Replacing the material constants from Eq. (5.4) and Eq. (5.5) into the Eq. (5.3), the final form
of Tsai-Hill failure criterion is obtained as:

ϕ =
(
σ1

X

)2
+
(
σ2

Y

)2
+
(
σ3

Z

)2
+
(
τ23

R

)2
+
(
τ13

S

)2
+
(
τ12

T

)2
−

−
(

1
X2 + 1

Y 2 − 1
Z2

)
σ1σ2 −

(
1
X2 + 1

Z2 − 1
Y 2

)
σ1σ3 −

(
1
Y 2 + 1

Z2 − 1
X2

)
σ2σ3 = 1

(5.6)

Note that the values of X, Y , Z in Tsai-Hill criterion Eq. (5.6) are taken as either XT , YT , ZT ,
or as XC , YC , ZC , depending upon the sign of σ1, σ2 and σ3, respectively. The condition for
failure, as defined by Eq. (5.6), is such that failure will occur when the linear elastic response in
any combination of stress components reaches the limit condition specified by that equation.

Due to its derivation from the von Mises criterion, the Tsai-Hill criterion assumes fixed interac-
tions between stresses in Eq. (5.6). As a result, this criterion is applicable to orthotropic metal
sheets with rotational symmetry about one of the symmetry axes. Attempting to extend its
use to predict failure behaviour in unidirectional composite, such as lamina, raises significant
concerns about the validity of the model, as different failure mechanisms can occur under various
stress states [122].

5.3.2 Hoffman failure criterion

The Hoffman failure criterion for unidirectional composites was introduced in 1967 [29]. It
assumed that all failure modes in composites were brittle fracture, although no physical evidence
supported this. This assumption meant that the linear elastic response for each stress component
ended abruptly at a limiting value (failure strength) for that component. The fracture strength
in combined stresses was represented by a "yield condition," despite the assumption of brittle
fracture. Tsai et al. [121] did not explicitly state these assumptions, but they essentially implied
them by renaming yield stresses in Hill’s [22] criterion as composite strength values. The
Hoffman and Tsai-Hill criteria are both used to assess the strength of composite materials, but
they differ in their approach to assigning strengths for tension and compression in different
directions. The Tsai-Hill criterion assumes that the material has isotropic properties, and assigns
the same strength in tension and compression in all directions. On the other hand, the Hoffman
criterion assigns different strengths for tension and compression along and normal to the fibers,
respectively, in each principal composite direction. This inclusion of the Bauschinger effect,
which Hill ignored, led Hoffman to add three linear terms to Eq. (5.3), increasing the number of
material constants from six to nine in Hill’s version:

ϕ = Aσ1 +Bσ2 +Dσ3 + F (σ2 − σ3)2 +G(σ3 − σ1)2 +H(σ1 − σ2)2+
+2(Lτ 2

23 +Mτ 2
31 +Nτ 2

12) = 1
(5.7)
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The material constants L, M and N are the same as in Tsai-Hill criterion (Eq. (5.5)), while the
remaining material constants are defined as:
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(5.8)

Finally, the Hoffman failure criterion is given as:
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(5.9)

This criterion resulted in an ellipsoid graphical representation of failure surface, where the center
is offset from the origin of material axes 1, 2, and 3.

5.3.3 Tsai-Wu failure criterion

Several future efforts focused on the ellipsoidal representation of the failure surface, with notable
work being done by Tsai and Wu [20] in 1971. They assumed that the maximum failure
index, f(ϕ), was associated with the failure surface and was dependent on the strength tensor
components:

ϕ = Fiσi + Fijσiσi = 1 (5.10)

where Fi and Fij are second order and fourth order strength tensors, respectively. The established
patterns of anisotropic materials’ diffusion and elastic properties are reflected in the symmetry
properties of the strength tensors [123]. Previous equation can be expressed in expanded form
as:

ϕ = F1σ1 + F2σ2 + F3σ3 + F4τ23 + F5τ13 + F6τ12+
+F11σ

2
1 + 2F12σ1σ2 + 2F13σ1σ3 + 2F14σ1τ23 + 2F15σ1τ13 + 2F16σ1τ12+

+F22σ
2
2 + 2F23σ2σ3 + 2F24σ2τ23 + 2F25σ2τ13 + 2F26σ2τ12+

+F33σ
2
3 + 2F34σ3τ23 + 2F35σ3τ13 + 2F36σ3τ12+

+F44τ
2
23 + 2F45τ23τ13 + 2F46τ23τ12+

+F55τ
2
13 + 2F56τ13τ12+

+F66τ
2
12 = 1

(5.11)
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The values of strength tensor components F4, F5, and F6, which are linked to τ23, τ13, and τ12,
are assumed to be zero because the shear strengths remain unchanged under both positive and
negative shear stress. Additionally, it is assumed that there is no interaction between normal and
shear stresses, leading to the values of F14, F26,..., F36 equal to zero. Using a similar approach,
it is presumed that all shear stresses are uncoupled [20], meaning that F45, F46, and F56 are
all equal to zero. However, the coupling between normal stresses is anticipated to persist. By
assuming these symmetry relations, the number of independent components is reduced to 3 and
9, respectively. Therefore, Eq. (5.11) can be rewritten as:

ϕ = F1σ1 + F2σ2 + F3σ3 + +F11σ
2
1 + F22σ

2
2 + +F33σ

2
3+

+2F12σ1σ2 + 2F13σ1σ3 + 2F23σ2σ3 + F44τ
2
23 + F55τ

2
13 + F66τ

2
12 = 1

(5.12)

According to Tsai and Wu [20], the values of nine out of the twelve constants in Eq. (3.12) are
derived from uniaxial and pure shear tests, and can be described in relation to the material
strengths through the following relationships:

F1 = 1
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− 1
XC

, F2 = 1
YT

− 1
YC

, F3 = 1
ZT

− 1
ZC

,

F11 = 1
XTXC
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YTYC

, F33 = 1
ZTZC

,

F44 = 1
R2 , F55 = 1

S2 , F66 = 1
T 2

(5.13)

The strength tensor constants F12, F13 and F23 cannot be uniquely determined. For the Eq.
(5.12) to represent an ellipsoid in the stress space, the magnitude of these constants must satisfy
a certain inequalities:

F11F22 − F12 > 0
F11F33 − F13 > 0
F22F33 − F23 > 0

(5.14)

Finally, Tsai and Wu [20] proposed that the constants F12, F13, and F23, related to the interaction
of two stress components, can be obtained by corresponding biaxial tests:

F12 = −1
2

1√
XTXCYTYC

,

F13 = −1
2

1√
XTXCZTZC

,

F23 = −1
2

1√
YTYCZTZC

(5.15)

Eq. (5.12) is observed to be unchanged under coordinate transformation and has the ability to
model varying strengths in tension and compression, making it a more adaptable tool for curve
fitting in the unidirectional composite strength field than Tsai-Hill’s failure criterion (Eq. (5.6)),
as well as Hoffman’s modification, which includes the Bauschinger effect (Eq. (5.9)). However,
it is important to note that the ellipsoidal depiction of unidirectional composite strength in
the stress components is purely speculative and lacks any physical basis in terms of failure
mechanisms.
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5.3.4 Hashin failure criterion

In 1980, Hashin [24] analysed the ability of the Tsai-Wu criterion [20] to accurately predict
failure in unidirectional composites. He discovered that the criterion’s representation of failure in
stress space using a single ellipsoidal surface, as shown in Eq. (5.12), was not always appropriate
due to certain limitations. One of the main challenges he identified was the off-diagonal strength
tensor constants F12, F13 and F23 in Eq. (5.12), which can produce unacceptable values when
determined through biaxial tests. Specifically, these values derived from biaxial tension tests
depend on compressive strengths in the fiber and transverse directions, which is not a physically
reasonable assumption. In fact, the values assigned to constants F12, F13 and F23 through
Eq. (5.15) are solely determined by the requirement for the ellipsoidal surface to be closed.
These values are not based on any observed or anticipated physical properties of unidirectional
composites in stress space.

Instead of requiring a single continuous smooth surface to represent the strength of unidirectional
composite, Hashin [24] proposed the use of piecewise smooth surfaces, with each branch
representing a distinct failure mode. This approach ensures that stress components only interact
with relevant failure modes, avoiding the issues associated with off-diagonal constants in the
Tsai-Wu criterion. Hashin further suggested separating the fiber failure modes from the matrix
failure modes. For each failure mode, he argued that the governing stress interactions should be
expressed using quadratic polynomials, as linear terms would typically be insufficient and more
than quadratic terms would make the resulting failure criteria impractical. He formulated the
quadratic failure criteria using stress invariants for transversely isotropic symmetry and argued
that unidirectional composites typically have randomly distributed fibers in the cross-section.

Hashin [24] contended that if a failure surface can be pinpointed, then the failure is caused by
the normal and shear stresses acting upon that surface. In the case of fiber tension (ft) failure
mode, the failure surface proceeds in a direction perpendicular to the fiber, as illustrated in
Figure 5.6a.

Figure 5.6: Typical failure surface of unidirectional lamina for: (a) fiber failure mode; (b)
matrix failure mode

As a result, the stresses responsible for this mode of failure are σ1, τ12 and τ13, and the Hashin
criterion for (ft) failure mode takes the following quadratic form:
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Fiber tension failure:

fft =
(
σ1

XT

)2

+
(
τ12

T

)2
+
(
τ13

S

)2
= 1, σ1 > 0 (5.16)

The criterion for fiber compression (fc) failure mode is expressed in a basic maximum stress
form, due to insufficient knowledge of the impact of shear stress on this mode of failure [124].

Fiber compression failure:

ffc =
(

− σ1

XC

)2

= 1, σ1 < 0 (5.17)

For matrix failure modes, Hashin proposed the existence of a failure surface between fibers
that goes through the matrix (Figure 5.6b), where the inclination angle (θ) of the surface with
the thickness material (3) direction is determined by the critical normal (σn) and shear (τt, τt)
traction components, acting on it [122]. The normal σn and shear τt component are expressed
in terms of the stresses σ2, σ3 and τ23, while the shear τl component is expressed in terms of σ12
and σ13. These expressions are given in detail in [24]. The concept of failure on a surface is not
new, as it was proposed for soil failure by Mohr in 1905 [125] and earlier by Coulomb in 1776
[122].

As mention before, failure modes of the matrix differ between matrix tension and matrix
compression. In cases of matrix tension, the failure is caused by a combination of in-plane shear
and matrix opening, resulting in a failure surface that is typically perpendicular to the direction
of transverse tension. Conversely, matrix compression specimens usually fail due to out-of-plane
shear, with the failure surface parallel to the fiber direction at an inclination angle of θ = 45o,
indicating failure occurring in the plane of maximum shear stress [24]. However, experimental
evidence shows that for most technical composite materials, the angle is generally θ = 53 ± 2o

[64]. This can be attributed to the presence of a compressive stress acting on the potential
failure surfaces, along with an associated friction stress [68]. Finally, the Hashin failure criterion
for the matrix tension (mt) and compression (mc) failure mode is given in the following form:

Matrix tension failure:
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Matrix compression failure:

fmc = 1
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+ 1
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)2
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(5.19)

Finally, the maximum failure index, ϕ, is obtained as the maximum value of each failure mode
index: fft , ffc , fmt and fmc .
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5.4 Procedure for the first-ply failure of laminate

The load at which the failure criterion is met within the weakest lamina of a laminate is known
as the First-ply failure (FPF) load. In FRP laminar composites, the transverse and shear
strengths are typically lower than the longitudinal strength, so FPF is often caused by matrix
failure modes, such as matrix cracking.

To calculate the FPF load, the stress problem is solved for an initial load. The stress distribution
is piece-wise linear through the thickness of the laminate, as shown in Figure 4.2, and the
maximum value of stress component is found on the top or bottom of each layer. The lamina
stresses in the material coordinate system (123) are then used in a chosen failure criterion to
calculate the maximum failure index ϕ. To determine whether the laminate has failed, the
absolute value of (ϕ−1) is compared against δ, a predetermined value of maximum tolerable error
(1% in most studies [126]). If the absolute value is less than δ, the first ply within the laminate
has failed. If not, the initial load is increased or decreased by a predetermined percentage and
the procedure is repeated until failure occurs. A flow chart of described procedure is illustrated
in Figure 5.7.

Figure 5.7: Flow chart of procedure for First-ply failure load determination of laminate

In layerwise theory, stress state is determined at all layer interfaces, in Gauss points associated
with the selected finite element. Then, to find the maximum failure index ϕ, each element’s
failure index is calculated at every Gauss point at the top and bottom interfaces of each layer,
and the maximum value is recorded along with the element number, Gaussian point number,
layer number, and interface location. This process is repeated until all layered finite elements
have been searched for the maximum failure index.

In contrast to the unidirectional lamina, the laminae in a laminate are bound by neighbouring
laminae, preventing cracks from easily spreading and inhibiting the development of multiple
cracks that could result in significant loss of stiffness and strength. This constraining effect
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slows the propagation of inherent micro-defects and delays the appearance of a fully developed
initial crack.

Hence, the stress level at which an unconstrained unidirectional lamina fails is lower compared
to the same lamina embedded in a laminate. Furthermore, while failure initiation coincides with
the ultimate failure of a unidirectional lamina, this is not the case for a laminate made up of
multiple layers. Consequently, the next chapter will focus on discussing the progressive failure
analysis (PFA) of a laminate.
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6 Smeared crack-band damage model

6.1 Introduction

After the failure has been detected in the weakest lamina of the laminar composite, the properties
of that lamina must be reduced and its stress redistributed to the remaining laminae. Progressive
failure analysis (PFA) is performed to describe the post-failure behaviour in composite materials,
through the material stiffness degradation. To estimate the strength of a laminate, it is necessary
to monitor the degradation of most, if not all, laminae until the laminate can no longer sustain
the applied load. However, the lamina failure criteria explained in the previous chapter do
not account for the gradual process of damage accumulation, stiffness reduction, and stress
redistribution. Therefore, it is essential to incorporate damage models to accurately predict
these phenomena. Generally, such models can be categorized into two groups [7]: discrete
damage models (DDM) and continuum damage models (CDM).

The explicit representation of cracks within the structure in DDM results in physically realistic
description of damage mechanisms and their interactions. Nonetheless, this approach comes
with the drawback of considerably increased computational expenses and numerical complexity.
In contrary, in CDM approaches, intralaminar cracks are smeared out across the finite element
domain and failure mechanisms are represented through material stiffness degradation using
methods such as: instantaneous softening method (ISM) or gradual softening method (GSM)
[8]. In ISM, the material property associated with the failure mode degrades immediately to
zero (or a small value) of the undamaged material properties (blue color in Figure 6.1). It is
commonly observed that the strength of laminates is often underestimated by the ISM because
it fails to consider that damage is localized and a failed lamina still has some capacity to carry
loads [127]. Instead of the instantaneous softening, fiber-reinforced composite materials typically
exhibit a quasi-brittle post-failure behaviour, resulting in a dissipation of high fracture energy
and a gradual progression of damage [66]. Therefore the gradual softening method (GSM)
is recommended, in which the material property associated with the failure mode degrades
gradually (i.e., linearly or exponentially) until it reaches zero (red color in Figure 6.1). As the
damaged material is unloaded gradually, the stresses may be redistributed to the intact material
in the vicinity of the damaged area.

GSM models are commonly used in PFA of laminar composites to simulate the evolution of
material damage due to the convenience of their implementation in general purpose FE-based
software. These models can be formulated at different length scales, ranging from the microscopic
to the macroscopic one, depending on the level of detail required to accurately capture the
failure behaviour of the material being analysed [128].
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Figure 6.1: Post-failure softening behaviour in laminar composites. σ0 denotes the material
strength, ε0 is the strain in the moment of damage initiation, while εf is the maximum strain

The micro-scale GSM models investigate the intricate interactions between the fibers and the
matrix. Although these models have proven successful in predicting the properties of undamaged
materials and the onset of damage, they are inadequate in forecasting damage evolution [129,
130]. This is because the representative volume assumed in a micro-scale model for predicting
the behaviour of the intact material cannot be used as a representative volume for extensively
damaged materials. In essence, smearing cannot be performed at the same scale in damaged
and undamaged materials.

At the next scale, ply-based GSM models focus on the behaviour of the composite laminate at
the lamina-level. The damage behaviour of each lamina is determined through tests performed
on unidirectional (UD) laminates, and it is modelled independently of its adjacent laminae [131,
132]. Although ply-based models provide a detailed representation of the post-failure behaviour
in each damaged lamina, the parameters used to describe the initiation and growth of damage
may not accurately reflect the behaviour of damaged lamina in multi-directional laminate. In
the multi-directional laminates, neighbouring layers provide structural support to the damaged
layers and introduce alternative load paths within the laminate, which can significantly affect
the behaviour of damaged lamina. Furthermore, considering that the simulation of every layer in
the laminate is necessary, ply-based models become unfeasible for simulating structures of actual
size due to the excessive computational expenses and time required. Large-scale structures can
be more easily simulated using macro-scale GSM models [10]. Such models are designed to
predict the general failure behaviour of the laminate and the resulting load-carrying capacity of
the structure. However, they do not take into account the impact of damage events in individual
layers on the overall nonlinear response of the laminate.

Selecting the suitable material length scale is crucial for precisely predicting failure progression.
In quasi-brittle materials such as composites, damage is fundamentally a non-local phenomenon,
and its advancement is influenced by both material and structural behaviour. Therefore, the
validity of utilizing an averaging scheme to bridge different scales (micro-scale, meso-scale, and
macro-scale) becomes questionable since the characteristic material length, which is associated
with the constitutive model at the macro-scale, cannot be constructed hierarchically from lower
scales [133, 134].

A major shortcoming of many of the existing CDM models is that assumed strain softening
post-failure behaviour leads to localization of damage over a surface of zero thickness, which
means no energy can be dissipated [135]. This issue is not affected by the shape of the softening
portion of the stress-strain curve and causes a spurious dependence on the mesh size in finite
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element solutions. As a result, the damage pattern becomes more localized with smaller mesh
sizes, eventually becoming confined to a zero-volume zone, preventing numerical predictions
from converging to a unique solution [136]. Therefore, the overall system response becomes
dependent on the spatial discretization.

In order to alleviate the mesh-dependency issue and capture multi-scale nature of failure in
laminar composites, the originally fracture-mechanics augmented smeared crack band (SCB)
model was developed in [10] and applied successfully in this study.

6.2 Formulation of SCB damage model

The SCB damage model was initially proposed by Williams et al. [10], to capture the effect of
matrix cracking and fibre breakage on the overall behaviour of the considered material. In SCB
approaches, the response of damage material is smeared out within the finite representative
volume element of the laminate and the facture mechanism is then represented through material
stiffness degradation. This results in the inclusion of a length parameter relative to the element
dimensions in the damage law [45]. The damage law is derived on the assumption that the total
energy required to cause an element to fail (released strain energy) is equal to the energy needed
to create a crack that propagates through it [65]. The released strain energy of a failed element
is determined by multiplying the area under the stress-strain curve, as defined in Figure 6.2,
by a characteristic element length lc. In this study, lc is defined as the square root of an area
of a layered finite element. This energy is then equated to the fracture toughness (G), which
represents the dissipated fracture energy of the composite material:

εf = 2G
σ0lc

(6.1)

In the Eq. (6.1), εf is maximum strain, while σ0 is the material strength. The incorporation of
the characteristic element length in the material damage law results in a consistent dissipated
fracture energy, irrespective of the size of the elements.

Figure 6.2: Stress-strain relationship with linear softening law applied for laminate stiffness
degradation in global (x, y, z) directions. C is the material stiffness in the undamaged state,

while CD is the material stiffness in the damaged state.

The laminate stiffness degradation was controlled by damage variables, whose evolution is
governed by strain components in the global laminate (xyz) coordinate system. This would be
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a valid approach for unidirectional laminates, where the coordinate system coincides with the
material directions (1, 2, 3) that dictate the crack paths. However, damage growth in multi-layer
laminates can be manifested in different orientations within the material. These orientations
may not be related to any particular coordinate system used to describe the material. For
example, if a global coordinate system (xyz) is chosen to describe a laminate material, damage
may occur at an angle that is not aligned with any of these axes. Attempting to describe
and analyze the damage using this coordinate system can lead to limitations in accurately
representing the orientation and growth of the damage [11]. This is because the damage is being
forced to conform to a specific coordinate system, which may not accurately reflect its true
nature. In other words, describing damage in terms of a fixed coordinate system may introduce
inaccuracies in the progressive analysis of the failure, particularly when the damage occurs at
orientations that are not aligned with the coordinate system. To ensure an accurate analysis of
the failure in multi-layer laminates, it is important to consider the complex orientations of the
damage and avoid relying solely on global coordinate systems to describe it.

Using the above model, the mesh orientation issue in SCB models was overcome by expressing
the sub-laminate material response in terms of equivalent strain components in the principal
lamina directions [70, 71]. Distinct bi-linear strain-softening curves (see Figure 6.3a) were used
to describe the response of the damaged lamina in both the fiber and transverse to the fiber
direction. These curves were designed such that the peak stress coincides with the fiber and
matrix strength, respectively. When these stress-strain responses are integrated for each layer in
a quasi-isotropic laminate, such as [0o/45o/−45o/90o]s, the overall stress-strain behaviour of the
laminate becomes non-linear, as shown in Figure 6.3b. The key points along the stress-strain
curve are denoted (a-e) to describe the sequence of damage events For instance, matrix damage
initiation in the 90o layer corresponds to point (a), while point (b) marks the beginning of fiber
damage in the 0o layer. As the 0o layer carries a significant portion of the load, the onset of
its fiber damage coincides with the strain-softening behaviour of the laminate. At point (c),
the fibers in the ±45o layers begin to degrade, and at point (d), fiber damage in the 0o layer
saturates. When damage is completely saturated (or fully developed) at point (e), the laminate
loses its load carrying capacity.

Figure 6.3: Stress-strain relationship with linear softening law applied for lamina stiffness
degradation in material (1, 2, 3) directions
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6.2.1 Constitutive model

The initial challenge when establishing a damage model for laminar composites is determining
the material stiffness matrix in a damaged state. For the uniaxial case, only the undamaged
portion of the cross-sectional area (referred to as the net-area) is expected to bear the load.
Consequently, when the damaged material experiences a strain (ε) and is under nominal stress
(σ), it must be represented as an undamaged material that is subjected to the same strain but
under an effective stress state (σ̂) [137]. This implies that the failure criteria, described in the
previous chapter, are considered to be valid based on the effective stresses, (σ̂), instead of the
nominal stresses (σ). The relation between the effective stress and the nominal stress is given
by: 

σ̂1

σ̂2

σ̂3

τ̂23

τ̂13

τ̂12



(k)

= M(k)



σ1

σ2

σ3

τ23

τ13

τ12



(k)

(6.2)

where M(k) represents the damage operator for the kth layer, which has the following diagonal
form:

M(k) =



1
1 − df

0 0 0 0 0

0 1
1 − dm

0 0 0 0

0 0 1
1 − dm

0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1
1 − ds



(k)

(6.3)

In Eq. (6.3) df , dm and ds represent damage variables for fiber, matrix and shear damage,
respectively. The postulate of strain equivalence typically results in an unsymmetrical material
stiffness matrix C(k) for any arbitrary damage operator M(k). Therefore, this matrix cannot be
considered as a valid representation of elastic behaviour.

This hypothesis, in conjunction with physical reasoning, served as a basis for constructing the
stiffness matrix in damage state C(k)

d . In order to incorporate the impact of damage into the
constitutive law, it is more convenient to use the compliance relationship, which facilitates
the connection between material properties and inelastic response of the damage lamina along
material directions (1, 2, 3). Specifically, the compliance relationship for orthotropic elasticity
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in 3D stress state is recalled and expressed in terms of effective stresses [137]:



ε1

ε2

ε3

γ23

γ13

γ12



(k)

= H(k)



σ̂1

σ̂2

σ̂3

τ̂23

τ̂13

τ̂12



(k)

(6.4)

where H(k) represents the compliance matrix for the kth layer. Substitution of effective stress
vector, (σ̂), from Eq. (6.2) into Eq. (6.4) results in:



ε1

ε2

ε3

γ23

γ13

γ12



(k)

= H(k)M(k)



σ1

σ2

σ3

τ23

τ13

τ12



(k)

(6.5)

The symmetric 3D compliance matrix in damage state H(k)
d was obtained after applying suitable

reduction factors to the Poisson’s ratios, as proposed by Matzenmiller et al. [137]:

H(k)
d =



1
E1(1 − df ) −ν21

E2
−ν31

E3
0 0 0

−ν12

E1

1
E2(1 − dm) −ν32

E3
0 0 0

−ν13

E1
−ν23

E2

1
E3(1 − dm) 0 0 0

0 0 0 1
G23(1 − ds)

0 0

0 0 0 0 1
G13(1 − ds)

0

0 0 0 0 0 1
G12(1 − ds)



(k)

(6.6)
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Finally, the symmetric 3D stiffness matrix in damage state C(k)
d was obtained in inverse form:

C(k)
d =

(
H(k)

d

)−1
=



Cd
11 Cd

12 Cd
13 0 0 0

Cd
21 Cd

22 Cd
23 0 0 0

Cd
31 Cd

23 Cd
33 0 0 0

0 0 0 Cd
44 0 0

0 0 0 0 Cd
55 0

0 0 0 0 0 Cd
66



(k)

(6.7)

The damage stiffness matrix coefficients Cd
ij are written as [72]:

Cd
11 =

E1(1 − df )
(
ν23ν32(1 − dm)2 − 1

)
∆ ,

Cd
22 =

E2(1 − dm)
(
ν13ν31(1 − df )(1 − dm) − 1

)
∆ ,

Cd
33 =

E3(1 − dm)
(
ν12ν21(1 − df )(1 − dm) − 1

)
∆ ,

Cd
12 = −E1(1 − df )(1 − dm)

(
ν23ν31(1 − dm) + ν21

)
∆ ,

Cd
13 = −E1(1 − df )(1 − dm)

(
ν21ν32(1 − dm) + ν31

)
∆ ,

Cd
23 = −

E2(1 − dm)2
(
ν12ν31(1 − df ) + ν32

)
∆ ,

Cd
44 = G23(1 − ds), Cd

55 = G13(1 − ds), Cd
66 = G12(1 − ds)

(6.8)

where
∆ = (1 − dm)2

(
(ν12ν23ν31 + ν13ν21ν32)(1 − df ) + ν23ν32

)
+

+(ν12ν21 + ν13ν31)(1 − df )(1 − dm) − 1
(6.9)

The damage variables df and dm may exhibit varying values depending on whether the material
is under tension (t) or compression (c). These variables, which are associated with failure
modes J (J = ft, fc,mt,mc), range from zero (indicating no damage) to one (signifying
complete damage). Additionally, the shear damage variable ds is interdependent and can be
mathematically expressed in terms of the other variables [72]:

ds = 1 − (1 − dft)(1 − dfc)(1 − dmt)(1 − dmc) (6.10)

6.2.2 Damage evolution

Softening laws that govern the condition for evolution of damage variables are typically described
in relation to the strain state in the single lamina. Because various damage mechanisms interact
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with one another, the evolution of each damage variable is controlled by the equivalent strain
εJ,eq. Consequently, each damage mode is depicted as a 1D stress-strain issue (as shown in
Figure 6.3a) instead of the actual 3D stress-strain relationship. The equivalent strain and
corresponding equivalent stress for each failure mode were defined as follows [72]:

Fiber tension failure:
εft,eq =

√
⟨ε1⟩2 + γ2

12 + γ2
13,

σft,eq = ⟨σ1⟩⟨ε1⟩ + τ12γ12 + τ13γ13

εft,eq

(6.11)

Fiber compression failure:
εfc,eq = ⟨−ε1⟩,

σft,eq = ⟨−σ1⟩⟨−ε1⟩
εfc,eq

(6.12)

Matrix tension failure:

εmt,eq =
√

⟨ε2⟩2 + ⟨ε3⟩2 + γ2
12 + γ2

13 + γ2
23,

σmt,eq = ⟨σ2⟩⟨ε2⟩ + ⟨σ3⟩⟨ε3⟩ + τ12γ12 + τ13γ13 + τ23γ23

εmt,eq

(6.13)

Matrix compression failure:

εmc,eq =
√

⟨−ε2⟩2 + ⟨−ε3⟩2 + γ2
12 + γ2

13 + γ2
23,

σmc,eq = ⟨−σ2⟩⟨−ε2⟩ + ⟨−σ3⟩⟨−ε3⟩ + τ12γ12 + τ13γ13 + τ23γ23

εmc,eq

(6.14)

where ⟨⟩ denotes the Macaulay bracket. In the SCB approach, it is assumed that the evolution of
damage variables (dJ) follows a hyperbolic function (as depicted in Figure 3(a)) in relation to the
equivalent strains. This approach, when combined with stiffness reduction factors that change
linearly with the damage parameters (as illustrated in Figure 3(b)), leads to a strain-softening
response that is linear for each failure mode. Following this relation, damage variables are
obtained as:

dJ =
εf

J,eq(εJ,eq − ε0
J,eq)

εJ,eq(εf
J,eq − ε0

J,eq)
, ε0

J,eq ≤ εJ,eq ≤ εf
J,eq (6.15)

where ε0
J,eq is the equivalent strain at the initial failure state (dJ = 0), while εf

J,eq is the equivalent
strain at the final failure state (dJ = 1). Given that damage evolution is an irreversible process,
the damage variable is determined as the maximum value between its current state and the
value obtained from Eq. (6.15). Eq. (6.1) can be used to calculate the equivalent strain at the
point of final failure, denoted as εf

J,eq:

εf
J,eq = 2GJ

σ0
J,eqlc

(6.16)
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In Eq. (6.16) σ0
J,eq is the equivalent stress at the state of initial failure. By utilizing the failure

criterion parameter, fJ , it is possible to determine the equivalent strain and stress at the
beginning of failure for each failure mode, using the following relation:

ε0
J,eq = εJ,eq√

fJ

, σ0
J,eq = σJ,eq√

fJ
(6.17)

6.3 Constitutive model for compressive fiber failure

Bilinear constitutive models (Figure 6.4a) may not accurately capture the material behaviour
during compressive damage initiation and propagation when using a simple linear post-peak
fiber softening. This is because fiber failure initiation can lead to instabilities such as fiber
micro-buckling and kink-bands, resulting in a sudden drop in load-carrying capability followed
by a stress response plateau [138]. To address this issue, additional softening curves are used to
improve the predictive capabilities of the material model, requiring a modification of the damage
evolution law (Eq. (6.15)). Based on approach proposed in [74], a linear-brittle post-peak
softening curve is used in this study, to simulate the sudden drop and stable stress plateau
(Figure 6.4b). As shown in Figure 6.4b, the residual plateau stress magnitude is expressed as a
percentage (PC) of the peak stress value.

