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Application of artificial intelligence for kinematic signal processing in diagnostics of Parkinson’s
disease and atypical parkinsonisms

Abstract: Clinical diagnosis of Parkinson’s disease (PD) and atypical parkinsonisms remains a
challenging and time-consuming task. This study sought to utilize Al to provide quick support in
differential diagnostics, relying on kinematic data obtained from two modalities: repetitive finger tapping
and gait.

The main study focus was on finger tapping data obtained by a custom low-weight, low-cost inertial
sensor setup. Three groups of patients were recruited, including individuals suffering from PD,
Progressive Supranuclear Palsy (PSP), and Multiple System Atrophy (MSA), and a group of healthy
controls (HC) without neurological disorders. Statistical analysis of obtained signals showed differences
in certain trends between the tested groups, and the utilization of Al models allowed the PD group to be
discerned from the controls with accuracy of 92%, whereas all participant groups discerned in a
multiclass setting with overall accuracy of 85.18%.

This work also tackled PD diagnostics through the use of Al in analysis of gait, using a sensorized
electronic walkway. De novo PD patients and a HC group were tested in a series of dual-task tests, where
the interference task was of motor or mental type. We were able to programmatically select a subset of
gait parameters that best help in PD diagnostics and use the selected parameters to classify PD vs HC
group with accuracy of 85%.

Future work should tackle the effect of possible noise in the labels (non-autopsy-confirmed diagnoses),
and standardized multi-center data collection that would allow further refinement of the system’s
predictive power. Recruitment of patients with atypical parkinsonisms for gait-based tests should assess
the ability of the proposed analyses to aid in differential diagnostics among these neurological disorders
with similar clinical presentations.

Key words: Parkinson’s disease, atypical parkinsonisms, kinematic analysis, artificial intelligence,
machine learning, finger tapping, analysis of gait

Scientific field: Biomedical engineering



Ilpumena anropurama BelITAYKe HHTEJUTeHIHje 3a 00paay KHHEMAaTHYKHX CHIHajJa y
aujarnoctunm IapkuHcoHoBe 00/1€CTH M ATUNIHYHUX MAPKUHCOHU3aMa

Caxerak: Knuanuka nujarnoctuka [lapkuaconose 6osectu (I1[1) m aTUNWYHMX MapKUHCOHW3aMa H
Jlajbe j€ M3a30BaH 3aJaTaK U U3HCKyje JocTa BpeMeHa. Llusb oBe cTyauje je aa kpo3 yrnoTpely BelTauke
WHTEIUTCHIIMje TOHYIU Op3y moTHopy y audepeHIHjasiHO] WjarHOCTHIM, Oclamajyhu ce Ha
KMHEMAaTHYKe M0JIaTKe MPUKYILJbeHE KPO3 JIBa MOJIAJIUTETa: PEIETUTUBHO TalKamhe MPCTUMA U XO/I.

I'maBHM (OKyC CTynuje Cy CHUMIM TamKama MPCTHMa NMPUOAaBJbEHU MMOMONY jaraHor W jedTuHOT
CUCTEeMa WHEPIHjaIHuX ceH3opa. PerpyToBane cy Tpu rpyre naiujeHara, ykibyayjyhu ocode koje mare
on IlapkuHcoHoBe OosiectH, mporpecuBHe cynpanykieapHe napainmuze (IICIT) m myntu cucremcke
arpouje (MCA), kao u rpyna 3apaBuX KOHTpoJa 6e3 HeypoJOmKuX 000sbeha. CTaTHCTUUKA aHAIHM3a
NPUKYIUBCHUX CUTHAJA je TOoKa3ana pa3iiuke y ofpeeHruM TpeHA0BUMa Y TalKamky U3Mel)y TeCTUpaHux
rpyma, a ynorpeba Mojena BellTauke MHTEIUreHnrje oMoryhmna je pasnukoBme [1]] manmjenata ox
KoHTpoia ca TamHomhy ox 92%, 1ok je cBe perpyroBaHe rpyre Omio moryhe kmacudukoBatu ca
tag”omrhy ox 85,18%.

Pan ce takohe OaBu amjarHoctuxoMm I1/] kpo3 mpuMeHy BeliTauke WHTEIMICHLHU]E Yy aHAIU3U XO7a,
KopucTehH eNeKTpOHCKY ceH30pcKy cTazy. De novo [T/l manujenTn u rpymna 3apaBux KOHTPOJIa CHUMaH!
Cy Y CepHjH TECTOBa ca ABOCTPYKUM 3a/IaTKOM, TJI€ je J0JaTHHU 33JaTak OMo MOTOPHOT WJIM MEHTAIHOT
tuna. [Iporpamcku je 6uno moryhe omadpatu MOJACKYN MmapaMerapa XoJa KOju MOHajBHIIE JOTPUHOCE
mujarHoctumu I1/], m ynorpedutn Te mapamerpe 3a knacudukanyjy [1/] rpymne u koHTposa ca Taunomhy
o 85%.

Bynyhu pan 6u Tpebano ga ce 6aBu edekTrMa eBEHTYIHOT IIIyMa y 00€JIe)KEHHUM JIFjarHo3ama jep oHe
HUCY TOTBpl)eHEe ayTOINCHjOM, a MPUKYIUJbakEe OJAATHUX MOJaTaka CTaHAapAN30BaHUM MPOTOKOJIOM Y
BUIIE KIWHUYKUX IIeHTapa oMoryhuio OM JoJaTHO MoOOJbIIamke NPEeJUKTHBHE MOhHM cHCTeMa.
Perpyranuja nanujenara ca aTHNUYHUM MAPKUHCOHU3MHUMA 3a TeCTOBe Oa3upaHe Ha X0y MOTpeOHa je
Ja ce TPOIEHH CIOCOOHOCT MPEUIOKEHUX aHalu3a Ja TMOMOTHY Yy JAMjarHOCTULIA TIOMEHYTHX
HEYPOJIOIIKNX 000JbEHba.

Kibyune peun: [TapkuHcoHoBa OosiecT, aTUIMYHY MAPKUHCOHU3MH, KUHEMAaTH4Ka aHaJIN3a, BElITayka
MHTEJUTEeHIIH]a, MAIIMHCKO yUYeHe, TallKambe NPCTUMa, aHaJI13a X0/1a

Hayuna o6Jact: broMe TMIIMHCKO HH)XEHEPCTBO
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1. INTRODUCTION

Parkinson’s disecase (PD) is a widespread progressive neurodegenerative disease with a gradual onset,
characterized by bradykinesia, rigidity, tremor, and postural instability as major symptoms, the degree
of which varies among patients and changes over time [1]. Apart from movement impairment, PD also
presents with nonmotor symptoms that comprise neuropsychiatric features and autonomic dysfunction.
The disease can be influenced by certain genetic factors, but can also be sporadic, with no obvious
inheritance path [2].

Some descriptions reminiscent of PD have been found in traditional Indian texts from 1000 BC, but it
was first medically described by a British doctor, James Parkinson in 1817, who called it the “Shaking
palsy” [3]. His descriptions read: “Involuntary tremulous motion, with lessened muscular power, in parts
not in action and even when supported; with a propensity to bend the trunk forward, and to pass from a
walking to a running pace: the senses and intellects being uninjured.”

PD is a disease of aging, with a prevalence of 1903 per 100,000 in people older than 80 [4], which is 10
times greater than for people in their 50s. Its burden is expected to grow as the world population ages [5]
— the ratio of people over the age of 65 in developed countries is 17.6%, which is a steep climb from
7.7%, the number reported in 1950 [6]. Some reports have already found a 2.5-fold increase in prevalence
of PD over the last 30 years [7].

Regardless of the presence of certain identifying characteristics and elaborate clinical criteria, differential
clinical diagnosis of Parkinson’s disease is still a challenge. When PD clinical diagnoses were contrasted
with post-mortem findings, it was found that clinical diagnoses of PD had 88% sensitivity and 68%
specificity [8], and when diagnoses were determined in early stages, they were shown to only be correct
in 26% of patients who were not treated or were not responding well to treatment. In treatment responsive
patients this percentage was 53%. A systematic review paper reported that the overall accuracy of PD
clinical diagnosis barely improved in the last 25 years [9], and concluded that new objective biomarkers
for in vivo diagnosis were urgently required. This high misclassification rate stems from the fact that
other conditions have a similar clinical presentation to that of PD, particularly early in the course of the
disease.

Getting a diagnosis in early stages could contribute to improved quality of life for the patients by allowing
timely introduction of proper therapy and slowing down the progression of the symptoms. Early
diagnostics would also be important for clinical trials, allowing patient assignment to the correct group
and more robustness in results interpretation. This thesis seeks to contribute to this cause, exploring the
role of sensors and algorithms of artificial intelligence in detecting Parkinson’s disease in early stages,
and assisting differential diagnostics in contrast with similarly presenting neurological disorders.

The thesis will be structured as follows: first an overview will be given in Chapter 1 on Parkinson’s
disease and atypical parkinsonisms, their hallmarks and differences and similarities in clinical
presentations, giving us a peak into the challenges faced in differential diagnostics. Chapter 2 will
describe current tests employed in clinical diagnostics, as well as present some approaches using
technology, sensors, and algorithms, particularly algorithms of artificial intelligence to try and aid with
the diagnostic process. Main hypotheses will be defined in Chapter 3, which we will aim to test in
Chapters 4 and 5. Chapter 4 will present efforts on aiding diagnostics through the analysis of kinematic
data obtained from the fingers, while Chapter 5 will analyze kinematics of gait. We conclude the work
in Chapter 6 and give guidelines for future work.



1.1. Parkinson’s disease

Parkinson’s disease is reflected in pathological features seen in neuronal tissues, as well as a heap of
clinical symptoms, which will be described in this chapter.

1.1.1. Histopathological biomarkers

Histopathological characteristic of Parkinson’s disease is a loss of dopaminergic neurons of the
substantia nigra projecting to the putamen. These are parts of the basal ganglia, more than half a billion-
year-old subcortical brain structure [10] primarily responsible for selection and implementation of
purposeful movement, which heavily relies on the release of dopamine. Reduction of dopamine release
seen in PD inhibits thalamocortical transmission and results in global movement reduction [11]. The
basal ganglia include several interconnected nuclei (Figure 1): the subthalamic nucleus (STN), the
striatum (composed of the putamen and caudate nucleus), globus pallidus with internal and external
segments, and substantia nigra (consisting of pars compacta — SNc, and pars reticulata - SNr). These
segments are densely interconnected, involving direct and indirect pathways, and consisting of excitatory
glutamatergic and inhibitory GABAergic projections [12]. These pathways are modulated by dopamine
released from the SNc. The SNc is the main source of dopaminergic neurons projecting to other basal
ganglia, although there are also dopaminergic neurons spread throughout the striatum. Input from the
neocortex gets projected to the thalamic nuclei, which are then projected to the frontal cortex, meaning
that the basal ganglia can influence executive functions of the forebrain [13]. Outputs are also sent to the
brainstem nuclei involved in motor control. The STN is responsible for receiving input from various
brain regions and is thus a good target for deep brain stimulation [14], which was shown to remarkably
reduce the motor symptoms in select PD patients. Deep brain stimulation is also delivered to the
pallidum, which receives most of the input from the striatum, while the striatum receives the bulk of the
input from the cortex. Abnormalities in the basal ganglia pathways lead to loss of movement in
parkinsonisms while also being responsible for example for excess movements in Huntington’s disease
[13].

Apart from their notable role in motion, the basal ganglia also have implications in reward processing,
mood regulation and more. Points in this area light up in fMRI scans of people being shown pictures of
their object of romantic love [15] and show signs of accelerated aging in those suffering from major
depression [16]. Metabolic abnormalities have been observed in basal ganglia in fMRI brain imaging of
patients with Tourette syndrome and obsessive-compulsive disorder [13].
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Figure 1 The basal ganglia (Adapted from [13])

Another notable characteristic of parkinsonian disorders is pathologic accumulation of protein tangles
within neurons and often glial cells, which happens early in the course of the disease. Neuronal inclusions
in PD consist of a-synuclein and are also called Lewy bodies. Lewy bodies are mostly found in SNpc,
but also in other brain areas, as well as in the peripheral nervous system, such as the neurons of the
enteric plexus of the gastrointestinal tract [17]. A staging system has been proposed for tracking Lewy
inclusions from the enteric and autonomic system to the brainstem, and higher parts of the neuraxis [18].

In physiologically normal conditions, a-synuclein is a neuronal protein, widely expressed in the nervous
system, and found predominantly in pre-synaptic terminals. Its main role seems to be the control of
neurotransmitter release. The misfolded a-synuclein tangles are thought to contribute to PD pathology
mainly through aberrant soluble oligomeric conformations — protofibrils — which disrupt cellular
homeostasis and affect neuronal death, via different intracellular targets. It also appears to affect its
neighboring cells, prompting the spread of the aggregation and progression of the pathology. In a subset
of PD cases, a genetic basis of the disease has been identified in a defective SNCA gene coding for a-
synuclein [19]. The inheritance of the mutation is autosomal dominant, and generally results in early
onset PD. The onset is affected in dose-dependent manner, where the higher number of gene
multiplications lead to earlier disease onset.

1.1.2. Clinical features

A common clinical feature of PD is difficulty performing movements, reflected notably in gait, which
worsens over the course of the disease. Speed is typically reduced, stride length shortened, double support
phase is prolonged, and hesitation is present on start [20]. Walking and standing are complex motor
behaviors influenced by mental processes [21], and PD patients are known to have a difficulty performing
dual tasks, whether the interference task is motor or cognitive, meaning the problem is not only of motor
nature. Inability to deal with simultaneous tasks may be due to central processing becoming too limited,
or patients failing to prioritize tasks by importance, not placing balance control over secondary tasks
[22]. Basal ganglia, together with multiple other brain areas are thought to contribute to movement
automation, serving as the automatic link to other motor areas, connecting sub-movements into automatic
skilled motion. This is in line with the observation that voluntary movement is more preserved in PD
than automatic movement [23]. Patients can perform normal walking, but they need to direct active
attention to it, and external cueing is found to help. This is due to the automatic movement ability being
affected, and these attentional strategies allow the motion to rely more on attentional rather than
automatic motor control.



Early in the course of PD, when gait alterations may not yet be apparent to the eye, technology can be of
help to detect some issues. Spatiotemporal analysis of gait in early-stage PD and healthy controls found
that the gait of PD patients is slower, with shorter strides, increased stride duration and double support
time, and shorter swing times. Left to right swing asymmetry is also increased and there are
inconsistencies in the timing and rhythmicity of gait [24].