Figure 6.4: Stress-strain relationship with: (a) linear and (b) linear-brittle softening law;
applied in modelling of compressive fiber failure

The area under the stress-strain curve, multiplied by the characteristic element length, remains
constant and represents the fracture toughness associated with the fiber constituent. Therefore,
the equivalent strain at the final failure state, εf

fc,eq is calculated from the below Equation,
instead of Eq. (6.16)

εf
fc,eq =

2Gfc − σ0
fc,eqε

0
fc,eqlc(1 − 2PC)

2PCσ0
fc,eqlc

(6.18)

Following the above mention, damage variable for fiber compression failure is obtained as:

dfc = 1 − PC
ε0

fc,eq

εfc,eq

, ε0
fc,eq ≤ εfc,eq < εf

fc,eq

dfc = 1, εfc,eq = εf
fc,eq

(6.19)

51



6. SCB damage model 6.4. Procedure for progressive failure analysis

6.4 Procedure for progressive failure analysis

Progressive failure analysis (PFA) is a method used to model the post-failure behaviour of a
material after the failure criterion has been satisfied. The PFA algorithm within FE analysis is
illustrated in Figure 6.5, and involves the following steps:

Figure 6.5: Flow chart of procedure for Progressive Failure Analysis of laminar composites

1. Divide the applied load into smaller increments to facilitate the PFA and simulation of
laminate’s response

2. Determine the displacement field through the laminate thickness for an initial load, based
on the current stiffness properties.

3. Compute the stresses at each Gaussian integration point on the top and bottom interfaces
of each lamina of each element, and express them in the local material coordinate system.

4. Use the failure criterion to check if any lamina of any element fails at the initial load,
based on the calculated stresses.

5. If failure is detected, degrade the corresponding material properties of the damaged lamina
according to the SCB damage model.

6. Re-establish equilibrium of the structure using the modified properties for the failed lamina
while maintaining the current load level, as the initial solution no longer corresponds to
an equilibrium state.

7. Repeat steps 1-5 iteratively to obtain nonlinear equilibrium solutions until no further
damage occurs at the same externally applied load.
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8. Increment the load step and repeat the entire procedure until the PFA detects complete
failure of the structure, which occurs when the structure degrades to a point where it can
no longer carry additional load.

The Newton-Raphson iteration method is commonly used to solve nonlinear finite element
equations, often in combination with an incremental loading approach. However, due to the
inability to acquire a direct stiffness matrix as a result of damage, this study does not utilize
the Newton-Raphson method. Instead, a novel technique for PFA is employed, as proposed
by Robinson [117], where the equivalent properties are used to describe post-failure behaviour
of damage material, rather than using instantaneous properties. Equivalent properties take
into account the effects of the damage on the overall response of the material and the damaged
material is then modelled as an undamaged material with different properties. By substituting
the equivalent material properties into the damage stiffness matrix, the direct stiffness matrix
can be obtained, allowing for the application of the nonlinear iteration through the direct
stiffness method.
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7 Progressive failure analysis of cross
laminated timber panels

7.1 Introduction

This chapter focuses on extending the SCB model, which was initially developed for composites,
to consider the distinct failure behaviour of timber in tension and compression. By extending its
applicability to the field of computational mechanics of bio-based composites, the computational
framework has the potential to be further expanded for large cross laminated timber (CLT) floor
structures. CLT is a bio-based (i.e. wood) laminar composite made by gluing the cross-wise
layers of solid timber boards, resulting in large-scale panels. CLT’s thick and orthogonal
structure provides significant stiffness while maintaining a low weight, making it suitable for
use as full-size walls or floors that can bear loads in-plane and out-of-plane [2]. Compared to
solid wood, CLT exhibits improved load-bearing and stiffness properties. This is due to the
ability to eliminate wood growth defects during production or distribute them throughout the
final product. Moreover, there are other notable benefits such as the flexibility to select various
geometric shapes, the capacity to align individual layer quality with expected stress levels, and
enhanced dimensional and shape stability when exposed to moisture [139].

The complex failure behaviour of crosswise lay-up highly anisotropic timber layers in CLT panels
can result in significant structural damage and collapse, leading to costly economic expenses
and even human injuries or fatalities [140]. Therefore, it is crucial to have a safe and reliable
structural design, which requires understanding the failure and structural behaviour and its
modelling.

In practical timber engineering, linear elastic stress analysis and stress-based failure criterion are
commonly used to assess failure in CLT. However, this approach has limitations as it disregards
stress redistribution effects and material nonlinear effects, making strength predictions for
elements with high stress gradients unreliable. To develop more accurate and reliable design
methods, it is necessary to gain insight into the failure propagation within CLT after failure
initiation. This study aims to analyse the post-failure behaviour of CLT using the SCB damage
model of conventional laminar composites. By doing so, we hope to improve our understanding
of the failure behaviour of CLT and develop better design methods for safer and more reliable
structures.
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7.2 Timber cracks and material properties

From the mechanics point of view, wood is an orthotropic material with three principal material
axes (Figure 7.1, left): the first one is aligned with the wood fiber direction (L), while the
remaining two axes are in the radial – R and tangential direction - T. Accordingly, six possible
principal crack propagation directions may be identified for timber, as shown in Figure 7.1, right,
where the first index denotes the normal to the crack surface and the second index denotes the
direction of crack propagation[98].

Figure 7.1: Principal material directions (left); Crack propagation directions for timber (right)

When it comes to CLT, each layer consists of timber boards with varying growth ring orientations
placed adjacent to each other. This leads to an unknown orientation of the material (local)
coordinate system. Additionally, the manufacturing process determines whether the wooden
boards are bonded together on their lateral faces or not.

To simplify the modelling process, the lateral edges of the timber boards are glued to create
a continuous layer for each CLT lamina [88]. A unique material coordinate system (123) is
established for each lamina (see Figure 3.3), where direction 1 aligns with the wood fiber
direction (L), while directions 2 and 3 represent the direction perpendicular to the wood fiber
within the lamina plane and the direction perpendicular to both the wood fiber and the lamina,
respectively. To overcome the irregularity of growth rings, the material behaviour in directions
2 and 3 are assumed to be the same within this study. This involves defining the moduli for
directions 2 and 3 as the average values of the corresponding T and R values for solid wood.

The strength parameters, which are used for material description and failure analysis, differ
between considering small clear wood samples (free from defects) and structural-sized timber in
engineering design context [141]. Natural imperfections like knots, growth ring irregularities,
and resin pockets that form during its growth process, can greatly affect strength properties. For
instance, knots can weaken a structural-sized beam under tension or bending as the wood fiber
direction deviates from the beam axis around the knot and introduces the stress perpendicular
to the wood fiber. However, knots can act as reinforcement in applications with tensile stress
perpendicular to the food fiber direction, thereby increasing the strength [142].

Timber engineering design typically relies on characteristic (5%) strength values, determined
according to a standardized procedure on small clear wood samples with a specified moisture
content (usually 12%), as specified in codes and handbooks [143].

However, these obtained values do not directly correspond to the strength characteristics of
structural timber with real dimensions. To address this issue, structural timber strengths are
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determined by taking into account the strengths obtained from small wood samples and applying
correction factors that account for the size of the sample [144].

7.3 CLT post-failure behaviour

The crosswise lay-up of highly anisotropic timber layers can result in complex failure behaviour
for CLT panels. Under different types of loading, cross-laminated timber (CLT) panels can
develop various failure mechanisms. The four most common modes of failure in CLT are:

1. Fiber tension (FT) is the most critical mode of failure, caused by tensile stress parallel to
the wood fiber, resulting in a failure surface that propagates perpendicular to the fiber
(Figure 7.2, left).

2. Transverse tension (TT) failure occurs due to the combination of in-plane shear stress and
tensile or shear stress perpendicular to the wood fiber. This combination of stresses causes
the rolling of the wood’s fibers, which is why this failure mode is often called rolling shear
failure (RS). The failure surface usually occurs in the interior of the transverse lamina
and follows the annual rings as closely as possible. Typical RS failure mode is illustrated
in Figure 7.2, right.

3. Fiber compression failure (FC), which leads to the typical fiber kinking band formation,
due to the local instabilities of the wood cells. This phenomenon results in a quasi-plastic
behaviour on the macro scale.

4. Transverse compression (TC) failure generally results from transverse shear stress and
transverse compressive stresses perpendicular to the wood fiber, where the corresponding
failure surface is usually parallel to the wood fiber.

Figure 7.2: Typical failure surface for: fiber tension (FT) failure mode (left); rolling shear (RS)
failure mode (right)

Establishing an appropriate failure criterion is essential for identifying the onset of damage
in CLT for specific failure modes. By utilizing the failure criteria outlined in Chapter 5, the
FT and RS failure modes can be associated with the LT-LR and TL-RL crack propagation
scenarios, respectively.

In addition, the response of a damaged CLT lamina also vary depending on the type of loading
applied. When subjected to compression parallel or perpendicular to the wood fiber, the response
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of the damaged lamina can be described as ideally-plastic. This means that the stiffness remains
constant even as strain increases after failure initiation in the weakest lamina. Conversely, in
tension, the behaviour is typically more brittle. The loading types that cause the most issues
are tension perpendicular to the wood fibers and shear. If the loading in these modes becomes
too high, RS failure can occur [145]. This failure usually happens in a brittle way with little
warning, similar to how FRP laminar composites behave after failure initiation. Therefore, the
transverse tension post-failure behaviour can be modeled using the SCB damage model with
linear softening (Figure 6.2), as described in Chapter 6.

On the other hand, when modelling the post-failure behaviour of fiber tension and compression,
the proposed damage law can be simplified. Specifically, to capture the brittle post-failure
behaviour of a damaged lamina under fiber tension, the fracture toughness parameter (G) is
set to zero. Conversely, to describe the plastic post-peak softening response of a damaged
lamina under compression, an infinity value of G is utilized. These modifications of the bilinear
softening law are illustrated in the accompanying Figure 7.3.

Figure 7.3: Stress-strain relationship with simplified softening law to model post-failure timber
behaviour in fiber tension and compression

The proposed algorithm’s effectiveness will be demonstrated in the Chapter 9 through a numerical
example. Additionally, a comprehensive experimental program was conducted by Dr. Ivan
Glišović, Dr. Marija Todorović and Nađa Simović in the Laboratory of Structures at the Faculty
of Civil Engineering, University of Belgrade in order to validate the algorithm’s performance.
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8.1 Introduction

Extensive research has been conducted in the field of computational mechanics of multilayer
structures over the past few decades, which has significantly enhanced the ability to tackle
complex problems. Among various numerical methods, the FEM has been the most widely
utilized to solve the governing differential equations arising in the mechanics of multilayer
structures, as evidenced by numerous studies [114]. Performance and memory efficiency are
essential requirements for finite element software development from a programming perspective.
As such, the code must be well-structured to enhance flexibility and minimize maintenance
expenses. Additionally, it should be adaptable to incorporate new algorithms, formulations, and
ideas. The FEM solution process comprises three primary stages: Pre-processing, Simulation
and Post-processing. Careful execution of each step is essential, and the user should find them
easy to perform.

The initial stage involves defining geometric entities such as points, lines, surfaces, or volumes, as
well as assigning attributes and conditions to them, and generating a finite element mesh. Mesh
generation is decoupled from analysis by adding interfaces to existing CAD software packages
[146]. Once the mesh is generated, new attributes or conditions can be assigned directly to the
finite element mesh.

The next phase involves solving the governing equations of the mathematical model using a solver.
Two possible programming approaches are procedure-oriented programming (POP) and object-
oriented programming (OOP). OOP is widely utilized in engineering software development,
including the FEM, because it provides flexibility and clear structuring, making it suitable
for education, application, and research. Also, It requires less time and effort to introduce
a new feature or improve an existing one in OOP. Furthermore, OOP has brought about a
substantial reduction in program size and complexity. OOP is founded on the idea of objects
that encapsulate properties and methods. Objects serve as instances of classes and can be linked
through various relationships. In the 1990s, the initial object-oriented finite element codes were
introduced for structural analysis applications [147–149]. These codes began with linear analysis
procedures and were subsequently expanded to accommodate both geometrical and material
nonlinearity. Later, the FE codes were enhanced with the addition of new object-oriented
algorithms for linear and nonlinear static and dynamic analysis of structures. For example,
Archer et al. [150], Cardona et al. [151] made contributions in this area.

Finally, the obtained results are visualized in the Post-processing stage.
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8.2 Upgrade of the FLWTFEM software

The object-oriented computational framework FLWTFEM [15] was primarily written for the
analysis of laminated composite plates, and implied the static and dynamic (free vibration)
analysis of multilayered plate-like structures of arbitrary geometry.

For the pre- and post-processing phases in this framework, the GiD Pre/Post Processor software
developed by CIMNE in Barcelona is utilized. This software allows for changes to be made to
the geometry while maintaining attribute definitions and discretizations on the same geometric
domain. Figure 8.1 illustrates the typical algorithm used in the GiD-based finite element
program.

Figure 8.1: Typical algorithm used in the GiD-based finite element program [111]

The FLWTFEM solver is written using an object-oriented Matlab paradigm, which leverages the
language’s powerful desktop environment to simplify programming tasks and enable interactive
data manipulation. With Matlab, algorithms can be tested immediately without the need for
re-compilation. Given Matlab’s extensive documentation and large user community, along with
a multitude of application examples, it is a highly suitable choice for educational purposes.

Within this thesis, FLWTFEM framework is extended to incorporate a PFA of multilayer
structures using the SCB damage model. The source code will be presented in Appendix.

8.2.1 FLWTFEM problemtype

The main advantage of GID lies in its capacity to enable users to design and customize their
own graphical user interface (GUI). This is accomplished by generating multiple configuration
files that determine fresh windows where end-users can input data. The assembly of these files
is referred to as problem type, and the configuration files are described as follows.

FLWTFEM.cnd is the file that contains information about the conditions that can be applied
to different entities, where each geometrical entity can have different field values for the
condition. The conditions included in the FLWTFEM.cnd file are: Constraints, NodalForces,
CompositeSection and DistributedLoadings.

FLWTFEM.mat contains the definitions of materials and laminas that are applicable to a
numerical model. It enables the user to specify the mechanical properties of the orthotropic
material (Orthotropic) and define the material, thickness, and fiber orientation of the orthotropic
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lamina (Lamina). This thesis has upgraded the FLWTFEM.mat input file by incorporating
the material strengths into the existing mechanical properties of the orthotropic material.

Figure 8.2: FLWTFEM GiD user interface for pre-processing

The FLWTFEM.prb file provides fundamental details about the necessary data for conducting
an analysis, without focusing on any specific geometric entity. Within this file, one can define
the AnalysisType and SubLayers (the number of material layer divisions for interlaminar stress
interpolation) as options for general problem data. By changing the FLWTFEM.prb input
file in this thesis, the PFA was added in the AnalysisType drop-down menu (Figure 14) and the
appropriate failure criterion can be selected.

Once the geometry of the model is established and conditions are specified, GiD generates a
mesh utilizing its available options (e.g. mesh regularity, quadratic type, element type, element
size, and mesh criteria). In order to create the necessary data input file for the solver to
process during simulation, GiD employs the FLWTFEM.bas file, which outlines the format
and structure of the required input data for the Matlab solver. The resulting *.dat file is
subsequently created and utilized as input. Lastly, the FLWTFEM.tcl file is employed to
streamline the program’s environment for end-users by eliminating extraneous menus.

8.2.2 FLWTFEM classes

The FLWTFEM software has classes grouped into three categories: material classes, finite
element model classes, and post-processing algorithms and utility functions. The relationships
between these classes are shown in Figure 8.3, and a detailed description of each class can be
found in [15].

To upgrade the FLWTFEM solver, the following classes were edited: FLWTFEM, LW_3D,
and OrthotropicMaterial. The OrthotropicMaterial class is an abstract class that contains
information about the material properties used in the analysis. In this upgrade, material
strength properties were added to the class. On the other hand, LW_3D class is the core of
the layered finite element model and provides an interface for calculating the necessary matrices
and vectors for assembling the global system of equations. The LW_3D class was upgraded by
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Figure 8.3: FLWTFEM class structure [15]

62



8. Software (FLWTFEM) framework 8.2. Upgrade of the FLWTFEM software

adding an interface for stress (calcStresses()) and strain (calcStrains()) calculations, as well
as damage indices (calcDamageIndices()) and variables (calcDamageVariables()).

Additionally, post-processing and damage propagation algorithms were implemented: first to
calculate the interlaminar stress distribution accurately through the plate thickness and second
to calculate the damage variables for material degradation during PFA.

Once all classes are created, FLWTFEM performs the implicit PFA of the considered laminar
composite, and then calculates the damage variables in each element of each lamina, in order do
describe the response of damage laminae.

The results are visualised in 3D by the GiD Post-Processing module. For visualisation purposes,
FLWTFEM utilises two classes, PostNode and PostElement, which store the necessary
information for post-processing. Communication between the Matlab solver and GiD is estab-
lished through two output files, namely *.post.res and *.post.msh. To generate these files,
the make_post_res() and make_post_msh() functions are modified within the project.
The resulting post-process files contain detailed information on stresses, strains and damage
variables, captured during PFA of corresponding laminar composites (Figure 8.4).

Figure 8.4: FLWTFEM GiD user interface for post-processing (fiber tension failure patterns at
the time point when the first element reaches dft=1, for an open-hole laminar composite with a

central hole
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9 Numerical examples

This chapter consists of validation and benchmark examples, used to demonstrate the applicabil-
ity of the FLWT-SCB prediction model to determine the results of the progressive failure analysis
(PFA) of laminar composites. The author has used an original object-oriented FLWTFEM
framework, developed by the author and co-workers at the Institute of an Numerical Analysis
and Design of Structures (INP) of the University of Belgrade to carry out the all calculations.
Wherever possible, the obtained results have been cross-checked against existing exact, analytical,
numerical, and experimental data from various sources in the literature. Most of the results
presented in this chapter have been carefully selected from the author’s publications [13, 15,
112], published during the PhD studies. It should be noted that the prediction model presented
in this study is not limited to any specific geometry, stacking sequence, boundary conditions or
loading type. In all examples dealing with the PFA of laminar composites, the quasi-3D stress
analysis was conducted using Q8 layered quadrilateral elements with reduced integration.

The first part of the chapter shows the FLWT-based finite element model’s ability to accurately
capture the 3D stress field and account for the continuous distribution of interlaminar stresses
throughout the laminate thickness. This demonstration establishes a strong foundation for the
subsequent analysis of damage progression and post-failure assessment. In the second part of
the chapter, the FLWT-SCB prediction model, which combines the SCB model with FLWT,
will be applied to further investigate the progressive damage behaviour and post-failure response
of the laminate.

9.1 Three-dimensional stress analysis of cross-laminated
timber panels

Example 9.1.1

The primary objective of the first example is to validate the proposed model by analysing thick
CLT panels through finite element analysis. The main focus is to ensure accurate representation
of the 3D stress and strain distributions across the thickness of the CLT panel, demonstrating
the need for applying the FLW Theory to achieve this. The inadequacy of ESL-based models
for accurate prediction of the 3D stress state in CLT is highlighted by considering thick panels.

The panels are simply supported along all sides for the purpose of comparison with analytical
solutions. These analytical solutions are based on classical plate theory (CPT) and first-order
shear deformation laminate theory (FSDT), and the exact solution by Pagano [152], which
is based on the exponential distribution of displacements across the plate thickness. The
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benchmark results are taken from [96], where analytical solutions with 25 × 25 Fourier terms
were considered.

The example involves analysing of two square (a = b) CLT panels, as shown in Figure 9.1. The
first panel consists of three layers, with a thickness of h = [h0/h90/h0] = [26/40/26] = 92mm,
and a side length of a = b = 920mm (a/h = 10). The second panel is composed of five layers,
with a thickness of h = [h0/h90/h0/h90/h0] = [26/40/26/40/26] = 158mm, and a side length of
a = b = 1580mm (a/h = 10).

Figure 9.1: Simply supported CLT panels under uniformly distributed loads at the top surface:
a) 3-layer configuration of [26/40/26]mm; b) 5-layer configuration of [26/40/26/40/26]mm [112]

The material properties of each layer in the CLT panels are defined based on the C24 unidirec-
tional lamina, with details provided in Table 9.1. The given mechanical properties of the CLT
are adopted based on [153–155]. The rolling shear modulus is defined as G23 = 0.1G12 = 0.10G13,
which is based on the shear modulus in the longitudinal-transverse direction. However, based on
the current approvals, it is defined as 50MPa [156]. Poisson’s ratios are based on experimental
measurements available in References [153–155], carried out on different samples at about 12%
moisture content for hardwoods and softwoods. It should be noted that the material model is
analysed for the timber class and not for a specific type of wood.

Table 9.1: Material properties of CLT panels (C24 timber class)

Property [MPa] Value

E1 11000
E2 = E3 370
G12 = G13 690

G23 50
ν12 (-) 0.49
ν13 (-) 0.39
ν23 (-) 0.64

The edge nodes are subject to prescribed boundary conditions, with U I = W I = 0 for the edge
parallel to the x-axis and V I = W I = 0 for the edge parallel to the y-axis. The panels are
subjected to high distributed loads of qt = 350kPa on the top surface. To avoid shear locking
caused by spurious transverse shear and normal stiffnesses, the convergence study is conducted
using Q4 and Q8 elements with reduced integration. Both models are tested with two different
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mesh sizes: 6 x 6 and 10 x 10 for the first panel, and 10 x 10 and 16 x 16 FEs for the second
panel. The laminae are represented as a single numerical layer, featuring a linear distribution of
displacements throughout its thickness.

The distributions of in-plane displacement u at (0, b/2) and normal stresses σx and σy at (a/2,
b/2) through the thickness of the first (3-ply) panel are shown in Figures 9.2 and 9.3, respectively.

Figure 9.2: In-plane displacement (u) distribution at (0, b/2) across the thickness of a 3-ply
CLT panel using different computational models, element types, and mesh densities [112]

FLWT is utilized to obtain the zig-zag displacement u distribution for both element types
and mesh densities (purple and black lines in Figure 9.2), which is consistent with the exact
solution [152] (green lines in Figure 9.2). However, the ESL plate theories (red and blue lines in
Figure 9.2) fail to reproduce the zig-zag shaped displacement distribution and only allow for
the constant rotation of the line segment, thus limiting cross-section warping.

Two in-plane stress components, σx and σy, display the characteristic discontinuous shape
with considerably varying slopes in the soft and stiff wood layers, across all considered models.
Nevertheless, the CPT and FSDT theories underestimate the maximum normal stresses σx and
σy, which could result in design errors when dealing with thick CLT panels. Specifically, the
CPT theory underpredicts σy by 53.35% at the interface between longitudinal and transverse
layers, and σx by 3.31% at the top and bottom interfaces of the plate. The FSDT theory also
underpredicts σx by 23.05% at the same interfaces. In contrast, the FLWT-based models show
excellent agreement with the exact solution even with the coarse mesh and relatively simple
element type (Q4). The average relative difference in maximum stresses for all considered
FLWT-based models is 1.71% for σx and 4.60% for σy, demonstrating the superiority of these
models over CPT and FSDT theories.

Figure 9.4 displays the distribution of the considered transverse shear stresses, τxz and τyz, along
the thickness coordinate z at the locations (0, b/2) and (a/2, 0), respectively, for the 3-ply panel.
These locations correspond to where the shear stress components reach their maximum values.
It’s worth noting that determining transverse shear stresses in the CPT and FSDT, requires a
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Figure 9.3: Normal stresses σx and σy distribution at (a/2, b/2) across the thickness of a 3-ply
CLT panel using different computational models, element types, and mesh densities [112]

post-processing (integration) procedure, which starts from the previously calculated σx, σy and
τxy.

Figure 9.4: Transverse shear stresses τxz at (0, b/2) and τyz at (a/2, 0) distribution across the
thickness of a 3-ply CLT panel using different computational models, element types, and mesh

densities [112]
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As expected, the correct distribution of τxz and τxz through the plate thickness cannot be
represented by ESL theories. However, both the exact solution and Q8 finite element models
based on FLWT exhibit the characteristic laminate-specific course of transverse shear stress
distributions. The transverse shear stress distributions in the above solutions exhibit a slight
asymmetry with respect to the mid-plane, as seen in Figure 9.4. This asymmetry is due to the
impact of the transverse normal stress σz, which is neglected in the ESL plate. According to
Reference [157], using FSDT to determine out-of-plane shear strains γxz and γyz can lead to
unrealistic results for the corresponding transverse shear stresses τxz and τyz, due to the adoption
of a relatively simple Hooke’s law formula in classical timber structure design standards.

As depicted in Figure 9.4, the use of Q4 (linear) elements based on FLWT results in inaccurate
predictions of transverse shear stresses, due to the reduced integration of element stiffness
matrices using a relatively low number of integration points. Conversely, Q8 (quadratic)
elements are capable of accurately predicting the laminate-specific distribution of transverse
shear stresses. However, a slight overprediction of both maximum τxz and τyz is observed,
amounting to 1.63% for a 10 × 10 mesh and 2.17% for a 16 × 16 mesh (τxz), as well as 3.41%
for a 10 × 10 mesh and 4.55% for a 16 × 16 mesh (τyz). Finally, increasing the mesh density
leads to a convergence of the results towards the exact solution, as observed in the decreasing
trend of the relative differences of maximum transverse shear stresses with mesh refinement.

Figure 9.5 displays the plots of transverse shear strains γxz and γyz along the thickness coordinate
z for the 3-ply CLT panel at locations (0, b/2) and (a/2, 0), respectively. It is evident that the

Figure 9.5: Transverse shear strains γxz at (0, b/2) and γyz at (a/2, 0) distribution across the
thickness of a 3-ply CLT panel using different computational models, element types, and mesh

densities [112]

strain field resulting from the use of FLWT is linear layerwise due to the utilization of linear
ΦI(z) functions for displacement field interpolation throughout the plate thickness. Q8 elements
exhibited superior agreement of maximum strain values within a given layer when compared to
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Q4 elements. It is worth noting that transverse shear strains are constant through the thickness
in FSDT and zero in CPT due to the simplifications related to transverse shear deformation.

The distribution of u at the location (0, b/2) is illustrated in Figure 9.6, whereas Figure 9.7
demonstrates the distribution of σx and σy at the location (a/2, b/2), along the thickness of the
second panel with 5 plies. The zigzag pattern of u distribution is once again obtained using

Figure 9.6: In-plane displacement u distribution at (0, b/2) across the thickness of a 5-ply CLT
panel using different computational models, element types, and mesh densities [112]

Figure 9.7: Normal stresses σx and σy distribution at (a/2, b/2) across the thickness of a 5-ply
CLT panel using different computational models, element types, and mesh densities [112]
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FLWT. In the case of the 5-ply panel, all the models considered provide a precise estimation of
the maximum normal stresses σx and σy. However, the models based on ESL do not entirely
match the exact stress distribution, particularly at the interfaces between layers.

Figure 9.8 illustrates the distribution of transverse shear stresses τxz and τyz at specific locations,
where they attain their maximum values. As can be seen in Figure 9.8, the ESL theories are

Figure 9.8: Transverse shear stresses τxz at (0, b/2) and τyz at (a/2, 0) distribution across the
thickness of a 5-ply CLT panel using different computational models, element types, and mesh

densities [112]

incapable of accurately representing the distribution of τxz and τyz, while the Q8 finite element
models based on FLWT produce transverse shear stress distributions that match the exact
solution. Linear (Q4) FLWT elements are unable to predict transverse shear stresses, whereas
Q8 (quadratic) elements can accurately predict the laminate-specific distribution of τxz and τyz,
albeit with a slight overprediction.

Figure 9.9 displays the transverse shear strains γxz and γyz for the 5-ply CLT panel. Similar to
previous observations, the FLWT produces a layerwise linear strain field. Among the considered
models, the Q8 elements showed better agreement in the maximum strain values within each
layer than the Q4 elements. The transverse shear strains γxz and γyz are not zero due to the
layerwise expansion of transverse displacement w. Additionally, the asymmetry observed is
caused by the effect of transverse normal stress σz. Once the convergence of results for τxz and
τyz due to mesh refinement is achieved, further analysis is conducted to determine the effect
of model refinement in the z-direction. In both the 3-ply and 5-ply panels, a mesh consisting
of 10×10 Q8 elements is used, as Q4 elements have already been shown to produce inaccurate
predictions for τxz and τyz (as shown in Figures 9.4 and 9.8).

The z-refinement process involves utilizing the sublaminate concept [12], which divides each
physical lamina into multiple numerical layers with identical elastic properties. In order to
perform this refinement on the finite element model of the 3-ply panel, three different stacking
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Figure 9.9: Transverse shear strains γxz at (0, b/2) and γyz at (a/2, 0) distribution across the
thickness of a 5-ply CLT panel using different computational models, element types, and mesh

densities [112]

Figure 9.10: Transverse shear stresses τxz at (0, b/2) and τyz at (a/2, 0) distribution across the
thickness of a 3-ply CLT panel using different computational models (exact solution and

10×10mesh of Q8 elements), and different refinements in z-direction [112]

sequences [in mm] are employed: h3 = [26/40/26], h8 = [132/104/132], and h16 = [6.54/5.08/6.54].
On the other hand, the FE model of the 5-ply panel is refined using two stacking sequences: h5 =
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[26/40/26/40/26] and h14 = [132/104/132/104/132]. It is worth noting that the subscript used
in the previous sentence indicates the number of numerical subdivisions within each physical
layer. Figures 9.10 and 9.11 indicate that z-refinement results in convergence, but for practical
purposes, using one numerical layer per lamina is sufficient without significant loss of accuracy.