Patients with Parkinson’s disease experience episodes of sudden and brief inability to produce effective
forward stepping, feeling that their feet are glued to the floor. This phenomenon, named freezing of gait
(FoG), usually lasts under 30s but some cases may leave patients stuck for several minutes [25]. The
occurrence of FoG episodes significantly contributes to falls, which are a frequent event in patients
suffering from PD. A study on a cohort of 300 patients with PD in Serbia found that 60% of the patients
had had a fall within 6 months prior to testing [26].

Apart from gait, the pervasive motor impairment in PD can be seen as general slowness (bradykinesia)
in performing daily activities and delayed reaction times. Patients may have difficulties buttoning their
shirts or using utensils; impaired swallowing can lead to drooling [1].

Spontaneous movements such as blinking or arm swinging while walking can be reduced, gesturing can
be lost, including loss of facial expressions (hypomimia). This gradually leads to a “mask-like”
appearance, which reduces the patients’ levels of emotional expressiveness [27] and causes others to
misinterpret their emotional state. Embodied simulation theory states that our understanding of the
emotions of others is facilitated by facial mimicry. This may also help explain why people with
Parkinson's disease have difficulties in recognizing other people's emotions - because of the way the
disease affects the contractility of their facial muscles, leading to facial masking [28]. It’s been shown
that apart from affected expression of emotions, PD patients exhibit impairments in decoding emotional
expressions from the faces of others [29]. "The fundamental mechanism that allows us a direct
experiential grasp of the mind of others is not conceptual reasoning but direct simulation of the observed
events through the mirror mechanism" [30] - says Vittorio Gallese, Italian professor known for the
discovery of mirror neurons - neurons that were found to fire in monkeys observing another animal
performing an action, just as they fired when the monkey performed the actual action. Indirect evidence
points to existence of such neurons in humans too [31].

Abnormalities in handwriting become visible, notably micrographia, where patients write with
abnormally small letters. Digital technologies drew the attention to not only micrographia, but also other
disturbances in handwriting in PD, including speed, fluency, and acceleration, together known as PD
dysgraphia [32].

To assess bradykinesia, clinicians usually use tests which involve rapid, repetitive movements of the
hand and foot, such as finger tapping [33], and look for slowness of movement, pauses, and changes over
time.

Rigidity is seen in increased resistance to passive movement of a limb, either proximally or distally, and
may be accompanied by pain. Rigidity of the neck and trunk may result in abnormal posture and postural
deformities, usually late in the disease. Loss of postural reflexes as the disease progresses, together with
freezing of gait, contributes to falls and the risk of hip fracture [1].

Tremor in rest is yet another recognizable symptom of PD. It occurs at frequencies between 4 and 6 Hz
and hand tremor is of pronation-supination type and resembles the pill-rolling motion [1]. Tremor can
be also seen in the legs, lips, chin, but rarely affects the neck and head like essential tremor does.

At the onset of motor symptoms, however, up to 70% of dopaminergic neurons may already be lost. PD
often presents with a number of non-motor symptoms first, which may include sleep disorders,
4



constipation, anxiety, and depression. As the disease progresses, cognitive impairment, dementia, and
orthostatic hypotension have been reported [6].

As we will see in the following chapter, PD shares a lot of overlapping symptoms and even some
histological features with other movement disorder, which makes differential diagnostics an elusive task.,



1.2.  Atypical parkinsonisms

Neurodegenerative disorders in which the degeneration spreads outside of substantia nigra and is more
extensive than in Parkinson’s disease are categorized as atypical parkinsonisms [2]. Their manifestations
resemble PD, but are usually more complex. As in PD, Lewy pathology is also seen in Multiple System
Atrophy (MSA), while Progressive Supranuclear Palsy (PSP) is considered a tauopathy, presenting with
tangles of tau protein, alongside Cortico-Basal Degeneration, Guam Parkinson-Dementia Complex and
Chronic Traumatic Encephalopathy. A category of parkinsonisms associated with TDP-43 proteinopathy
has also been recognized [34].

1.2.1. Progressive supranuclear palsy

Progressive supranuclear palsy (PSP) is a disorder of tau protein aggregation, first described in 1964 by
Steele, Richardson and Olszewski [35], prior to which it was commonly misdiagnosed as Parkinson’s
disease. PSP is assessed to be present in 5 to 6 out of 100 000 people [36], making it much less common
than PD. It is a progressive neurological disease notable for supranuclear ophthalmoplegia mainly in
vertical gaze, pseudobulbar palsy, dysarthria, and dysphagia that leads to aspiration, dystonic rigidity of
the neck and upper trunk, severe gait disturbances and balance impairment, but also less commonly or
less constantly sleep disturbances, depression, urinary incontinence, constipation, apraxia, tremor, and
more [36].

Particularly in earlier stages, the characteristics of PSP, especially the parkinsonian subtype, resemble
those of idiopathic PD [37]. It is common that this diagnosis is given after 3 to 4 years from onset, once
the typical manifestations of the condition - supranuclear gaze palsy and falling — come to light [38]. PSP
patients have a poorer response to levodopa, with this treatment being effective in only 26% of cases
[39], and these differences in medication response have been themselves used to aid diagnostics, although
with limited success [40].

1.2.2. Multiple system atrophy

Another condition with some overlapping symptoms with PD is Multiple System Atrophy (MSA). When
134 patients with clinically diagnosed MSA were analyzed, it was found that for 83 of them (62%) the
diagnosis was confirmed post-mortem [41]. For the remaining subjects, the disease was mostly confused
with dementia with Lewy bodies, followed by PSP and PD.

MSA is a rare parkinsonism, involving pathologic accumulation of aggregated a-synuclein as glial
cytoplasmic inclusions [42]. Main features of this disease are parkinsonism or cerebellar ataxia with
autonomic failure. Two phenotypes are recognized: MSA with predominant parkinsonism (MSA-P) and
MSA with predominant cerebellar ataxia (MSA-C). Other clinical signs include early postural instability,
dysphagia, orthostatic hypotension, and urinary incontinence [42]. There are other conditions that may
sometimes be confused with PD, including dementia with Lewy bodies, Alzheimer’s disease,
postencephalitic parkinsonism and essential tremor [43], but those disorders are out of scope of this work.



2. DIAGNOSTICS OF PARKINSON’S DISEASE AND ATYPICAL PARKINSONISMS

PD and atypical parkinsonisms, as well as some other neurological disorders, manifest often with an
overlapping palette of symptoms. Frequency of occurrence of these symptoms can be and is used in
clinical practice for differential diagnostics: e.g. asymmetry in motor signs is almost always present in
PD, but only sometimes in MSA and PSP. Autonomic disfunction is always present in MSA, but only
sometimes in PD and almost never in PSP. Dementia is almost always seen in PD and PSP, but rarely in
MSA. Treatment with levodopa can also be used as a differentiating marker, as PD patients almost always
respond to treatment, while PSP and MSA patients are less responsive [34]. Some of these features are
represented as clinical diagnostic criteria in the UK PD Brain Bank criteria [43]. Clinimetric rating scales
have been developed for staging and progress assessment of parkinsonian disorders, the most prevalent
of which are the UPDRS and Hoehn & Yahr scales, described briefly in Chapter 2.1. In Chapter 2.2. we
give an overview of approaches utilizing technology and artificial intelligence to aid in differential
diagnostics of PD.

2.1.  Clinical motor impairment, disease staging and diagnostic tests

UK Parkinson’s Disease Society Brain Bank lists PD diagnostic criteria in three steps. Step one
includes bradykinesia, and one or more of the following: muscular rigidity, 4-6Hz rest tremor, postural
instability not associated with other known dysfunctions of the visual, vestibular, cerebellar, or
proprioceptive system [43]. Step two lists the exclusion criteria for the diagnosis of PD, and these include
a history of repeated strokes, head injury and definite encephalitis, oculogyric crises, use of neuroleptic
medications at presentation, more than one relative affected, sustained remission, features remaining
unilateral after 3 years, supranuclear gaze palsy, cerebellar signs, early autonomic involvement, severe
dementia, Babinski sign, cerebral tumors, negative response to high doses of levodopa, MPTP exposure.
Step three involves supportive criteria for PD diagnosis, where three or more are required to confirm PD:
unilateral onset, progression, persistent asymmetry, very responsive to levodopa, responsive for at least
5 years, clinical course of 10+ years, and severe levodopa-induced chorea.

Unified Parkinson’s Disease Rating Scale (UPDRS) is the most widely used clinical rating scale for
PD. It was originally developed in 1980s and revised in 2008 [44] by the International Parkinson and
Movement Disorder Society (MDS) [45]. The scale includes 4 parts: Part 1 - Non-motor Aspects of
Experiences of Daily Living; Part Il — Motor Aspects of Experiences of Daily Living; Part 111 — Motor
Examination; Part IV — Motor Complications;

Part T is a questionnaire assesses the patient’s complex behavior, including cognitive impairment,
hallucinations and psychosis, depressed or anxious mood, apathy, features of dopamine dysregulation
syndrome (detected through the presence of unusually strong and hard-to-control urges, e.g. towards
gambling), sleep problems, daytime sleepiness, pains and aches, urinary and constipation problems, light
headaches on standing, fatigue. All items are scored by intensity and frequency of occurrence on the
scale from O (none) to 4 (severe).

Part Il is a questionnaire that examines speech problems, drooling, chewing and swallowing, troubles
eating (such as weakness while holding utensils) or dressing, hygiene, handwriting, engaging in hobbies
and other activities, turning in bed, presence of tremor, getting out of bed or a chair, walking and balance,
freezing of gait.



Part 111 is a motor examination administered by a specialist of neurology. The patient is asked to perform
a number of motor tasks and the examiner rates what they see on a scale from 0 (normal), through 1
(slight), 2 (mild), 3 (moderate), to 4 (severe). This part involves speech examination, where the examiner
listens to the patient freely talking, and pays attention to the volume, prosody and clarity, slurring,
palilalia (repetition of syllables), and tachyphemia (fast speech, squashing syllables together). The next
on the examination list are facial expressions, both while talking and while being quiet, looking for signs
of masking. Rigidity is judged by slowly moving the patient’s neck and limbs, while they are instructed
to keep limp.

Finger tapping is the fourth test in the motor part of the scale. The patient is instructed to tap their index
finger against the thumb repeatedly as quickly and as widely as they can. Motor performance degrades
much more easily during sequential motions in case of individual finger opposition than non-individual
finger oppositions, and it is therefore standard to perform this test with index-thumb oppositions [46].
Both hands are assessed, and attention is paid to speed, amplitude, hesitations or halts and decrements in
amplitude. Hand movements are tested on both hands separately, by having the patient clench and open
their fist repeatedly, and watching the speed, amplitude, hesitations or halts, and decrements in
amplitude. Pronation and supination of hands are also tested by having the patient extend their arms, and
repeatedly turn the palm upwards and downwards alternately, trying to achieve maximal speed and
extent. Finger tapping has been shown to better correlate with the overall UPDRS scores than hand
pronation and supination or hand opening and closing [46].

Tapping of toes is tested by having the patient sit with their feet on the floor, and then tap their toes on
each foot separately as fast and with as large an amplitude as they can, evaluating speed, amplitude,
hesitations or halts and decrements in amplitude.

Agility of the legs is tested on each foot separately, by having the patient sit with their feet on the floor
and then repeatedly raise and stomp. Arising from the chair is tested next, by having the patients stand
up from the chair while having their arms crossed on their chest, observing difficulties while doing so,
as well as posture after standing up. Gait and freezing of gait are tested by having the patient walk back
and forth from the examiner for at least 30m, assessing stride length, speed, level of foot lifting, heel
strike, turning, arm swinging, and presence of hesitation, stuttering, and freezing of gait — particularly at
turning points and end of the task. Postural stability is tested by observing the response to abrupt pull on
the shoulders in standing position, and posture is assessed during standing, getting up from a chair and
walking. Body bradykinesia rating is given based on slow, hesitant movement and lack of movement in
general during spontaneous activity. Postural hand tremor is rated for each hand separately, by watching
the patient stretch out their hands in front of them for 10s, palms facing down. Kinetic hand tremor is
tested by having the patient touch their nose and then the examiner’s finger. The patient is observed for
rest tremor during the exam, for all limbs separately, and lips and jaw. Consistency of rest tremor is also
rated. Presence of dyskinesia, such as chorea and dystonia are noted. This part also includes noting the
Hoehn and Yahr stage [47], which is a scale that defines broad categories of motor function. The stages
are defined from 0 to 5, given as follows:

0 — Asymptomatic
1 — Unilateral involvement
2 — Bilateral involvement without balance impairment

3 — Mild to moderate bilateral involvement; some postural instability; physically independent; assistance
required to recover from the pull test

4 — severe disability; still able to walk or stand unassisted
8



5 —wheelchair bound or bedridden unless aided

Modified Hoehn and Yahr scale [48] adds also 1.5 — Unilateral and axial involvement and 2.5 — Mild
bilateral disease with recovery on pull test.

Part IV of the MDS-UPDRS scale deals with motor complications, based on historical and objective
information, assessing dyskinesias and their prevalence during the patient’s waking day, and their
functional impact on daily activities. Time spent in the OFF state (on PD treatment but experiencing
some hours of slowness, shaking or similar) is rated as well, from no off time to more than 75% of the
day spent in off time. The scale rates the impact these motor fluctuations on the patient’s daily
functioning, and their predictability. For patients with motor fluctuations, the scale rates the percentage
of OFF time that includes painful dystonia.



2.2. Technology and artificial intelligence in aid of diagnostics

There have been numerous approaches to employing technology to aid in detecting and differentiating
PD [39], perhaps most famously neuroimaging. Applications of kinematic analyses of gait or hand
movements have been increasing, both for diagnostic support and for disease stage monitoring. Other
sensing modalities, such as EEG or facial analysis, have also found a use case in assisting PD diagnostics.

Artificial intelligence (Al) and machine learning (ML) algorithms have been vastly relied on to build
upon the various sensors and help offer diagnostic predictions on an individual level. ML algorithms
have been shown to give a significant contribution to improvements in classification between patients
with PD and people without neurological disorders, compared to results obtained in the clinical practice
alone, although published studies involved varying numbers of participants, stages of the disease,
particular analysis and instrumentation used, and demonstrate better results when the PD participants are
in more advanced stages of the disease. Larger numbers of recruited participants also lead to better
results.