Figure 9.11: Transverse shear stresses τxz at (0, b/2) and τyz at (a/2, 0) distribution across the
thickness of a 5-ply CLT panel using different computational models (exact solution and

10×10mesh of Q8 elements), and different refinements in z-direction [112]

Example 9.1.2

The proposed model is further validated using the experimental data from Reference [158]. The
aim is to emphasize the importance of advanced plate theories for precise stress prediction in
CLT under concentrated loading. The study focuses on simply supported thin, square CLT
panels (a=b=2450 mm) with a height of h=[h0/h90/h0]=[10/50/10]=70 mm (a/h=35) as shown
in Figure 9.12.

Table 9.2: Material properties for two considered CLT panels (C24 timber class)

Panel 1 Panel 2
Property [MPa] Value Value

E1 11500 12500
E2 = E3 575 625
G12 = G13 720 780

G23 70 80
ν12 (-) 0.49 0.49
ν13 (-) 0.39 0.39
ν23 (-) 0.64 0.64
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Figure 9.12: The simply supported [10/50/10]mm CLT panel loaded with Q = 30 kN at the
plate center (loading scheme Q, green) and at four quarter points (loading scheme 4Q, red) over

150×150 mm surfaces [112]

Each layer of the CLT panel is modelled as a unidirectional lamina, using two sets of material
properties based on [158] (see Table 2). The panels are subjected to concentrated loads of 30
kN applied on subareas of 150×150 mm2. Two load layouts are considered: a single force at the
center of the panel (Q), and four equal forces at each quarter point (4Q), as shown in Figure
9.12. The boundary conditions are set such that U I=W I=0 for the edge parallel to the x-axis,
and V I=W I=0 for the edge parallel to the y-axis. The analysis is carried out using both Q4
and Q8 elements with reduced integration, and two different mesh sizes of 17×17 and 32×32
finite elements are considered in both models.

To compare the accuracy of the proposed model with other existing models, Figures 9.13 and
9.14 show the mean experimental data [158] for the deflection w and stress component σx,
respectively, obtained from measurements on three replicates of each plate set. Additionally,
results obtained using the analytical solution based on the FSDT from Reference [157] are also
included for comparison.

The proposed model shows a slightly stiffer response of CLT panels compared to the experimental
data in terms of the deflection w, as shown in Figure 9.13. The proposed model shows an
average relative deviation from the measured data of -6.80%. The agreement is slightly better
(-6.50%) for the 4Q loading scheme as compared to the Q loading scheme (-7.10%). The values
obtained from the proposed model are expectedly lower than those of the FSDT due to the more
accurate consideration of transverse shear deformation. The average deviation of the obtained
results from all models, compared to the FSDT results, is -9.10%, which can be seen as the
difference between the gray and blue bars in Figure 9.13.

It can be observed from Figure 9.14 that the FSDT-based results for σx exhibit a significant
under-prediction of about 20% compared to the experimental data for all cases considered.
This discrepancy can be attributed to the simplifications associated with the transverse shear
deformation, which underestimated the σx values even for the slender plates with a/h = 35.
The precision of the proposed model in predicting σx under concentrated loading is dependent
on the mesh density and element type chosen. Significant deviations from the experimental
data are only observed for Panel 2 under the Q loading scheme (third set of bars in Figure 9.14).
Reference [96] documents that the plates in this set showed some variation in the measured
elastic moduli at the bottom layers. However, for the other three sets of results, which include
Panel 1 with both loading schemes and Panel 2 with loading scheme 4Q, the average relative
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Figure 9.13: Comparison of maximum bottom-side deflections of CLT panels predicted by
various finite element models, analytical (Navier) solution based on FSDT [96], and

experimental results [158]

Figure 9.14: Comparison of maximum bottom-side normal stress σx of CLT panels predicted by
various finite element models, analytical (Navier) solution based on FSDT [96], and

experimental results [158]

differences for the normal stress σx are smaller, indicating the convergence of results and the
reliability of the proposed model. Specifically, the average relative differences for these sets are
-22.6% for Q4 17×17, 13.7% for Q4 32×32, 14.1% for Q8 17×17, and only 0.9% for Q8 32×32
elements.
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Figure 9.15 presents the spatial distribution of stresses σx in Panel 1 under 4Q loading, for
various mesh densities and element types generated through GiD Post-Processing module [14].
This figure demonstrates the developed framework’s ability to accurately visualize the results.
Additionally, the deformed shape can be visualized using GiD Post-Processor, as demonstrated
in the last example.

Figure 9.15: Visualization of σx stress distribution [in MPa] in Panel 1 subjected to 4Q loading
using different mesh densities and element types (GiD Post-Processing module): Blue color

denotes top interface stresses, while red color denotes bottom interface stresses [112]

Example 9.1.3

The purpose of this particular example is twofold: to demonstrate the restrictions of the standard
design procedures for CLT and to establish the suitability of the proposed approach for practical
engineering calculations. To achieve this, the outcomes produced by the FLWT finite elements
are contrasted with those from the design procedures for CLT slabs.

The example takes into account slender and thick cross-laminated timber (CLT) panels with
varying length-to-width (L/B) and length-to-height (L/h) ratios, as shown in Table 3. The
panels are supported only at the y-edges (B) and are free along the x-edges (L). Each panel
consists of five laminae, each with a thickness of 3 cm, resulting in L/h ratios of 33.3 for
the slender panel and 16.7 for the thick panel. The individual layers are simulated as C24
unidirectional laminae, with material properties specified in Table 9.1. A uniform load of 5
kN/m2 is applied to the panels. The y-edges are constrained with prescribed boundary conditions
of V I=W I=0. The analysis is conducted using Q8 elements with reduced integration and an
element size of 0.1 m.
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Table 9.3: Dimensions L/B [m] of analysed CLT panels (h = 5×3 = 15 cm)

Slender panel (L/h = 33.3) Thick panel (L/h = 16.7)

L/B 5.0/1.0 L/B 2.5/1.0
L/B 5.0/2.0 L/B 2.5/1.5
L/B 5.0/3.0 L/B 2.5/2.0
L/B 5.0/4.0 L/B 2.5/2.5
L/B 5.0/5.0 -

To comparison, a simplified approach commonly used in conventional codes for the design
of timber structures [96, 159] was employed. Using the γ-method [96], transverse deflection
w, normal stress σx, and transverse shear stress τxz were calculated. The stiffness properties
were defined based on the effective moment of inertia I0,ef , which is dependent on the section
properties and the connection efficiency factor γ. Notably, the γ-method considers the analysed
CLT slabs as equivalent beams that are 1 m wide. Subsequently, the k-method by Blass and
Fellmoser [159] was employed for calculation. The composition factors ki were utilized to account
for the strength and stiffness properties of individual layers, while the slabs were once again
analysed as equivalent beams that are 1 m wide.

Figures 9.16 and 9.17 depict the distributions of stress components σx and τxz, as well as the
corresponding results obtained using the γ-method [96] and k-method by Blass and Fellmoser
[159]. As the plates were subjected to cylindrical bending with S-F-S-F boundary conditions,
the L/B ratio was found to have no effect on the results. As a result, the results obtained using
the proposed model overlap with each other (as seen in Figures 16 and 17).

Figure 9.16: Stresses σx (L/2, B/2) and τxz (0, B/2) in slender panel (L/h=33.3) subjected to
a uniformly distributed load of 5 kN/m2, for varying L/B ratios and design methods [112]
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Figure 9.17: Stresses σx (L/2, B/2) and τxz (0, B/2) in slender panel (L/h=16.7) subjected to
a uniformly distributed load of 5 kN/m2, for varying L/B ratios and design methods [112]

The normal stress σx exhibited excellent agreement for both slender and thick panels, across
all considered L/B ratios. The maximum relative difference in σx for all FLWT-based models
was -0.34% (compared to the γ-method) and 0.62% (compared to the k-method). The obtained
solution is consistent with the one derived using the k-method, while the γ-method slightly
overpredicted the transverse shear stress (by 5.56% for the slender panel). This effect was
especially prominent in the case of thick plates (as seen in Figure 9.17), where the overprediction
amounted to 19.64%.

Example 9.1.4

The last example demonstrates the application of the FLWT-based numerical model for solving
a practical engineering problem. This will demonstrate that the proposed model has the
potential to serve as an alternative to commercial software typically utilized to compute the
stress-deformation state in plate-like structures with orthotropic material properties.

To demonstrate the capabilities of the FLWT-based numerical model, a complex-shaped CLT
slab, consisting of 5 and 7 layers and with the geometry depicted in Figure 9.18, has been
selected as a representative example. These slabs are widely used as standard floor structures
in residential and commercial buildings. The CLT slabs are simply supported by the edges
highlighted in red (Figure 9.18) while being free on the stairs opening and balcony edges. They
are subjected to both uniformly distributed loading across the indoor and balcony sections, and
a line load (from the stairs) along the free edge (shown as the blue line in Figure 9.18). The
installation opening located in the upper left corner is utilized to analyse stress concentration.

The CLT slabs consist of layers of timber class C24 in accordance with EN 338 [155], resulting
in a total thickness of 15 cm (5 layers) and 21 cm (7 layers), respectively, with each layer having
a thickness of 3 cm. Table 9.1 provides the material properties of C24. The prescribed boundary
conditions are as follows: for two edges parallel to the x-axis, U I=W I=0 is specified, while for
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Figure 9.18: Configuration of the analyzed CLT slab with applied loads [112]

an edge parallel to the y-axis, V I=W I=0 is specified. W I is prescribed along the skew edge
on the left. The analysis utilizes Q8 elements with reduced integration and two different mesh
sizes: 0.20 m and 0.10 m.

To compare, Abaqus CAE commercial software was used to generate computational models of
the analyzed CLT slabs using C3D20R finite elements, which are general purpose quadratic
brick elements with reduced integration and 2x2x2 integration points. One brick element
was generated per layer in Abaqus CAE. Table 9.4 presents the properties of the models,
including the number of elements (NELEM), the number of nodes (NNODE), and the total
number of degrees-of-freedom (DOF). It is worth noting that the FLWT-based model required
approximately 30% fewer DOFs for the same mesh size.

Table 9.4: Computational (finite element) models properties

Model/Mesh size 5 layers 7 layers
NELEM NNODE DOF NELEM NNODE DOF

Abaqus/0.1m 21190 100494 301482 29001 132519 397557
FLWT/0.1m 3625 11169 201042 3625 11169 268056

Abaqus/0.2m 5200 25444 76332 7420 34922 104766
FLWT/0.2m 826 2624 47232 826 2624 62976

The CLT slabs were subjected to a combination of permanent and variable loads. The permanent
distributed loads were attributed to the self-weight of the CLT slab, floor layers, and walls above
it, and were assigned according to Table 9.5. Additionally, a permanent line load of Gstairs =
5.0 kN/m was included as a reaction force from the staircase structure. Variable distributed
loads were assigned based on EN 1991-1-1 [160], with Qindoor= 2.0 kN/m2 and Qbalcony = 3.0
kN/m2. A variable line load of Qstairs = 3.0 kN/m was included to account for activities on the
staircases.
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Table 9.5: Applied permanent distributed loads (kN/m2)

5 layers 7 layers
Indoor Balcony Indoor Balcony

2.5 2.1 2.75 2.35

The stress state is determined for the combination of design limit states 1.35G + 1.5Q. The
calculation of serviceability limit state (slab deflection) is done for the exploitation load scheme
1.0G+1.0Q. As per Eurocode 5 [96], the final deflection wfin is the sum of the instantaneous
deflection winst and creep deflection wcreep:

winst = wG + ψ2wQ = wG + 0.3wQ,

wcreep = kdefwinst = 0.8winst,

wfin = winst + wcreep = 1.8(wG + 0.3wQ) ≤ L

250 = 1.25cm
(9.1)

where wG represents the deflection from permanent load, wQ represents the deflection from
variable load, ψ2 is the factor for quasi-permanent value of a variable action, and L is the span
(shortest) of the CLT slab. In this example, the values of kdef = 0.8, ψ2 = 0.3 and L = 3.8 m
are adopted.

The design values of timber strength, Rd, are determined using the following equation [96]:

Rd = kmod
Rk

γM

= 0.8 Rk

1.25 = 0.64Rk (9.2)

In Equation 9.2, Rk denotes the strength characteristic value, γM denotes the partial safety
factor for material property, and kmod is the modification factor considering the effect of load
duration and service class. The present study adopts kmod = 0.8 and γM = 1.25. Table 9.6 [161]
provides the characteristic (Rk) and design strength values (Rd) of timber class C24, which is
used in this example.

Table 9.6: Strength values of C24 CLT panels (MPa) for both characteristic and design values

Bending ∥ Compression ∥ Tension ⊥ Compression ⊥ Rolling shear

fm,k = 24.00 fc,0,k = 21.00 ft,90,k = 0.40 fc,90,k = 2.5 fV,R,k = 1.10
fm,d = 15.36 fc,0,d = 13.44 ft,90,d = 0.256 fc,90,d = 1.60 fV,R,d = 0.704

Initially, the computational model of a 5-layer CLT slab was used for preliminary calculations.
However, the results revealed that the slab did not meet the serviceability limit state criteria
due to overestimated final deflection wfin. The obtained findings are presented in Table 9.7,
which indicates the model’s high potential in predicting the CLT slab response. Moreover, the
average relative difference compared to the solid model in Abaqus was merely -0.31% for both
models considered.
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Table 9.7: Comparison of final deflections wfin (according to Eurocode 5) of a 5-layer CLT slab
using different computational models and mesh densities (negative values correspond to uplift)

Model/Mesh size wfin,max (balcony) [mm] wfin,min (indoor) [mm] wmax [mm]

Abaqus/0.1m -10.91 23.29 15.20
FLWT/0.1m -10.88 23.22

Abaqus/0.2m -10.91 23.27
FLWT/0.2m -10.87 23.18

The next step involved conducting a computational analysis on a 7-layer CLT slab, which
resulted in satisfactory deflection values as shown in Table 9.8. The comparison with the solid
model in Abaqus revealed an average relative difference of only -0.16% for both models.

Table 9.8: Comparison of final deflections wfin (according to Eurocode 5) of a 7-layer CLT slab
using different computational models and mesh densities (negative values correspond to uplift)

Model/Mesh size wfin,max (balcony) [mm] wfin,min (indoor) [mm] wmax [mm]

Abaqus/0.1m -4.35 10.10 15.20
FLWT/0.1m -4.34 10.07

Abaqus/0.2m -4.34 10.09
FLWT/0.2m -4.34 10.08

Figure 9.19: Comparison of final deflection wfin [in mm] spatial distribution in 7-layers CLT
slab using different computational models and mesh densities [112]
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To demonstrate the ability of the object-oriented software framework to display the spatial
distribution of deflections in a CLT slab, the final deflection wfin (computed using Q8 elements)
is visualized using GiD and compared to the results obtained from Abaqus CAE in Figure
9.19. Figure 9.19 shows that there is an excellent agreement between the two methods, with an
average relative difference of only 0.198% for the maximum wfin. It is worth noting that the
corner of the balcony is rising.

Figure 9.20: Comparison of spatial distributions of stresses S11, S22 and S23 (design stress
values - Ed) obtained using: a) Abaqus; b) proposed FLWT-based mode, for a 0.1m mesh [112]

After verifying the serviceability limit state, the ultimate limit state was checked. This was
done by comparing the design values of tension and compression stresses parallel to the grain
(σ0,Ed), tension and compression stresses perpendicular to the grain (σ90,Ed), and rolling shear
stress (τV,R,Ed) against their corresponding design strength values fm,d, f90,d, and fV,R,d listed
in Table 9.5. The analysis demonstrated that the 7-layers slab being studied passed the stress
checks and can be utilized as the floor structure.

Figures 9.20 show the spatial distributions of stresses σ1 (which is equal to σ0), σ2 (equal to
σ0) and τ23 (equal to τV,R – rolling shear) (design values - Ed) in the local (123) coordinate
system obtained using both Abaqus and the proposed FLWT-based model. To simplify the
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presentation, stress concentrations near geometrical discontinuities are excluded from the Figure
9.20. Moreover, the distributions of σ3, τ12, and τ13 are not included as they are relatively small
and not relevant to the design of the CLT slab under consideration. The results demonstrate
excellent agreement between the FLWT-based model and Abaqus, as evident from the Figure
9.20.

9.2 Progressive failure analysis of open-hole laminar com-
posites in tension

In this section, the FLWT-SCB prediction model is utilized to predict damage progression and
tensile strength of an open-hole laminar composite measuring 203.2 × 25.4 mm, with a 6.35
mm diameter hole in the middle. The first laminate, denoted as L1, comprises 8 layers arranged
in a [0o/45o/− 45o/90o]s stacking sequence. Each layer has a thickness of hi = 0.15 mm and is
simulated as a T700/epoxy unidirectional lamina using mechanical properties from Yoon et al.
[72] (see Table 9.9). For the tensile test, one side of the laminate was clamped, and the opposite
side was loaded using a 2 mm displacement (see Figure 9.21).

Figure 9.21: Geometry and boundary conditions for an open-hole composite laminate 203.2 ×
25.4 mm [13]

To decrease the number of elements, only half of the laminate thickness was modelled since
the stacking sequence is symmetrical. At the clamped end, all degrees of freedom (DOFs) were
constrained, while displacements in the thickness direction were set to zero in the symmetry
plane. The laminae are represented as a single numerical layer, utilizing a linear distribution of
displacements along the lamina thickness. To validate the FLWT-SCB prediction model, the
results were compared against the experimental load-displacement curves and strain diagram
obtained by Yoon et al. [72]. In addition, an extra numerical study was presented to examine
the impact of laminate orthotropy and specimen size on the tensile strength of open-hole laminar
composites.
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Table 9.9: Material properties for T700/epoxy composite material

Property Value

E1(GPa) 147.7
E2 = E3(GPa) 8.52
G12 = G13(GPa) 4.59

G23(GPa) 3.91
ν12 = ν13 0.3

ν23 0.38

Xt(MPa) 2737
Xc(MPa) 1600

Yt = Zt(MPa) 51.32
Yc = Zc(MPa) 201.08
S = T (MPa) 81
R(MPa) 65

Gft (KJ/m2) 180
Gfc (KJ/m2) 100
Gmt (KJ/m2) 0.3
Gmc (KJ/m2) 1.71

9.2.1 Model validation and mesh dependency study

In the first subsection, the influence of mesh size on the finite element solution is analysed, to
confirm the effectiveness of the proposed strategy compared to the GSM suggested by Reddy et
al. [40]. Consequently, the FLWTFEM framework incorporates the GSM model, and a fixed
value of SRC is selected as 0.5. As stress concentrations caused by holes can result in localized
damage at the hole edges, only a narrow area surrounding the circular hole is refined with
smaller elements, resulting in a significant reduction in the number of DOFs for the examined
problem. To quantify the mesh dependency, four distinct meshes are considered around the
circular hole (see Figure 9.22).

Figure 9.22: Four meshes generated around the circular hole of an open-hole composite
laminate 203.2 x 25.4 mm (hole diameter 6.35 mm): Mesh 1: 16 elements; Mesh 2: 24 elements;

Mesh 3: 36 elements; Mesh 4: 64 elements [13]
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Figure 9.23 illustrates the load-displacement curves predicted using four different methods,
including the developed FLWT-SCB framework, Reddy’s GSM damage model, experimental
data, and Yoon’s PFA damage model. Various mesh densities shown in Figure 9.22 have been
considered.

Figure 9.23: Tensile load - displacement curves considering different mesh densities and damage
models of an open-hole laminar composite with [0o/45o/− 45o/90o]s stacking sequence [13]

The load-displacement curves in Figure 9.23 demonstrate the brittle behaviour of the tensile
specimen, characterized by a linear elastic increase in load up to the peak value, after which
there is an abrupt loss of stiffness leading to failure. Reddy’s GSM solutions were found to
be strongly dependent on mesh density (dashed lines in Figure 9.23), resulting in a reduction
in external work for failure as element size decreased. The reason for this is that the energy
dissipation is directly related to the volume of the failed element instead of the fractured surface
area. As a result, as the mesh becomes more refined, the energy dissipation tends to decrease
towards zero.

The load-displacement curves obtained by the FLWT-SCB framework exhibit a notable difference
from Reddy’s GSM. Specifically, the responses observed from Mesh 2 onwards (represented by
the blue, purple, and gold solid lines in Figure 9.23) are not influenced by mesh refinement.
This is because the FLWT-SCB framework adjusts the equivalent strain at the final failure
state εf

J,eq (Eq. 6.1) in a manner that maintains the fracture energy for every failure mode,
instead of keeping it constant. As a result, each element fails based on the constant fracture
toughness, GJ , irrespective of its size. The obtained results show a better level of agreement
with experimental data [72] (green line in Figure 9.23), compared to Yoon’s PFA damage model
(black line in Figure 9.23) [72]. When comparing the maximum load of FLWT-SCB to the
experimental data, the average relative differences are: 9.01% for Mesh 1, 1.5% for Mesh 2,
0.86% for Mesh 3, and 0.49% for Mesh 4. On the other hand, Yoon’s PFA damage model has
an average relative difference of 2.35% when compared to the experiment’s maximum load.
Also, the FLWT-SCB prediction model offers a solution that converges for a coarser mesh with
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24 elements around the circular hole, compared to Yoon’s PFA damage model which used 32
elements. This results in enhanced computational efficiency without sacrificing accuracy. The
reason for this improvement is attributed to the utilization of Q8 layered quadrilateral elements
with linear extension in the FLWT-SCB damage model, whereas Yoon et al. [72] employed linear
solid elements in ABAQUS. The results obtained from Mesh 1, which is a very coarse mesh,
exhibit some over-prediction because the equivalent displacement at the final failure state (εf

J,eq)
is lower than that at the initial failure state (ε0

J,eq). This is caused by the fact that the elements
in Mesh 1 may possess more elastic energy during failure initiation than the energy required to
generate a crack passing through them. As a result, the PFA proceeds by maintaining εf

J,eq equal
to (ε0

J,eq) for the affected element. Alternatively, the issue could be due to the ply element’s
excessive size in Mesh 1, which prevents it from capturing the stress concentration around the
hole, resulting in an underestimation of the stress around the hole, which delays failure initiation.
Furthermore, Figure 9.24 illustrates the load-displacement behaviour of a [0o/45o/0o/− 45o]s

Figure 9.24: Tensile load - displacement curves of an open-hole composite laminate with
[0o/45o/0o/− 45o]s stacking sequence, considering different numerical models and the

experimental data [13]

laminate, using Mesh 2, to confirm the accuracy of the model for an extra stacking sequence.
The outcome indicates exceptional consistency with both experimental results [72] and Yoon’s
PFA model [72].

In order to assess the predicted strain distribution of the developed SCB damage model, a
spatial plot of longitudinal strain ε1 at the final failure, considering Mesh 2, is presented
in Figure 9.25. The purpose was to compare the results with experimental data obtained
from digital image correlation (DIC) [72] and those from the PFA damage model [72]. The
capability of the developed framework to visualize the results accurately is also demonstrated in
Figure. Due to the geometric discontinuity, causing stress concentration, the strain values are
mainly concentrated near the open hole. It can be observed that the overall longitudinal strain
distribution is similar among all three models. The FLWT-SCB model exhibits a maximum
strain value of 0.01879, which shows excellent agreement with the experimental value (with an
average relative difference of 4.16%).
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Figure 9.25: Longitudinal strain distribution of an open-hole laminar composite, at the final
failure, obtained from: a) FLWT-SCB prediction model; b) PFA damage model [72]; c) DIC

analysis [72]

Figure 9.26 displays contour plots of both the matrix (dmt) and fiber tension damage variable
(dft) in all plies (for Mesh 2) at the time when (dmt) reaches 1 for the first time. This occurs in
the element located along the open-hole edge in a 0o ply when the specimen’s extension reaches
1.4 mm. At that point, the 90o ply displays a distinct matrix crack pattern in the shape of an
"X". This is due to its bonding with the −45o plies, causing stress concentrations from the −45o

plies to transfer onto the 90o ply and form the "X" shaped region.

Figure 9.27 shows contour plots of the matrix (dmt) and fiber tension damage variable (dft) for
all plies at the time point when (dft) first reaches 1, which occurs after the load reaches its
maximum value and starts decreasing. Fiber failure causes several elements concentrated in the
hole zone across the width of the 0o ply to completely fracture, and the fiber failure propagates
from the circular hole towards the "X" shaped area in the 0o ply. Upon initiation of fiber failure
in the 0o ply, the resulting stresses are transferred to the undamaged material in the 45o ply
above, causing a similar fiber failure pattern in that ply. At that moment, there is extensive
matrix cracking observed in both the ±45o plies and the 90o ply (refer to the first row of Figure
9.27, middle). As anticipated, the 0o ply has minimal matrix cracking, whereas the 90o ply
shows severe matrix cracking (first row of Figure 9.27, middle) and hardly any fiber breakage
(second row of Figure 9.27, middle).

9.2.2 The orthotropy impact on the tension strength of laminar
composite

In this subsection, following the model validation, numerical investigations were conducted to
examine the impact of orthotropy on the open-hole tension strength of composite laminates.
This was accomplished by varying the ply orientation near the mid plane (90o ply) of the
quasi-isotropic laminate L1. The degree of orthotropy was defined by the laminate orthotropy
ratio, Ex/Ey, with the x-axis representing the direction of the applied load. Seven laminates
with varying stacking sequences were analysed, and Table 9.10 provides additional information
on each of these laminates.
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Figure 9.26: bottom: Matrix (first row) and fiber tension failure patterns (second row) plotted
using FLWTFEM at the time point when the first element reaches dmt=1, for an open-hole

laminar composite 203.2 x 25.4 mm with a central hole; top: considered time point when dmt=1
[13]

Table 9.10: Laminate stacking sequences and orthotropy ratios

Label Stacking sequences Ex/Ey

L1 [0o/45o/− 45o/90o]s 1.00
L2 [0o/45o/− 45o/75o]s 1.08
L3 [0o/45o/− 45o/60o]s 1.37
L4 [0o/45o/− 45o/45o]s 1.97
L5 [0o/45o/− 45o/30o]s 2.79
L6 [0o/45o/− 45o/15o]s 3.41
L7 [0o/45o/− 45o/0o]s 3.60
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Figure 9.27: middle: Matrix (first row) and fiber tension failure patterns (second row) plotted
using FLWTFEM at the time point when the first element reaches dft=1, for an open-hole

laminar composite 203.2 x 25.4 mm with a central hole; bottom: through the thickness
distributions of dmt and dft around the circular hole; top: considered time point when dft=1 [13]

Figure 9.28 summarizes the load-displacement curves for all 7 specimens, as predicted by the
FLWT-SCB prediction model (Mesh 2). As the orthotropy ratio increases, the laminates become
more anisotropic, and the fibers’ orientation becomes more aligned with the direction of the
applied load. This alignment of fibers results in a higher stiffness in the direction of the load
and increased tensile strength of the laminate in that direction. Thus, the laminates’ tensile
strength exhibits an upward trend as the orthotropy ratio increases from L1 to L7, as can be
seen from Figure 9.28.
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Figure 9.28: Load-displacement curves of an open-hole laminar composite (Mesh 2), calculated
using FLWT-SCB prediction model, for 7 considered specimens with different stacking

sequences [13]

Moreover, even when the laminates have the same ratio of orthotropy, it has been discovered that
the open-hole tension strength is significantly affected by the stacking sequence. As depicted in
Figure 9.29, the strength of laminate L7, which consists of 0o plies near the mid-plane of the
laminate and on the surface with the stacking sequence [0o/45o/− 45o/0o]s, is higher than other
stacking sequences like [0o/45o/0o/− 45o]s. This is due to the fact that the plies in laminate
L7 are arranged in a stacking sequence that optimizes the distribution of stresses throughout
the structure, resulting in a higher overall strength compared to other stacking sequences.
Additionally, the alternating 45o and −45o plies may provide added reinforcement and improve
the overall mechanical properties of the laminate. Hallet’s computational simulation [43] also
confirmed this observation.

9.2.3 Effect of specimen size

The final subsection focused on examining how the size of the specimens affected the open hole
tension (OHT) strength of laminar composites.

The hole diameters considered for the quasi-isotropic laminate (L1) were 3.175, 6.350, 9.525,
12.700 and 15.875 mm. To maintain a constant width-to-diameter (w/d) ratio of 4, the length
and width were adjusted according to the chosen diameters, while the length-to-width (l/w) ratio
was kept at 2. Figure 9.30 illustrates the load-displacement curves predicted by the FLWT-SCB
prediction model for all 5 specimens. Although all 5 specimens were composed of the same
quasi-isotropic laminate L1 and had the same stiffness, the OHT strength of the laminate
varied considerably depending on specimen size; as specimen size increased, the predicted OHT
strength decreased.
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Figure 9.29: Load-displacement curves of an open-hole laminar composite (Mesh 2), calculated
using FLWT-SCB prediction model, for 2 specimens with the same orthotropy ratio, but

different stacking sequences [13]

Figure 9.30: Load-displacements curves of quasi-isotropic open-hole laminar composite (L1),
predicted by FLWT-SCB prediction model and considering different hole diameters (d [mm])

[13]
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9.3 Progressive failure analysis of centre-notched laminar
composites in tension

The next example pertains to the PFA of a centre-notched tensile (CNT) laminar composite.
The configuration of the laminate is illustrated in Figure 9.31, and consists of 32 layers of
thickness hk = 0.125 mm, assembled in [45o/90o/− 45o/0o]4s stacking sequence. One end of the
coupon is constrained while a displacement u is imposed on the opposite end. The material used
in this example is IM7/8552 carbon fibre reinforced polymer (CFRP) with material properties
provided in Table 9.11.

Table 9.11: Material properties for IM7/8552 carbon fibre reinforced polymer

Property Value

E1(GPa) 165
E2 = E3(GPa) 9
G12 = G13(GPa) 5.6

G23(GPa) 2.8
ν12 = ν13 0.34

ν23 0.5

Xt(MPa) 2560
Xc(MPa) 1690

Yt = Zt(MPa) 73
Yc = Zc(MPa) 250
S = T (MPa) 90
R(MPa) 70

Gft (KJ/m2) 120
Gfc (KJ/m2) 80
Gmt (KJ/m2) 2.6
Gmc (KJ/m2) 4.2

To showcase the capability of the FLWT-SCB framework in forecasting size effects in laminar
composites, multiple sizes of the specimen have been numerically analysed.