2.2.1. Neuroimaging

Many studies have turned to neuroimaging methods to find group level differences between
neurodegenerative conditions [49], and have deepened our understanding of the pathophysiology.
Distinguishing macroscopic features in neuroimaging have been discovered between MSA, PD and PSP,
such as atrophy of the pontine base in MSA, but not in PD and PSP, or marked atrophy in the superior
cerebellar peduncle which is not present in the other two disorders [34]. MRI is a frequently used imaging
technique, particularly the t1-weighted modality [50]-[58], although computer aided diagnostics relying
on diffusion tensor imaging (DTI) [59], [60] and susceptibility weighted imaging (SWI) [61] can also be
found in literature!. Some effort has been put into leveraging multimodal data for more reliable computer
aided diagnostics, combining t1-weighted, t2-weighted and DTI [62]-[65][62]-[65]. While t1-weighted
imaging has had some trouble discerning PD from healthy controls [51], [54], as the brains of those with
early and mid-stage PD usually appear normal, Planetta et al [60] achieve perfect separation using DTI,
although having also included clinical data.

To improve the predictive power of neuroimaging methods when it comes to the clinical outcome of
individuals, machine learning algorithms coupled with large neuroimaging databases have achieved
some quite exciting results, reaching accuracies over 90% [50], [58], [59], [66]-[71], and discerning PD
from PSP and MSA [54], [60], [63]-[65].

The most widely used classification algorithm is the support vector machine (SVM) (More on SVMs can
be found in Chapter 4.5.1). SVM papers report very good, or even perfect results for binary classifiers,
but sadly multiclass classification does not match those numbers. Gong et al [72] believe that the road
to better SVM performance is through optimized kernel selection. They expand on the large margin
distribution machine (LDM) algorithm, introduced by Zhang & Zhou [73], based on the notion that not

1 MRI (magnetic resonance imaging) is an imaging technique that uses a powerful magnetic field to polarize protons in
scanned tissues parallel to the field, and a transverse radiofrequency pulse that pushes the protons out of the equilibrium.
To construct an image, T1-weighted imaging uses the tissue-specific time it takes for protons to realign with the magnetic
field once the RF field is off (longitudinal relaxation time), while T2-weighted imaging relies on the duration of proton
precession (transverse relaxation time) in response to the RF signal. DTI measures diffusion of water molecules in tissues in
various directions, and SWI exploits substance differences in magnetic susceptibility.
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only is maximizing the minimal margin important, but also taking into consideration the distribution of
the margin — its mean and variance. They employ a deep neural network for kernel mapping, pre-training
it with a Restricted Boltzmann Machine (RBM) and then fine tuning in a supervised manner, to finally
employ an LDM for classification. They illustrate the efficiency of this approach on the problem of
discerning PD from controls on two datasets: MRI and transcranial sonography (TCS), in both cases
outperforming classical SVM and LDM approaches.

Others try to improve SVM classification accuracy through selection or extraction of different features.
The go-to are often volumetric measures derived from regions of interest (ROI) [56], incorporating thus
a-priori knowledge on the manifestations of the disease. The input dimensions are sometimes reduced
through PCA [50], [52], [58]. Morisi et al [65] include features generated through a graph-based method.
Similarly, Peng et al [57] use multilevel features — low level volume and thickness, and high-level
correlative features. Amoroso et al [70] use connectivity features and further filter them through a random
forest. Adeli et al [67] focus on selecting features that best benefit the classification scheme in the kernel
space, unlike conventional techniques that select features based on their performance in the original input
feature space. They have, however, combined MRI with SPECT (Single Photon Emission Tomography)
data, and SPECT turned out to be the main carrier of discriminative information. Including clinical data
has been demonstrated to improve results [60], [70], and interestingly, so has addition of information on
gender and age [55].

The issue with imaging analyses is that they require a lot of time and money, and the modalities that offer
the highest reliability expose the patient to ionizing radiation and cannot be used in people who are
hypersensitive to the radioactive dye. While MRI has the advantage of not (necessarily) using radioactive
substances, dopaminergic images obtained by SPECT can detect Parkinson’s Disease at an early stage
and have demonstrated superior classification ability in discerning PD from healthy subjects. When
SPECT images were employed in combination with deep learning methods, concretely a convolutional
neural network (CNN), a stunning 100% accuracy was achieved by Esmaeilzadeh et al [71] on validation
and test sets.

This and other studies using deep learning algorithms [66], [68], [69] have been greatly facilitated by the
mass collection of data, basing their research on medical images obtained across continents by the
Parkinson’s Progression Markers Initiative (PPMI) [74]. PPMI is a large-scale, international public study
with the aim of identifying PD progression biomarkers. They make SPECT and MRI recordings, together
with clinical and biological data, available to the research community, on condition they provide reports
on their findings. The work by Kim et al [69] is interesting because it shows that it is possible to have a
limited set of SPECT images and still come to decently accurate PD vs controls classification, through
transfer learning from an abundant set of non-medical images.

2.2.2. Kinematic analysis

Although neuroimaging offers superior results in terms of diagnosing PD, its downsides such as higher

time consumption, price and limited availability in less urban areas, as well as exposure to ionizing

radiation in some modalities, have prompted the development of alternative technological approaches to

diagnosing and monitoring PD and other movement disorders, in particular the use of various sensors to

track movement of the body or its parts. Kinematic analysis has proven to be useful in diagnostic aid and

motor function assessment, through recording and analyzing motion from upper or lower extremities, or
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a multitude of sensors capturing whole body motions. In upper extremities, particularly bradykinesia and
hand tremor have been analyzed [75], [76]. Diagnosis has relied on hand motions, captured by computer
keyboards [77]-[79], wearable inertial sensors [80] or sensors integrated in smartphones [81]-[83],
electromagnetic sensors [84], and cameras [85], by which researchers sought to build upon traditional
tests performed in clinical settings for diagnosis of PD. This primarily encompasses finger tapping and
tremor tasks (action/rest) that are a part of the standardized UPDRS battery of tests, part 1l [86], as
described in Chapter 2.1. Although UPDRS is an indispensable tool for rating PD, it is still prone to
examiner subjectivity and inter-rater variability. Motor dynamics in repetitive finger tapping have thus
been quantified in research through the utilization of sensors such as accelerometers and gyroscopes, to
try and make the motor progression tracking more objective [46]. Concerning lower extremities, analysis
has relied on data collected using force sensors inside the shoes or integrated into a walkway [87]-[89].
Electronic walkways, such as GAITRite, although expensive and tied to a laboratory setting, have proved
to be reliable and have often been used to analyze gait in parkinsonisms, due to a large number of sensors
they contain and abundance of spatio-temporal variables they offer, as well as the possibility of analyzing
individual footsteps [90]. Infrared cameras, Kinect or motion capture with markers have also been used
[91]-[94], as well as inertial sensors placed on the legs, waist or feet or smartphone integrated sensors
[95]-[101]. As inertial sensors are of particular importance for this thesis, let us dedicate some extra
attention to them. Inertial sensors are a widely adapted means of recording movement of an object in an
inertial reference frame. Though they may come as single sensors, they are usually packed into an inertial
system, an inertial motion unit (IMU) that contains an accelerometer, a gyroscope and potentially a
magnetometer, each measuring motion on 3 axes. They could be manufactured in different technologies,
such as mechanical, quartz or MEMS (Micro electromechanical systems) technology, spanning a large
range of prices, with the navigation grade sensors used for military purposes reaching prices of over $100
000, while consumer IMUs, such as those built into smartphones, tablets or gaming systems can cost less
than $10 [102]. The recent steep reduction in price driven by highly integrated MEMS technologies,
prompted wide adoption of inertial sensors in various consumer products, but also health monitoring
applications.

The basis of MEMS systems is a proof mass suspended on a spring km, as shown In Figure 2.
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Figure 2 Electromechanical spring/mass system in MEMS sensors (Image adapted from [103])

The input force acting on the mass, i.e. the guantity to be measured, displaces the mass, and this
displacement is used as a proxy to measure the input force. This displacement can be measured using a
variable capacitor Cs(x), one side of which is attached to the proof mass, and the other is fixed. A change
in the position of the mass causes a change in charge as described by Equation 1 [103], where Vb is a
fixed bias voltage.

dacs
4Q(4x) = =2y, 4 (1)

Accelerometers use this sort of simple spring/mass system to measure linear acceleration, typically given
in gees, where 1g = 9.81m/s2, representing acceleration due to gravity of the Earth. The input force to
be measured is a result of gravity (which is why accelerometers are used in mobile phones for sceen
orientation) or linear acceleration. Gyroscopes, on the other hand, require a more complex system (Figure
3). Gyroscopes measure angular velocity in degrees/second or radians/second. They require the proof
mass to be vibrating, and detect the Coriolis acceleration proportional to rotational velocity along an axis
orthogonal on the axis of vibration. The amplitude of this oscillation must be regulated so that the speed
is maintained stable and known. The system has two springs and has two degrees of freedom — sensing
(x) and drive(y). A constant speed of rotation results in a proportional amplitude of periodic displacement
of the proof mass, phase shifted by 90 degrees from the drive position, as the Coriolis acceleration is
proportional to its derivative, the drive velocity. This produces an amplitude-modulated flow of charge
in the sensing capacitor.
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Figure 3 A MEMS gyroscope schematic (Image adapted from [103])

Similar hardware components are nowadays embedded in smartphones and other smart devices, opening
a window to the utilization of already available hardware for aid in diagnosis and progression monitoring
in PD and other disorders. In combinations with signal processing and custom applications, smartphone
built-in sensors have been used, although somewhat awkwardly, to quantify certain PD symptoms, e.g.
bradykinesia [104].
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2.2.2.1. Upper extremities

Technology-assisted diagnostics and disease monitoring based on kinematic data obtained from upper
extremities focus particularly on bradykinesia and hand tremor, the assessment of which may include
motion tracking from video captures or inertial motion units, but can also rely on smartphones and the
analysis of typing on a virtual or physical keyboard?. Machine learning approaches have been of help in
these analyses, as illustrated in Figure 4, with the upper panel displaying the success of ML applications
in diagnostics, and the lower panel pertaining to disease monitoring applications. A specific marker is
given to each study, where instrumentation used is coded in marker shape, number of patients in marker
size, and color representing reported performance metrics (sensitivity — Se, specificity — Sp, and accuracy
- Ac). The figure presents the most frequently used or the most successful ML algorithms based on
reported performance, rather than all of them. The columns show different ML algorithms, sorted in the
alphabetical order: ANN — Artificial Neural Network, ENS — Ensemble of different classifiers, EVOL —
Evolutionary algorithm, kNN — k Nearest Neighbours, LR — Logistic Regression, NB — Naive Bayes,
SVM - Support Vector Machine and TREE — Tree based algorithms.

If we look at the sensitivity and specificity of the algorithms used for diagnostic aid using smartphones,
we see that the ratio of Se/Sp for NB, SVM and LR are respectively: 56%/100%, 56%/100% and
74/100%, meaning that high confidence can be put into identifying healthy participants, but detections
of persons with the disease are often missed [83]. BAG DT, AdaBoost and C4.5 approaches had a
mutually similar performance, showing better sensitivity, but lower specificity compared to the
previously mentioned algorithms, with Se/Sp ratios of 82%/90%, 83%/85% and 83%/75% respectively.
Accuracy of 95% was reported for early diagnostics based on tremor analysis via ANN and a smartphone
[81]. Sensitivity and specificity of 96% and 97% was reported using an ensemble of eight different ML
algorithms used on top of keyboard typing data [78]. Giancardo et al. [77] and Arroyo-Gallego et al [79],
who also used a keyboard, but opted for SVR algorithms for early diagnostics, report Se/Sp ratio of
71%/84% and 77%/72% respectively. It should be noted that these measurements were taken by a
standard smartphone or regular PC keyboard, suggesting that implementation of test procedures is
possible with globally available and affordable equipment.

2 A survey of Al applications in PD diagnostics has been published in [105]
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Performance measures by algorithm based on kinematics of upper extremities
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Figure 4 Performance measures of different ML algorithms applied on kinematics of upper extremities
[Published in [105]]

Intelligent algorithms have also been used to assess and track symptoms of motor impairment, with the
purpose of providing a more objective and automated means of assessment of symptom severity than
what is achieved by tests in the clinical settings alone. Researchers have used tasks such as those used in
clinical testing: tremor, finger tapping, or other repetitive movements, and extracted features such as
tremor frequency [106] or amplitude and frequency of repetitive motions [104]. The results of these
algorithms are presented in Figure 4, in the lower panel, and include the most used supervised machine
learning algorithms based on upper body measurements in PD.

Stamate et al [107] have developed a mobile application, CloudUPDRS, which helps in recording
UPDRS motor tasks, and employs a deep learning model to discern between high quality and low-quality
recordings. Machine learning has also been deployed in applications that aim to extract useful
information from everyday activities of PD patients and use them to provide meaningful insight into how
well a patient is responding to therapy and what the next course of action should be [108], [109]. Fisher
et al [109] used ANN on data from an accelerometer mounted on the wrist to automatically detect
sleeping states, ON and OFF states and dyskinesia in home settings. They found that ON/OFF states and
dyskinesia can be detected with sensitivity and specificity above 80%. Hammerla et al [108] achieve
comparable results using deep learning. Detection and classification of dyskinesia and bradykinesia have
been tackled using both traditional machine learning [110], [111] and deep learning [111] to achieve high
accuracy (84 to 90%).
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2.2.2.2. Lower extremities

Analysis of gait has been the staple of studying, monitoring and diagnosing PD. Some studies have relied
on infrared motion capture systems, others on sensorized electronic walkways. Inertial sensors have also
emerged as a cheaper and lighter alternative, with a varied number of sensor units mounted on the legs,
with effort put towards simplification of the setup and sensor number reduction [112]. Artificial
intelligence has often been used in development of systems for diagnostic and monitoring aid based on
the data describing motion of lower extremities [75]. A study that focused on early PD diagnostics and
used a kNN classifier [101] achieved accuracy of 85.5%. Using SVM also reached 85% accuracy or
higher, as shown by a couple of studies [88], [113]. LDA (Linear discriminant analysis) used in this
context provided Se/Sp of 88%/86% for diagnosing early PD, where early was considered to have a
UPDRS score below 15, and this was done using gait data from three different tests [97]. Sensitivity and
specificity increased to 100% in the same study when considering UPDRS scores above 20. Se, Sp and
Ac achieved by an RBF NN applied on a PhysioBank dataset of 93 PD patients in the early to moderate
stage, were 96.77%, 95.89% and 96.39% respectively [89]. Most used supervised machine learning
algorithms for diagnostics on lower extremity data are shown in the upper panel of Figure 5, while the
lower panel displays results obtained for assessment using kinematic data. The results are presented
similarly to Fig 4.

Performance measures by algorithm based on kinematics of lower extremities
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Figure 5 Performance measures of different ML algorithms applied on kinematics of lower extremities
[Published in [105]]

A major niche for applications of artificial intelligence is freezing of gait (FoG) and falls, and wearable
sensors have found their way to detecting and predicting these states [114], due to their ability to be used
for home monitoring, where they can track gait during walking along complex paths with a lot of stops
and turns. Commonly, the sensors are attached on the legs and waist [115]-[117], with some studies
including wrist and chest wearables [118], [119]. Smartphones [120], with their integrated IMUs, and
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smartwatches [121], have also been used as a means of unobtrusive FOG detection and gait-based
diagnostic aid.

To detect FoG, scientists have often employed the SVM algorithm. SVM with a polynomial kernel
achieved Se/Sp of 89%/91% for FoG detection, and 75%/88% for FoG prediction [117]. The same study
tested other ML algorithms as well, including ANN, NB, RF, kNN, linear kernel SVM and Extreme
Gradient Boosting, but the Polynomial SVM outperformed them. In another paper [116], the researchers
designed personal and generalized FoG detection models, using SVM, and reported that the personalized
model with Se/Sp of 88.1%/ 80.1 % performed better than the generalized one with Se/Sp of 74.7%/
79%. Introducing nonlinear SVM kernels slightly improved FoG detection accuracy compared to the
linear SVM (Ac=95.4% compared to 94.2%) [115]. In order to predict incoming FoG episodes, Mazilu
et al [122]used unsupervised learning to identify patterns in kinematic data and derive features for
predictions. The lower panel of Fig 5 summarizes the results for the most used machine learning
algorithms on gait data for FoG detection.

The problem of frequent falls in PD has been addressed using smart wearable devices and camera-based
systems, and here machine learning algorithms used for this purpose have shown to have better prediction
rates than threshold-based approaches [123].

Jane et al [124] automated detection of severity of gait impairment, in accordance with the H&Y scale,
with the help of wearable sensors and a Q-backpropagated time-delay neural net, achieving accuracy of
about 90%. Se and Sp of over 90% were also achieved using an SVM classifier on accelerometer data
[125]. Machine learning was also employed to assess the effects of deep brain stimulation (DBS) on
ground reaction force data, specifically LR, SVM and PNN (Probabilistic Neural Network), and a
positive effect of DBS was shown on walking patterns [126].
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2.2.2.3. Upper and lower extremities

Motion analysis using data collected from upper and lower extremities combined has been performed
with the aim of helping PD diagnostics [92], [96], [99], staging [99], [100], detection and assessment of
dyskinesia [127], bradykinesia [128], [129], tremor [127], [129], [130], and FoG [118].

A combination of sensors has been used to collect data from everyday activities to try and discern healthy
controls from patients with PD, either with cognitive impairments or without them, and a group of
patients suffering from cognitive impairment due to disorders other than PD [92]. It was shown that these
four categories can be classified with 86% accuracy using AdaBoost DT algorithm. Comparing only the
healthy controls with PD patients, using inertial sensors mounted on the upper and lower body, separation
accuracy ranges between 79.62% and 84.1% for NB, KNN, LDA, SVM and DT, with an ensemble of
classifiers surpassing 90% [100]. When SVM was employed for healthy vs PD classification, splitting
patients into groups with H&Y stage I, Il or Ill, achieved accuracy was 94.5%, 87.75%, 93.63%
respectively. In other studies, EML (Extreme machine learning), PNN and KNN were used for
diagnostics [99], and HMM (Hidden Markov model) for estimation of tremor severity based on upper
and lower limbs, with an accuracy of 87% [130]. SVM[129] and DNN (Dynamic neural network) [127]
helped to assess bradykinesia, tremor, and dyskinesia with over 90% certainty. Similar results were
achieved for FoG detection with NB, RF, DT and RT classifiers. Figure 6 presents the most often used
or most successful ML approaches used to assess and diagnose PD using a combination of sensors on
the upper and lower extremities.

Performance measures by algorithm based on combined upper and lower extremity kinematics
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Figure 6 Performance measures of different ML algorithms applied on kinematics of combined upper
and lower extremities [Published in [105]]

Table 1shows a summary of papers that achieved promising results using machine learning for diagnosis
and assessment of patients with PD. Using different systems gave comparable results, although cameras
and motion capture systems have a limited use, due to their price as well as requirements for a dedicated
recording space, while wearable sensors have a much lower price range and can be used for monitoring
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in various environmental conditions. Smartphones with their integrated sensors are also used often since
they are globally available and relatively affordable and have an integrated capability of wireless data
transmission [131]. Wearable devices appear to have a large potential for use in telemonitoring of PD.
We’ve seen machine learning algorithms employed to help in two main streams: offering diagnostic aid
and disease assessment and monitoring. The algorithms commonly used are SVM, KNN, NB, ANN,
LDA, DT, RF, although others have been used too. A notable number of studies have shown that simple
wearable sensors combined with machine learning algorithms can form a powerful support tool for PD
diagnostics and assessment. Neural networks have been used less often, possibly due to them being data-
greedy, and medical data is not always easy to come by, so some studies used simulated data (e.g. falls)
[123]. A potential issue with wearable sensors and machine learning is the need for data annotation in
home environment scenarios, and potential errors in data labelling based on clinical evaluation in early
stages, limiting the use of strictly supervised machine learning approaches.

Table 1 A selection of papers providing promising results for different applications based on
movements of different body parts, using different instrumentation, protocols, and algorithms.

Best performance
Type of Bod . .
Ref. Goal observed y :]nstrumentatlo Subjects ﬁ\]lgorlth [%0]
motion part Sp Se Ac
. . Finger . 107 PD,
[132] | Diagnosis tapping Up EM tracking 49 HC EVOL 91.8 (946 | 935
20PD
[78] Diagnosis Typing Up Keyboard (mild), ENS 97 96
33HC
Arm 21 PD
. . movements at (>1
[81] Diagnosis rest, waving Up Smartphone year), 21 ANN 95 95 95
and walking HC
13PD
5] | YPPRS | Up | Video (UPDRS: | SVM 88
scoring
0-3)
[106] UPDRS Hand tremor | Up Smartphone 52 PD NB 97
scoring
UPDRS . 107 PD,
[132] scoring FT Up EM tracking 49 HC EVOL >89.7
93PD
[89] Diagnosis Gait Low | Force sensor (mild and ANN 95.9 | 96.8 | 96.38
early), 73
HC
[95] Diagnosis Gait, Posture | Low | Smartphone 18 Z[é RF 976 1985 1980
. . . 156 PD,
[101] | Diagnosis Gait Low | IMU 424 HC KNN 85.51
FoG 20 PD Linear
[115] detection Gait Low | IMU §H&Y>2 SVM 956 | 822 |954
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23 PD
. . . Camera system (H&Y:
[94] Diagnosis Gait Low & Force plate 2), 26 RF 90 96 92.6
HC
Classificati
on of Unconstraine 19PD, 4
[52] severity of L All Multimodal i ANN 97.1 |94.9
motor d activity non-PD
disorders
FtN, FT, 12 PD
[129] | Assessment | HOC, HT, All IMU (H&Y: SVM >95
SIT, HA 2-3)
[128] | Diagnosis E?'thiosmre' All | Smartphone 18 Z% RF 96.9 | 96.2
Diagnosis ?;231
[100] | (PD-H&Y | Gait All IMU ' SVM 945

PD — Parkinson’s disease; HC — Healthy controls; UPDRS — Unified Parkinson’s disease Rating Scale; H&Y — Hoen and
Yahr scale; ANN — Atrtificial Neural Network; EVOL - Evolutinary; ENS — Ensemble; KNN — k-Nearest Neighbours; NB —
Naive Bayes; SVM — Support Vector Machine; RF — Random Forest; Ac — Accuracy; Se — Sensitivity; Sp — Specificity; IMU
— Inertial Measurement Unit; EM — Electromagnetic tracking; FtN — Finger to nose; FT — Finger tapping; HOC — Hand
opening/closing; HT — Heel tapping; SIT — Sitting; HA — Hand alternating; RT — Reaction time.
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2.2.3. Other modalities

Apart from a large pool of research papers presenting the use of neuroimaging and kinematic analyses to
help manage and understand parkinsonisms, a number of studies have attempted to utilize technology to
capture other features of PD, among which is the use of EEG to detect and potentially predict episodes
of freezing of gait, and visual analysis of the face to quantify emotional expressiveness. This list of
various technological approaches in PD is not comprehensive [133], but going wider into this topic would
take away from the main focus of this work. On the other hand, it should be noted that the focus of this
work is on kinematics, and the overview of other modalities is given as illustration of the richness of
approaches that benefit from Al.

2.2.3.1. EEG

A larger bulk of work dealing with detection of FoG has focused on direct measures of gait, derived from
inertial sensors or cameras, but gait measures are mainly used to detect FoG as it happens, while EEG
has demonstrated a decent ability to predict an incoming episode a few seconds before its onset. Ardi
Handojoseno et al [134] use connectivity measures derived from surface EEG and, by means of a
multilayer perceptron, manage to predict FOG with 78% accuracy. They further improve on these results
by preprocessing data via directed transfer function and independent component analysis [135]. These
results are still achieved offline but show potential for real-time applications that would allow adaptive
cueing in devices intended for FOG management and prevention. Scarcity of studies on EEG-based FoG
prediction likely stems from the impracticality of setting up EEG equipment in everyday life, but this
might change with improvements in the field of mobile EEG devices.

Though predominantly a movement disorder, PD is known to present with non-motor symptoms too, one
of which is mild cognitive impairment. Identification of mild cognitive decline is clinically relevant,
because it may progress to dementia, but this task is demanding, as it displays wide heterogeneity.
Bertouni et al [136] used machine learning algorithms (SVM and KNN) on high density resting EEG data
to identify the severity of cognitive impairment in PD patients, splitting them into five groups, with
overall accuracy of 84% and 88% for the respective algorithms.

There has been an attempt to diagnose PD from EEG recordings, using state-of-the-art deep learning
transformer model borrowed from text processing — BERT [137]. Their protocol included performing
finger tapping with both hands for five intervals of 30s. The EEG recordings taken during tapping on 80
PD patients and 24 healthy controls combined with the BERT model showed overall accuracy of 86%.

2.2.3.2. Facial analysis

Quantification of emotional expressiveness could thus help in progression monitoring, but also facilitate
research on the aspects of this complex disease that we do not yet fully understand.

Several groups have worked on developing a methodology for automatically analyzing affect and
quantifying facial expressivity in PD from video recordings [27], [138]-[141]. They mainly rely on the
concept of action units (AU), which refer to the movement of one or more facial muscles, whose different
combinations can be used to describe a particular expression. Geometric features are derived from the
recordings, and a classification model (or a set of binary classifiers) is then used to recognize action units.
A measure of distance from the neutral face can be calculated for each expression [139], and expressivity
can be estimated based on measures of intensity, duration and frequency of several types of facial
expressive behavior.

22



3. AIM AND WORKING HYPOTHESES

The main goal of this thesis is to examine the applicability of kinematic analysis of repetitive finger
tapping using a system of wearable inertial sensors in discriminating between groups of patients suffering
from Parkinson’s disease and atypical parkinsonisms, and a control group of patients without
neurological conditions, and subsequently to show the usefulness of algorithms of artificial intelligence
applied on kinematic signals for individual patient diagnostics. Given that clinical diagnosis of the tested
groups of movement disorders is not an easy task, utilizing measurement data and machine learning
algorithms could be called upon to aid in this endeavor.

Hypothesis 1. Through analysis of kinematic data collected during the test of repetitive finger tapping,
statistically significant differences can be observed between the control group and patient groups
suffering from PD, MSA and PSP, as well as differences among the specific disorders.

Hypothesis 2. With the help of artificial intelligence, patients with PD can be discerned on the individual
level from persons without neurological disorders

Hypothesis 3. With the help of artificial intelligence, patients with PD and atypical parkinsonisms can
be discerned on the individual level

Hypothesis 4. It is possible to programatically choose a subset of relevant features extracted from
kinematic signals which increase the performance of classification among the observed disorders

We will also test the applicability of artificial intelligence in analysis of gait, as recorded by a senzorized
walkway, testing Hypothesis 2 from a different angle. Gait data will also be used to touch on Hypothesis
4, automatically extracting gait parameters for detection of PD.
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4. ANALYSIS OF REPETITIVE FINGER TAPPING

This section will present the work aimed at utilization of kinematic signals recorded from the fingers by
a cheap, lightweight, and simple to use custom-made system. The goal is to analyze the recordings
obtained by participants suffering from PD and atypical parkinsonisms, and rely on artificial intelligence
for help in search for parameters that would reflect differences between these disorders. The system
should contribute to clinical evaluation by providing a quick diagnostic suggestion in the face of rather
similar phenotypes of several degenerative neurological disorders. The chosen solution expands on a
repetitive finger tapping test routinely used in assessment of motor decline, as part of the UPDRS-I11 test
battery. The test traditionally relies on the examiner’s experience without quantitative measures, whereas
the presented system utilizes consumer grade inertial sensors that capture the motion of the fingers during
tapping and can provide a form of objective quantification.

The system components are described in Instrumentation. Participant groups and their demographics are
given in Participants chapter, followed by a description of the protocol used for testing.

The data obtained through this system will be analyzed with the goal of testing the hypotheses posed in
Chapter 3. In Chapter 4.4, statistical differences between finger tapping parameters on the group level
will be assessed among four tested participant groups, with the aim of testing Hypothesis 1. We describe
the processing steps and statistical analyses used to process and compare parameters of individual taps,
then present the obtained results and discuss the findings which point to certain kinematic differences
among the tested groups.

Chapter 4.5 describes an approach to discern healthy participants from those with PD using the obtained
finger tapping signals, as a test for Hypothesis 2. We describe the analysis based on discrete wavelet
transform, feature extraction and classification, then present the results and discuss the findings.