Table 9.12 comprises a list of employed scales and their dimensions. The present example has
been verified using the research of Nagaraj et al. [73], which use SCB for damage modelling
and higher-order theories based on Carrera Unified Formulation (CUF) for structural modelling
[162]. Additionally, the maximum strengths estimated in the current example have been also
experimentally validated [163].
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Figure 9.31: Geometry and boundary conditions of centre-notched tensile laminar composite

Table 9.12: List of employed scales and their dimensions

Scale Notch length c [mm] Specimen Width w [mm] Specimen Length l [mm]

1 3.2 15.9 63.5
2 6.4 31.8 127
4 12.7 63.5 254
8 25.4 127 508
16 50.8 254 508

The numerical analysis was performed using 138 Q8 layered quadrilateral elements, with only a
small area surrounding the notch being refined with smaller elements (see Figure 9.32). The
fracture process zone has a mesh size of roughly 0.5 x 0.5 mm for the scale-8 mesh. Due to
symmetry in stacking sequence, only a half of the laminate was modelled to reduce the number
of finite elements. At the clamped edge, all DOFs were restricted, while in the symmetry plane,
displacements in the thickness direction were set to zero. The laminae were treated as a single
numerical layer, with a linear distribution of displacements across the thickness of the lamina.
The element distribution remained constant for all CNT specimens, with the element edge size
scaling according to the specimen’s dimensions.

Figure 9.32: Generated mesh with 138 Q8 layered quadrilateral elements of a centre-notched
tensile specimen
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Figure 9.33 displays a typical stress-strain curve for a scale-8 CNT sample, as predicted by both
the FLWT-SCB framework and Nagaraj’s model [73]. The minimum and maximum strength
values obtained from experiments are indicated by green horizontal lines. Figure 9.33 shows
that the specimen exhibits a brittle behaviour, characterized by a linear elastic rise in stress
up to the maximum value, followed by an abrupt decrease in stiffness leading to failure. The
results obtained from the current approach are consistent with both numerical and experimental
reference results. According to Nagaraj’s model (blue line), the CNT sample’s tensile strength
is expected to be 323.9 MPa, which is approximately 5.9% lower than the experimental results.
In contrast, when simulated using the FLWT-SCB framework (red line), the sample’s tensile
strength is 338.3 MPa, which is in better agreement with experimental data (with an average
relative difference of 1.7%).

Figure 9.33: Tensile stress – strain curves of a centre-notched specimen (Scale-8) with
[45o/90o/− 45o/0o]4s stacking sequence

Table 9.13: Comparison of maximum stress values for all CNT specimens from Table 9.12 using
FLWT-SCB framework, Nagaraj’s model [73], and experimental data [163]

Scale FLWT-SCB Nagaraj [73] Experimental [163] ∆a[%] ∆b[%]

1 572.3 593.2 581.4 1.6 2.0
2 505.3 498.3 519.1 2.6 4.1
4 442.3 425.6 455.3 2.9 6.5
8 338.3 323.9 344.1 1.7 5.9
16 250.3 268.4 258.1 3.0 4.0

a Percentage relative difference of proposed model compared to experimental data
b Percentage relative difference of reference numerical model [73] compared to experimental data
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The stress-strain curves for the remaining CNT scaled specimens are not included here because
they are similar to the data presented in the Figure 9.33. Instead, the maximum stress obtained
by FLWT-SCB along with the experimental and reference numerical results, for all scales, have
been presented in Table 9.13 and plotted in Figure 9.34.

Figure 9.34: Comparison of maximum stress values for all CNT specimens from Table2 using
FLWT-SCB framework, Nagaraj’s model [73], and experimental data [163]

Based on Table 9.13 and Figure 9.34, it becomes evident that FLWT-SCB consistently forecasts
tensile strengths that are more similar to the experimental data compared to Nagaraj’s [73]
results.

9.4 Progressive failure analysis of laminar composites in
compression

In this section, the proposed FLWT-SCB model’s capability for predicting damage progression
and the laminate strength in compression is demonstrated. Unlike the outlined SCB model
with linear softening (Figure 6.4a), used for PFA of laminar composites in tension, the lamina
response in fiber direction under compression is described by trilinear softening with stress
plateau to account for fiber kinking (see Figure 6.4b). To validate the PFA of laminar composites
under compression, a series of numerical assessments were conducted, which involved analysing
the impact of fiber post-peak softening curves and specimen size on the accuracy of predicted
results by the FLWT-SCB model.

The section focuses on dispersed quasi-isotropic laminates since they typically undergo progressive
failure based on experimental observations [164, 165]. One advantage of using this stacking
sequence under in-plane loading is that delamination can be neglected in the numerical modelling
as it is minimized. The material used in in each case is IM7/8552 carbon fibre reinforced polymer
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(CFRP) with material properties provided in Table 9.14. Each lamina of thickness hk=0.125
mm is represented as a single numerical layer, where displacements are linearly distributed
through its thickness.

Table 9.14: Material properties for IM7/8552 carbon fibre reinforced polymer loaded in
compression

Property Value

E1(GPa) 150
E2 = E3(GPa) 11
G12 = G13(GPa) 5.8

G23(GPa) 2.9
ν12 = ν13 0.34

ν23 0.48

Xt(MPa) 2560
Xc(MPa) 1690

Yt = Zt(MPa) 73
Yc = Zc(MPa) 250
S = T (MPa) 90
R(MPa) 70

Gft (KJ/m2) 120
Gfc (KJ/m2) 80
Gmt (KJ/m2) 2.6
Gmc (KJ/m2) 4.2

9.4.1 Single element analysis

The initial set of numerical assessments involve conducting uniaxial compression tests on
individual elements with dimensions of 1 x 1 mm. These simulations offer a convenient way
to validate the applicability of the FLWT-SCB prediction model for damage initiation and
progression, as each failure mode can be assessed separately. To conduct the simulations, one
end of the specimen was clamped (all DOFs are constrained), and a 2mm displacement was
applied on the other end.

The initial simulation involves a sample composed of a single unidirectional layer positioned
longitudinally (0o) and subjected to compression along the fiber direction (0o), resulting in
fiber failure. The stress-strain curve for this scenario is depicted in Figure 9.35a. Following
this, the same sample, consisting of a single unidirectional layer (0o), was exposed to transverse
compression (perpendicular to the fiber), leading to matrix failure. The stress-strain diagram
for this scenario is presented in Figure 9.35b.

Form Figure 9.35, the response of a sample composed of a single unidirectional layer (0o)
subjected to compression along and perpendicular to the fiber, follows the bilinear trajectory
described by the FLWT-SCB model. It is noteworthy that the maximum stress in both directions
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Figure 9.35: Compressive stress-strain behaviour of a 1 x 1 mm single element lamina loaded in:
(a) Longitudinal (fiber) direction; (b) Transverse (matrix dominated) direction

matches the strengths of the fiber (1690 MPa) and matrix (250 MPa) materials. Additionally,
the area beneath the stress-strain curve equals the fracture energy in the longitudinal (80
KJ/m2) and transverse (4.2 KJ/m2) directions.

Lastly, a quasi-isotropic laminate composed of 16 layers assembled in a [90o/45o/0o/− 45o]2s
stacking sequence was subjected to compressive loading for the final evaluation. To reduce the
number of DOFs, only half of the laminate through the thickness was modelled because of the
symmetrical stacking sequence. Displacements in the thickness direction were set to zero in the
symmetry plane. To study the impact of fiber softening on the initiation and progression of
failure, both linear and linear-brittle fiber softening laws were employed.

Table 9.15 illustrates the highest stresses obtained using various linear-brittle fiber softening
options in the FLWT-SCB framework. The PC-30 FLWT-SCB model, which is a linear-brittle
FLWT-SCB model with 30% residual stress, predicts a peak stress with the lowest error (0.9%)
when compared to the peak stress of 755.8 MPa, observed in experiments. The stress-strain
response predicted by both the FLWT-SCB and PC-30 FLWT-SCB models, as well as the
reference numerical [74] and experimental results [138], are shown in Figure 9.36.

Table 9.15: Maximus compressive stress of [90o/45o/0o/− 45o]2s quasi-isotropic laminate
obtained by FLWT-SCB with various linear-brittle fiber softening laws

FLWT-SCB Maximum Stress ∆a[%]

PC-20 743.9 1.6
PC-30 748.7 0.9
PC-40 769.8 1.9
PC-60 775.3 2.6
PC-80 781.4 3.4

a Percentage relative difference

As can be seen in Figure 9.36, the stress-strain response of the single element [90o/45o/0o/−45o]2s
laminate obtained by FLWT-SCB prediction model (blue line in Figure 9.36) is in good agreement
with reference numerical results (red line in Figure 9.36) [74]. Nevertheless, when compared to
experimentally measured stress-strain response (purple line in Figure 9.36), the outcomes are
dissimilar in nature, indicating the limited ability of bilinear damage models to explain laminate
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Figure 9.36: Compressive stress-strain behaviour of a 1 x 1 mm single element laminate with
[90o/45o/0o/− 45o]2s stacking sequence considered various methods

response under compressive loads. In contrast, utilizing a linear-brittle PC-30 model (green line
in Figure 9.36) leads to a more precise prediction of the overall softening response caused by
progressive damage.

9.4.2 Open-hole compression analysis

The next numerical example deals with PFA of the open-hole laminar composites under
compression. Both the linear and linear-brittle softening curves were utilized as post-peak
softening laws in the PFA. The analysis refers to experimental data provided by Wisnom
et al. [6], using quasi-isotropic laminate with a stacking sequence of [45o/90o/ − 45o/0o]4s.
Additionally, reference numerical results have been also provided for comparison purposes [68,
74]. In the conducted compressive tests, one side of the laminate was clamped while a prescribed
displacement u was applied to the opposite side for loading, as depicted in Figure 9.37. In
order to decrease the number of DOFs, the model only considered half of the laminate through
its thickness due to its symmetrical stacking sequence. Consequently, displacements in the
thickness direction were constrained to zero within the symmetry plane. To investigate the
size effect, three different scales of the open-hole tick laminate (m = 4) are studied, and their
dimensions are given in Table 9.16.
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Figure 9.37: Geometry and boundary conditions of open-hole sublaminate scaled laminates
loaded in compression

Table 9.16: List of employed scales for the open-hole tick laminate with a stacking sequence of
[45o/90o/− 45o/0o]4s loaded in compression along with their dimensions

Scale Hole diameter d [mm] Specimen Width w [mm] Specimen Width l [mm]

1 6.35 32 32
2 12.7 64 64
4 25.4 128 128

Although the stacking sequence used in the current example differs slightly from the one used
in a previous single element test, the resulting damage modes are still the same. This is due to
the dispersed-ply nature of the laminate, which means that the plies are distributed throughout
the material rather than being concentrated in certain areas. This dispersion helps to minimize
the occurrence of delamination, which is a common type of damage that can occur in composite
materials.

9.4.2.1 Fiber post-peak softening law impact

The initial part explores how the compressive failure strength of the scale-1 specimen (refer to
Table 9.16) is affected by the fiber post-peak softening laws of both linear and linear-brittle
nature. To quantify the mesh dependency, two different meshes were used: Mesh 1, which
consists of 48 Q8 layered FEs, and Mesh 2, which consists of 407 Q8 layered FEs (see Figure
9.38a)).

Figure 9.39 illustrates the stress-strain response obtained from the FLWT-SCB prediction model
(Mesh 1), incorporating multiple fiber softening laws. It is accompanied by the numerical
response obtained by Su et al. [68], who utilized the CDM damage model with a zigzagging
approximation of linear softening. These results were obtained through simulations performed
in ABAQUS user subroutine UMAT, using the fully fine mesh of shell elements depicted in
Figure 9.38b).
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Figure 9.38: Generated meshes of an open-hole specimen (Scale-1): (a) Mesh 1 (48 elements)
and Mesh 2 (407 elements) used in FLWT-SCB model; (b) Mesh used in reference numerical

model [68]

Figure 9.39: Compressive stress - strain responses of an open-hole laminar composite with
[045o/90o/− 45o/0o]4s stacking sequence, considering various fiber softening laws and damage

models

Compared to the experimental observations [6] (orange line in Figure 9.39), the FLWT-SCB
framework with linear fiber softening (purple line in Figure 9.39) results in an overestimation
of the predicted maximum stress by approximately 19%. On the other hand, the FLWT-
SCB that incorporates linear-brittle fiber softening, provides a more precise estimate of the
maximum stress and the overall softening behaviour due failure progression. Like in the previous
example, the PC-30 FLWT-SCB model (represented by the red line in the Figure 9.39) once
more predicts a peak stress with the lowest error (0.5%) and is therefore selected for further
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analyses. Furthermore, the Figure 9.40 demonstrates that the predicted maximum stress remains
consistent regardless of the mesh refinement, providing evidence for the independence of the
obtained results from the element size.

Figure 9.40: Compressive stress - strain responses of an open-hole laminar composite with
[045o/90o/− 45o/0o]4s stacking sequence, predicted by PC-30 FLWT-SCB model considering

different generated meshes from Figure 9.38

Similar to the FLWT-SCB PC-30 model, the Su’s damage model [68] performs well in predicting
maximum stress and post-failure response (pink line in Figure 9.40), achieving a relative error
of 2.4% when compared to experimental results. It should be noted that achieving this level
of accuracy required a much finer mesh (see Figure 9.38b) than the one used in the proposed
framework (48FEs), resulting in higher computational costs.

The open-hole specimen in compression exhibits a brittle failure mechanism straight across the
laminate, as seen in Figure 9.41a from experimental observations [6]. The FLWT-SCB PC-30
model also predicts a brittle failure mechanism, as illustrated in Figure 9.41b (bottom) through
spatial plots of both matrix and fiber damage variables at the failure load. Matrix failure
initiates in the elements from the lower and upper edges of the hole, as shown in Figure 9.41b
(top), indicating matrix cracks or splitting in the top 45o ply of Figure 9.41a (top). In contrast,
fiber damage in the top 45o ply initiates at a distance from the hole edge and propagates towards
the side edges in a slightly curved manner, similar to the experimental observation. As the load
in the 45o plies surrounding the hole is unable to transfer across the hole, the fibers in these
plies would not fail in the immediate vicinity of the hole. This, in turn, could lead to matrix
damage or splitting along the fiber direction, which was discussed earlier.

It is worth mentioning that due to numerical instability caused by the complete failure of a
significant number of elements, the simulation are unable to achieve the final rupture of the
entire specimen. Nonetheless, the simulation have effectively captured the gradual damage
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Figure 9.41: Failure pattern in top 45o ply (top) and damage distribution throught the
laminate thickness (bottom) of an open-hole [45o/90o/− 45o/0o]4s laminate in compression

obtained by: (a) Experiment [6]; (b) FLWT-SCB PC-30

until their termination, and therefore, the comparison between the experiment and simulation
remains unaffected.

In their study, Wisnom et al. [6] investigated intermediate failure pattern by conducting
interrupted tests. Their findings revealed that the brittle failure was caused by local fiber
micro-buckling around the upper hole edge, as depicted in Figure 9.42a. The same failure
pattern was also observed in proposed framework, as illustrated in Figure 9.42b through a
contour plot of the fiber compression damage variable (dfc) at the time when dfc first reaches 1.
This coincided with the time when the peak stress value in the stress-strain curve is reached
(see Figure 9.40), after which stress began to decrease. It should be noted that the asymmetry
of the failure pattern observed in the experiment might be attributed to various uncertainties
such as loading alignment errors and material imperfections.

Figure 9.42: Failure pattern in 0o ply of an open-hole [45o/90o/− 45o/0o]4s laminate in
compression obtained by: (a) Experiment [6]; (b) FLWT-SCB PC-30
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9.4.2.2 Size effect

After model validation, the FLWT-SCB PC-30 model was used to study the size effect on the
open-hole compression (OHC) strength of [45o/90o/ − 45o/0o]4s laminate. Specifically, two
additional scales were analysed, each with larger in-plane dimensions, as shown in Table 9.16.

Table 9.17 presents the maximum stresses predicted by the proposed model, as well as the
corresponding experimental [6] and reference numerical results. The reference numerical results
were obtained from Nagaraj’s model [74], which combined a CUF-based structural model with
an SCB damage model.

Table 9.17: Comparison of maximum stress values for all OHC [45o/90o/− 45o/0o]4s laminates
from Table 9.16 using FLWT-SCB PC-30 framework, Nagaraj’s model [74], and experimental

data

Scale FLWT-SCB PC-30 Nagaraj [74] Experimental [6] ∆a[%] ∆b[%]

1 352.92 355.12 351 0.5 1.2
2 303.44 312.68 301 0.8 3.9
4 290.22 288.56 285 1.8 1.2

a Percentage difference of proposed model compared to experimental data
b Percentage difference of reference numerical [74] model compared to experimental data

Figure 9.43: Predicted in-plane size effect of an open-hole [45o/90o/− 45o/0o]4s laminates from
Table 9.16 loaded in compression

Table 9.17 shows that the maximum stress predictions by the proposed model for all three scales
exhibit excellent correlation with experimental results [6], with a maximum error below 2%.
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Similarly, Nagaraj’s results also correlate well with experimental data, with a maximum error
of 3.9% for Scale-2. The predicted in-plane size effect from the FLWT-SCB PC-30 model is
illustrated in Figure 9.43. Figure 9.43 shows that the maximum stress of the open-hole laminate
in compression decreases as the specimen’s in-plane size increases. This finding is consistent
with both experimental and reference numerical observations.

Table 9.18 provides comprehensive details on both the proposed and reference numerical models
[74], which includes their discretization, number of DOFs, and required computational time.
As shown in Table 9.18, different meshes were employed in Nagaraj’s damage model, with 48,
128 and 256 elements being utilized for Scale-1, Scale-2 and Scale-4, respectively. Additionally,
Nagaraj’s study modeled the whole laminate instead of using only half of the laminate through
its thickness due to its symmetrical stacking sequence. Consequently, this resulted in a higher
number of DOFs and a consequent increase in computational cost. On the other hand, the
proposed FLWT-SCB PC-30 model adopted the same mesh, consisting of 48 elements, for all
three scales, thereby reducing computational costs for larger scales. Therefore, this approach
improved computational efficiency of PFA for OHC laminar composites without compromising
the accuracy of the results. Note that, despite using the same number of finite elements in the
FLWT-SCB PC-30 model for all three scales, the computation time varied. This discrepancy
arose because, in certain steps of the incremental-iterative procedure, a greater number of
iterations were required in different scales due to the occurrence of failure in a larger number of
finite elements.

Table 9.18: Computational efficiency comparison of FLWT-SCB PC-30 and Nagaraj [74] models

Model Scale In-plane discretization Number of DOFs Computational time [s]

FLWT-SCB PC-30
1 48 Q8 9027 890
2 48 Q8 9027 921
4 48 Q8 9027 968

Nagarj [74]
1 48 Q9 22176 1774
2 128 Q9 57024 6543
4 256 Q9 114048 11369

9.5 Progressive failure analysis of cross-laminated timber
panels in bending

This section illustrates the capability of the FLWT-SCB model to predict the post-failure
behaviour of CLT panels in bending. The model is extended to account for different failure
behaviour of timber in tension and compression, and validation is done through the extensive
experimental research, conducted by Dr. Ivan Glišović, Dr. Marija Todorović and Nađa Simović
in the Laboratory of Structures at the Faculty of Civil Engineering, University of Belgrade. In
this way, the computational framework has extended its applicability to the area of computational
mechanics of bio-based (i.e. wood) composites that are applied in civil (structural) engineering
and aligned with green building policies in Europe. The experimental program is conduced
within the Substrate4CLT project [166].
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9.5.1 Material properties

Preliminary experimental research was conducted on small clear timber samples in order to
assess the quality of local timber used for the production of CLT. The strength class of timber
was evaluated in accordance with EN 338 [155], based on bending strength, bending modulus
of elasticity and density. It was concluded that timber used for the production of CLT panels
meets the criteria for classification in the strength class C24 according to EN 338.

Four-point bending test was carried out in accordance with EN 408 [167]. A total of 20 prismatic
samples with square cross-section 20 x 20 mm and length in the wood fiber direction of 400
mm were tested. Bending strength of structural timber was determined based on bending
strength of small timber samples and correction factors which account for sample size, in
accordance with EN 384 [168]. Bending strength of structural timber was determined as
fm,mean = 43.8N/mm2, while mean value of timber modulus of elasticity parallel to wood fiber
equalled to E0,mean = 11242N/mm2. Density of timber was determined in accordance with ISO
13061-2 [169]. A total of 40 samples with dimensions of 20 x 20 x 25 mm were tested. Mean
value of timber density was determined as ρmean = 424kg/m3.

In addition, shear test parallel to wood fiber was performed according to ASTM D143-09
standard [170]. In accordance with these standards, the test was carried out on samples in a
form of a notched cuboid so that the pressure is applied in the shear plane of a sample. A total
of 20 samples were tested, which were cut so that the shear occurs in the longitudinal layer,
along the tangential surface. Based on the test results, mean value of timber shear strength was
determined as fv,mean = 5.3N/mm2.

Material properties were adopted based on the performed tests on small clear timber samples (∗)
and values available in Gustafsson [142] (∗∗). The timber tensile stress at failure in bending is
greater than stress at failure in axial tension, which takes into account the material description.
The values are listed in Table 9.19.

Table 9.19: Timber strength properties

Property [MPa] Value

E∗
L 11242
f ∗

t 43.8
f ∗

c 36.3
f ∗

v 5.3
f ∗∗

t,90 3.0
f ∗∗

c,90 6.0
f ∗∗

v,T R 6.0

The general relationships proposed by Bodig and Jayne [171] were used to calculate the moduli
of elasticity in the radial and tangential direction, as well as shear moduli in the shear planes:

EL : ET : ER ≈ 20 : 1.6 : 1
GLT : GLR : GT R ≈ 10 : 9.4 : 1
EL : GLT ≈ 14 : 1

(9.3)
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where EL, ET , ER are the moduli of elasticity in the longitudinal, tangential and radial directions,
respectively, while GLT , GLR, GT R are the shear moduli in the shear orthotropic planes. The
values of Poisson’s rations νLT , νLR, νT R were adopted based on values given in [171] for softwood.
The values of moduli of elasticity, shear moduli and Poisson’s rations are given in Table 9.20.

Table 9.20: Timber elastic properties

Property [MPa] Value

EL 11242
ET 899.36
ER 562.1
GLT 803
GLR 754.82
GT R 80.3
νLT (-) 0.37
νLR (-) 0.42
νT R (-) 0.47

The material elastic and strength properties in unique lamina coordinate system (123) are used
in numerical simulation (see Section 7.2 for explanation). The moduli for the 2 and 3 directions
are defined as the average values of the corresponding T and R values for solid timber (see
Table 9.20), while the strength parameters are equal to those listed in Table 9.19. Table 9.21
provide the elastic and strength properties of the continuous lamina:

Table 9.21: Material properties of a continuous CLT lamina used in numerical simulations

Property [MPa] Value

E1 11242
E2 = E3 730.73
G12 = G13 774.41

G23 80.3
ν12 = ν13 (-) 0.395

ν23 (-) 0.47
Xt 43.8
Xc 36.3

Yt = Zt 3
Yc = Zc 6
S = T 5.3
R 3
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9.5.2 Experimental test set-up for CLT specimens

The experimental program included investigation of five CLT panels (specimens A1-5). Dimen-
sions of tested CLT panels were: 48 cm width × 400 cm length × 15 cm thickness. The panels
consisted of five 3 cm thick layers made of boards (laminations) with approximate width of 12 cm.
Longitudinal laminations were formed by joining the boards using finger joints. Arrangement of
finger joints within the laminations was completely arbitrary. Transverse laminations did not
contain finger joints due to their short lengths. In order to prevent deformations due to drying,
longitudinal grooves were cut into the laminations. Melamine-urea-formaldehyde adhesive was
used for finger joints and layers. Adjacent laminations within the layers had no edge bonding.

All panels were tested in bending as simply supported beams with a span of 380 cm (approx-
imately 25 times the panel thickness) symmetrically loaded with two concentrated forces at
a distance of 90 cm (6 times the panel thickness), in accordance with EN 16351 [172]. With
this arrangement of forces, a constant bending moment was obtained in the middle part of the
panels, without shear force. A schematic illustration of the test layout is given in Figure 9.44.

Figure 9.44: Panel testing layout

Testing of CLT panels was performed in a closed steel frame (Figure 9.45). The load was
applied using a hydraulic jack. In the experimental procedure the load was transformed from
one concentrated force to two forces distributed along the panels’ width using a steel rectangular
hollow section with welded steel sheets at the points of force input. Steel roller bearings were
used at the supports. Also, roller bearings were used at the load application points to ensure
that the load acts vertically. Steel plates were placed under the load application points and at
the supports to minimize local indentations.

Figure 9.45: Test set-up for CLT specimens [source Substrate4CLT project [166]]
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The load was applied at a controlled rate of in order to achieve panel failure in about 5 min.
Load application was measured using a loading cell Deflection of the panels was measured using
linear variable differential transducers (LVDTs). The mid-span deflection was measured on both
sides using two LVDTs, positioned to allow reading near the neutral axis, while deflection at the
supports was measured on both sides using four LVDTs. In addition to the measured deflections,
in the mid-span, strains were measured around the cross-section using strain gauges. Strain
data from strain gauges, deflection data from LVDTs and corresponding load data from the
loading cell were collected using the acquisition system.

During the testing of all panels, humidity and air temperature were controlled next to the testing
frame. Humidity was between 50 and 60% and temperature was about 25oC. Immediately
after each test was completed, the moisture content of timber was measured using a digital
hygrometer at various points on the panel. The recorded moisture content in all specimens
ranged from 9.8 to 11.2%.

9.5.3 Model applicability verification, results and discussion

This subsection consists of a validation example, used to prove the applicability of the FLWT-
SCB damage model to predict damage progression of CLT panels in out-of-plane bending.
Validation is made against the experimental data obtained from tests elaborated in previous
subsections. Geometry, boundary and loading conditions were adopted in accordance with the
tested specimens. Due to symmetry in loading and boundary conditions, only a quarter of the
laminate was modelled to reduce the number of DOFs. The removed parts were replaced with
appropriate symmetry constraints: V I = 0 for the XZ symmetry plane and U I = 0 for the YZ
one. The end support was modelled as a roller support, where the displacements in the thickness
direction were constrained, while the displacements in longitudinal direction were allowed.
The quasi-3D stress analysis was performed using 24 × 3 Q8 layered quadrilateral elements
with reduced integration. Every lamination was divided in two sub-laminations, adopting the
linear distribution of displacements along the sub-lamination thickness. In order to avoid stress
concentrations, an external load was smeared on subarea of 160 × 240 mm2, according to the
experimental setup.

Behaviour of the tested CLT panels is described through load-deflection curves, failure modes,
load-carrying capacity and deformability, bending stiffness values, as well as strain distribution
along the panels’ height. Figure 9.46 illustrates the load-deflection curve predicted by the
developed FLWT-SCB prediction model, along with those for the tested CLT panels. Figure 9.47
shows a magnified curve predicted using FLWT-SCB. In the experimental results, the displayed
values of deflection at failure, for each specimen, represent the mean values of measurements of
two LVDTs placed in the mid-span on both sides of the panel.

A brittle behaviour of all experimentally tested CLT panels is observed; with a linear elastic
behaviour until the load peak value is reached, followed by abrupt loss of stiffness leading to
failure (dashed lines in Figure 9.46). Progressive failure analysis (PFA) conducted for CLT
panel also showed linear-elastic behaviour until failure, replicating experimental results very
closely. It is barely seen (Figure 9.47) that insignificant stiffness reduction occurs shortly before
the peak value of the load is reached, when a single fiber start to buckle in the top longitudinal
lamination. Plastification of timber in the compression zone is actually difficult to observe
experimentally, due to early appearance of cracks in the tension zone.
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Figure 9.46: Load-deflection curve predicted by the FLWT-SCB prediction model along with
the load-deflection curves for all tested CLT panels

Figure 9.47: Magnified load-displacement curve predicted using FLWT-SCB

Failure of all experimentally tested specimens occurred due to tensile failure of the outer
longitudinal layer (FT failure), as shown in Figure 9.48. Failure in tension zone is accompanied
by pronounced shear cracks that extend along the glued line between outer longitudinal layer
and adjacent transverse layer and/or through transverse layer. In addition, a combination of
fibre tearing and rolling shear failure was also observed. Tension failure was initiated at wood
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defects (knots) or finger joints of longitudinal laminations in maximum bending moment area,
between load application points. At the moment of failure, simultaneous fracturing of several
boards of the bottom longitudinal layer was observed in all specimens.

Figure 9.48: Typical failure mode of Series A panels (specimen A1)

The overall damage pattern predicted using the FLWT-SCB is illustrated through a spatial
plots of fiber damage variables (Figure 9.49) at the failure load, associated with the fiber tension
(dft = 1). As can be seen from Figure 9.49, ultimate failure occurred due the FT failure of
the bottom longitudinal lamination. This is quite similar to the observation from experiments
(Figure 9.48). At the moment of failure, plasticization of timber in the compression zone (see
top longitudinal layer in Figure 9.49) is barely noticeable. RS failure appears in transverse layer,
after the load reaches the maximum value and starts dropping, as can be seen through spatial
plots of transverse damage variables (Figure 9.50). This is also in accordance with experimental
observation.

Figure 9.49: Fiber tension (FT) failure patterns of CLT panel, plotted using the FLWTFEM at
the failure load (dft = 1). The bottom figure illustrates only the bottom lamination

Both numerical and experimental results in terms of maximum load and mid-span deflection
at maximum load, mid-span deflection at ultimate failure and bending stiffness are given in
Table 9.22. Corresponding values for loads and deflections were read from load-deflection curves
(Figure 9.46).
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Figure 9.50: Rolling shear (RS) failure pattern of CLT panel plotted using the FLWTFEM
after the load reaches the maximum value and starts dropping

Table 9.22: Experimental test and numerical results of CLT panels

Specimen Maximum load Deflection at maximum Deflection at Bending stiffness
Fmax (kN) load wodg (mm) failure wmax (mm) EIglobal (kN/mm2)

A1 57.8 53.8 71.4 12.26 x 108

A2 67.5 75.6 75.6 11.49 x 108

A3 68.1 60.9 60.9 11.92 x 108

A4 64.2 60.8 60.8 11.24 x 108

A5 72.4 67.7 67.7 11.44 x 108

Average 66 63.8 67.3 11.67 x 108

(cv, 8.3%) (cv, 12.9%) (cv, 9.7%) (cv, 3.5%)

FLWT-SCB 67.83 64.96 64.96 11.20 x 108

ARD(%) 2.77 1.81 3.48 4.03
cv = coefficient of variation; ARD = average relative differences

Average relative difference for the maximum load obtained using FLWT-SCB against the
experimental value is only 2.77%. When mid-span deflection at failure is concerned, numerical
and experimental results were also compatible, with difference of 3.48%.