Chapter 4.6 tackles a more demanding task of multi-class classification, aiming to pinpoint differences
in kinematic signals among the four participant groups, for the test of Hypothesis 3. Two approaches
were used for this purpose — one relying on deep learning, and the other involving traditional machine
learning methods. We first reach for deep learning analysis in Chapter 4.6.2, describing the method of
classification and data augmentation using variants of convolutional neural networks, and presenting the
obtained results. Chapter 4.6.3 dives into the analyses used to transform the obtained kinematic signals,
extract and select relevant features and use them as input to a traditional machine learning models for
discerning the tested groups. This also tests the Hypothesis 4. Finally, we discuss the obtained results in
Chapter 4.6.4.
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4.1. Instrumentation

The system used in this study consisted of two IMUs, each containing a triaxial MEMS accelerometer
(LIS3DH) and a triaxial MEMS gyroscope (L3G4200, STMicroelectronics, USA) [110], although
analysis will be perfomed only on the gyroscope output. One IMU is mounted on the fingernail of the
forefinger, and the other on the fingernail of the thumb. Each of the two IMUs are connected via a small
flat cable to a sensor control unit attached to the patient’s forearm (Figure 13). The signals collected from
the SCU are sent wirelessly to a remote personal computer for processing. The PC also has a user-friendly
GUI, built in LabView (National Instruments, USA) that enables initiation and stopping of data
acquisition, together with real time plotting of the acquired signals. The light weight and small size allow
for uninterrupted test performance.

Figure 7 Wearable system used to record kinematic data (Image adapted from [110])
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4.2. Participants

The recordings were performed at the Neurology Clinic, Clinical Centre of Serbia, Belgrade. The study
was performed in accordance with the ethical standards of the Declaration of Helsinki. All the
participants gave informed written consent prior to participation in the study. Fifty-six participants were
enrolled from the Movement Disorders Unit at the Clinic of Neurology, Belgrade, including 13 patients
with MSA of predominantly parkinsonian type, 14 patients with PD, 16 patients with PSP and 11 healthy
controls (HC) with no history of neurological or psychiatric disease. The controls were age- and sex-
matched with the overall patient group. For all patients the right-side was predominantly affected by the
disorder. Clinical and demographic data are given in Table 2. The groups were compared using one-way
ANOVA and Kruskal-Wallis one-way analysis as a non-parametric test. Where indicated, the groups
were compared in a pairwise manner using t test or Mann-Whitney U test with Holm-Bonferroni
correction for multiple comparisons, or chi square test for categorical variables.

Exclusion criteria included dystonia or any other condition that might interfere with the ability to perform
the motor test, a score of under 26 on the Mini Mental Status Examination scale, or smaller than 15 on
the Frontal Assessment Battery of tests, a score above 14 on the Hamilton Depression Rating Scale, a
history of psychosis or a more serious condition. The patients were tested in the ,,off™ phase and examined
by specialists of neurology with abundant experience in treatment of involuntary movements. UPDRS
IIT (Unified Parkinson’s Disease Rating Scale) was used to assess the level of motor impairment, as well
as disease stage according to the Hoehn & Yahr system.

Table 2 Demographic and clinical features of patients with MSA (n = 13), PD (n=14), PSP (n = 16)
and HC (n = 11)

Age [years] Gender Disease Hoehn & | UPDRS total | UPDRS IlI
[F/IM] duration Yahr stage
[years]

MSA 58.4+4.8 9/4 347+15 3.2+07 772+127 |454+86
PD 62.1+94 4/10 49+45 22+0.8 48.1+18.7 27.0+9.8
PSP 67.1+89 5/11 5.23+23 3.8+0.8 79.9+17.2 45.7+104
HC 55+8.4 8/3 - - - -
HC-MSA - - - - - -
HC-PD - - - - - -
HC-PSP p=0.02 - - - - -
MSA-PD - p=0.05 - p<0.01 - -
MSA-PSP - p=0.02 - - - -
PD-PSP - - - p<0.001 - -
Data are presented as meanz standard deviation. P values are given only where significant group differences
were found.
UPDRS — Unified Parkinson’s Disease Rating Scale, UPDRS III - Unified Parkinson’s Disease Rating Scale,
Part I11: Motor Examination, MSA — Multiple system atrophy, PD - Parkinson’s disease, PSP — Progressive
supranuclear palsy, HC — Healthy controls.

Demographic data is shown graphically on figures 7 through 12.
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4.3. Test protocol

The participants were instructed to sit comfortably and to tap the index finger against the thumb of the
right hand repeatedly, as rapidly and as widely as they can for 15 seconds, and a 1 min pause was given
between trials. Six trials were taken per patient, although some were later discarded based on data quality
and any irregularities that were noticed in the videos that were recorded in parallel. The participants were
verbally instructed when to start and stop tapping. Several seconds of variation in duration were allowed,
based on experimenter’s estimation whether the subject was too fatigued to continue. In the majority of
cases, the instructions were understood and followed immediately, since the patients had already been
given the traditional finger tapping test for motor assessment prior to the recording session. The patients
were recorded on one of their scheduled visits to the clinic, and the total data collection period lasted for
a year and a half.
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4.4.  STATISTICAL ANALYSIS OF BETWEEN GROUP DIFFERENCES IN TAPPING
PERFORMANCE

This chapter aims to assess Hypothesis 1 and find out whether statistical analysis can find significant
differences among the finger tapping recordings of the tested participant groups.

4.4.1. Analysis

The gyroscope signals were integrated to obtain the tapping angle. Since this introduces drift error,
compensatory correction was performed by finding the beginning of each tap, and then subtracting a 5th
order polynomial curve that was fitted through the tap-start points. The stating points were determined
through bandpass filtering of the index finger signal using a 4th order Butterworth filter between 0.4 and
5 Hz,after which the signals were squared and peak finding perfomed. Angle amplitude, cycle duration,
and speed were measured for each tap, from one separation of index finger and thumb to the next.
Tapping amplitude was taken to be the angle between the index finger and the thumb with reference to
the long axes. The mean speed was calculated as the mean rate of aperture change, where opening and
closing were both taken into calculation. Closing and opening speeds were taken to be the peak velocity
of closing and opening within a tap, respectively. Coefficients of variation of speed, amplitude and tap
duration over all taps within a recording were also calculated. Linear regression was used to get the best
fit for the values of amplitude and speed over time, and the slope of the best fit line was used as a measure
of progressive slowing of the tapping motion.

The calculated parameters were compared between groups using ANOVA, or Welch ANOVA for non
equal group variances, and Kruskal-Wallis as a non-parametric equivalent. Where significant differences
were found, multiple comparisons were done between pairs of groups (Tukey, Games-Howell and Holm
test within ANOVA, Welch-ANOVA and Kruskal-Wallis, respectively). Speed and amplitude slopes
were compared through univariate analysis of covariance (ANCOVA) with sex, age and disease duration
as covariates.

4.4.2. Results

Significant differences were found by ANOVA for all parameters except for the slope of tap duration.
The results are summed up in Table 3 below?.

The largest cadence was found in patients with PSP, although it was only significantly different from
MSA, which had the lowest cadence. Statistically significant differences could also be seen between the
MSA group and the HC group. Mean tap cycle duration was found not to be meaningfully different from
that of the control group, but was notably shorter in comparison with PD and MSA. Analysis of
coefficients of variation of tap cycle duration found significant irregularities for PD and MSA groups
compared to HC. Duration slopes were not significantly different between HC, PD, PSP and MSA. The
higher cadence in PSP, with a relatively stable amplitude (S=-0.12) and speed (S=-0.64) slopes appears
to be related to the shorter tap duration.

The mean amplitude was the lowest in the PSP group, while MSA had the highest number among the
patient groups, though the differences were only significant between each patient group and HC, but not
among the patient subgroups. The HC group had the heighest amplitude overall, together with the
smallest coefficient of variation, which was also significantly different from each individual patient

3 An adaptation of the presented results has been published in [143].
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group. As for the amplitude slope, PSP (S=-0.12) was similar to HC (-0.21), but the PSP slope was
significantly less negative than that of PD (S=-0.56) and MSA (S=-1.48). The significance came to light
after adjusting for mean amplitude as a covariate. Overall, the MSA group had the steepest negative
slope, as shown in Fig 14. Velocity parameters (mean, opening and closing velocity) were also
significantly different between HC and each individual patient group, but did not differ among the patient
groups, although the coefficient of variation of opening and closing velocity did significantly differ for
PSP and PD, as well as PSP and MSA, with PSP having the lower value, i.e. being more regular. Slopes
of the velocity parameters were significantly different between HC and MSA, and HC and PD, but not
between HC and PSP. On the other hand, there were significant differences between PSP and MSA, as
well as PSP and PD on all velocity slopes, with the PSP slopes being smaller than in the other patient
groups. PSP patients also had almost no amplitude decrement over time, reflected in the smallest
amplitude slope of all the patient groups.

Table 3 Analysis of kinematic parameters during the finger tapping task in HC and patients with MSA,
PD and PSP

Kinematic HC MSA PD PSP All HC- HC-PD |HC- MSA- |MSA- |PSP-PD
parameter groups p|MSA PSP PD PSP
value
Cadence [n/15s] [47.8+12.6 |27.2+16.9 |423+184 |[57.6+9.6 |p<0.001 |(p=0.006 |- - - p<0.001
Duration [ms] 331.7+76.8 |808.4%+562.6 |435.8+211.5 |268+53.9 |(p=0.001 |[p=0.008 |- - - p<0.001 |p=0.039

Duration CV [%] |14.5+6.9 24.8+11.4 22.4+6.5 18.8+5.1 |p=0.005 |p=0.044 |p=0.035

Duration slope 0.04+1.15 9.87+£21.03 2.27+5.58 -0.3£1.24 |p=0.144
[ms/cycle]

Amplitude []  |81.8+33.9  |40.6+212  |33.8+11.9 |31.4#151 |p<0.001 |p=0.004 |p<0.001 |p<0.001

Amplitude CV |12.3¢5.4 372165 |32.4%78 26.3t7.3 |p<0.001 |p<0.001 |p<0.001 |p<0.001
[%]

Amplitude slope [-0.21+0.46  |-1.48+1.13 |-0.56+0.48 |-0.12+0.26 |p<0.001 |p=0.001 |p=0.012 [p=0.032 |[p=0.03 |p=0.003 |p=0.001
[°/cycle]

Speed [°/s] 516.6+213.9 [143.0486.5 |194.5+91.4 |244.8+107 |p<0.001 |p<0.001 |[p=0.001 |p=0.006

Speed CV [%] 16.1+6.7 36.3+16.0 32.5+8.4 244465 |p<0.001 |p=0.002 |p<0.001 |p=0.026

Sopeed slope -1.88+3.89  |-3.99+2.6 -2.89+2.21  [-0.64+0.93 [p=0.022 |p=0.018 |p=0.014 |- - p=0.01 |p<0.001
[?sgyvc;?gcity 1148.1+499 |369.6+201.5 |458.8+188.9 |544.3+206 |p<0.001 |p<0.001 |p=0.002 |p=0.008

[?)sgn velocity CV [13.2+4.5 34.9+14.7 31.648.3 20.9+4.6 |p<0.001 |p<0.001 |p<0.001 |[p=0.005 |- p<0.001 |p=0.001
E)/;]envelocity -8.19+12.24 [-11.5+11.4 [-7.07+4.29 [-1.86+2.82 |p=0.057 |p=0.021 |p=0.081 |- - p=0.002 |p=0.003
slope [°/s/cycle]

(ilose velocity -1602.7 -72.9+256.7 |-32.7+287.3 |-784.8+346 [p<0.001 |p<0.001 |p<0.001 |p>0.001

E:I/Z]s%velocity i15??24_-155 -40.3+15.6  |-34.0+9.8 -21.6+3.8 |p<0.001 |p<0.001 |p<0.001 |(p=0.006 |- p<0.001 |p<0.001
gl\c/)s[e/o\}elocity 8.36+9.34 14.84+11.0 |10.63+9.65 |2.74+3.46 |p=0.012 |p=0.021 |(p=0.018 |- - p=0.003 |p=0.013

slope [°/s/cycle]

Data are presented as mean + standard deviation.

Statistical significance is expressed as p values for the comparisons of parameter values.

CV = coefficients of variation, HC = healthy controls, MSA = multiple system atrophy of parkinsonian type, PD = Parkinson’s disease,
PSP = progressive supranuclear palsy.

Compared to the mean amplitude of the HC group, 86.6% of finger tapping trials of the PSP group had
an amplitude that was smaller by 50% (hypokinesia). This percentage was 85% in PD group, and 50%
in MSA group. The majority of PSP patients (66%) presented with hypokinesia without decrement, i.e.
hypokinesia in combination with the absolute slope being less than 0.1. No such patients were identified
in the MSA group, while 27.3% of the PD group corresponded to these criteria.
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4.4.3. Discussion

Statistically significant differences in certain parameters were found among the tested groups, confirming
thus Hypothesis 1.

Statistical analysis of kinematic finger tapping parameters showed as the most notable finding the lack
of progressive temporal reduction in tapping amplitude for the majority of PSP patients and HC, which
was not the case for PD and MSA groups. This was in line with a previous study that found hypokinesia
without decrement in PSP patients (87%) but not in PD (12%) [144]. In our study, hypokinesia without
or with minimal decrement (abs(S)<0.1) was found in 66% of PSP patients and 23% of PD patients. The
mean amplitude slope in the PSP group (-0.12°/cycle) was even smaller than that of HC (-0.21°/cycle),
and notably smaller than PD (-0.56°/cycle), and MSA(-1.48°/cycle). This could mean that this temporal
progression may be a characteristic of the disease and can potentially be used to discern types of atypical
parkinsonisms. Similar patterns were seen for speed slopes, indicative of fatigue during the test. PSP and
HC had similar velocity slopes, while the velocity decrement was more prominent in PD (-2.89°/s/cycle)
and MSA (-3.99°/s/cycle), compared to PSP (-0.64°/s/cycle).

The mean tapping amplitude was significantly different between HC and each patient group, although
not between the patient groups. Contrary to Ling et al [144], we did not find a significant difference in
tapping amplitude between PSP and PD groups. The study protocol may have played a role in this, as
the mentioned study used recordings acquired from both hands, whereas here we were only dealing with
the dominantly affected right hand.

Morphological abnormalities behind the progressive decrement in amplitude and speed of repetitive
actions in PSP have not yet been identified, but several options have been proposed, including differences
in basal ganglia [145], [146], premotor corteX, supplementary motor area, sensorimotor cortex [114], and
the cerebellum [23]. Lee et al. [148] found a connection of the anterior cingulate cortex [147] and the
cerebellar inferior semilunar lobule with the severity of this sequence effect in de novo PD patients. The
cingulate cortex appears to be moderately affected in PD, but not in PSP-R [34].
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4.5. CLASSIFICATION: PARKINSON’S DISEASE VS HEALTHY CONTROLS

Hypothesis 2 states that with the help of artificial intelligence, patients with PD can be discerned on the
individual level from persons without neurological disorders (healthy controls). To test this hypothesis,
we first transform the gyroscope signals of finger tapping using discrete wavelet transform, and then use
a neural network to classify PD patients vs healthy controls.

4.5.1. Analysis
In this chapter, discrete wavelet transformation is applied to the gyroscope recordings of finger taping,
and used to extract features, which are then passed to the support vector machine algorithm for
classification into PD and HC groups. The overall algorithm used is illustrated in Fig. 15 and will be
explained in the text below.
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Figure 15 Functional model of the presented algorithm, resulting in classification between patients
with Parkinson’s disease (PD) and healthy controls (HC) (Published in [162])

Discrete Wavelet Transformation

Wavelet transformation (WT) is a type of time-frequency analysis useful for non-stationary signals, i.e.
signals whose frequency content varies over time, which is often the case with biological signals. WT
has an advantage over short-time Fourier transform in that it can preserve information with high
resolution in time for higher frequencies and frequency resolution in lower frequencies. Apart from its
well-established uses in image compression and noise reduction, WT has found application in signal
processing for analyzing heart rate variability [149], and discerning healthy individuals from those with
cardiac pathology [150]. Several research studies [151]-[153] suggest that the application of discrete
WT is suitable for extracting the features that can be used effectively to compare and classify data
obtained by inertial sensors. Triaxial accelerometer data recorded during walking [151] were used in
combination with a multilayer perceptron neural network (NN) and features extracted with discrete WT
(DWT) to recognize 5 different walking patterns, including walking in a straight corridor, up and down
a flight of stairs, or up and down a slope. DWT extracted features from leg-mounted gyroscope signals
were also used as input to a multi-layer feed forward artificial NN to achieve near perfect classification
of leg motion types, such as knee bending, squatting, moving the leg forward or backward and more
[154]. Abnormal gait patterns were detected using DWT and a convolutional neural network applied to
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data gathered from two inertial sensors in a group of children with cerebral palsy and a group of healthy
children. This work showed superior performance of the DWT approach compared to classification
without DWT preprocessing [155]. To address threats of falls and postural instability, DWT was used
for postural sway classification, achieving 100% sensitivity and 96% specificity [156]. Another variant
of wavelet decomposition, namely continuous wavelet decomposition has proven to be an effective
method of extracting information from gyroscope measurements for classification of repetitive finger
tapping [80], however this type of wavelet transform is more computationally expensive than the
proposed DWT.

Wavelet transformation transforms a signal by convolving it with a set of mathematical, basis functions
— wavelets, which has the effect of decomposing the input into different components with different
frequency contents. Continuous wavelet transform is described by equation (1) [157]:

H() = gz 2(0) - () M

Where H(x) is the wavelet transformation of the input x(t) as a function of time, { denotes the scale, t
stands for time, and y is the basis function, the mother wavelet, while operation * is the complex
conjugate. The scale parameter is the inverse of frequency. The time parameter moves along the signal
and gives temporal information. DWT uses sub-band coding to compute the transformation, by
effectively filtering the signal through high-pass and low-pass filters, recursively down-sampling the
signal by a factor of two, resulting in approximation and detail coefficients, represented by Mallat’s
decomposition tree (Figure 16) [158] It is then possible to reconstruct the original signal from the wavelet
coefficients by up-sampling by two, passing through high and low pass synthesis filters and summing
them. Noise reduction can be done by reconstructing only the desired decomposition levels and
discarding the others.

Level 1 coefficients

H(n) [— 24, |— D1

Level 2 coefficients

H(n) [—| 2V |— D1

L(n) —  »Al

x(n)

Figure 16 Mallat’s decomposition tree showing how a signal gets passed through a high pass filter H,
and low pass filter L, and thus decomposed into a coarser resolution approximation A and signal detail
D. This is repeated in a cascade up to a desired level of d (Adapted from [158])

For this analysis, signals recorded from the sensors were transformed using discrete wavelet
transformation and Daubechies 4 mother wavelet (Figure 17 and Figure 18). The analysis was performed
up to the 7*" level of decomposition, yielding coefficients that correspond to frequencies from 100Hz to
approximately 1Hz. Processing was done using custom-made software written in Matlab (The
Mathworks Ltd, USA).
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Figure 17 Daubechies 4 wavelet function (Adapted from [159])
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Figure 18 Daubechies 4 wavelet scaling function (Adapted from [159])
The scales and their corresponding frequency bands in the signal are presented in Table 4.

Table 4 Dwt scales and their corresponding frequency bands

Frequencies [Hz]
Scale From To
1 50 100
2 25 50
3 125 25
4 6.25 125
5 3.125 6.25
6 1.56 3.125
7 0.78 1.56




Feature extraction

Once the signal was decomposed using DWT, several features were calculated from the obtained
coefficients on each scale. This included wavelet energy, root mean square and standard deviation of
wavelet coefficients, calculated according to the formulas (2), (3) and (4):

We (m) = 27I‘Y=1 Dm,n (5)2 (2)
RMS(m) = [+ 20 Dy n(s)?]f 3)
STD(m) = [ ZNes [P (5) = DN [ (4)

where N is the number of wavelet coefficients on scale m, and Dm is the value of DWT details, related
to the scale and translation n, for each subject s. In addition to the above features extracted on the whole
signal, the recordings were split into five equal temporal windows (each containing approximately 3s of
the finger tapping sequence) and the features described above were calculated from each window.
Features were not taken from the first two levels of decomposition, since their corresponding frequency
bands were not expected to contain useful information but rather to contain noise. Subtracting the wavelet
energy, RMS and STD calculated on the last signal window from the corresponding values obtained for
the first window in the signal yielded additional features that were taken into consideration. We will call
this group the “delta” features. The inclusion of this group of features was motivated by the observation
that characteristics of the disorder can be reflected not only in the statistics derived from the signal as a
whole, but also in their temporal progression, as it was found that a progressive reduction in amplitude
and speed over repeated sequences is a feature that distinguishes PD from PSP [144]. Difference in
means between the control and PD groups was tested using unpaired student’s t test for all features, and
only those features that showed a significant difference between the two groups at alpha level of 0.05
were kept for further processing. This resulted in 65 features which were then passed to the classifier.

Support vector machine

The extracted features were fed to a support vector machine with radial basis kernel (using the caret
library in R). To assess the contribution of delta features, classifier was also trained without these
features, i.e. it only contained whole signal parameters. The classification goal was to discern PD patients
from healthy controls. The accuracy of the classifier was assessed using 4-fold cross validation repeated
10 times.

Sensitivity and specificity were also calculated according to the formulas (5)and (6):

No of true positives

Sensitivity = * 100% (5)

No of actual positives

No of true negatives

Specificity = * 100% (6)

No of actual negatives

Sensitivity refers to the ability of the classifier to identify patients with the disease, while specificity
represents the ability to correctly identify persons without the disease.

Support vector machine (SVM) is a supervised machine learning method of classification. Its core is the
search for the parameters of a hyperplane that would best separate the given data set into two semi-
spaces. Le the dataset be given as {xi, yi}, i = 1..m, where where m is the number of observations, xi is
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the i-th sample represented as an n-dimensional vector and the labels yi are paired with each xi sample,
denoting its belonging to either semi space. In our case, xi would be a 65-dimensional feature vector and
yi would be either -1 or 1, signifying HC and PD respectively. The hyperplane is searched for in such a
manner that minimizes the upper bound of the generalization error via maximizing the margin between
the decision boundary, i.e. the hyperplane, and the data points closest to the boundary [160]. The data
points that are the nearest to the separating hyperplane are termed “the support vectors”, hence the name
of the algorithm. The SVM algorithm aims to solve the optimization problem of maximizing the margin,
which is the projection of the support vectors onto the normal of the hyperplane w. This makes the
optimization problem equal to the following:

.1
argmin [wl’ (7)
This minimization of the hyperplane parameters should be done while under the constraint that [161]:

Ya(W - @(xn) +b) 21 (8)

where w is a vector of weights or parameters of the hyperplane, ¢ (x) denotes a fixed feature-space
transformation of the known data, and b is bias. The term in the brackets corresponds to the separating
hyperplane. This equation is the result of the initial aim: if yi is 1 for a given xi, then we would like the
inclusion of xi into the hyperplane expression to be greater than some margin vy, and if yi is -1 then we
would like the hyperplane expression for xi to be smaller than -y. It was shown that replacing y with 1
does not lead to loss of generality. So, by taking the product of the two elements, we get to the equation
(8).

Splitting the vector space into two subspaces by a hyperplane, implies that the data are linearly
separable, which may not originally be the case. To address this, a mapping function ¢ is chosen to
project the data onto a high-dimensional (ideally infinite-dimensional) space F = RN (N>>m) in which it
would be linearly separable. However, performing this would be computationally overwhelming, thus a
kernel function K(x,x’) is employed to transform the data. It can be shown that it now becomes
unnecessary to directly calculate the mapped pattern @(x), but instead only use dot products. The radial
basis function (RBF) kernel, or Gaussian kernel, is a common choice for SVM implementations, and is
defined as:

202

K(x,x") = exp <— M) 9)

Where ||x —x'| |2 denotes Euclidian distance between two feature vectors, and ¢ is a kernel parameter
that is tuned for a specific application. Plugging this into the hyperplane expression, the decision function
becomes:

202

0 = sgn(ST gy, exp (— u) +b) (10)
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4.5.2. Results

A sample of a raw gyro signal recorded from a healthy subject is shown in Fig 19 and its corresponding
discrete wavelet decomposition can be seen in Fig 20. The figure shows DWT details for scales 1
through 7 (denoted as S1-S7)*.
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Figure 19 Raw gyroscope signal recorded from the index finger of a healthy participant: full recorded
sequence (black solid line) and one isolated tap (red dashed line). (Published in [162])
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Figure 20 DWT decomposition of the gyroscope signal shown in previous figure (Published in [162])

Wavelet energy, RMS and STD of wavelet detail coefficients extracted for each scale on the whole signal

* Parts of these results have been adapted and presented at IcEtran conference 2016 [162].
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are shown in Figure 21. Different colored lines on each graph shows the calculated features from different
subjects in the given group (PD or Healthy participants). The subplots alternately depict results obtained
for healthy subjects and Parkinson’s disease patients for a particular feature.
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Figure 21 Graphical representation of whole signal features shown alternately for healthy subjects and
PD patients (Wavelet energy, RMS, STD) for all subjects in the respective groups (Published in [162]).

We see from observing the graphs that wavelet energy is largely focused on the 5" scale (3.125-6.25 Hz)
for healthy participants and notably less on the 4™, wavelet energy on the 4™ (6.25 — 12.25 Hz) and 6™
(1.56 — 3.125Hz) scales is comparable to that on the 5" scale, implicating both lower tapping cadence
and high frequency tremor. The 7" (0.78 — 1.56 Hz) scale is nearly completely absent in healthy
participants but it quite prominent for the PD group.

RMS coefficient values for healthy subjects are much higher in absolute values (up to 60) than PD
patients (not exceeding 40). Peak values in both healthy and PD participants are seen on the 5" and 6"
scale, although the peaks for the healthy group are more prominent, and fall sharply on scale 7, while for
certain participants in PD group there is a rise in RMS up to the 7" scale.

STD values similarly peak on the 5™ scale for both groups, but consistently fall on the 7t" for the control
group, and rise on the 71" for the PD group, in some cases above all others, suggesting large variability
in the presence of low frequency content, suggesting that the tapping is not consistent but is interspersed
with slowing or pauses in the sequence.

Figure 22 shows a sample delta feature, the difference between RMS values calculated for the first and
the last window of the fifth level of DWT where RMS peaks (deltaRMS5) for all subjects. There is a
clear tendency of RMS on this scale to drop over time for PD patient, seen in deltaRMS values being
larger than zero, meaning the RMS was higher at start than at the end of the tapping sequence. This is
not the case for healthy controls, where this difference stays close below zero or even drops significantly,
meaning that in most cases the energy exerted in the end of the tapping sequence is somewhat higher
than at the start, showing a sort of a warm-up effect.
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deltaRMS of the 5th DWT level for all subjects
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Figure 22 Difference between RMS values on the 5" scale of discrete wavelet decomposition
calculated for the first and the last temporal window shown for all subjects (Published in [162])

Feeding the selected features into the SVM RBF algorithm resulted in accurate classification of the data
into PD and HC groups with 92% mean accuracy (Table 5) and 11% standard deviation over cross
validation trials. Specificity was found to be equal to 100% without variation, meaning that all data points
that correspond to healthy participants were classified properly. Sensitivity was 82.5%, which means
82.5% of patients with Parkinson’s disease were classified correctly, although this metric had a large
variability of 26%.

When the delta features which characterize temporal progression of extracted features were omitted from
the classifier, a significant drop in classification accuracy was observed, from 92% down to 86%. Metrics
of sensitivity and specificity also dropped, from 82.5% down to 74% for sensitivity and from 100%
specificity to 95%, showing positive contribution of the delta features to the algorithm performance.

Table 5 Classification results including accuracy, sensitivity and specificity given as meanzstd
calculated over cross validation trials

Accuracy [%] | Sensitivity [%] | Specificity [%]

All features 92+11 82.5+26 100+0

Without delta features | 86.1+12 74429 95+13
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4.5.3. Discussion

Discrete wavelet decomposition was used to transform gyroscope signals recorded from healthy
participants and PD patients. From this transform, 65 features were extracted, some pertaining to the
entire signal, and some as a result of subtracting the last fifth of the signal in time from the first one.
Some difference in extracted features could be observed between the control and PD groups. For
instance, notable is the presence of the 7" level component of wavelet energy for PD patients, and its
absence in the control group. Wavelet energy in PD group is generally more dispersed than that of HC
group, where it is neatly focused on the 5" scale, corresponding to frequency band 3.125-3.25 Hz, and
to a lesser extent the 6" scale (1.56 — 3.125Hz). The values of RMS and STD of wavelet coefficients are
largely smaller for PD patients than for the healthy participants. Difference between RMS calculated for
the first and the last window of the 5" DWT level has a value that is in almost all cases larger than zero
for PD patients and below zero for healthy participants.