The out-of-plane bending stiffness of the panels was determined based on measurement of
"global" deflection of the panels. "Global" deflection reflects a mechanism of both bending and
shear deformation of CLT panels. Due to high span-to-depth ratio (l/h ≈ 25) of tested panels
which ensures the dominance of bending deformations, the influence of shear deformations on
calculated bending stiffness can be neglected. Bending stiffness of tested panels was calculated
based on the slope of load-deflection curves, for the linear-elastic region of behaviour between
0.1Fmax and 0.4Fmax (Fmax - maximum load) according to the following expression:

EIglobal = 3al2 − 4a3

48w2 − w1

F2 − F1

(9.4)

where: EIglobal - "global" bending stiffness; F1 - load corresponding to 10% of the maximum
load (0.1Fmax); F2 - load corresponding to 40% of the maximum load (0.4Fmax); w1 - mid-span
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deflection corresponding to the load F1; w2 - mid-span deflection corresponding to the load F2; l
- spacing of specimen supports (span); a - distance of the applied force from the nearest support.

Numerical prediction of bending stiffness agreed well with experimental results, with a difference
of 4.03%. These results confirm that timber can be effectively modelled as an orthotropic
material. The variability of elasticity modulus measurements was the reason for deviation
between numerical and experimental results.

To get insight the deformation pattern within CLT specimens, an example of typical strain
distribution for tested CLT panels at different load levels is given in Figure 9.51, left. The profiles
show compressive and tensile strains along x-axis as negative and positive values, respectively,
and the position of strain gauges along the height on y-axis, measured from the lower edge
of the cross-section. The given strain values represent the mean values of the corresponding
measurements on both sides of the specimen.

To evaluate the strain behaviour predicted by using the FLWT-SCB, the longitudinal strain
distribution through the thickness, at the mid-span of the CLT panel for different load levels, is
illustrated in Figure 9.51, right. Since these are plate elements composed of longitudinal and
transverse layers in which there is no edge bonding of adjacent laminations, a certain discrepancy
in strain values measured on both sides of the panels was recorded. This is not the case for
numerically obtained strain values due the fact that each timber lamination was observed as a
continuous layer.

Figure 9.51: Longitudinal strain distribution through the thickness, at the mid-span of CLT
panel obtained from: left) experimental tests (specimen A2); right) FLWT-SCB prediction

model

Strain distribution in the cross-section is linear up to failure, thus confirming the assumption
of bending theory that plane sections remain plane during deformation. Measured strains on
longitudinal and transverse laminations of the CLT panels indicate that there is no sliding
between the laminations. This is in line with the perfect bonding assumption between laminations,
used in the FLWT.

It can be verified that the overall strain distribution predicted by FLWT-SCB is quite similar
when compared against the experimental measured strains. Also, the strain values in tension
and compression zones were approximately the same at all load levels. Small differences
between numerical and experimental results can be justified due the fact that each lamination
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was homogenized with the average modulus of elasticity, while in reality each lamination is
inhomogeneous and the material properties of timber vary. With load increase, no displacement
of neutral axis position was recorded, which confirms that wood plastification on the compressed
side of the cross-section was limited due to early appearance of cracks in tension zone.
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10 Conclusions and recommendations
for future work

The tendency for optimal design with laminar composites is frequently governed by uncertainties
in failure prediction and the significant computational costs associated with progressive failure
analysis (PFA), especially for larger structures. To address these challenges, this thesis presents
an innovative prediction model that integrates the smeared crack band (SCB) damage model
and the full layerwise theory (FLWT). This novel approach aims to enhance the computational
efficiency of PFA in laminar composites while preserving the accuracy of 3D finite element
models.

The governing equations of motion of the FLWT are established using the principle of virtual
displacements, assuming a piece-wise linear variation of all three displacement components
across the plate thickness. Following the finite element analysis, the nodal displacements are
determined, and the stresses are computed using the constitutive relations. However, as the
interlaminar stresses obtained in this manner do not exhibit a continuous distribution through
the laminate thickness, they are subsequently recalculated by assuming a quadratic distribution
within each layer for every stress component.

Damage progression and post-failure behaviour are addressed through the implementation of
the SCB damage model with strain-softening. Within the SCB approaches, the damage is
distributed throughout the finite element domain, and the fracture mechanism is represented
by the degradation of material stiffness. This degradation is controlled by damage variables,
which are determined based on equivalent strains specifically defined for each failure mode. To
minimize the mesh dependency issue, the fracture energy is scaled using a characteristic element
length. The initiation of failure and the modes of failure are determined using the Hashin
failure criterion. The response of damaged lamina, in both the fiber and matrix directions,
is characterized by distinct strain-softening curves. These curves represent the progressive
softening of the material, with the peak stress corresponding to the strength of the fibers and
matrix, respectively. To accurately capture the post-failure behaviour of timber in tension and
compression during the PFA of CLT panels, the proposed strain-softening curves are further
modified. These modifications account for the specific post-failure behaviour exhibited by timber
in different loading conditions, ensuring a more realistic representation of the material response
during the analysis of CLT panels.

Application of layered quadrilateral elements for continuum damage modelling in laminar
composites is a relatively unexplored topic in the literature, as the standard practice typically
involves the use of linear solid elements. However, the adoption of a layered approach based on
the FLWT in finite element modelling offers several advantages.
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First, the FLWT-based model accurately captures the 3D stress distribution within the laminate
and considers the continuous transverse (interlaminar) stresses between adjacent layers. These
interlaminar stresses play a crucial role in damage modelling and provide essential inputs
for accurate predictions. Also, this model includes the prediction of transverse normal stress
σz, which plays a crucial role in capturing localized effects such as holes, cutouts, or stress-
deformation states around point supports. Additionally, the layerwise plate theory offers
improved robustness and stability in the analysis, exhibiting a weak dependency between the
size of the structure and the mesh and allowing for more reliable predictions regardless of the
structure’s size.

The developed FLWT-SCB prediction model is incorporated into an original FLWTFEM frame-
work. It offers a user-friendly experience by providing a comprehensive graphical environment,
enabling the end user to easily visualize input data and calculation results. The effectiveness of
the proposed model has been confirmed through extensive verification using various benchmark
examples, encompassing both static and progressive failure analyses of laminar composites and
CLT panels (bio-based laminar composites) with arbitrary geometries, loading and boundary
conditions, and stacking sequences. The accuracy of the model has been demonstrated for both
intact and damaged laminar composites. Based on numerous numerical analyses, the following
conclusions can be drawn.

The most important conclusions drawn from the linear static analysis of laminar composites are
as follows:

• The importance of applying the proposed model to accurately predict the stress distribution
in thick CLT panels composed of 3 and 5 layers is demonstrated. The desired zig-zag
displacement distribution, aligned with the exact solution, is successfully achieved using
both linear and quadratic layered finite elements. The correct discontinuous shape of
the in-plane stress components σx and σy, with considerably different slopes in soft and
stiff layers, is exhibited when employing the FLWT. The obtained results for σx and σy

show excellent agreement with the exact solution, even when using a coarse mesh and
a relatively simple (Q4) element type. Additionally, Q8 FLWT-based model captured
the characteristic continuous course of transverse shear stress distributions (τxz and τyz),
although a minor overprediction is observed.

• The convergence of results for τxz and τyz to the exact solution for Q8 elements is
achieved through mesh refinement. Convergence of the results is also attained through
the sublaminate concept, wherein the physical lamina is divided into multiple numerical
layers with identical elastic properties.

• The prediction of transverse shear stresses by linear (Q4) elements is unsuccessful due to
the utilization of a relatively low number of integration points in the reduced integration
of element stiffness matrices.

• Experimental data reveals that the proposed model yields a slightly stiffer response (in
terms of deflection) for thin 3-layer CLT panels under concentrated loading. A better
agreement of -4.9% is achieved for 4-point concentrated loading compared to centre loading,
which exhibits -8.6% discrepancy. The obtained values are understandably lower compared
to FSDT due to the more precise consideration of transverse shear deformation. Under
concentrated loading, FLWT accurately predicted the normal stress σx. The accuracy of
results depends on the density of the mesh and the selected element type.

• Outstanding agreement is achieved for the normal stress σx in both slender (L/h=33.3)
and thick (L/h=16.7) CLT panels, across all considered L/B ratios, when compared with
the results obtained from commonly used k- and γ-methods. In comparison to FLWT, the
γ-method slightly overpredicts transverse shear stress, especially in thick plate situations.
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• The proposed model offers an alternative to commercial software for calculating orthotropic
plate-like structures. This is confirmed through computational analysis of complex-shaped
CLT floors with 5 and 7 layers, commonly used as standard floor structures in residential-
commercial buildings. The slabs were subjected to a realistic combination of permanent
and variable loads according to Eurocode 1. The analysis confirmed the model’s accuracy,
with an average relative difference of only -0.31% for 5-layer plates and -0.16% for 7-
layer plates in comparison to the solid-like model in Abaqus. Furthermore, even with
approximately 30% fewer DOFs for the same mesh size, the FLWT-based model exhibited
excellent agreement with the results from Abaqus.

The most important conclusions derived from the PFA of laminar composites are as follows:

• The FLWT-SCB model demonstrated a brittle behaviour of both open-hole and centre-
notched tensile specimens, with a linear elastic increase of the load until reaching the peak
value, followed by an abrupt loss of stiffness leading to failure.

• Unlike Reddy’s GSM model used in various studies, the results obtained by using FLWT-
SCB were mesh-independent. This mesh independency was achieved by adjusting the
equivalent strain at the final failure state, preserving the fracture energy rather than
keeping it constant.

• The results obtained by FLWT-SCB showed good agreement with experimental results,
regardless of the stacking sequences, as confirmed by examining the load-displacement
behaviour and comparing them to the experimental results. FLWT-SCB allows for coarser
meshes compared to standard finite element models, leading to improved computational
efficiency without compromising accuracy.

• The FLWT-SCB model successfully predicted both fiber tension and matrix tension failure
patterns in open-hole laminar composites, with complete fracture induced by complete
fiber failure concentrated around the circular hole across the width of the 0o ply.

• The benchmark numerical study demonstrated that the FLWT-SCB prediction model
accurately predicted the effect of specimen size and laminate orthotropy on the tensile
strength of open-hole laminar composites. Also, the FLWT-SCB prediction model showed
consistent prediction of tensile strengths in centre-notched laminar composites, which
closely align with experimental data, in contrast to the reference numerical results. The
mesh discretization remained constant for all specimens without compromising accuracy
or significantly affecting computational time.

• The accurate description of the lamina response in the fiber direction under compression in
laminar composites involves the utilization of linear-brittle softening with a stress plateau,
in contrast to the linear softening approach employed in the FLWT-SCB model for lamina
response under tension.

• The stress-strain response of the single element laminate in compression,obtained by the
FLWT-SCB prediction model aligns well with reference numerical results, while showing
dissimilarities when compared to experimental measurements. This indicates the limited
ability of FLWT-SCB damage model with linear softening to explain laminate response
under compressive loads, highlighting the need for a linear-brittle model.

• The FLWT-SCB framework with linear fiber softening tends to overestimate the predicted
maximum compression stress compared to experimental observations, whereas the FLWT-
SCB model incorporating linear-brittle fiber softening provides a more precise estimation
of the maximum stress and overall softening behaviour.

• The FLWT-SCB PC-30 model, which is a linear-brittle FLWT-SCB model with 30%
residual stress, exhibits consistent predictions of the maximum stress regardless of mesh
refinement, demonstrating the independence of the results from the element size.
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• The open-hole specimen in compression exhibits a brittle failure mechanism straight across
the laminate, with matrix failure initiating from the lower and upper edges of the hole and
fiber damage initiating at a distance from the hole edge and propagating towards the side
edges. Although the simulations may not achieve the final rupture of the entire specimen
due to numerical instability caused by the complete failure of a significant number of
elements, they effectively capture the gradual damage until termination, ensuring the
validity of the comparison between experiments and simulations.

• The predicted in-plane size effect from the FLWT-SCB PC-30 model demonstrates a
decrease in the maximum stress of the open-hole laminate in compression as the specimen’s
in-plane size increases, consistent with experimental and reference numerical observations.

• The applicability of the FLWT-SCB framework has been extended beyond conventional
composites to include bio-based composites, such as wood. The model’s accuracy and
performance were confirmed through extensive experimental research conducted by Dr.
Ivan Glišović, Dr. Marija Todorović and Nađa Simović, at the Laboratory of Structures,
Faculty of Civil Engineering, University of Belgrade, which involved the comparison
of load-deflection relationships, stiffness, and ultimate load carrying capacities of CLT
specimens.

• Ultimate failure in the CLT specimens occurred primarily due to fiber tension failure in
the bottom longitudinal lamination, while rolling shear failure appeared in the transverse
layers after reaching the maximum load.

• The proposed FLWT-SCB model demonstrated good agreement with experimental results,
with an average relative difference of only 2.77% for maximum load, 3.48% for mid-span
deflection at failure, and 4.03% for bending stiffness. The predicted strain distribution
closely matched the experimentally measured strains.

• Finally, the advantages of the FLWT-SCB damage models were highlighted, including
savings in computational costs and the ability to provide accurate 3D stress fields necessary
for predicting damage initiation and evolution in problems with highly localized stress
peaks. The use of layered quadrilateral elements also relaxed element aspect-ratio and
size constraints, improving computational efficiency in the PFA of large-scale composite
structures.

Based on the assumptions and limitations underlying the presented FLWT-SCB model, as well
as the key findings of this dissertation, the following recommendations are provided for future
research:

• Implement cohesive elements to account for matrix-driven effects and delamination:
Although the current work focuses on fiber-dominated progressive damage analysis, future
studies should consider incorporating cohesive elements to capture nonlinear shear, through-
thickness stresses, and delamination. The perfect-bonding assumption may be conservative
in areas where delamination should occur, leading to excessive ply failure. Enriching
the displacement field with new variables representing jump discontinuities and using
Heaviside functions for interlaminar relative displacements can enhance the layerwise
formulation, as given in [12, 110]

• Extend the FLWT-SCB framework to CLT floor structures and structural elements
with arbitrary geometry and boundary conditions: CLT structures commonly experience
tension perpendicular to wood fiber and shear, which are critical modes of loading. The
framework’s potential applicability to these scenarios should be explored, providing insights
into predicting and addressing perpendicular to wood fiber fracture and cracking along
wood fiber.
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• Consider probabilistic predictions and Monte Carlo simulations: Recognize that almost
no parameter in failure analysis is deterministic. Incorporate probability prediction of
limit load by treating lamina elastic material properties and strength as random variables.
Monte Carlo simulations can be employed to investigate the probabilistic behaviour,
taking into account the challenges of obtaining material and property data, which are not
always easy to obtain experimentally. This approach provides valuable insights into the
uncertainty and variability associated with laminar composites.

• Considerations for long-term and climate effects: Take into account the influence of
moisture and temperature on the behavior of wood. Variations in moisture content and
moisture gradients can have a notable impact on the tensile stress perpendicular to the
wood fiber, which is crucial for failure analysis. By incorporating these effects into the
analysis, a better understanding of the long-term performance of laminar composites can
be achieved.

• Incorporate mechanical and piezoelectric coupling for laminated structures with piezoelec-
tric layers: Explore the use of piezoelectric materials in actively controlling the elastic
deformations of civil engineering structures. Extend the proposed theory by incorporat-
ing the mechanical and piezoelectric coupling in the constitutive relations, enabling the
analysis of laminated structures with piezoelectric layers.
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Appendix

Codes generated within this doctoral dissertation are elaborated in this section. The codes are
generated within GiD problemtype files, as well as within MATLAB FLWTFEM code. Red
text indicates the author’s contribution to the FLWTFEM framework.

1. GiD problemtype files

FLWTFEM.mat

BOOK: Orthotropic
MATERIAL: MAT1
TITLE: Moduli_of_Elasticity
QUESTION: Type:
VALUE: Orthotropic
STATE: DISABLED
QUESTION: E1:
VALUE: 0.0
HELP: Elasticity module in direction 1
QUESTION: E2:
VALUE: 0.0
HELP: Elasticity module in direction 2
QUESTION: E3:
VALUE: 0.0
HELP: Elasticity module in direction 3
TITLE: Poisson_Ratios
QUESTION: ni12:
VALUE: 0
HELP: Poisson ratio 12
QUESTION: ni13:
VALUE: 0
HELP: Poisson ratio 13
QUESTION: ni23:
VALUE: 0
HELP: Poisson ratio 23
TITLE: Shear_Moduli
QUESTION: G12:
VALUE: 0.0
HELP: Shear module 12
QUESTION: G13:
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VALUE: 0.0
HELP: Shear module 13
QUESTION: G23:
VALUE: 0.0
HELP: Shear module 23
TITLE: Normal_Strengths
QUESTION: Xt:
VALUE: 0.0
HELP: Tensile normal strengths 1
QUESTION: Xc:
VALUE: 0.0
HELP: Compressive normal strengths 1
QUESTION: Yt:
VALUE: 0.0
HELP: Tensile normal strengths 2
QUESTION: Yc:
VALUE: 0.0
HELP: Compressive normal strengths 2
color
VALUE: 0.0
HELP: Tensile normal strengths 3
QUESTION: Zc:
VALUE: 0.0
HELP: Compressive normal strengths 3
TITLE: Shear_Strengths
QUESTION: R:

VALUE: 0.0
HELP: Shear strengths 23
QUESTION: S:
VALUE: 0.0
HELP: Shear strengths 13
QUESTION: T:
VALUE: 0.0
HELP: Shear strengths 12
TITLE: Other
QUESTION: Mass_Density:
VALUE: 0
HELP: Mass Density of the Material
END MATERIAL

BOOK: Lamina
MATERIAL: LAM1
QUESTION: Type:
VALUE: Lamina
STATE: DISABLED
QUESTION: Material:
VALUE:
QUESTION: Fiber_Angle:
VALUE: 0.0
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QUESTION: Thickness:
VALUE: 0.0
END MATERIAL

FLWTFEM.prb

PROBLEM DATA
TITLE: Analysis
QUESTION:
Analysis_Type:#CB#(Bending,FreeVibration,ProgressiveFailure)
VALUE: Bending
DEPENDENCIES:(Bending, RESTORE,SubLayers:,#CURRENT#,
HIDE,Number_of_Modes:,#CURRENT#, HIDE,Criterion:,#CURRENT#)
DEPENDENCIES:(FreeVibration, HIDE,SubLayers:,#CURRENT#,
RESTORE,Number_of_Modes:,#CURRENT#, HIDE,Criterion:,#CURRENT#)
DEPENDENCIES:(ProgressiveFailure, RESTORE,SubLayers:,#CURRENT#,
HIDE,Number_of_Modes:,#CURRENT#, RESTORE,Criterion:,#CURRENT#)
QUESTION: SubLayers:
VALUE: 4
QUESTION: Number_of_Modes:
VALUE: 10
QUESTION: Criterion:#CB#(Tsai-Wu,Hoffman,Tsai-Hill,Hashin)
VALUE: Hashin
END PROBLEM DATA

2. MATLAB files

LW_3D.m

classdef LW_3D < LW_L1
properties
MatrixKL;
VectorQ;
IndexDOF;
Displacements;
StressesXYZ;
Stresses123;
StressNodalXYZ;
StressNodal123;
StrainsXYZ;
Strains123;
StrainsNodalXYZ;
StrainsNodal123;
end

methods
% Class Constructor
function obj = LW_3D(id,type,integration,section,nodes,load)
obj = objLW_L1(id,type,integration,section,nodes,load);
if nargin∼ =0
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end
end

% Calculate Element Stiffness Matrix
function obj = calcMatrixKL(obj)
nnodes = length(obj.ElementNodes);
nodedoflayer = 3 * nnodes;
nlayers = length(obj.Section.Layers);
nq = length(obj.GaussCoefsK);
K = zeros ( 3 * nnodes * (nlayers+1) );
for gp = 1:nq
xi = obj.GaussPointsK(gp,1);
eta = obj.GaussPointsK(gp,2);
[shape,NatDev,∼] = Shape(obj.ElementType, xi, eta);
J11 = NatDev(:,1)’ * obj.NodalCoordinates(:,1);
J12 = NatDev(:,1)’ * obj.NodalCoordinates(:,2);
J21 = NatDev(:,2)’ * obj.NodalCoordinates(:,1);
J22 = NatDev(:,2)’ * obj.NodalCoordinates(:,2);
detJ = J11*J22 - J12*J21;
invJ = 1/detJ * [J22 -J21; -J12 J11];
XYDev = NatDev * invJ;
matrixB(1:3, :) = kron(XYDev(:,1)’, [100; 000; 010]) + kron(XYDev(:,2)’, [000; 010; 100]);
matrixB(4, :) = kron(shape, [001]);
matrixBbar(1:2, :) = kron(shape, [100; 010]);
matrixBbar(3:4, :) = kron(XYDev’, [001]);
for I = 1:nlayers + 1
for J = 1:nlayers + 1
if abs(I-J) < 2
K ( (I-1)*nodedoflayer+1:I*nodedoflayer , (J-1)*nodedoflayer+1:J*nodedoflayer ) =
K ( (I-1)*nodedoflayer+1:I*nodedoflayer, (J-1)*nodedoflayer+1:J*nodedoflayer) +
(matrixB’ * obj.Section.MatrixA1(:,:,I,J) * matrixB +
matrixBbar’ * obj.Section.MatrixA2(:,:,I,J) * matrixBbar) * detJ * obj.GaussCoefsK(gp);
end
end
end
end
obj.MatrixKL = K;
end

% Calculate Element Force Vector
function obj = calcVectorQ(obj)
nnodes = length(obj.ElementNodes);
nlayers = length(obj.Section.Layers);
Q = zeros(nnodes * 3 * (nlayers + 1), 1);
for gp = 1:length(obj.GaussCoefsM)
xi = obj.GaussPointsM(gp,1);
eta = obj.GaussPointsM(gp,2);
[shape,NatDev,∼] = Shape(obj.ElementType, xi, eta);
J11 = NatDev(:,1)’ * obj.NodalCoordinates(:,1);
J12 = NatDev(:,1)’ * obj.NodalCoordinates(:,2);
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J21 = NatDev(:,2)’ * obj.NodalCoordinates(:,1);
J22 = NatDev(:,2)’ * obj.NodalCoordinates(:,2);
detJ = J11*J22 - J12*J21;
PRODUCT1 = ( kron(shape, eye(3)) )’ * obj.DistributedLoad(4:6)’ * detJ;
PRODUCT2 = ( kron(shape, eye(3)) )’ * obj.DistributedLoad(1:3)’ * detJ;
Q(1 : 3*nnodes , 1) = Q(1:3*nnodes,1) + PRODUCT1 * obj.GaussCoefsM(gp);
Q(3*nnodes*nlayers + 1 : end , 1) = Q(3*nnodes*nlayers + 1:end,1) +
PRODUCT2 * obj.GaussCoefsM(gp);
end
obj.VectorQ = Q;
end

% Derive Element Code Numbers
function obj = deriveIndexDOF(obj)
nnodes = length(obj.ElementNodes);
nlayers = length(obj.Section.Layers);
ndof = 3 * (nlayers+1);
obj.IndexDOF = zeros( nnodes * ndof , 1 );
for layer = 1:nlayers + 1
for node = 1:nnodes
obj.IndexDOF((layer-1)*3*nnodes + 3*node - 2) =
(obj.ElementNodes(node).NodeID-1)*ndof + 3*layer - 2; obj.IndexDOF((layer-1)*3*nnodes +
3*node - 1) =
(obj.ElementNodes(node).NodeID-1)*ndof + 3*layer - 1; obj.IndexDOF((layer-1)*3*nnodes +
3*node ) =
(obj.ElementNodes(node).NodeID-1)*ndof + 3*layer;
end
end
end

% Calculate Element Stresses
function obj = CalcStresses(obj, sublayers)
ngaus = size(obj.GaussPointsStress,1);
nlayers = length(obj.Section.Layers);
nnodes = length(obj.ElementNodes);
NodalCoords = obj.NodalCoordinates(:,1:2);
PreliminaryStressMatrixGaussXYZ = zeros(6,2,nlayers,ngaus);
derStressMatrixGaussXYZ = zeros(3,2,nlayers,ngaus);
TauVectorGaussXYZ = zeros(3*nlayers,3,ngaus);
TauVectorGaussXYZ(1,1,:) = obj.DistributedLoad(4);
TauVectorGaussXYZ(2,1,:) = obj.DistributedLoad(1);
TauVectorGaussXYZ(1,2,:) = obj.DistributedLoad(5);
TauVectorGaussXYZ(2,2,:) = obj.DistributedLoad(2);
TauVectorGaussXYZ(1,3,:) = -obj.DistributedLoad(6);
TauVectorGaussXYZ(2,3,:) = obj.DistributedLoad(3);
VectorCGaussXYZ = zeros(3*nlayers, 3, ngaus);
StressMatrixGaussXYZ = zeros(6, 2, nlayers, ngaus);
obj.StressesXYZ = zeros(6, sublayers+1, nlayers, ngaus);
obj.Stresses123 = zeros(6, sublayers+1, nlayers, ngaus);
for layer = 1:nlayers
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CBar = obj.Section.Layers(layer).MatrixCBar;
h = obj.Section.Layers(layer).Thickness;
Disp_Bottom = obj.Displacements((layer-1)*3*nnodes+1 : layer *3*nnodes);
Disp_Top = obj.Displacements(layer*3*nnodes+1 : (layer+1)*3*nnodes);
for gp = 1:ngaus
xi = obj.GaussPointsStress(gp,1);
eta = obj.GaussPointsStress(gp,2);
[shape,NatDev,SecDev] = Shape(obj.ElementType, xi, eta);
J11 = NatDev(:,1)’ * obj.NodalCoordinates(:,1);
J12 = NatDev(:,1)’ * obj.NodalCoordinates(:,2);
J21 = NatDev(:,2)’ * obj.NodalCoordinates(:,1);
J22 = NatDev(:,2)’ * obj.NodalCoordinates(:,2);
detJ = J11*J22 - J12*J21;
invJ = 1/detJ * [J22 − J21; −J12J11];
XYDev = NatDev * invJ;
J1 = [J112̂ J122̂ 2*J11*J12; J212̂ J222̂ 2*J21*J22; J11*J21 J12*J22 J21*J12 + J11*J22];
J2 = SecDev’ * NodalCoords;
MatrixB1 = zeros(3, 3*nnodes);
MatrixB2 = kron(shape, [001]);
MatrixBbar1 = kron(shape, [100; 010]);
MatrixBbar2 = zeros(2, 3*nnodes);
MatrixH1 = zeros(3, 3*nnodes);
MatrixH2 = zeros(3, 3*nnodes);
MatrixG1 = zeros(1, 3*nnodes);
MatrixG2 = zeros(1, 3*nnodes);
MatrixM1 = zeros(2, 3*nnodes);
MatrixM2 = zeros(2, 3*nnodes);
MatrixN1 = zeros(1, 3*nnodes);
MatrixN2 = zeros(1, 3*nnodes);
for i = 1:nnodes
MatrixB1 (:, 3*i-2:3*i) = [XYDev(i,1) 0 0; 0 XYDev(i,2) 0; XYDev(i,2) XYDev(i,1) 0]; Ma-
trixBbar2(:, 3*i-2:3*i) = [0 0 XYDev(i,1); 0 0 XYDev(i,2)];
dNd2 = J1 ( (SecDev(i,:))’ - J2 * XYDev(i,:)’ );
MatrixH1(:, 3*i-2:3*i) = [dNd2(1) 0 0; 0 dNd2(3) 0; dNd2(3) dNd2(1) 0];
MatrixH2(:, 3*i-2:3*i) = [dNd2(3) 0 0; 0 dNd2(2) 0; dNd2(2) dNd2(3) 0];
MatrixG1(:, 3*i-2:3*i) = [0 0 XYDev(i,1)];
MatrixG2(:, 3*i-2:3*i) = [0 0 XYDev(i,2)];
MatrixM1(:, 3*i-2:3*i) = [XYDev(i,1) 0 0; XYDev(i,2) XYDev(i,1) 0];
MatrixM2(:, 3*i-2:3*i) = [0 0 dNd2(1); 0 0 2*dNd2(3)];
MatrixN1(:, 3*i-2:3*i) = [0 XYDev(i,2) 0];
MatrixN2(:, 3*i-2:3*i) = [0 0 dNd2(2)];
end
PreliminaryStressMatrixGaussXYZ([1 2 6 3], 1, layer, gp) = CBar([1 2 6 3], [1 2 6]) * MatrixB1
* Disp_Bottom + CBar([1 2 6 3], 3) * MatrixB2 * (Disp_Top - Disp_Bottom) / h;
PreliminaryStressMatrixGaussXYZ([1 2 6 3], 2, layer, gp) = CBar([1 2 6 3], [1 2 6]) * MatrixB1
* Disp_Top + CBar([1 2 6 3], 3) * MatrixB2 * (Disp_Top - Disp_Bottom) / h;
PreliminaryStressMatrixGaussXYZ([5 4], 1, layer, gp) = CBar([5 4], [5 4]) * MatrixBbar2 *
Disp_Bottom + CBar([5 4], [5 4]) * MatrixBbar1 * (Disp_Top - Disp_Bottom) / h;
PreliminaryStressMatrixGaussXYZ([54], 2, layer, gp) = CBar([5 4], [5 4]) * MatrixBbar2 *
Disp_Top + CBar([5 4], [5 4]) * MatrixBbar1 * (Disp_Top - Disp_Bottom) / h;
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derStressMatrixGaussXYZ([1 2], 1, layer, gp) = -CBar([1 6], [1 2 6]) * MatrixH1 * Disp_Bottom
- CBar([6 2], [1 2 6]) * MatrixH2 * Disp_Bottom - CBar([1 6], 3) * MatrixG1 * (Disp_Top -
Disp_Bottom) / h - CBar([6 2], 3) * MatrixG2 * (Disp_Top - Disp_Bottom) / h;
derStressMatrixGaussXYZ([1 2], 2, layer, gp) = -CBar([1 6], [1 2 6]) * MatrixH1 * Disp_Top
- CBar([6 2], [1 2 6]) * MatrixH2 * Disp_Top - CBar([1 6], 3) * MatrixG1 * (Disp_Top -
Disp_Bottom) / h - CBar([62], 3) * MatrixG2 * (Disp_Top - Disp_Bottom) / h;
derStressMatrixGaussXYZ(3, 1, layer, gp) = -CBar(5, [5 4]) * MatrixM2 * Disp_Bottom -
CBar(4, 4) * MatrixN2 * Disp_Bottom - CBar(5, [5 4]) * MatrixM1 * (Disp_Top - Disp_Bottom)
/ h - CBar(4, 4) * MatrixN1 * (Disp_Top - Disp_Bottom) / h;
derStressMatrixGaussXYZ(3, 2, layer, gp) = -CBar(5, [5 4]) * MatrixM2 * Disp_Top - CBar(4,
4) * MatrixN2 * Disp_Top - CBar(5, [5 4]) * MatrixM1 * (Disp_Top - Disp_Bottom) / h -
CBar(4, 4) * MatrixN1 * (Disp_Top - Disp_Bottom) / h;
TauVectorGaussXYZ(nlayers+layer+1, 1:3, gp) = (PreliminaryStressMatrixGaussXYZ([5 4 3],1,
layer, gp) + PreliminaryStressMatrixGaussXYZ([5 4 3],2, layer, gp))/2*h;
end
end
for layer = 2*nlayers+2 : 3*nlayers
J = layer - 2*nlayers - 1;
for gp = 1:ngaus
TauVectorGaussXYZ(layer, 1:3, gp) = derStressMatrixGaussXYZ(1:3, 2, J, gp) - derStressMa-
trixGaussXYZ(1:3, 1, J+1, gp);
end
end
for layer = 1:nlayers
h = obj.Section.Layers(layer).Thickness;
ds = obj.Section.Layers(layer).Material.ds;
for gp = 1:ngaus
StressMatrixGaussXYZ([1 2 6], [1 2], layer, gp) = PreliminaryStressMatrixGaussXYZ([1 2 6],
[1 2], layer, gp);
VectorCGaussXYZ(:, 1, gp) = obj.Section.MatrixL TauVectorGaussXYZ(:, 1, gp);
VectorCGaussXYZ(:, 2, gp) = obj.Section.MatrixL TauVectorGaussXYZ(:, 2, gp);
VectorCGaussXYZ(:, 3, gp) = obj.Section.MatrixL TauVectorGaussXYZ(:, 3, gp);
StressMatrixGaussXYZ([5 4], 1, layer, gp) = VectorCGaussXYZ(3*layer, [1 2], gp)’;
StressMatrixGaussXYZ([5 4], 2, layer, gp) = VectorCGaussXYZ(3*layer-2, [1 2], gp)’ * h2̂ +
VectorCGaussXYZ(3*layer-1, [1 2], gp)’ * h + VectorCGaussXYZ(3*layer, [1 2], gp)’;
StressMatrixGaussXYZ(3, 1, layer, gp) = VectorCGaussXYZ(3*layer, 3, gp);
StressMatrixGaussXYZ(3, 2, layer, gp) = VectorCGaussXYZ(3*layer-2, 3, gp) * h2̂ +
VectorCGaussXYZ(3*layer-1, 3, gp) * h + VectorCGaussXYZ(3*layer, 3, gp);
CONSTANTS = zeros(3,nlayers,3);
for stress = 1:3
CONSTANTS(:, layer, stress) = VectorCGaussXYZ(3*layer-2:3*layer , stress, gp);
end
for micro = 1:sublayers+1
A = StressMatrixGaussXYZ([1 2 6], 1, layer, gp);
B = StressMatrixGaussXYZ([1 2 6], 2, layer, gp);
obj.StressesXYZ([1 2 6], micro, layer, gp) = A + (B-A)/sublayers*(micro-1);
SubThickness = (micro-1)*h/sublayers;
obj.StressesXYZ(5, micro, layer, gp) = (CONSTANTS(1,layer,1)*SubThickness2̂ + CON-
STANTS(2,layer,1)*SubThickness + CONSTANTS(3,layer,1));
obj.StressesXYZ(4, micro, layer, gp) = (CONSTANTS(1,layer,2)*SubThickness2̂ + CON-
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STANTS(2,layer,2)*SubThickness + CONSTANTS(3,layer,2));
obj.StressesXYZ(3, micro, layer, gp) = (CONSTANTS(1,layer,3)*SubThickness2̂ + CON-
STANTS(2,layer,3)*SubThickness + CONSTANTS(3,layer,3));
obj.Stresses123(:, micro, layer, gp) = obj.Section.Layers(layer).MatrixR * obj.StressesXYZ(:,
micro, layer, gp);
for node = 1:nnodes
obj.StressNodal123 (:, micro, layer, node) =
obj.Section.Layers(layer).MatrixR * obj.StressNodalXYZ(:, micro, layer, node);
end
end
end
end
end