Support vector machine with RBF kernel was used in conjunction with the DWT-extracted features and
was successful at discriminating healthy subjects from patients with Parkinson’s disease, showing overall
success rate of 92%, and specificity of 100%, suggesting that all data points corresponding to healthy
controls were consistently classified correctly, while mean sensitivity was 82.5%. When comparing the
classification model was built on all features excluding the delta features, which denoted temporal
differences between the feature values, all obtained metrics had a poorer performance — 86.1% accuracy,
95% specificity and 74% sensitivity. This shows the positive contribution of temporal progression
parameters during repetitive finger tapping in identification of Parkinson’s disease.
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4.6.  CLASSIFICATION: MULTICLASS SETTING (HC, MSA, PD, PSP)

Previous chapter showed the usefulness of gyroscope recordings during repetitive finger tapping paired
with machine learning in detecting the presence of PD in a pool of healthy participants and patients with
PD. This chapter tries to extend these findings to possibly discern not only between healthy controls and
PD patients, but also individuals with atypical parkinsonisms, namely multiple system atrophy (MSA)
and progressive supranuclear palsy (PSP).

This aims to test Hypothesis 3, which states that artificial intelligence can help discern patients with PD
and atypical parkinsonisms on the individual level. To this end, we employed two approaches: deep
learning and traditional machine learning.

4.6.1. Finger tapping data for multiclass classification

Data was collected from triaxial gyroscopes, at 200 Hz sampling rate in 12-bit resolution. The data set
consisted of 268 recordings: 52 recordings from healthy controls, 72 recordings from MSA patients, 68
from PD patients and 76 from patients with PSP. Example signal segments of 4s long raw gyroscope are
given as illustration for each patient group in Figure 23.
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Figure 23 Example gyroscope signals recorded for each participant group. Angular velocities from the
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4.6.2. Analysis - Deep learning approaches

4.6.2.1. Classification

Given the immense success of deep learning approaches — recently the most recognizable and celebrated
representatives of artificial intelligence - when used on neuroimaging data, we anticipated it would yield
superior results in case of tapping signals too. The main concept was to feed the raw gyroscope data into
a convolutional neural network, resembling the classic LeNet 5 architecture [163]. Convolutional neural
networks have shown the most astonishing results in computer vision problems but have also been used
on inertial motion data. For instance, in gesture recognition, which typically uses data from inertial
motion sensors, this is the most commonly employed method [164]. The network used here performs 1D
convolutions on each of the 6 channels (3 axes from two gyroscopes) through 6 convolutional layers,
each followed by batch normalization and a max pooling layer. The network topology is shown in Figure
24.
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Figure 24 Convolutional neural network containing six layers of one-dimensional convolutions, with
the number of filters increasing with depth from 32 to 128. Input data contained 6 channels of 8s long
raw gyroscope data sampled at 200Hz.

In recent works, batch normalization has been frequently relied on, since it not only speeds up the
complex modern architectures but also acts as a regularizer [165]. It refers to normalizing each input
dimension of a layer in a mini batch so that it has a mean of 0 and variance of 1[166]. Max pooling is a
pooling operation commonly used after a convolutional layer, in which a kernel of size 2x2 (or larger) is
moved in strides of 2 (or other) over the feature map selecting and keeping only the maximal value in
that patch. This has the effect of down-sampling the layer output, as well as stabilizing the classification
slightly as small translational changes to the image will not significantly affect the outcome. The number
of filters used in a single layer increased from 32 in the first two layers, through 64 in the second two
layers to 128 in the last two layers. Dropout [167] was added prior to introducing a fully connected layer
of 128 units and once again before the output layer (dropout rates of 0.5 and 0.7 respectively). Li et al
[168] show that dropout and batch normalization have a detrimental effect if used simultaneously, more
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specifically, if dropout layers are found anywhere before batch normalization layers. Therefore, in the
presented model no dropout layers are found before the last batch normalization. The weights in all layers
of the model had their norm constrained to a value that was tuned as one of the hyperparameters.

The weights were initialized randomly, using He normal initialization [169] as it was expected to be
more compatible with here used rectified linear unit activations, compared to another common
initialization suggested by X. Glorot [170]. Initialization by weights obtained via a pretrained
autoencoder was also tested [171]. The encoder part corresponds to the convolutional part of the classifier
network, while the decoder is an inverse of it, where convolutional layers were replaced by
deconvolutions, so that the input signal is matched to itself, teaching the model to learn the most
important features for signal reconstruction. This method of initialization is sometimes used when a
significant amount of data is available, but only a fraction of it is labelled. The autoencoder is then trained
on all available data, but classification is performed using the labelled subset only. The use of
autoencoders for pretraining has been found to contribute to classification accuracy even when the same
data is used for pre-training and classification training, as the autoencoder is expected to summarize the
information in the input, as it is forced to recreate it from a small dimensional aggregate. Medical image
analysis has seen benefits of this sort of pretraining on the same dataset [172]. High-level representation
of the used autoencoder is shown in Figure 25. For validation of succinct representation learning, the
flattened layer at the end of the encoder part was used as input to an unsupervised algorithm, namely k-
means clustering [173], which assigns each datapoint to a specific cluster based on the shortest Euclidean
distance from the cluster centroids. If the most important characteristics of a disease are distilled during
pre-training, clustering should be expected to roughly divide the input data into 4 disjunct clusters.
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Figure 25 Autoencoder was used for pre-training the classification model. High-level representation

Adaptive moment estimation optimizer (Adam) [174] was used for training, with initial learning rate of
0.001. This nominal learning rate was decayed by a factor of 0.1 once the validation accuracy plateaued
for 8 epochs. The model was trained with early stopping, patience set to 20, allowing the learning rate to
be decimated twice before abandoning further training. Categorical cross-entropy was taken as the loss
function.

Hyperparameters were optimized using the grid search approach.
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Apart from feeding raw unprocessed gyroscope data to the network, the signals were also transformed
into spherical coordinates using the standard formulae:

R = \/w§+wf,+w§ (11)

0 = arccos(—=2—) (12)
|wi+wd+w}

¢ = arccos 2 (13)

/w§+a)§,

Such transformations could possibly make classification more robust to possible changes in hand
orientation during tapping.

The model was trained on the training set with the validation set used to assess the generalization efficacy
and to guide premature stopping of network training to avoid overfitting. The test set was used for
assessment once the best topology had been chosen based on performance achieved on the validation set.
This was repeated 5 times, in 5-fold cross validation paradigm, each time taking a different subset of data
for training, while the remaining part was held out for testing. Model accuracy was calculated as the
number of test instances classified correctly divided by the total number of test instances, expressed in
percentages, and averaged over the 5 folds.

4.6.2.2. Data augmentation

Given that deep learning approaches notoriously require large datasets to train, data augmentation was
attempted by means of generating synthetic data based on the existing dataset, using a generative
adversarial network (GAN). GANs are dual neural networks consisting of the generator and the
discriminator (sometimes called critic), where two agents compete against each other. The generator’s
aim is to use a random noise vector to create synthetic data that would serve as input to the discriminator,
alongside genuine data, and fool the discriminator into recognizing generated data as genuine, whereas
the discriminator’s aim is the opposite — to learn to better distinguish between genuine and synthetic
inputs. The two agents are trained concurrently, ideally at the same rate. GANs have been used in image
synthesis, semantic image editing, style transfer, image super-resolution and more [175]. Synthetic data
generated via GANs was successfuly used to improve segmentation of CT [176] and MRI images [177],
by augmenting the available medical data set, which is usually hard to come by and costly to label.

In this study, the input noise dimension was varied exponentially between 128 and 2048. The generator
consisted of a number of generator blocks, the number being dependent on input dimension and other
hyperparameters used, each comprising a transposed 1D convolution layer, batch normalization and
linear rectifier unit (ReLU) activation, with the exception of the last layer which only contained a
transposed convolution. Finishing up with a tanh activation combined with scaling the genuine signals
in the range [-1,1] was also tested. The number of blocks was varied to find the best fit, alongside kernel
sizes and stride. Label smoothing was added to discriminator labels to prevent mode collapse, which
involved randomly assigning a number between 0 and 0.3 to fake signals and 0.7 and 1 for genuine
signals.
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The discriminator was a fully convolutional neural network, consisting of five convolutional blokcs, each
containing a 1D convolutional layer, batch normalization and ReL U activation, except for the last layer
that only contained a convolution. Kernel sizes were varied to find the best fit. High level topology of
the GAN is shown in Figure 26.

Wasserstein loss with gradient penalty was used for training, as this was shown to help prevent trouble
with converging and lead to more stable training [178].
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Figure 26 High level diagram of the GAN used for data augmentation

4.6.2.3. Results

Employed convolutional network model achieved unsatisfactory results, with accuracy on raw signals of
41.5% and 33.1% on spherical transform of the signals. Varying hyperparameters of the network, such
as number of layers, number of filters per layer, kernel size, or rate of dropout resulted in no significant
improvement of the results. There was a negative correlation (rho = -0.56) of kernel size and accuracy,
meaning that larger kernels are less appropriate for this purpose. This may be due to the summation over
the kernel destroying potentially useful information in higher frequency details. There was also a
negative correlation (rho = -0.43) between utilized training batch size and accuracy, wich implies that
larger variance in small batches contributed to model regularization. There was no correlation between
the network depth reflected in the number of layers and accuracy, nor between accuracy and the number
of neurons present in the dense classification layer of the network nor the number of filters used per
layer. Initializing weights with pre-trained autoencoder did not improve the results either.

The trained convolutional GAN exibited failure to converge, irrespective of hyperparameters and tweaks
to model topology, and in spite of measures taken to prevent this. The generator and the discriminator
loss would fall briefly initially, after which it would stagnate, oscillate, or increase (Figure 27).
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Figure 27 Discriminator (disc) and generator (gen) loss over epochs.

The images generated in the process did not sufficiently resemble the original data, although they did
display periodic behaviour. Furthermore, the network would fall into mode collapse, generating only one
type of signal at a time, as illustrated in Figure 28 and 29. The synthetic data could therefore not be used
to supplement the original dataset.
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Figure 28 Example of mode collapse during GAN training, random initialization 1
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GAN output: mode collapse
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Figure 29 Example of mode collapse during GAN training, random initialization 2

It is most likely that the available data was insufficient for the deep learning approach, which was
reflected in both the inability to obtain a good prediction on the original data, and the failure to generate
satisfactory synthetic data to augment the initial dataset. This was also seen in the inability of the
autoencoder based clustering to divide the data into meaningful clusters, as the clusters obtained had very
low homogenity, suggesting that the autoencoder did not manage to capture the features that were most
representative of each disease. Deep neural networks normally require hundreds to thousands of unique
samples, and the variance in the existing data combined with the low amount of data did not allow the
models to learn the correct mapping functions.

The performed tests were unable to confirm nor deny Hypothesis 3. What is clear though, is that the
number of tested patients in this study was not enough for deep learning approaches to perform their
best.
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4.6.3. Analysis - Traditional machine learning approaches

Another branch of artificial intelligence are traditional machine learning algorithms. Unlike deep
learning, which usually accepts raw or minimally pre-processed input data, and is relied upon to
automatically extract useful features, traditional models accept features that were specifically designed
by the researchers. In this chapter, we had a dual aim - to assess Hypothesis 3, and utilize traditional
machine learning models to discern among groups of patients and healthy controls in a multi-class setup,
as well as to test Hypothesis 4, and use artificial intelligence to choose the best set of features for
discriminating among the participant groups. Although the feature extraction will be done by known
formulas given by the researchers in advance, the selection of the best subset of those features will be
left to an algorithm®.

4.6.3.1. Feature extraction

The right hand signals collected from the participants were processed by handling each axis separately,
as well as calculating the norm of all three sensor rotation axes to represent the intensity. The signals
were subjected to the following five transformations: 1) no transformation (raw signal), representing
angular velocity, 2) integration, yielding the finger excursion angle, 3) differentiation, resulting in
angular acceleration, 4) squaring, representing the power of the signal, and 5) Fourier transform, giving
the signal frequency content. To compensate for the drift error introduced by integration, the beginning
of each tap was determined, and a 5" order polynomial curve was fitted through the tap start points and
this curve was subtracted from the integrated signal. The approach to finding tap start times was signal
filtering with a 4™ order bandpass Butterworth filter, with pass frequencies between 0.4 and 5 Hz. The
filter parameters were decided on empirically. The filtered signal was squared to enhance the large
changes and suppress the smaller ones, and the last step was negative peak finding. All tap-start positions
were then manually checked and corrected where necessary, using a Python script that displayed a
visualization of each recording with the automatically determined splits, and allowed user input to
remove or add tap start points. (Example tap given in Figure 30).

5 Parts of the presented analysis have been adapted to be published in Heliyon as of March 2023 (Belic M, Radivojevic Z,
Bobic V, Kostic V, Djuric-Jovicic M, Quick computer aided differential diagnostics based on repetitive finger tapping in
Parkinson’s disease and atypical parkinsonisms)
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Figure 30 Random example of a single tap extracted from a recorded gyroscope sequence

Six features were extracted from each transformed signal, apart from the Fourier transform. These
features included the mean, standard deviation, median, root mean square (RMS), and minimal and
maximal values. Besides calculating the statistics from the whole signals, the same features were also
extracted individual taps, or more specifically from their maximal values. Linear regression line was
fitted through these individual taps’ maxima, and the slope of the obtained line was taken as an additional
parameter. This was to capture the potential amplitude decrements in the tapping sequence over time.
Fourier transform was used to extract the maximal frequency and the spectral centroid, which was
defined as the frequency point that divides the spectrum into two halves, so that the frequencies below
this point account for half of the total spectral power. In total, 216 features were obtained per sensor. The
features were then scaled to the range between 0 and 1, as this is expected to help the machine learning
algorithms. A summary of extracted features is given in Table 6.