% Calculate Element Strains function obj = CalcStrains(obj, sublayers)
ngaus = size(obj.GaussPointsStress,1);
nlayers = length(obj.Section.Layers);
nnodes = length(obj.ElementNodes);
NodalCoords = obj.NodalCoordinates(:,1:2);
PreliminaryStrainsMatrixGaussXYZ = zeros(6,2,nlayers,ngaus);
StrainsMatrixGaussXYZ = zeros(6, 2, nlayers, ngaus);
obj.StrainsXYZ = zeros(6, sublayers+1, nlayers, ngaus);
obj.Strains123 = zeros(6, sublayers+1, nlayers, ngaus);
for layer = 1:nlayers
CBar = eye(6);
h = obj.Section.Layers(layer).Thickness;
Disp_Bottom = obj.Displacements( (layer-1)*3*nnodes+1 : layer *3*nnodes);
Disp_Top = obj.Displacements( layer *3*nnodes+1 : (layer+1)*3*nnodes);
for gp = 1:ngaus
xi = obj.GaussPointsStress(gp,1);
eta = obj.GaussPointsStress(gp,2);
[shape,NatDev,SecDev] = Shape(obj.ElementType, xi, eta);
J11 = NatDev(:,1)’ * obj.NodalCoordinates(:,1);
J12 = NatDev(:,1)’ * obj.NodalCoordinates(:,2);
J21 = NatDev(:,2)’ * obj.NodalCoordinates(:,1);
J22 = NatDev(:,2)’ * obj.NodalCoordinates(:,2);
detJ = J11*J22 - J12*J21;
invJ = 1/detJ * [J22 -J21; -J12 J11];
XYDev = NatDev * invJ;
J1 = [J112̂ J122̂ 2*J11*J12; J212̂ J222̂ 2*J21*J22; J11*J21 J12*J22 J21*J12 + J11*J22];
J2 = SecDev’ * NodalCoords;
MatrixB1 = zeros(3, 3*nnodes);
MatrixB2 = kron(shape, [0 0 1]);
MatrixBbar1 = kron(shape, [1 0 0;0 1 0]);
MatrixBbar2 = zeros(2, 3*nnodes);
MatrixH1 = zeros(3, 3*nnodes);
MatrixH2 = zeros(3, 3*nnodes);
MatrixG1 = zeros(1, 3*nnodes);
MatrixG2 = zeros(1, 3*nnodes);
MatrixM1 = zeros(2, 3*nnodes);
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MatrixM2 = zeros(2, 3*nnodes);
MatrixN1 = zeros(1, 3*nnodes);
MatrixN2 = zeros(1, 3*nnodes);
for i = 1:nnodes
MatrixB1 (:, 3*i-2:3*i) = [XYDev(i,1) 0 0; 0 XYDev(i,2) 0; XYDev(i,2) XYDev(i,1) 0];
MatrixBbar2(:, 3*i-2:3*i) = [0 0 XYDev(i,1); 0 0 XYDev(i,2)];
dNd2 = J1 ( (SecDev(i,:))’ - J2 * XYDev(i,:)’ );
MatrixH1(:, 3*i-2:3*i) = [dNd2(1) 0 0; 0 dNd2(3) 0; dNd2(3) dNd2(1) 0];
MatrixH2(:, 3*i-2:3*i) = [dNd2(3) 0 0; 0 dNd2(2) 0; dNd2(2) dNd2(3) 0];
MatrixG1(:, 3*i-2:3*i) = [0 0 XYDev(i,1)];
MatrixG2(:, 3*i-2:3*i) = [0 0 XYDev(i,2)];
MatrixM1(:, 3*i-2:3*i) = [XYDev(i,1) 0 0; XYDev(i,2) XYDev(i,1) 0];
MatrixM2(:, 3*i-2:3*i) = [0 0 dNd2(1); 0 0 2*dNd2(3)];
MatrixN1(:, 3*i-2:3*i) = [0 XYDev(i,2) 0];
MatrixN2(:, 3*i-2:3*i) = [0 0 dNd2(2)];
end
PreliminaryStrainsMatrixGaussXYZ([1 2 6 3], 1, layer, gp) = CBar([1 2 6 3], [1 2 6]) * MatrixB1
* Disp_Bottom + CBar([1 2 6 3], 3) * MatrixB2 * (Disp_Top - Disp_Bottom) / h;
PreliminaryStrainsMatrixGaussXYZ([1 2 6 3], 2, layer, gp) = CBar([1 2 6 3], [1 2 6]) * MatrixB1
* Disp_Top + CBar([1 2 6 3], 3) * MatrixB2 * (Disp_Top - Disp_Bottom) / h;
PreliminaryStrainsMatrixGaussXYZ([5 4], 1, layer, gp) = CBar([5 4], [5 4]) * MatrixBbar2 *
Disp_Bottom + CBar([5 4], [5 4]) * MatrixBbar1 * (Disp_Top - Disp_Bottom) / h;
PreliminaryStrainsMatrixGaussXYZ([5 4], 2, layer, gp) = CBar([5 4], [5 4]) * MatrixBbar2 *
Disp_Top + CBar([5 4], [5 4]) * MatrixBbar1 * (Disp_Top - Disp_Bottom) / h;
end
end
for layer = 1:nlayers
h = obj.Section.Layers(layer).Thickness;
for gp = 1:ngaus
StrainsMatrixGaussXYZ(:, [1 2], layer, gp) =
PreliminaryStrainsMatrixGaussXYZ(:, [1 2], layer, gp);
for micro = 1:sublayers+1
A = StrainsMatrixGaussXYZ(:, 1, layer, gp);
B = StrainsMatrixGaussXYZ(:, 2, layer, gp);
obj.StrainsXYZ(:, micro, layer, gp) = A + (B-A)/sublayers*(micro-1);
obj.Strains123(:, micro, layer, gp) = obj.Section.Layers(layer).MatrixR *
obj.StrainsXYZ(:, micro, layer, gp);
for stress = 1:6
obj.StrainsNodalXYZ(stress, micro, layer, :) =
obj.ExtrapolationMatrix * reshape(obj.StrainsXYZ(stress, micro, layer, :), ngaus, 1);
end
for node = 1:nnodes
obj.StrainsNodal123 (:, micro, layer, node) =
obj.Section.Layers(layer).MatrixR * obj.StrainsNodalXYZ(:, micro, layer, node);
end
end
end
end
end
end
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FLWTFEM.m

% GENERATION OF FINITE ELEMENTS and CALCULATION of CHARACTERISTIC
MATRICES
disp(’GENERATION OF FINITE ELEMENTS...’)
FEs = LW_3D.empty(NELEM,0);
for elem = 1:NELEM
FEs(elem) = LW_3D(elem, ELEMENTSDATA(elem,1), ELEMENTSDATAelem,2, ELEMENTS-
DATA(elem,3), NODES(ELEMENTSDATAelem,4), ELEMENTSDATA(elem,5));
FEs(elem) = FEs(elem).deriveGauss();
FEs(elem) = FEs(elem).calcMatrixKL();
FEs(elem) = FEs(elem).calcMatrixM();
FEs(elem) = FEs(elem).calcVectorQ();
FEs(elem) = FEs(elem).deriveIndexDOF();
end
clear elem node ELEMENTSDATA

% GENERATION OF GLOBAL COMPUTATIONAL MODEL
disp(’GENERATION OF GLOBAL COMPUTATIONAL MODEL...’)
MODEL = MODEL.calcSystemMatrices(FEs, SDOF);
MODEL = MODEL.calcSystemVectors(NODES, FEs, NDOF, SDOF);
Knn = MODEL.SystemMatrixKL(MODEL.UnknownDOFs, MODEL.UnknownDOFs);
Knp = MODEL.SystemMatrixKL(MODEL.UnknownDOFs, MODEL.ZeroDOFs);
Kpn = MODEL.SystemMatrixKL(MODEL.ZeroDOFs, MODEL.UnknownDOFs);
Kpp = MODEL.SystemMatrixKL(MODEL.ZeroDOFs, MODEL.ZeroDOFs);
PDOF = size(MODEL.ZeroDOFs,1);

% BENDING ANALYSIS
if strcmp(ANALYSISTYPE,’Bending’) == 1
Sn = MODEL.SystemVectorQ(MODEL.UnknownDOFs, 1) +
MODEL.SystemVectorP(MODEL.UnknownDOFs, 1);
Disp_step = zeros(SDOF, 1);
Disp_step(MODEL.UnknownDOFs, 1) = Knn Sn;
for elem = 1:NELEM
FEs(elem).Displacements = Disp_step( FEs(elem).IndexDOF, 1);
FEs(elem) = FEs(elem).CalcStresses(SUBLAYERS);
FEs(elem) = FEs(elem).CalcStrains(SUBLAYERS);
end
end

% PROGRESSIVE FAILURE ANALYSIS
STEPS = 50;
ITERATIONS = 10;
if strcmp(ANALYSISTYPE,’ProgressiveFailure’) == 1
NUMBEROFRECORDS = STEPS+1;
Disp_step = zeros(SDOF, NUMBEROFRECORDS+1);
RR_step = zeros(SDOF, NUMBEROFRECORDS);
FF_step = zeros(SDOF, NUMBEROFRECORDS);
Reactions = zeros(SDOF, NUMBEROFRECORDS);
DIVISION = 0:1/STEPS:1;
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STRESS123 = zeros(6,2,NELEM,LAYERS,4,NUMBEROFRECORDS);
STRESS123_eff = zeros(6,2,NELEM,LAYERS,4,NUMBEROFRECORDS);
STRAINS123 = zeros(6,2,NELEM,LAYERS,4,NUMBEROFRECORDS);
Disp_eq = zeros(4,2,NELEM,LAYERS,4,NUMBEROFRECORDS);
Stress_eq = zeros(4,2,NELEM,LAYERS,4,NUMBEROFRECORDS);
DISP_EQ = zeros(4,NUMBEROFRECORDS,NELEM,LAYERS,4);
STRESS_EQ = zeros(2,NUMBEROFRECORDS,NELEM,LAYERS,4);
LAYERS = length(FEs(NELEM).Section.Layers);
BB= [];
TT = [];
Qp = zeros(SDOF,NUMBEROFRECORDS);
NEP = MODEL.UnknownDOFs;
POZ = MODEL.ZeroDOFs;
FailureF = zeros(1,4,NELEM,LAYERS,4,2);
FailureM = zeros(1,4,NELEM,LAYERS,4,2);
FAILUREF = zeros(1,4,NELEM,LAYERS,4,STEPS+1);
FAILUREM = zeros(1,4,NELEM,LAYERS,4,STEPS+1);
KnnL = MODEL.SystemMatrixKL(NEP, NEP);
KnpL = MODEL.SystemMatrixKL(NEP, POZ);
KpnL = MODEL.SystemMatrixKL(POZ, NEP);
KppL = MODEL.SystemMatrixKL(POZ, POZ);
Damage_matrix = zeros(LAYERS, 5, NELEM, NUMBEROFRECORDS);
dm = zeros(LAYERS,NUMBEROFRECORDS, NELEM,4);
df = zeros(LAYERS,NUMBEROFRECORDS, NELEM,4);
N = zeros(STEPS+1,ITERATIONS);
RR = zeros(SDOF, NUMBEROFRECORDS);
Br = 0.3;
Qp = MODEL.SystemVectorqp * DIVISION*3;
Disp_step(NEP, 2) = KnnL (-KnpL * Qp(POZ,2));
for step = 2:STEPS+1
Disp_step(POZ, step) = Qp(POZ,step);
Reactions(POZ,step) = Kpn * Disp_step(NEP, step) + Kpp * Disp_step(POZ, step);
delta_Disp_Current_Iter = zeros(SDOF, ITERATIONS);
Disp_Current_Iter = zeros(SDOF, ITERATIONS);
Disp_Current_Iter(:,1) = Disp_step(:, step);
FF = zeros(SDOF, ITERATIONS);
FF(NEP, 1) = Knn * Disp_step(NEP, step);
residual = zeros(length(NEP), 1);
n = 0;
for iter = 2:ITERATIONS
for elem = 1:NELEM
FEs(elem).Displacements = Disp_Current_Iter( FEs(elem).IndexDOF, iter-1);
FEs(elem) = FEs(elem).CalcStresses(SUBLAYERS);
FEs(elem) = FEs(elem).CalcStrains(SUBLAYERS);
maxFailureIndex = 0;
for layer = 1:length(FEs(elem).Section.Layers)
Xt = FEs(elem).Section.Layers(layer).Material.Xt;
Xc = FEs(elem).Section.Layers(layer).Material.Xc;
Yt = FEs(elem).Section.Layers(layer).Material.Yt;
Yc = FEs(elem).Section.Layers(layer).Material.Yc;
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Zt = FEs(elem).Section.Layers(layer).Material.Zt;
Zc = FEs(elem).Section.Layers(layer).Material.Zc;
R = FEs(elem).Section.Layers(layer).Material.R;
S = FEs(elem).Section.Layers(layer).Material.S;
T = FEs(elem).Section.Layers(layer).Material.T;
for qp = 1:4
for micro = 1:2
STRESS123(:,micro,elem,layer,qp,step) = FEs(elem).Stresses123(:,micro,layer,qp);
STRAINS123(:,micro,elem,layer,qp,step)= FEs(elem).Strains123(:,micro,layer,qp);
STRESS123_eff(:,micro,elem,layer,qp,step)= FEs(elem).Section.Layers(layer).Material.MatrixM
* STRESS123(:,micro,elem,layer,qp,step);
Disp_eq(1,micro,elem,layer,qp,step) = (STRAINS123(1,micro,elem,layer,qp,step) *
(STRAINS123(1,micro,elem,layer,qp,step)>0));
Disp_eq(2,micro,elem,layer,qp,step) =
(-STRAINS123(1,micro,elem,layer,qp,step))*(STRAINS123(1,micro,elem,layer,qp,step)<0);
Disp_eq(3,micro,elem,layer,qp,step) =
sqrt((STRAINS123(2,micro,elem,layer,qp,step)*(STRAINS123(2,micro,elem,layer,qp,step)>0))2̂
+ (STRAINS123(6,micro,elem,layer,qp,step))2̂);
Disp_eq(4,micro,elem,layer,qp,step) =
sqrt((-STRAINS123(2,micro,elem,layer,qp,step)*(STRAINS123(2,micro,elem,layer,qp,step)<0))2̂
+ (STRAINS123(6,micro,elem,layer,qp,step))2̂);
Stress_eq(1,micro,elem,layer,qp,step) =
((STRESS123(1,micro,elem,layer,qp,step))*(STRESS123(1,micro,elem,layer,qp,step)>0)
* (STRAINS123(1,micro,elem,layer,qp,step))*(STRAINS123(1,micro,elem,layer,qp,step)>0)) /
Disp_eq(1,micro,elem,layer,qp,step);
Stress_eq(2,micro,elem,layer,qp,step) =
((-STRESS123(1,micro,elem,layer,qp,step))*(STRESS123(1,micro,elem,layer,qp,step)<0)
(-STRAINS123(1,micro,elem,layer,qp,step))*(STRAINS123(1,micro,elem,layer,qp,step)<0)) /
Disp_eq(2,micro,elem,layer,qp,step);
Stress_eq(3,micro,elem,layer,qp,step) =
((STRESS123(2,micro,elem,layer,qp,step))*(STRESS123(2,micro,elem,layer,qp,step)>0)
(STRAINS123(2,micro,elem,layer,qp,step))*(STRAINS123(2,micro,elem,layer,qp,step)>0)
+ STRESS123(6,micro,elem,layer,qp,step)* STRAINS123(6,micro,elem,layer,qp,step))
/ Disp_eq(3,micro,elem,layer,qp,step);
Stress_eq(4,micro,elem,layer,qp,step) =
((-STRESS123(2,micro,elem,layer,qp,step))*(STRESS123(2,micro,elem,layer,qp,step)<0)
(-STRAINS123(2,micro,elem,layer,qp,step))*(STRAINS123(2,micro,elem,layer,qp,step)<0)
+ STRESS123(6,micro,elem,layer,qp,step)* STRAINS123(6,micro,elem,layer,qp,step))
/ Disp_eq(4,micro,elem,layer,qp,step);
if strcmp(CRITERION,’Hashin’) == 1
if STRESS123_eff(1,micro,elem,layer,qp,step) > 0
Mode1 = (STRESS123_eff(1,micro,elem,layer,qp,step)/Xt)2̂;
Disp_eq_f = Disp_eq(1,micro,elem,layer,qp,step);
Stress_eq_f = Stress_eq(1,micro,elem,layer,qp,step);
Mode1 = abs(STRESS123_eff(1,micro,elem,layer,qp,step)/Xc);
Disp_eq_f = Disp_eq(2,micro,elem,layer,qp,step);
Stress_eq_f = Stress_eq(2,micro,elem,layer,qp,step);
end
if STRESS123_eff(2,micro,elem,layer,qp,step) > 0
Mode2 = ((STRESS123_eff(2,micro,elem,layer,qp,step))/Yt)2̂ +

132



10. Conclusions and recommendations for future work

(STRESS123_eff(6,micro,elem,layer,qp,step)/T)2̂;
Disp_eq_m = Disp_eq(3,micro,elem,layer,qp,step);
Stress_eq_m = Stress_eq(3,micro,elem,layer,qp,step);
else
Mode2 = (STRESS123_eff(2,micro,elem,layer,qp,step)/Yc)2̂ +
(STRESS123_eff(6,micro,elem,layer,qp,step)/T)2̂;
Disp_eq_m = Disp_eq(4,micro,elem,layer,qp,step);
Stress_eq_m = Stress_eq(4,micro,elem,layer,qp,step);
end
FailureF(1, 1, elem, layer, qp,micro) = Mode1;
FailureF(1, 2, elem, layer, qp,micro) = Disp_eq_f;
FailureF(1, 3, elem, layer, qp,micro) = Stress_eq_f;
FailureF(1, 4, elem, layer, qp,micro) = Gf;
FailureM(1, 1, elem, layer, qp,micro) = Mode2;
FailureM(1, 2, elem, layer, qp,micro) = Disp_eq_m;
FailureM(1, 3, elem, layer, qp,micro) = Stress_eq_m;
FailureM(1, 4, elem, layer, qp,micro) = Gm;
end
end
end
end
end for elem = 1:NELEM
Lc = sqrt(A);
for layer = 1:length(FEs(elem).Section.Layers)
for qp = 1:4
if FAILUREF(1, 1, elem, layer,qp,step) > 1
n=n+1;
disp(’DA’)
DISP_EQ(1, step, elem, layer,qp) =
FAILUREF(1 , 2, elem, layer, qp,step) / sqrt(FAILUREF(1, 1, elem, layer, qp,step));
STRESS_EQ(1, step, elem, layer,qp) =
FAILUREF(1 , 3, elem, layer, qp,step) / sqrt(FAILUREF(1, 1, elem, layer, qp,step));
DISP_EQ(3, step, elem, layer,qp) =
(FAILUREF(1 , 4, elem, layer, qp,step)/Lc - STRESS_EQ(1, step, elem, layer,qp)*DISP_EQ(1,
step, elem, layer,qp)/2 + Br*STRESS_EQ(1, step, elem, layer,qp)*DISP_EQ(1, step, elem,
layer,qp)) / Br/STRESS_EQ(1, step, elem, layer,qp);
if FAILUREF(1 , 2, elem, layer, qp,step) <= DISP_EQ(3, step, elem, layer,qp)
df(layer, step, elem,qp) = (FAILUREF(1 , 2, elem, layer, qp,step)-Br*DISP_EQ(1, step, elem,
layer, qp)) / FAILUREF(1 , 2, elem, layer, qp,step);
else
df(layer, step, elem,qp) = 1;
end
FEs(elem).Section.Layers(layer).Material.df = max(df(layer, step, elem,:));
end
if FAILUREM(1, 1, elem, layer,qp,step) > 1
n=n+1;
disp(’DA’)
DISP_EQ(2, step, elem, layer,qp) =
FAILUREM(1 , 2, elem, layer, qp,step) / sqrt(FAILUREM(1, 1, elem, layer,qp,step));
STRESS_EQ(2, step, elem, layer,qp) =
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FAILUREM(1 , 3, elem, layer, qp,step) / sqrt(FAILUREM(1, 1, elem, layer,qp,step));
DISP_EQ(4, step, elem, layer,qp) =
2*FAILUREM(1 , 4, elem, layer, qp,step) / STRESS_EQ(2, step, elem, layer,qp)/Lc;
dm(layer, step, elem,qp) = max(0, min(1, DISP_EQ(4, step, elem, layer,qp)*(FAILUREM(1
, 2, elem, layer, qp,step) - DISP_EQ(2, step, elem, layer,qp))/FAILUREM(1 , 2, elem, layer,
qp,step)/(DISP_EQ(4, step, elem, layer,qp) - DISP_EQ(2, step, elem, layer,qp))));
FEs(elem).Section.Layers(layer).Material.dm = max(dm(layer, step, elem,:));
end
end
FEs(elem).Section.Layers(layer).Material.ds = 1-(1-FEs(elem).Section.Layers(layer).Material.df)
*(1-FEs(elem).Section.Layers(layer).Material.dm);
Damage_matrix(layer,1,elem,step) = FEs(elem).Section.Layers(layer).Material.df;
Damage_matrix(layer,2,elem,step) = FEs(elem).Section.Layers(layer).Material.dm;
Damage_matrix(layer,3,elem,step) = FEs(elem).Section.Layers(layer).Material.ds;
Damage_matrix(layer,4,elem,step) = FAILUREF(1, 1, elem, layer,3,step);
Damage_matrix(layer,5,elem,step) = FAILUREM(1, 1, elem, layer,3,step);
end
FEs(elem).Section = FEs(elem).Section.calcCoeffMatrices();
FEs(elem) = FEs(elem).calcMatrixKL();
end N(step,iter) = n;
MODEL = MODEL.calcSystemMatrices(FEs,SDOF);
NEP = MODEL.UnknownDOFs;
POZ = MODEL.ZeroDOFs;
Knn = MODEL.SystemMatrixKL(NEP, NEP);
Knp = MODEL.SystemMatrixKL(NEP, POZ);
Kpp = MODEL.SystemMatrixKL(POZ, POZ);
Kpn = MODEL.SystemMatrixKL(POZ, NEP);
RR(NEP, step) = -Knp * Disp_step(POZ, step);
residual(:,1) = RR(NEP, step) - FF(NEP, iter-1);
if N(step,iter)> N(step,iter-1)
delta_Disp_Current_Iter(NEP, iter) = Knn residual;
Disp_Current_Iter(:,iter) = Disp_Current_Iter(:,iter-1) + delta_Disp_Current_Iter(:, iter);
FF(NEP, iter) = Knn * Disp_Current_Iter(NEP, iter);
elseif iter == ITERATIONS
disp(’No Convergence’)
break
else
Disp_Current_Iter(NEP,iter) = Disp_Current_Iter(NEP,iter-1);
Disp_step(NEP, step+1) = Disp_Current_Iter(NEP,iter) + Knn (-Knp*(Qp(POZ,step)-
Qp(POZ,step-1)));
break
end
end
end
end
clear Knn Mnn Sn elem vector values number mode

% GENERATION OF POST PROCESS NODES
disp(’GENERATION OF POST PROCESS NODES and ELEMENTS...’)
zz = zeros(LAYERS*SUBLAYERS+1, 1);
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hh = 0;
count = 1;
for layer = 1:LAYERS
for sublayer = 1:SUBLAYERS
hh = hh + FEs(1).Section.Layers(layer).Thickness / SUBLAYERS;
count = count + 1;
zz(count) = hh;
end
end
zz = zz - hh/2;
POSTNODES( NNODE * (LAYERS*SUBLAYERS + 1) ) = PostNode();
for layer = 1:LAYERS*SUBLAYERS + 1
for node = 1:NNODE
POSTNODES( (layer-1)*NNODE + node ) =
PostNode((layer-1)*NNODE + node, NODES(node).XCoord, NODES(node).YCoord, zz(layer));
end
end
clear zz hh sublayer count layer node
for node = 1:NNODE
CurrentNodeDisp = Disp_step( (node-1)*NDOF+1 : node*NDOF, :);
POSTNODES( node ).DispX = CurrentNodeDisp(1, :);
POSTNODES( node ).DispY = CurrentNodeDisp(2, :);
POSTNODES( node ).DispZ = CurrentNodeDisp(3, :);
count = 0;
for layer = 1:LAYERS
X_bottom = CurrentNodeDisp(3*layer-2, :);
X_top = CurrentNodeDisp(3*layer+1, :);
Y_bottom = CurrentNodeDisp(3*layer-1, :);
Y_top = CurrentNodeDisp(3*layer+2, :);
Z_bottom = CurrentNodeDisp(3*layer, :);
Z_top = CurrentNodeDisp(3*layer+3, :);
for sublayer = 1:SUBLAYERS
count = count + 1;
POSTNODES(count*NNODE + node).DispX =
X_bottom + (X_top-X_bottom) / SUBLAYERS * sublayer;
POSTNODES(count*NNODE + node).DispY =
Y_bottom + (Y_top-Y_bottom) / SUBLAYERS * sublayer;
POSTNODES(count*NNODE + node).DispZ =
Z_bottom + (Z_top-Z_bottom) / SUBLAYERS * sublayer;
end
end
end
clear node CurrentNodeDisp count layer sublayer
clear X_bottom Y_bottom Z_bottom X_top Y_top Z_top

% GENERATION OF POST PROCESS ELEMENTS
count = 0;
countlayer = 0;
POSTELEMENTS(NELEM*LAYERS*SUBLAYERS) = PostElement();
for layer = 1:LAYERS
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for sublayer = 1:SUBLAYERS
countlayer = countlayer+1;
for elem = 1:NELEM
array = (countlayer-1)*NNODE + [FEs(elem).ElementNodes(1:3).NodeID];
if strcmp(FEs(elem).ElementType, ’Q4’) == 1 ||
strcmp(FEs(elem).ElementType, ’Q8’) == 1
array = (countlayer-1)*NNODE + [FEs(elem).ElementNodes(1:4).NodeID];
end
count = count + 1;
POSTELEMENTS(count) = PostElement(count, POSTNODES([array array+NNODE]));
if strcmp(ANALYSISTYPE,’Bending’) == 1
ngaus = size(FEs(elem).StressesXYZ, 4);
POSTELEMENTS(count).StressesXYZ = zeros(6,2,ngaus);
POSTELEMENTS(count).Stresses123 = zeros(6,2,ngaus);
for gaus = 1:ngaus
POSTELEMENTS(count).StressesXYZ(:,:,gaus) =
FEs(elem).StressesXYZ(:,[sublayer sublayer+1],layer,gaus);
POSTELEMENTS(count).Stresses123(:,:,gaus) =
FEs(elem).Stresses123(:,[sublayer sublayer+1],layer,gaus);
end
end
if strcmp(ANALYSISTYPE,’ProgressiveFailure’) == 1
ngaus = size(FEs(elem).StressesXYZ, 4);
POSTELEMENTS(count).StressesXYZ = zeros(6,2,ngaus,STEPS+1);
POSTELEMENTS(count).Stresses123 = zeros(6,2,ngaus,STEPS+1);
for step = 1:STEPS+1
for gaus = 1:ngaus
POSTELEMENTS(count).Stresses123(:,:,gaus, step) =
STRAINS123(:,[sublayer sublayer+1],elem,layer,step);
POSTELEMENTS(count).Index(1, step) = Damage_matrix(layer, 1, elem, step);
POSTELEMENTS(count).Index(2, step) = Damage_matrix(layer, 2, elem, step);
POSTELEMENTS(count).Index(3, step) = Damage_matrix(layer, 3, elem, step);
POSTELEMENTS(count).Index(4, step) = Damage_matrix(layer, 4, elem, step);
POSTELEMENTS(count).Index(5, step) = Damage_matrix(layer, 5, elem, step);
end
end
end
end
end
end
clear count countlayer layer sublayer elem array
clear gaus ngaus

136



Bibliography

[1] E. J. Barbero. Introduction to Composite Materials Design. CRC Press, July 2010. isbn:
9780429109478. doi: 10.1201/9781439894132.

[2] R. Brandner et al. “Cross laminated timber (CLT): overview and development”. In:
European Journal of Wood and Wood Products 74 (3 May 2016), pp. 331–351. issn:
1436736X. doi: 10.1007/s00107-015-0999-5.

[3] R. Cvetkovic et al. “Innovative structural CLT system in projecting and building of
student houses”. In: Facta universitatis - series: Architecture and Civil Engineering 13 (1
2015), pp. 57–64. issn: 0354-4605. doi: 10.2298/FUACE1501057C.

[4] O. O. Ochoa and J. N. Reddy. Finite Element Analysis of Composite Laminates. 1992.
doi: 10.1007/978-94-015-7995-7_3.

[5] G. Hochreiner et al. CLT Plates under Concentrated Loading – Experimental Identification
of Crack Modes and Corresponding Failure Mechanisms. 2014. doi: 10.1007/978-94-
007-7811-5_63.

[6] M. R. Wisnom, S. R. Hallett, and C. Soutis. “Scaling effects in notched composites”.
In: Journal of Composite Materials 44 (2 Jan. 2010), pp. 195–210. issn: 00219983. doi:
10.1177/0021998309339865.

[7] A. C. Orifici, I. Herszberg, and R. S. Thomson. “Review of methodologies for composite
material modelling incorporating failure”. In: Composite Structures 86 (1-3 Nov. 2008),
pp. 194–210. issn: 02638223. doi: 10.1016/j.compstruct.2008.03.007.

[8] D. W. Sleight. Progressive Failure Analysis Methodology for Laminated Composite Struc-
tures. 1999.

[9] M. R. Garnich and V. M. Akula. Review of degradation models for progressive failure
analysis of fiber reinforced polymer composites. Jan. 2009. doi: 10.1115/1.3013822.

[10] K. V. Williams, R. Vaziri, and A. Poursartip. “A physically based continuum damage
mechanics model for thin laminated composite structures”. In: International Journal of
Solids and Structures 40 (9 May 2003), pp. 2267–2300. issn: 00207683. doi: 10.1016/
S0020-7683(03)00016-7.

[11] A. Forghani et al. “A structural modelling framework for prediction of damage develop-
ment and failure of composite laminates”. In: Journal of Composite Materials 47 (20-21
Sept. 2013), pp. 2553–2573. issn: 00219983. doi: 10.1177/0021998312474044.

[12] J. N. Reddy. Mechanics of Laminated Composite Plates and Shells. CRC Press, Nov.
2003. isbn: 9780429210693. doi: 10.1201/b12409.

[13] E. Jočić and M. Marjanović. “Progressive failure analysis of open-hole composite laminates
using FLWT-SCB prediction model”. In: International Journal of Mechanical Sciences
227 (Aug. 2022). issn: 00207403. doi: 10.1016/j.ijmecsci.2022.107407.

137

https://doi.org/10.1201/9781439894132
https://doi.org/10.1007/s00107-015-0999-5
https://doi.org/10.2298/FUACE1501057C
https://doi.org/10.1007/978-94-015-7995-7_3
https://doi.org/10.1007/978-94-007-7811-5_63
https://doi.org/10.1007/978-94-007-7811-5_63
https://doi.org/10.1177/0021998309339865
https://doi.org/10.1016/j.compstruct.2008.03.007
https://doi.org/10.1115/1.3013822
https://doi.org/10.1016/S0020-7683(03)00016-7
https://doi.org/10.1016/S0020-7683(03)00016-7
https://doi.org/10.1177/0021998312474044
https://doi.org/10.1201/b12409
https://doi.org/10.1016/j.ijmecsci.2022.107407


Bibliography Bibliography

[14] GiD Customization Manual. CIMNE – International Center for Numerical Methods in
Engineering, 2016.

[15] M. Marjanović, G. Meschke, and E. Damnjanović. “Object-oriented framework for 3D
bending and free vibration analysis of multilayer plates: Application to cross-laminated
timber and soft-core sandwich panels”. In: Composite Structures 255 (Jan. 2021). issn:
02638223. doi: 10.1016/j.compstruct.2020.112859.

[16] P. H. Petit and M. E. Waddoups. “A Method of Predicting the Nonlinear Behavior of
Laminated Composites”. In: Journal of Composite Materials 3 (1 1969), pp. 2–19. issn:
1530793X. doi: 10.1177/002199836900300101.

[17] R. S. Sandhu. “Nonlinear behavior of unidirectional and angle ply laminates”. In: Journal
of Aircraft 13 (2 1976), pp. 104–111. issn: 00218669. doi: 10.2514/3.58638.

[18] G. A. Abu-Farsakh and Y. A. Abdel-Jawad. “New failure criterion for nonlinear composite
materials”. In: Journal of Composites Technology and Research 16 (2 1994), pp. 138–145.
issn: 08846804. doi: 10.1520/ctr10403j.

[19] S. P. Engelstad, J. N. Reddy, and N. F. Knight. “Postbuckling response and failure
prediction of graphite-epoxy plates loaded in compression”. In: AIAA Journal 30 (8
1992), pp. 2106–2113. issn: 00011452. doi: 10.2514/3.11187.

[20] S. W. Tsai and E. M. Wu. “A General Theory of Strength for Anisotropic Materials”.
In: Journal of Composite Materials 5 (1 Jan. 1971), pp. 58–80. issn: 0021-9983. doi:
10.1177/002199837100500106.

[21] S. Singh and A. Kumar. “Postbuckling response and strength of laminates under combined
in-plane loads”. In: Composites Science and Technology 59 (5 Apr. 1999), pp. 727–736.
issn: 02663538. doi: 10.1016/S0266-3538(98)00125-0.

[22] R. Hill. “A theory of the yielding and plastic flow of anisotropic metals”. In: Proceedings
of the Royal Society of London. Series A. Mathematical and Physical Sciences 193 (1033
May 1948), pp. 281–297. issn: 0080-4630. doi: 10.1098/rspa.1948.0045.

[23] O OCHOA and J ENGBLOM. “Analysis of progressive failure in composites”. In:
Composites Science and Technology 28 (2 1987), pp. 87–102. issn: 02663538. doi: 10.
1016/0266-3538(87)90092-3.

[24] Z. Hashin. “Fatigue Failure Criteria for Unidirectional Fiber Composites”. In: Journal
of Applied Mechanics 48 (4 Dec. 1981), pp. 846–852. issn: 0021-8936. doi: 10.1115/1.
3157744.

[25] J. D. Lee. “Three dimensional finite element analysis of damage accumulation in composite
laminate”. In: Computers Structures 15 (3 Jan. 1982), pp. 335–350. issn: 00457949. doi:
10.1016/0045-7949(82)90026-8.

[26] W. Hwang and C. Sun. “Failure analysis of laminated composites by using iterative
three-dimensional finite element method”. In: Computers Structures 33 (1 Jan. 1989),
pp. 41–47. issn: 00457949. doi: 10.1016/0045-7949(89)90127-2.

[27] F.-K. Chang and G. S. Springer. “The Strengths of Fiber Reinforced Composite Bends”.
In: Journal of Composite Materials 20 (1 Jan. 1986), pp. 30–45. issn: 0021-9983. doi:
10.1177/002199838602000103.

[28] S. Tolson and N. Zabaras. “Finite element analysis of progressive failure in laminated
composite plates”. In: Computers Structures 38 (3 Jan. 1991), pp. 361–376. issn:
00457949. doi: 10.1016/0045-7949(91)90113-Z.

[29] O. Hoffman. “The Brittle Strength of Orthotropic Materials”. In: Journal of Composite
Materials 1 (2 Apr. 1967), pp. 200–206. issn: 0021-9983. doi: 10.1177/002199836700100210.

138

https://doi.org/10.1016/j.compstruct.2020.112859
https://doi.org/10.1177/002199836900300101
https://doi.org/10.2514/3.58638
https://doi.org/10.1520/ctr10403j
https://doi.org/10.2514/3.11187
https://doi.org/10.1177/002199837100500106
https://doi.org/10.1016/S0266-3538(98)00125-0
https://doi.org/10.1098/rspa.1948.0045
https://doi.org/10.1016/0266-3538(87)90092-3
https://doi.org/10.1016/0266-3538(87)90092-3
https://doi.org/10.1115/1.3157744
https://doi.org/10.1115/1.3157744
https://doi.org/10.1016/0045-7949(82)90026-8
https://doi.org/10.1016/0045-7949(89)90127-2
https://doi.org/10.1177/002199838602000103
https://doi.org/10.1016/0045-7949(91)90113-Z
https://doi.org/10.1177/002199836700100210


Bibliography Bibliography

[30] S. C. Tan and R. J. Nuismer. “A Theory for Progressive Matrix Cracking in Composite
Laminates”. In: Journal of Composite Materials 23 (10 1989), pp. 1029–1047. issn:
1530793x. doi: 10.1177/002199838902301006.

[31] S. C. Tan. “A Progressive Failure Model for Composite Laminates Containing Openings”.
In: Journal of Composite Materials 25 (5 1991), pp. 556–577. issn: 1530793X. doi:
10.1177/002199839102500505.

[32] S. C. Tan and J. Perez. “Progressive Failure of Laminated Composites with a Hole under
Compressive Loading”. In: Journal of Reinforced Plastics and Composites 12 (10 1993),
pp. 1043–1057. issn: 15307964. doi: 10.1177/073168449301201002.

[33] P. P. Camanho and F. L. Matthews. “A progressive damage model for mechanically
fastened joints in composite laminates”. In: Journal of Composite Materials 33 (24 1999),
pp. 2248–2280. issn: 00219983. doi: 10.1177/002199839903302402.

[34] Simulia, Abaqus, User Manual. Version 6.13. Providence, RI, USA: DS SIMULIA Corp.
2013.

[35] F. K. Chang and K. Y. Chang. “A Progressive Damage Model for Laminated Composites
Containing Stress Concentrations”. In: Journal of Composite Materials 21 (9 1987),
pp. 834–855. issn: 1530793x. doi: 10.1177/002199838702100904.

[36] Y. Kim and C. Hong. “Progressive Failure Model for the Analysis of Laminated
Composites Based on Finite Element Approach”. In: Journal of Reinforced Plastics
and Composites 11 (10 Oct. 1992), pp. 1078–1092. issn: 0731-6844. doi: 10.1177/
073168449201101001.

[37] W. P. Lin and H. T. Hu. “Nonlinear Analysis of Fiber-Reinforced Composite Laminates
Subjected to Uniaxial Tensile Load”. In: (). doi: 10.1106/002199802021463.

[38] W. P. Lin. “Parametric Study on the Failure of Fiber-Reinforced Composite Laminates
under Biaxial Tensile Load”. In: (). doi: 10.1106/002199802023218.

[39] H. T. Hahn and S. W. Tsai. “On the Behavior of Composite Laminates After Initial
Failures”. In: Journal of Composite Materials 8 (3 1974), pp. 288–305. issn: 1530793X.
doi: 10.1177/002199837400800306.

[40] Y. Reddy, C. Moorthy, and J. Reddy. “Non-linear progressive failure analysis of laminated
composite plates”. In: International Journal of Non-Linear Mechanics 30 (5 Sept. 1995),
pp. 629–649. issn: 00207462. doi: 10.1016/0020-7462(94)00041-8.

[41] E. J. Barbero et al. “Determination of material parameters for Abaqus progressive
damage analysis of E-glass epoxy laminates”. In: Composites Part B: Engineering 46
(2013), pp. 211–220. issn: 13598368. doi: 10.1016/j.compositesb.2012.09.069.

[42] C. Mcgregor et al. “A Constitutive Model for Progressive Compressive Failure of Com-
posites”. In: Journal of Composite Materials 42 (25 Dec. 2008), pp. 2687–2716. issn:
0021-9983. doi: 10.1177/0021998308096330.

[43] S. R. Hallett and M. R. Wisnom. Experimental investigation of progressive damage and
the effect of layup in notched tensile tests. 2006. doi: 10.1177/0021998305053504.

[44] E. Abisset, F. Daghia, and P. Ladevèze. “On the validation of a damage mesomodel for
laminated composites by means of open-hole tensile tests on quasi-isotropic laminates”. In:
Composites Part A: Applied Science and Manufacturing 42 (10 Oct. 2011), pp. 1515–1524.
issn: 1359835X. doi: 10.1016/j.compositesa.2011.07.004.

[45] Z. P. Bažant. “Instability, Ductility, and Size Effect in Strain-Softening Concrete”. In:
Journal of the Engineering Mechanics Division 102 (2 Apr. 1976), pp. 331–344. issn:
0044-7951. doi: 10.1061/JMCEA3.0002111.

139

https://doi.org/10.1177/002199838902301006
https://doi.org/10.1177/002199839102500505
https://doi.org/10.1177/073168449301201002
https://doi.org/10.1177/002199839903302402
https://doi.org/10.1177/002199838702100904
https://doi.org/10.1177/073168449201101001
https://doi.org/10.1177/073168449201101001
https://doi.org/10.1106/002199802021463
https://doi.org/10.1106/002199802023218
https://doi.org/10.1177/002199837400800306
https://doi.org/10.1016/0020-7462(94)00041-8
https://doi.org/10.1016/j.compositesb.2012.09.069
https://doi.org/10.1177/0021998308096330
https://doi.org/10.1177/0021998305053504
https://doi.org/10.1016/j.compositesa.2011.07.004
https://doi.org/10.1061/JMCEA3.0002111


Bibliography Bibliography

[46] P. P. Camanho, P Maimí, and C. G. Dávila. “Prediction of size effects in notched
laminates using continuum damage mechanics”. In: Composites Science and Technology
67 (13 2007), p. 2715. doi: 10.1016/j.compscitech.2007.02.005Ãŕ.

[47] E. H. Kim et al. “Composite damage model based on continuum damage mechanics
and low velocity impact analysis of composite plates”. In: Composite Structures 95 (Jan.
2013), pp. 123–134. issn: 02638223. doi: 10.1016/j.compstruct.2012.07.002.

[48] L. Wang et al. “Continuum damage modeling and progressive failure analysis of carbon
fiber/epoxy composite pressure vessel”. In: Composite Structures 134 (Dec. 2015), pp. 475–
482. issn: 02638223. doi: 10.1016/j.compstruct.2015.08.107.

[49] S. R. Hallett et al. “Modelling the interaction between matrix cracks and delamination
damage in scaled quasi-isotropic specimens”. In: Composites Science and Technology 68
(1 Jan. 2008), pp. 80–89. issn: 02663538. doi: 10.1016/j.compscitech.2007.05.038.

[50] C. Bouvet et al. “Low velocity impact modelling in laminate composite panels with
discrete interface elements”. In: International Journal of Solids and Structures 46 (14-15
July 2009), pp. 2809–2821. issn: 00207683. doi: 10.1016/j.ijsolstr.2009.03.010.

[51] X. C. Sun, M. R. Wisnom, and S. R. Hallett. “Interaction of inter- and intralaminar
damage in scaled quasi-static indentation tests: Part 2 - Numerical simulation”. In:
Composite Structures 136 (Feb. 2016), pp. 727–742. issn: 02638223. doi: 10.1016/j.
compstruct.2015.09.062.

[52] B. Karihaloo and Q. Xiao. “Modelling of stationary and growing cracks in FE framework
without remeshing: a state-of-the-art review”. In: Computers & Structures 81 (3 Feb.
2003), pp. 119–129. issn: 00457949. doi: 10.1016/S0045-7949(02)00431-5.

[53] M. J. Swindeman et al. “Strength Prediction in Open Hole Composite Laminates by
Using Discrete Damage Modeling”. In: AIAA Journal 51 (4 Apr. 2013), pp. 936–945.
issn: 0001-1452. doi: 10.2514/1.J051773.

[54] H. W. Wang et al. “Application of extended finite element method in damage progress
simulation of fiber reinforced composites”. In: Materials and Design 55 (2014), pp. 191–
196. issn: 18734197. doi: 10.1016/j.matdes.2013.09.071.

[55] J.-H. Song, P. M. A. Areias, and T. Belytschko. “A method for dynamic crack and shear
band propagation with phantom nodes”. In: International Journal for Numerical Methods
in Engineering 67 (6 Aug. 2006), pp. 868–893. issn: 0029-5981. doi: 10.1002/nme.1652.

[56] F. P. Meer and L. J. Sluys. “A phantom node formulation with mixed mode cohesive
law for splitting in laminates”. In: International Journal of Fracture 158 (2 Aug. 2009),
pp. 107–124. issn: 0376-9429. doi: 10.1007/s10704-009-9344-5.

[57] J. Reiner et al. “A progressive analysis of matrix cracking-induced delamination in compos-
ite laminates using an advanced phantom node method”. In: Journal of Composite Materi-
als 51 (20 Aug. 2017), pp. 2933–2947. issn: 0021-9983. doi: 10.1177/0021998316684203.

[58] X. J. Fang et al. “High-fidelity simulations of multiple fracture processes in a laminated
composite in tension”. In: Journal of the Mechanics and Physics of Solids 59 (7 July
2011), pp. 1355–1373. issn: 00225096. doi: 10.1016/j.jmps.2011.04.007.

[59] X. J. Fang et al. “An augmented cohesive zone element for arbitrary crack coalescence and
bifurcation in heterogeneous materials”. In: International Journal for Numerical Methods
in Engineering 88 (9 Dec. 2011), pp. 841–861. issn: 00295981. doi: 10.1002/nme.3200.

[60] B. Y. Chen et al. “A floating node method for the modelling of discontinuities in
composites”. In: Engineering Fracture Mechanics 127 (2014), pp. 104–134. issn: 00137944.
doi: 10.1016/j.engfracmech.2014.05.018.

140

https://doi.org/10.1016/j.compscitech.2007.02.005ï
https://doi.org/10.1016/j.compstruct.2012.07.002
https://doi.org/10.1016/j.compstruct.2015.08.107
https://doi.org/10.1016/j.compscitech.2007.05.038
https://doi.org/10.1016/j.ijsolstr.2009.03.010
https://doi.org/10.1016/j.compstruct.2015.09.062
https://doi.org/10.1016/j.compstruct.2015.09.062
https://doi.org/10.1016/S0045-7949(02)00431-5
https://doi.org/10.2514/1.J051773
https://doi.org/10.1016/j.matdes.2013.09.071
https://doi.org/10.1002/nme.1652
https://doi.org/10.1007/s10704-009-9344-5
https://doi.org/10.1177/0021998316684203
https://doi.org/10.1016/j.jmps.2011.04.007
https://doi.org/10.1002/nme.3200
https://doi.org/10.1016/j.engfracmech.2014.05.018


Bibliography Bibliography

[61] B. Y. Chen et al. “Modelling the tensile failure of composites with the floating node
method”. In: Computer Methods in Applied Mechanics and Engineering 308 (Aug. 2016),
pp. 414–442. issn: 00457825. doi: 10.1016/j.cma.2016.05.027.

[62] X. Lu et al. “A separable cohesive element for modelling coupled failure in laminated
composite materials”. In: Composites Part A: Applied Science and Manufacturing 107
(Apr. 2018), pp. 387–398. issn: 1359835X. doi: 10.1016/j.compositesa.2018.01.014.

[63] X. F. Hu, X. Lu, and T. E. Tay. “Modelling delamination migration using virtual
embedded cohesive elements formed through floating nodes”. In: Composite Structures 204
(Nov. 2018), pp. 500–512. issn: 02638223. doi: 10.1016/j.compstruct.2018.07.120.

[64] S. T. Pinho, L. Iannucci, and P. Robinson. “Physically-based failure models and criteria
for laminated fibre-reinforced composites with emphasis on fibre kinking: Part I: Devel-
opment”. In: Composites Part A: Applied Science and Manufacturing 37 (1 Jan. 2006),
pp. 63–73. issn: 1359835X. doi: 10.1016/j.compositesa.2005.04.016.

[65] S. T. Pinho, L. Iannucci, and P. Robinson. “Physically based failure models and criteria
for laminated fibre-reinforced composites with emphasis on fibre kinking. Part II: FE
implementation”. In: Composites Part A: Applied Science and Manufacturing 37 (5 May
2006), pp. 766–777. issn: 1359835X. doi: 10.1016/j.compositesa.2005.06.008.

[66] B. Y. Chen et al. “Numerical analysis of size effects on open-hole tensile composite
laminates”. In: Composites Part A: Applied Science and Manufacturing 47 (1 2013),
pp. 52–62. issn: 1359835X. doi: 10.1016/j.compositesa.2012.12.001.

[67] M. Ridha et al. “Modelling complex progressive failure in notched composite laminates
with varying sizes and stacking sequences”. In: Composites Part A: Applied Science and
Manufacturing 58 (Mar. 2014), pp. 16–23. issn: 1359835X. doi: 10.1016/j.compositesa.
2013.11.012.

[68] Z. C. Su et al. “Progressive damage modeling of open-hole composite laminates under
compression”. In: Composite Structures 122 (Apr. 2015), pp. 507–517. issn: 02638223.
doi: 10.1016/j.compstruct.2014.12.022.

[69] P LADEVEZE and E LEDANTEC. “Damage modelling of the elementary ply for
laminated composites”. In: Composites Science and Technology 43 (3 1992), pp. 257–267.
issn: 02663538. doi: 10.1016/0266-3538(92)90097-M.

[70] J. Reiner et al. “Comparison of two progressive damage models for studying the notched
behavior of composite laminates under tension”. In: Composite Structures 207 (Jan.
2019), pp. 385–396. issn: 02638223. doi: 10.1016/j.compstruct.2018.09.033.

[71] A. Forghani, A. Poursartip, and R. Vaziri. “An orthotropic non-local approach to
modeling intra-laminar damage progression in laminated composites”. In: International
Journal of Solids and Structures 180-181 (Dec. 2019), pp. 160–175. issn: 00207683. doi:
10.1016/j.ijsolstr.2019.07.015.

[72] D. Yoon et al. “Development and evaluation of crack band model implemented pro-
gressive failure analysis method for notched composite laminate”. In: Applied Sciences
(Switzerland) 9 (24 Dec. 2019). issn: 20763417. doi: 10.3390/app9245572.

[73] M. H. Nagaraj et al. “Progressive damage analysis of composite structures using higher-
order layer-wise elements”. In: Composites Part B: Engineering 190 (June 2020). issn:
13598368. doi: 10.1016/j.compositesb.2020.107921.

[74] M. H. Nagaraj et al. “Compressive damage modeling of fiber-reinforced composite
laminates using 2D higher-order layer-wise models”. In: Composites Part B: Engineering
215 (June 2021). issn: 13598368. doi: 10.1016/j.compositesb.2021.108753.

141

https://doi.org/10.1016/j.cma.2016.05.027
https://doi.org/10.1016/j.compositesa.2018.01.014
https://doi.org/10.1016/j.compstruct.2018.07.120
https://doi.org/10.1016/j.compositesa.2005.04.016
https://doi.org/10.1016/j.compositesa.2005.06.008
https://doi.org/10.1016/j.compositesa.2012.12.001
https://doi.org/10.1016/j.compositesa.2013.11.012
https://doi.org/10.1016/j.compositesa.2013.11.012
https://doi.org/10.1016/j.compstruct.2014.12.022
https://doi.org/10.1016/0266-3538(92)90097-M
https://doi.org/10.1016/j.compstruct.2018.09.033
https://doi.org/10.1016/j.ijsolstr.2019.07.015
https://doi.org/10.3390/app9245572
https://doi.org/10.1016/j.compositesb.2020.107921
https://doi.org/10.1016/j.compositesb.2021.108753


Bibliography Bibliography

[75] B. Dhas et al. “A Phase-Field Damage Model for Orthotropic Materials and Delamination
in Composites”. In: Journal of Applied Mechanics 85 (1 Jan. 2018). issn: 0021-8936. doi:
10.1115/1.4038506.

[76] C. Miehe, F. Welschinger, and M. Hofacker. “Thermodynamically consistent phase-
field models of fracture: Variational principles and multi-field FE implementations”.
In: International Journal for Numerical Methods in Engineering 83 (10 Sept. 2010),
pp. 1273–1311. issn: 00295981. doi: 10.1002/nme.2861.

[77] A. Mesgarnejad, B. Bourdin, and M. M. Khonsari. “Validation simulations for the
variational approach to fracture”. In: Computer Methods in Applied Mechanics and
Engineering 290 (June 2015), pp. 420–437. issn: 00457825. doi: 10.1016/j.cma.2014.
10.052.

[78] M. Ambati, T. Gerasimov, and L. D. Lorenzis. “A review on phase-field models of brittle
fracture and a new fast hybrid formulation”. In: Computational Mechanics 55 (2 Feb.
2015), pp. 383–405. issn: 0178-7675. doi: 10.1007/s00466-014-1109-y.

[79] M. A. Msekh et al. “Abaqus implementation of phase-field model for brittle fracture”.
In: Computational Materials Science 96 (PB 2015), pp. 472–484. issn: 09270256. doi:
10.1016/j.commatsci.2014.05.071.

[80] R. U. Patil, B. K. Mishra, and I. V. Singh. “An adaptive multiscale phase field method
for brittle fracture”. In: Computer Methods in Applied Mechanics and Engineering 329
(Feb. 2018), pp. 254–288. issn: 00457825. doi: 10.1016/j.cma.2017.09.021.

[81] P. Zhang et al. “Phase field modeling of fracture in fiber reinforced composite laminate”.
In: International Journal of Mechanical Sciences 161-162 (Oct. 2019). issn: 00207403.
doi: 10.1016/j.ijmecsci.2019.07.007.

[82] P. Zhang et al. “An explicit phase field model for progressive tensile failure of composites”.
In: Engineering Fracture Mechanics 241 (Jan. 2021). issn: 00137944. doi: 10.1016/j.
engfracmech.2020.107371.

[83] T. Q. Bui and X. Hu. “A review of phase-field models, fundamentals and their applications
to composite laminates”. In: Engineering Fracture Mechanics 248 (May 2021). issn:
00137944. doi: 10.1016/j.engfracmech.2021.107705.

[84] X. Nie and B Sc. FAILURE MECHANISM OF ROLLING SHEAR FAILURE IN
CROSS-LAMINATED TIMBER. 2015. doi: 10.14288/1.0215881.

[85] Z. Wang et al. “Influence of technical characteristics on the rolling shear properties of
cross laminated timber by modified planar shear tests”. In: Maderas. Ciencia y tecnología
(ahead 2018), pp. 0–0. issn: 0718-221X. doi: 10.4067/S0718-221X2018005031601.

[86] P. Mestek and P. Dietsch. Design concept for CLT-reinforced with self-tapping screws *.
2011.

[87] Q. Zhou et al. “Measurement of rolling shear modulus and strength of cross laminated
timber fabricated with black spruce”. In: Construction and Building Materials 64 (Aug.
2014), pp. 379–386. issn: 09500618. doi: 10.1016/j.conbuildmat.2014.04.039.

[88] L. Franzoni et al. “Influence of orientation and number of layers on the elastic response
and failure modes on CLT floors: modeling and parameter studies”. In: European Journal
of Wood and Wood Products (2016), p. 10. doi: 10.1007/s00107-016-1038-xÃŕ.

[89] N. Pagano. “Exact Solutions for Rectangular Bidirectional Composites and Sandwich
Plates”. In: Journal of Composite Materials 4 (1 Jan. 1970), pp. 20–34. issn: 0021-9983.
doi: 10.1177/002199837000400102.

142

https://doi.org/10.1115/1.4038506
https://doi.org/10.1002/nme.2861
https://doi.org/10.1016/j.cma.2014.10.052
https://doi.org/10.1016/j.cma.2014.10.052
https://doi.org/10.1007/s00466-014-1109-y
https://doi.org/10.1016/j.commatsci.2014.05.071
https://doi.org/10.1016/j.cma.2017.09.021
https://doi.org/10.1016/j.ijmecsci.2019.07.007
https://doi.org/10.1016/j.engfracmech.2020.107371
https://doi.org/10.1016/j.engfracmech.2020.107371
https://doi.org/10.1016/j.engfracmech.2021.107705
https://doi.org/10.14288/1.0215881
https://doi.org/10.4067/S0718-221X2018005031601
https://doi.org/10.1016/j.conbuildmat.2014.04.039
https://doi.org/10.1007/s00107-016-1038-xï
https://doi.org/10.1177/002199837000400102


Bibliography Bibliography

[90] T. A. van der Put. “A continuum failure criterion applicable to wood”. In: Journal of
Wood Science 55 (5 Oct. 2009), pp. 315–322. issn: 1435-0211. doi: 10.1007/s10086-
009-1036-2.

[91] J. A. Nairn. “Predicting failure of notched cross-laminated timber plates including the
effect of environmental stresses”. In: Wood Material Science and Engineering 16 (5 2021),
pp. 299–311. issn: 17480280. doi: 10.1080/17480272.2020.1718205.

[92] S. Navaratnam et al. “The use of digital image correlation for identifying failure charac-
teristics of cross-laminated timber under transverse loading”. In: Measurement: Journal
of the International Measurement Confederation 154 (Mar. 2020). issn: 02632241. doi:
10.1016/j.measurement.2020.107502.

[93] Z. Huang et al. “Modeling of Cross-Laminated Timber (CLT) panels loaded with combined
out-of-plane bending and compression”. In: Engineering Structures 250 (Jan. 2022). issn:
18737323. doi: 10.1016/j.engstruct.2021.113335.

[94] H. Daneshvar et al. “Structural behaviour of deep CLT lintels subjected to concentric and
eccentric loading”. In: Journal of Building Engineering 43 (Nov. 2021). issn: 23527102.
doi: 10.1016/j.jobe.2021.103101.

[95] R. Cherry et al. Out-of-grade sawn pine: A state-of-the-art review on challenges and new
opportunities in cross laminated timber (CLT). June 2019. doi: 10.1016/j.conbuildmat.
2019.03.293.

[96] European Committee for Standardization, EN 1995: 2008-06 Eurocode 5: Design of timber
structures-Part 1-1: General Common rules and rules for buildings.

[97] K. Franz. “Prof. Dr.-Ing. Karl Möhler 60 Jahre”. In: Holz als Roh- und Werkstoff 30 (6
June 1972), pp. 234–236. issn: 0018-3768. doi: 10.1007/BF02617593.

[98] L. P. Qiu, E. C. Zhu, and J. W. V. D. Kuilen. “Modeling crack propagation in wood by
extended finite element method”. In: European Journal of Wood and Wood Products 72
(2 Mar. 2014), pp. 273–283. issn: 00183768. doi: 10.1007/s00107-013-0773-5.

[99] M. Lavrenčič and B. Brank. “Failure analysis of ribbed cross-laminated timber plates”.
In: Coupled Systems Mechanics 7 (1 Feb. 2018), pp. 79–93. issn: 22342192. doi: 10.
12989/csm.2018.7.1.079.

[100] Y. Ma et al. “Flexural and shear performance of CLT panels made from salvaged beetle-
killed white spruce”. In: Construction and Building Materials 302 (Oct. 2021). issn:
09500618. doi: 10.1016/j.conbuildmat.2021.124381.

[101] G. Kirchhoff. “Über das Gleichgewicht und die Bewegung einer elastischen Scheibe.” In:
Journal für die reine und angewandte Mathematik (Crelles Journal) 1850 (40 July 1850),
pp. 51–88. issn: 0075-4102. doi: 10.1515/crll.1850.40.51.

[102] R. D. Mindlin. “Influence of Rotatory Inertia and Shear on Flexural Motions of Isotropic,
Elastic Plates”. In: Journal of Applied Mechanics 18 (1 Mar. 1951), pp. 31–38. issn:
0021-8936. doi: 10.1115/1.4010217.

[103] J. N. Reddy. “A Simple Higher-Order Theory for Laminated Composite Plates”. In:
Journal of Applied Mechanics 51 (4 Dec. 1984), pp. 745–752. issn: 0021-8936. doi:
10.1115/1.3167719.

[104] E. Carrera. “Theories and Finite Elements for Multilayered Plates and Shells:A Unified
compact formulation with numerical assessment and benchmarking”. In: Archives of
Computational Methods in Engineering 10 (3 Sept. 2003), pp. 215–296. issn: 1134-3060.
doi: 10.1007/BF02736224.

143

https://doi.org/10.1007/s10086-009-1036-2
https://doi.org/10.1007/s10086-009-1036-2
https://doi.org/10.1080/17480272.2020.1718205
https://doi.org/10.1016/j.measurement.2020.107502
https://doi.org/10.1016/j.engstruct.2021.113335
https://doi.org/10.1016/j.jobe.2021.103101
https://doi.org/10.1016/j.conbuildmat.2019.03.293
https://doi.org/10.1016/j.conbuildmat.2019.03.293
https://doi.org/10.1007/BF02617593
https://doi.org/10.1007/s00107-013-0773-5
https://doi.org/10.12989/csm.2018.7.1.079
https://doi.org/10.12989/csm.2018.7.1.079
https://doi.org/10.1016/j.conbuildmat.2021.124381
https://doi.org/10.1515/crll.1850.40.51
https://doi.org/10.1115/1.4010217
https://doi.org/10.1115/1.3167719
https://doi.org/10.1007/BF02736224


Bibliography Bibliography

[105] S. A. Lur’e and N. P. Shumova. “Kinematic models of refined theories concerning
composite beams, plates, and shells”. In: Mechanics of Composite Materials 32 (5 Sept.
1996), pp. 422–430. issn: 0191-5665. doi: 10.1007/BF02313861.

[106] J. N. Reddy and D. H. Robbins. “Theories and Computational Models for Composite
Laminates”. In: Applied Mechanics Reviews 47 (6 June 1994), pp. 147–169. issn: 0003-
6900. doi: 10.1115/1.3111076.

[107] E. J. Barbero, J. N. Reddy, and J. Teply. “An accurate determination of stresses
in thick laminates using a generalized plate theory”. In: International Journal for
Numerical Methods in Engineering 29 (1 Jan. 1990), pp. 1–14. issn: 0029-5981. doi:
10.1002/nme.1620290103.

[108] M. Ćetković and D. Vuksanović. “Bending, free vibrations and buckling of laminated
composite and sandwich plates using a layerwise displacement model”. In: Composite
Structures 88 (2 Apr. 2009), pp. 219–227. issn: 02638223. doi: 10.1016/j.compstruct.
2008.03.039.

[109] M. Marjanović and D. Vuksanović. “Layerwise solution of free vibrations and buckling of
laminated composite and sandwich plates with embedded delaminations”. In: Composite
Structures 108 (1 2014), pp. 9–20. issn: 02638223. doi: 10.1016/j.compstruct.2013.
09.006.

[110] M. Marjanović, G. Meschke, and D. Vuksanović. “A finite element model for propagating
delamination in laminated composite plates based on the Virtual Crack Closure method”.
In: Composite Structures 150 (Aug. 2016), pp. 8–19. issn: 02638223. doi: 10.1016/j.
compstruct.2016.04.044.

[111] M. Marjanović, D. Vuksanović, and G. Meschke. “Geometrically nonlinear transient
analysis of delaminated composite and sandwich plates using a layerwise displacement
model with contact conditions”. In: Composite Structures 122 (Apr. 2015), pp. 67–81.
issn: 02638223. doi: 10.1016/j.compstruct.2014.11.028.

[112] M. Marjanović et al. “Three-dimensional stress analysis and design of cross-laminated
timber panels using full-layerwise-theory-based finite element method”. In: Thin-Walled
Structures 157 (Dec. 2020). issn: 02638231. doi: 10.1016/j.tws.2020.107156.

[113] A. K. Nayak, R. A. Shenoi, and S. S. Moy. “Dynamic response of composite sandwich
plates subjected to initial stresses”. In: Composites Part A: Applied Science and Manufac-
turing 37 (8 Aug. 2006), pp. 1189–1205. issn: 1359835X. doi: 10.1016/j.compositesa.
2005.05.034.

[114] O. Zienkiewicz and R. Taylor. The Finite Element Method: Solid mechanics. Vol. 2.
Butterworth-Heinemann, 2000.

[115] M. Dudzinski, M. Rozgic, and M. Stiemer. “oFEM: An object oriented finite element
package for Matlab”. In: Applied Mathematics and Computation 334 (Oct. 2018), pp. 117–
140. issn: 00963003. doi: 10.1016/j.amc.2017.11.042.

[116] T. Rahman and J. Valdman. “Fast MATLAB assembly of FEM matrices in 2D and 3D:
Nodal elements”. In: Applied Mathematics and Computation 219 (13 2013), pp. 7151–7158.
issn: 00963003. doi: 10.1016/j.amc.2011.08.043.

[117] D. H. Roubins and J. N. Reddy. MODELLING OF THICK COMPOSITES USING A
LAYERWISE LAMINATE THEORY, p. 993.

[118] R. Talreja. “A continuum mechanics characterization of damage in composite materials”.
In: Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences
399 (1817 June 1985), pp. 195–216. issn: 0080-4630. doi: 10.1098/rspa.1985.0055.

144

https://doi.org/10.1007/BF02313861
https://doi.org/10.1115/1.3111076
https://doi.org/10.1002/nme.1620290103
https://doi.org/10.1016/j.compstruct.2008.03.039
https://doi.org/10.1016/j.compstruct.2008.03.039
https://doi.org/10.1016/j.compstruct.2013.09.006
https://doi.org/10.1016/j.compstruct.2013.09.006
https://doi.org/10.1016/j.compstruct.2016.04.044
https://doi.org/10.1016/j.compstruct.2016.04.044
https://doi.org/10.1016/j.compstruct.2014.11.028
https://doi.org/10.1016/j.tws.2020.107156
https://doi.org/10.1016/j.compositesa.2005.05.034
https://doi.org/10.1016/j.compositesa.2005.05.034
https://doi.org/10.1016/j.amc.2017.11.042
https://doi.org/10.1016/j.amc.2011.08.043
https://doi.org/10.1098/rspa.1985.0055


Bibliography Bibliography

[119] D. C. Drucker. “A Definition of Stable Inelastic Material”. In: Journal of Applied
Mechanics 26 (1 Mar. 1959), pp. 101–106. issn: 0021-8936. doi: 10.1115/1.4011929.

[120] D. Hull and T. W. Clyne. An Introduction to Composite Materials. Cambridge University
Press, Aug. 1996. isbn: 9780521381901. doi: 10.1017/CBO9781139170130.

[121] S. W. Tsai and V. D. Azzi. “Strength of laminated composite materials”. In: AIAA
Journal 4 (2 1966), pp. 296–301. issn: 00011452. doi: 10.2514/3.3431.

[122] R. Talreja. Assessment of the fundamentals of failure theories for composite materials.
Dec. 2014. doi: 10.1016/j.compscitech.2014.10.014.

[123] S. W. Tsai. A Survey of Macroscopic Failure Criteria for Composite Materials. doi:
10.1177/07316844840030010.

[124] B. W. Rosen. STRENGTH OF UNIAXIAL FIBROUS COMPOSITES. 1970. doi:
10.1016/B978-0-08-006421-5.50034-4.

[125] J. F. Labuz and A. Zang. “Mohr–Coulomb Failure Criterion”. In: Rock Mechanics and
Rock Engineering 45 (6 Nov. 2012), pp. 975–979. issn: 0723-2632. doi: 10.1007/s00603-
012-0281-7.

[126] Y. S. N. Reddy and J. N. Reddy. Linear and non-linear failure analysis of composite
laminates with transverse shear. 1992, pp. 227–255.

[127] T. E. Tay et al. “Progressive failure analysis of composites”. In: Journal of Com-
posite Materials 42 (18 Sept. 2008), pp. 1921–1966. issn: 00219983. doi: 10.1177/
0021998308093912.

[128] M. Hinton, A. Kaddour, and P. Soden. “A comparison of the predictive capabilities of
current failure theories for composite laminates, judged against experimental evidence”.
In: Composites Science and Technology 62 (12-13 Sept. 2002), pp. 1725–1797. issn:
02663538. doi: 10.1016/S0266-3538(02)00125-2.

[129] Z Xia. “A meso/micro-mechanical model for damage progression in glass-fiber/epoxy
cross-ply laminates by finite-element analysis”. In: Composites Science and Technology 60
(8 June 2000), pp. 1171–1179. issn: 02663538. doi: 10.1016/S0266-3538(00)00022-1.

[130] Y. Zhang, Z. Xia, and F. Ellyin. “Viscoelastic and Damage Analyses of Fibrous Polymer
Laminates by Micro/meso-mechanical Modeling”. In: Journal of Composite Materials 39
(22 Nov. 2005), pp. 2001–2022. issn: 0021-9983. doi: 10.1177/0021998305052024.

[131] P. Ladevèze et al. “A mesomodel for localisation and damage computation in laminates”.
In: Computer Methods in Applied Mechanics and Engineering 183 (1-2 Mar. 2000),
pp. 105–122. issn: 00457825. doi: 10.1016/S0045-7825(99)00214-5.

[132] P. Maimí et al. “A continuum damage model for composite laminates: Part II - Compu-
tational implementation and validation”. In: Mechanics of Materials 39 (10 Oct. 2007),
pp. 909–919. issn: 01676636. doi: 10.1016/j.mechmat.2007.03.006.

[133] P. Ladevèze. “Multiscale modelling and computational strategies for composites”. In:
International Journal for Numerical Methods in Engineering 60 (1 May 2004), pp. 233–
253. issn: 00295981. doi: 10.1002/nme.960.

[134] R. Talreja. “Multi-scale modeling in damage mechanics of composite materials”. In:
Journal of Materials Science 41 (20 Nov. 2006), pp. 6800–6812. issn: 0022-2461. doi:
10.1007/s10853-006-0210-9.

[135] Z. P. Bažant and T. B. Belytschko. “Wave Propagation in a Strain-Softening Bar:Exact
Solution”. In: Journal of Engineering Mechanics 111 (3 Mar. 1985), pp. 381–389. issn:
0733-9399. doi: 10.1061/(ASCE)0733-9399(1985)111:3(381).

145

https://doi.org/10.1115/1.4011929
https://doi.org/10.1017/CBO9781139170130
https://doi.org/10.2514/3.3431
https://doi.org/10.1016/j.compscitech.2014.10.014
https://doi.org/10.1177/07316844840030010
https://doi.org/10.1016/B978-0-08-006421-5.50034-4
https://doi.org/10.1007/s00603-012-0281-7
https://doi.org/10.1007/s00603-012-0281-7
https://doi.org/10.1177/0021998308093912
https://doi.org/10.1177/0021998308093912
https://doi.org/10.1016/S0266-3538(02)00125-2
https://doi.org/10.1016/S0266-3538(00)00022-1
https://doi.org/10.1177/0021998305052024
https://doi.org/10.1016/S0045-7825(99)00214-5
https://doi.org/10.1016/j.mechmat.2007.03.006
https://doi.org/10.1002/nme.960
https://doi.org/10.1007/s10853-006-0210-9
https://doi.org/10.1061/(ASCE)0733-9399(1985)111:3(381)


Bibliography Bibliography

[136] T. Belytschko and D. Lasry. “A study of localization limiters for strain-softening in statics
and dynamics”. In: Computers Structures 33 (3 1989), pp. 707–715. issn: 00457949. doi:
10.1016/0045-7949(89)90244-7.

[137] A Matzenmiller, J Lubliner, and R. L. Taylor. A constitutive model for anisotropic
damage in fiber-composites. 1995, pp. 125–152.

[138] N. Zobeiry, R. Vaziri, and A. Poursartip. “Characterization of strain-softening behavior
and failure mechanisms of composites under tension and compression”. In: Composites
Part A: Applied Science and Manufacturing 68 (2015), pp. 29–41. issn: 1359835X. doi:
10.1016/j.compositesa.2014.09.009.

[139] I. R. Glišović. “Teorijska i eksperimentalna analiza nosača od lepljenog lameliranog
drveta ojačanih karbonskim trakama”. Univeryitet u Beogradu, Građevinski Fakultet,
2013.

[140] P. J. Gustafsson and H. Danielsson. “Perpendicular to grain stiffness of timber cross
sections as affected by growth ring pattern, size and shape”. In: European Journal of Wood
and Wood Products 71 (1 Jan. 2013), pp. 111–119. issn: 0018-3768. doi: 10.1007/s00107-
012-0648-1.

[141] B. K. Dahl. “Mechanical properties of clear wood from Norway spruce”. Norwegian
University of Science and Technology, 2009.

[142] P. J. Gustafsson. Fracture perpendicular to grain - structural applications. Ed. by S.
Thelandersson and H. J. Larsen. 2003.

[143] E. C. for Standardization (CEN). Eurocode 5: Design of timber structures. Part 1-1:
General - Common rules and rules for buildings. EN 1995-1-1, 2004.

[144] I. Glišović et al. “Numerical analysis of glulam beams reinforced with CFRP plates”.
In: Journal of Civil Engineering and Management 23 (7 Oct. 2017), pp. 868–879. issn:
18223605. doi: 10.3846/13923730.2017.1341953.

[145] H. Danielsson. Perpendicular to grain fracture analysis of wooden structural elements :
models and applications. Media-Tryck, 2013. isbn: 9789174734751.

[146] A Coll et al. GiD v.13 user manual, CIMNE. Barcelona: International Centre for
Numerical Methods in Engineering. 2016.

[147] J. sergio Rodrigues alves filho and P. R. B. Devloo. Object oriented programming in
scientific computations: The beginning of a new era. Jan. 1991. doi: 10.1108/eb023828.

[148] G. Miller. “An object-oriented approach to structural analysis and design”. In: Computers
Structures 40 (1 1991), pp. 75–82. issn: 00457949. doi: 10.1016/0045-7949(91)90459-Y.

[149] T. Zimmermann, Y. Dubois-Pèlerin, and P. Bomme. “Object-oriented finite element
programming: I. Governing principles”. In: Computer Methods in Applied Mechanics
and Engineering 98 (2 July 1992), pp. 291–303. issn: 00457825. doi: 10.1016/0045-
7825(92)90180-R.

[150] G. Archer, G. Fenves, and C. Thewalt. “A new object-oriented finite element analysis
program architecture”. In: Computers Structures 70 (1 Jan. 1999), pp. 63–75. issn:
00457949. doi: 10.1016/S0045-7949(98)00194-1.

[151] A. Cardona, I. Klapka, and M. Geradin. “Design of a new finite element programming
environment”. In: Engineering Computations 11 (4 Apr. 1994), pp. 365–381. issn: 0264-
4401. doi: 10.1108/02644409410799344.

[152] N. J. Pagano and R. Talreja. Local Mechanics Concepts for Composite Material Systems.
1992.

146

https://doi.org/10.1016/0045-7949(89)90244-7
https://doi.org/10.1016/j.compositesa.2014.09.009
https://doi.org/10.1007/s00107-012-0648-1
https://doi.org/10.1007/s00107-012-0648-1
https://doi.org/10.3846/13923730.2017.1341953
https://doi.org/10.1108/eb023828
https://doi.org/10.1016/0045-7949(91)90459-Y
https://doi.org/10.1016/0045-7825(92)90180-R
https://doi.org/10.1016/0045-7825(92)90180-R
https://doi.org/10.1016/S0045-7949(98)00194-1
https://doi.org/10.1108/02644409410799344


Bibliography Bibliography

[153] DIN 1052:2004: Design of Timber Structures – General Rules and Rules for Buildings.
[154] R Hearmon. “Elasticity of Wood and Plywood”. In: Nature 162 (4125 Nov. 1948), pp. 826–

826. issn: 0028-0836. doi: 10.1038/162826a0.
[155] European Committee of Standardization (CEN), EN 338: Structural Timber – Strength

Classes. 2009.
[156] H. Unterwieser and G. Schickhofer. Characteristic Values and Test Configurations of

CLT with Focus on Selected Properties. 2013.
[157] R. Stürzenbecher, K. Hofstetter, and J. Eberhardsteiner. “Cross Laminated Timber: A

Multi-Layer, Shear Compliant Plate and its Mechanical Behavior”. In: CNR-IVALSA,
2010.

[158] C. Czaderski et al. “Versuche und Berechnungen an allseitig gelagerten 3-schichtigen
Brettsperrholzplatten”. In: Holz als Roh- und Werkstoff 65 (5 Oct. 2007), pp. 383–402.
issn: 0018-3768. doi: 10.1007/s00107-007-0184-6.

[159] H Blass and P Fellmoser. “Design of solid wood panels with cross layers”. In: 2004.
[160] European Committee of Standardization (CEN), EN 1991-1-1: Eurocode 1: Actions

on Structures - Part 1-1: General Actions Densities, Self-Weight, Imposed Loads for
Buildings. 2004.

[161] M Walner-Novak, K Koppelhuber, and K Pock. Cross-Laminated Timber Structural
Design Basic design and engineering principles according to Eurocode. 2014.

[162] E. Carrera et al. Finite Element Analysis of Structures Through Unified Formulation.
Wiley, Aug. 2014. isbn: 9781119941217. doi: 10.1002/9781118536643.

[163] X. Xu et al. “A numerical investigation into size effects in centre-notched quasi-isotropic
carbon/epoxy laminates”. In: Composites Science and Technology 111 (May 2015), pp. 32–
39. issn: 02663538. doi: 10.1016/j.compscitech.2015.03.001.

[164] J. Reiner, N. Zobeiry, and R. Vaziri. “A stacked sublaminate-based damage-plasticity
model for simulating progressive damage in composite laminates under impact loading”.
In: Thin-Walled Structures 156 (Nov. 2020). issn: 02638231. doi: 10.1016/j.tws.2020.
107009.

[165] X. Li et al. “Experimental study of damage propagation in Over-height Compact Tension
tests”. In: Composites Part A: Applied Science and Manufacturing 40 (12 Dec. 2009),
pp. 1891–1899. issn: 1359835X. doi: 10.1016/j.compositesa.2009.08.017.

[166] www.substrate4clt.com.
[167] European Committee for Standardization, EN 408:2010+A1: Timber structures - Struc-

tural timber and glued laminated timber - Determination of some physical and mechanical
properties. 2012.

[168] European Committee for Standardization, EN 384: Structural timber - Determination of
characteristic values of mechanical properties and density. 2016.

[169] International Organization for Standardization, ISO 13061-2: Physical and mechanical
properties of wood - Test methods for small clear wood specimens - Part 2: Determination
of density for physical and mechanical tests. 2014.

[170] American Society for Testing and Materials, ASTM D143-09: Standard test methods for
small clear specimens of timber. 2009.

[171] J. Bodig and B. Jayne. Mechanics of Wood and Wood Composites. 1982, p. 736.
[172] European Committee for Standardization, EN 16351: Timber structures - Cross laminated

timber -Requirements. 2015.

147

https://doi.org/10.1038/162826a0
https://doi.org/10.1007/s00107-007-0184-6
https://doi.org/10.1002/9781118536643
https://doi.org/10.1016/j.compscitech.2015.03.001
https://doi.org/10.1016/j.tws.2020.107009
https://doi.org/10.1016/j.tws.2020.107009
https://doi.org/10.1016/j.compositesa.2009.08.017


Bibliography Bibliography

148



Biography

Emilija Jočić was born on March 4, 1991 in Smederevo, where she finished elementary school
and Grammar school, natural sciences. She enrolled the BSc studies at the Faculty of Civil
Engineering in Belgrade in 2010 and graduated in 2014 (Module Structures) with the average
grade of 8.80/10. She defended her final paper “Transverse vibrations of circular plates using
spectral element method” with the highest grade thus acquire the title Bachelor of Science. She
enrolled the MSc studies at the Faculty of Civil Engineering in Belgrade in 2014 and graduated
in 2015 (Module Structures) with the average grade of 9.43/10. She defended her MSc thesis
“Free vibration analysis of stiffened plate assemblies using spectral element method” on the
Chair of engineering mechanics and theory of structures with the highest grade thus acquire the
title Master of Science. She enrolled the PhD studies at the Faculty of Civil Engineering in
Belgrade in 2015. She has passed all the exams from the curriculum with the average grade of
10/10. In 2013/2014 the foundation “Prof. Milan Ðurić” awarded her for achieved results in
the theory of structures courses during the studies. In 2010 the Faculty of Civil Engineering
in Belgrade awarded her for the accomplishments during the year. She was scholarship holder
from Republic of Serbia for the period from 2011 until 2013. She participated in the project of
the Republic Seismological Institute "Improvement of harmonization of seismic hazard maps of
the Western Balkans", from March to September 2014. During MSc studies, she was hired as a
student demonstrator in the subjects of Technical Physics.

She started working at the Faculty of Civil Engineering in July 2016, where she was employed as a
trainee researcher at the Institute for Numerical Analysis and Design of Structures on the project
"Towards Development of Sustainable Cities: Influence of Traffic Induced Vibrations on Buildings
and Humans" (TR36046 lead by Prof. Dr Mira Petronijević). Since January 2018 she has been
employed as a Teaching Assistant - PhD Student for the scientific filed Engineering mechanics
and theory of structures. She has been teaching exercises in the subjects Structural Analysis,
Matrix structural analysis and Computer aided numerical structural analysis and design. Emilija
spent three months (March-June 2021) on a research stay at Ruhr University Bochum, Institute
for Structural Mechanics, under supervision of Prof. Dr.techn. Günther Meschke. This research
stay was part of her participation in the Erasmus+ KA103 student program. Currently, she
is a participant in the Substrate4CLT project, funded by the Science Fund of the Republic of
Serbia within the IDEA Program (project leader Assoc. Prof. Dr. Marija Nefovska-Danilović).
Emilija is using MS Office, AutoCAD, programming language MATLAB, and civil engineering
software packages Radimpex Tower, SAP2000, Abaqus. She is a member of Serbian Society of
Mechanics. She speaks and writes English and Spanish. She is married. So far, Emilija has
contributed as an author or co-author to the publication of the following papers: two papers
(M21a), two papers (M21), one paper (M22), two papers (M24), eight papers (M33), one paper
(M45), and one paper (M63). The list of papers published in relation to this dissertation is
provided in the Contributions.

149



Bibliography Bibliography

150



Contributions

International Journal Papers

1. Jočić E, Marjanović M (2022). Progressive failure analysis of open-hole composite
laminates using FLWT-SCB prediction model. Int. J. Mech. (M21a), 227:107407.

2. Marjanović M, Marković N, Damnjanović E, Cvetković R (2020). Three-dimensional
stress analysis and design of cross-laminated timber panels using full-layerwise-theory-based
finite element method. Thin. Wall. Struct. (M21a), 157:107156.

3. Marjanović M, Meschke G, Damnjanović E (2020). Object-oriented framework for 3D
bending and free vibration analysis of multilayer plates: Application to cross-laminated
timber and soft-core sandwich panels. Compos. Struct. (M21); 255: 112859.

International Conferences M33

1. Jočić E, Marjanović M (09/2022). Progressive failure analysis of composite laminates
loaded in compression. 16th Conference hosted by ASES. Aranđelovac, Serbia, 148-157.

2. Damnjanović E, Milojević M, Marjanović M (05/2021). Probabilistic first-ply failure
analysis of composite laminates. 16th Conference hosted by ASES. Aranđelovac, Serbia,
55-62.

3. Obradović N, Todorović M, Marjanović M, Damnjanović E (2020). Diagrams for
stress and deflection prediction in cross-laminated timber (CLT) panels with non-classical
boundary conditions. International Conference on Contemporary Theory and Practice in
Construction XIV. Banja Luka, Bosnia and Herzegovina, 55-62.

4. Damnjanović E, Marjanović M (06/2019). Three-Dimensional Stress Analysis of Lam-
inated Composite Plates using FLWT-based Finite Elements. The 7th International
Congress of Serbian Society of Mechanics. Sremski Karlovci, Serbia.

National monograph M45

1. Marjanović M, Damnjanović E (2019). Bending analysis of cross-laminated-timber
(CLT) panels using layered finite elements. In: Praščević Ž, Pejović R, Salatić R, Nefovska-
Danilović M (Eds.): Theory of Civil Engineering Structures - Monograph dedicated to
the memory of Professor Miodrag Sekulović”, Faculty of Civil Engineering, University of
Belgrade, Faculty of Civil Engineering, University of Montenegro. Belgrade, 91-100.

151










	Emilija_Jocic-PhD
	Acknowledgments
	Financial support
	Introduction
	Review of previous research
	FLWT for 3D analysis of laminar composites
	Introduction
	Theory formulation
	Displacement and strain fields
	3D constitutive equations of lamina
	Governing equations of motion
	Laminate constitutive equations

	Layered FLWT-based FE
	Introduction
	Development of the layered element stiffness matrix
	FLWT vs 3D FE model
	Assignment of loads and boundary conditions
	Post-Computation of interlaminar stresses

	Failure criteria and modes
	Introduction
	Non-interactive failure criteria
	Maximum stress failure criterion
	Maximum strain failure criterion

	Interactive failure criteria
	Tsai-Hill failure criterion
	Hoffman failure criterion
	Tsai-Wu failure criterion
	Hashin failure criterion

	Procedure for the first-ply failure of laminate

	SCB damage model
	Introduction
	Formulation of SCB damage model
	Constitutive model
	Damage evolution

	Constitutive model for compressive fiber failure
	Procedure for progressive failure analysis

	PFA of CLT panels
	Introduction
	Timber cracks and material properties
	CLT post-failure behaviour

	Software (FLWTFEM) framework
	Introduction
	Upgrade of the FLWTFEM software
	FLWTFEM problemtype
	FLWTFEM classes


	Numerical examples
	3D stress analysis of CLT panels
	PFA of OHT laminar composites
	Model validation and mesh dependency study
	The orthotropy impact on the tension strength of laminar composite
	Effect of specimen size

	PFA of CNT laminar composites
	PFA of OHC laminar composites
	Single element analysis
	Open-hole compression analysis

	PFA of CLT panels in bending
	Material properties
	Experimental test set-up for CLT specimens
	Model applicability verification, results and discussion


	Conclusions and recommendations for future work
	Appendix
	Biography
	Contributions

	Izjave