Table 6 Preliminary features extracted from tapping signals

Transformation Whole signal Individual taps
No transformation (raw signal) | mean, std, RMS, min, | mean, std, RMS, min, max and
Integration and max of the signal regression slope of tap maxima
Differentiation
Squaring
Fourier transform max frequency, spectral

centroid

* Std = Standard deviation, RMS = root mean square, min = minimum, max = maximum

55



4.6.3.2. Feature selection

The number of features was reduced through a semi-greedy feature selection algorithm (Appendix,
Algorithm 1). Model classification accuracy was used as a performance measure, and the fitness of a
subset of features was rated according to accuracy. The algorithm relied on the broad semi-greedy
concept [179]. A full greedy approach would always take the locally optimal solution and add more
features in a way the current set of features is the best possible up to that point. In the semi-greedy
concept, a broader set of options in allowed, and some randomization is introduced, acknowledging that
locally optimal set of features may not be globally optimal too. The algorithm consisted of an expansion
phase and a reduction phase, which were repeated multiple times. The expansion phase would generally
speaking expand the current feature set but would more precisely modify the current best set by either
adding, subtracting, or substituting a feature in a random manner. Whether to use the add, subtract, or
modify operation was also decided at random. This was repeated M times, where M was taken randomly
to be 2, 3 or 4. Then K feature sets with best performance were saved (K was chosen at random to be 5,
6 or 7) and their union was taken to be the input for the reduction phase. In the reduction phase the aim
was to make the feature set smaller, which was done by subsetting and testing all subset combinations of
features for their accuracy. The one that gave the best results was then singled out. This process was
scheduled to run for 24h on an Intel® Core™ i9 CPU operating at 3.10GHz with 64 GB of RAM.
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4.6.3.3. Classification

In this section, artificial intelligence reflected in traditional machine learning algorithms was used on top
of the extracted features to classify the collected recordings into 4 diagnostic groups. A k-nearest
neighbors (KkNN) classifier [180] was found in preliminary tests to perform the best out of the tested set
of algorithms that included random forest, naive bayes, logistic regression and support vector machine.
In kNN, a feature vector is assigned to a specific class, based on the plurality vote of the k vectors in the
available training data that are the nearest to the one in question, as measured by the Euclidian distance.
Each neighbor point’s contribution is weighted by the inverse of its Euclidian distance to the current
point. In this work particularly, k is chosen to be 5, that is the class of each recording is determined based
on 5 nearest neighbors. Furthermore, since multiple recordings were obtained for each patient, the final
decision for each patient was decided as the diagnosis that was predicted most frequently among all
corresponding patient’s recordings.

4.6.3.4. Model evaluation

To assess the performance of the model, leave-one-out paradigm was. This involved training the model
on all but one patient, making sure that all recordings belonging to that particular patient are held out for
the test set. The same trained model was then used to predict the diagnosis for the patient that was left
out. This was done for each participant and the results were aggregated to obtain overall performance.

Overall accuracy, precision and recall were calculated for each diagnosis according to the formulas (1),
(2) and (3).
Number of correctly classified instances

A = 1009 14
couracy Number of all instances i & 14

Procisi Instances correctly classified as class i 100% (15)
e . = *
recision; All instances classified as class i °

Recall Instances correctly classified as class i 100% 16
, = *
ecat All instances of actual class i ° (16)

For example, if we take the PD group, then precision describes how many of all cases that were suggested
to have PD belong to the patients that were clinically diagnosed as PD, while recall describes what
percentage of people who were clinically found to have PD will be correctly assigned the PD diagnosis
by the algorithm.

All modeling was done using Python 3.7.7 (Python Software Foundation) and scikit-learn package
version 0.22.2.
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4.6.3.5. Results

After feature extraction, the semi-greedy feature selection algorithm yielded six features listed in Table
7 as the best combination based on achieved classification results.

Feature 1 is a measure of how much the index finger leans left and right from the path on average.
Features 2 and 3 provide information on the sustained finger opening during tapping, with the y-axis
rotation being the most dominant one during the finger tapping test. Feature 4 gives insight into the
frequency content of the signal, and indirectly the tapping cadence. Feature 5 stands for the maximal
rotation of the thumb to left or right, and Feature 6 captures the variability of the thumb’s excursion to
left and right.

Selected features per group can be found in Table 8, given as the mean value and inter-quartile range.
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Table 7 Selected feature set

Feature Sensor Axis of  Signal transformation Statistic

position rotation
Feature 1 | Index finger X Angular velocity RMS
Feature 2 | Index finger Y Angular velocity average of maxima of individual taps
Feature 3 | Index finger Y Angular acceleration RMS
Feature 4 | Index finger  Vector  Fourier transformation of  spectral centroid

angular velocity

Feature5 | Thumb X Angular velocity maximum
Feature 6 | Thumb z Angular acceleration STD of the maxima of individual taps

* RMS - Root Mean Square, STD - Standard Deviation, vector =,/x? + y? + z2
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Table 8 Values of features per group given as mean (interquartile range)

Feature HC MSA PD PSP

Feature 1 7.38 0.98 1.96 2.27

[de] (3.89 -9.87) (0.26 - 1.07) (1.03 - 2.59) (0.59 - 3.50)
s2

Feature 2 21.06 8.74 13.24 11.42

[ﬂ] (16.50 - 24.94) (3.74 - 13.15) (8.31-15.32) (7.31-14.43)

Feature 3 291 0.77 1.46 1.39

[g (2.47 - 3.38) (0.25-1.21) (0.68 - 1.93) (0.92 - 1.58)
S

Feature 4 12.39 9.11 9.81 11.35

[Hz] (10.98 - 13.72) (7.66 - 10.18) (7.68 - 11.49) (8.78 - 13.84)

Feature 5 0.60 0.20 0.51 0.26

[ﬂ] (0.40-0.71) (0.08 - 0.23) (0.24 - 0.81) (0.13-0.37)

Feature 6 0.89 0.43 0.86 0.67

[g (0.57 - 1.22) (0.16 - 0.64) (0.53-0.1.21) (0.23-1.12)

* HC — Healthy Controls, MSA — Multiple System Atrophy, PD — Parkinson’s Disease, PSP — Progressive

Supranuclear Palsy

The distribution of features over groups is shown graphically in Figure 31.
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Figure 31 Distribution of selected features over participant groups. The lines above the boxplots
denote significant differences between corresponding groups

Accuracy, precision and recall of the model trained on the selected features are given in Table 9. Figure
32 shows the confusion matrix that resulted from cross validation on each separate recording (i.e. prior
to plurality vote on each patient’s multiple recordings). The values and the color coding represent the
number of cases in a corresponding category scaled to the total number of true cases for the class in
question (row sums). The values in brackets show absolute numbers of cases.

The model assigned the correct diagnosis in a multiclass setting with overall accuracy of 76.11% of cases
when inspecting all recordings individually. Out of all control samples, 94.23% were correctly classified,
while out of all samples classified as controls, 76.56% were truly controls. The greatest confusion was
seen between MSA and PSP groups, where 17.65% of those classified as MSA in fact belonged to the
PSP group, and inversely 10.13% of those classified as PSP were diagnosed with MSA.
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Table 9 Precision and recall obtained on the test set for each class based on each single recording

Precision Recall

[%0] [%0]
HC 76.56 94.23
MSA 73.42 80.50
PD 80.70 67.65
PSP 75.00 67.10
Total accuracy 76.11%

Confusion matrix

80

76.56% 13.24%
HC (N=49) (N=9)

70

73.42% 17.65%
(N=58) (N=12)

Predicted label
=
w
>

e}
w]

PSP

& & e &
True label

Figure 32 Confusion matrix when observed for each single recording separately. The values on the
main diagonal correspond to recall for the associated class.

When only the final predicted diagnosis for each patient is taken into consideration (final diagnosis being
the most frequent one among the corresponding person’s recordings), the overall accuracy becomes
85.18%. All 13 MSA patients were predicted to have the correct diagnosis, whereas 2 out of 16 PSP
patients were incorrectly assigned to the MSA diagnosis. All healthy controls were properly recognized
as well, with 3 out of 16 PSP patients falsely classified as healthy. Out of 14 PD patients, 11 were
predicted to have the PD diagnosis, while 3 were wrongly found to carry the PSP diagnosis. In the set of
patients that the algorithm classified as the PD group, all patients were clinically diagnosed with PD.
Accuracy, precision and recall are given in percentages in Table 10. PSP was the most difficult diagnosis
for the model to deal with, with recall of 68.75%, while MSA and HC groups were significantly different
from the others, as reflected in the fact that 100% of them were properly classified.
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Table 10 Precision and recall obtained on the test set for each class based on a single diagnosis per
patient

Precision Recall

[%0] [%0]

MSA 86.67 100
PD 100 78.57
PSP 78.57 68.75
HC 78.57 100
Accuracy [%0] 85.18

Confusion matrix

MSA!

PD

True diagnosis

HC

Predicted diagnosis

Figure 33 Confusion matrix expressed in absolute numbers of participants, when a single diagnosis
was considered per patient
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4.6.4. Discussion

After a preliminary test of several traditional machine learning algorithms, a KNN classifier was used to
detect the presence of a neurodegenerative disorder of parkinsonian type and to output the most likely
diagnosis based on gyroscope recordings of the thumb and the index finger during repetitive finger
tapping. The algorithm was able to distinguish controls and three diagnoses on the patient level in
76.11% of cases on the level of single recordings, and 85.18% on patient level, demonstrating the
potential of the used IMU-based system to contribute to the differential diagnostics of Parkinson’s
disease and atypical parkinsonisms. When one patient per diagnosis was considered, the breakdown of
the results per group showed that MSA and HC diagnoses were most easily discerned (100%), whereas
PSP was the hardest one (68.75%), due to some of these participants being incorrectly classified as MSA
or HC groups.

The set of features that was found to be best able to tell apart the tested subject groups consisted of two
features extracted from the gyroscope mounted on the thumb, and four features from the gyroscope on
the index finger. Two of the features came from the most dominant finger opening axis (the rotation
around the y-axis has the largest angles during tapping), concretely the root mean square of the index
finger angular velocity and angular acceleration. One feature pertained to the mean left and right rotation
of the index finger, i.e., how much the index finger leaned to the side while tapping, and one feature -
spectral centroid of the vector of the index finger angular velocity - described the frequency content of
the signal. This feature is determined by the tapping cadence but will also be influenced by other
frequencies present in the signal, that could move the centroid up or down. For instance, the cadence of
two recordings can be the same, but if higher frequencies are present in one of them, as would be the
case if tremor is present, then this will be reflected in a greater centroid value. The features taken from
the thumb gyroscopes included maximal rotation to the left or right, and variability of the maximal
angular acceleration in each individual tap, taken as the standard deviation. The appearance of left-right
rotation in the features is suggestive of pronation-supination hand tremor that is in PD described as “pill-
rolling” [1].

Tests with deep learning approaches showed that the available tapping data was insufficient for these
methods to demonstrate their potential. Collecting more data would make a better substrate for utilizing
these approaches, where the system could leverage the pattern seeking abilities of deep learning rather
than hand crafting the features. The scientific community would reap benefits from joint efforts to collect
and analyze motion data in neurodegenerative disorders using a system like the one described, not only
to improve the predictive power of machine learning approaches, but also to potentially use it to derive
nuanced biomarkers that may have evaded our knowledge so far. We have seen the benefits of global
collaboration on imaging, genomic and clinical data collected through the Parkinson’s Progression
Markers Initiative [181], which involves a large open database that has produced many scientific papers.

The system used here for recording the motion during finger tapping based on miniature gyroscope
sensors is low cost, lightweight and easy to mount on a patient’s hand. Though the system we used
originally consisted of both accelerometers and gyroscopes, using just one modality for our analysis
further reduced the cost of the system by reducing the hardware requirements. It also limited the system’s
storage demands and processing power requirements. Gyroscope recordings were chosen rather than
accelerometer since the movements of interest during tapping were of rotational nature. It cannot be
disregarded, however, that perhaps the addition of recordings from accelerometers and force sensors
would further increase the predictive capability of the classification model.

So far, there have been no studies utilizing kinematic analysis of repetitive finger tapping for discerning
Parkinson’s disease and atypical parkinsonisms, although some studies have successfully used some
form of finger tapping to detect the presence of Parkinson’s disease against a group of healthy
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participants [84], [182]. Keyboard typing has been used in a number of studies as a proxy for performing
this test and collecting data for artificial intelligence algorithms to detect Parkinson’s disease [77]-[79],
[182]. The approach to diagnostic aid that was used in our work has the advantage of relying on a
standardized clinical test, which may give it a head start regarding its adoption in clinical settings. Other
modalities have been used to try and discern Parkinson’s disease and atypical parkinsonisms, such as
gait [183], [184] and speech [185], [186], and in the future perhaps a combination into a multi-modal
approach would outperform single modality solutions.

It is of note that the groups of patients who participated in this study were a bit heterogeneous concerning
their disability levels (mean Hoehn & Yahr group scores between 2.2 and 3.8). The best use of the system
would be to recruit as many early-stage participants as possible, as this is the time when clinical diagnosis
is the most elusive. This would however require a more complex, sort of a longitudinal study, where de-
novo patients would be tested and recorded using the proposed system but would then go on to be
followed for a number of years to make sure the correct diagnosis is reached with enough certainty to be
useful for training the computer assistant and its machine learning algorithm. Although the diagnoses in
our data set were carefully determined by clinical experts of clinical neurology, they were not confirmed
at autopsy, and this may have affected the results. Given the imperfection of the reference diagnoses,
another approach to the analysis would be to treat it as a weakly supervised problem [187], or even to
develop algorithms which would draw conclusions in an unsupervised manner, but this would again
require a larger amount of data than was collected for this study.

Future work should include collection of additional recordings from different patients, particularly in the
early stages of the disease.Solutions for damping the effect of possible noise in the labels (non-autopsy-
confirmed diagnoses) is also a point to be addressed, and so is turning the presented analysis into a user-
friendly application that could be adopted in the clinical settings, through working closely with experts
of clinical neurology.

Proposed technology in light of recent events

Healthcare systems and health services were put under tremendous stress by the Covid-19 pandemic that
started early in 2020 and in the moment of writing in 2022 has somewhat subsided but is still very much
affecting the processes, making already complex systems and procedures even more complicated.
Frequent rotation of the medical staff was required, breaking continuity in care provided to patients by
their assigned doctors, elective procedures were put on hold, non-critical patients were dedicated a
minimal amount of time, some were rerouted to different institutions, and others were told to wait. Some
other new infections have also recently disturbed the public, such as the appearance of monkey pox, and
certain pharmaceutical companies have started working on producing a vaccine for the nipah virus, as
there has been some suggestion that nipah is what may bring on the next great pandemic. It is much
deadlier than Covid, the spread of which may be taken as a drill for potentially something more dangerous
to come. Either way, it seems that some measures of precaution and changes in operation of healthcare
institutions are here to stay. Technology has recognized this to a large extent, putting more effort into
coming up with solutions for telemedicine, contactless sensors, computer assistants, and more. In June
2022, papers wrote about the amount of seed stage funding in Europe that was brought in by industry
and reported that health tech was leading the charts (118 million euros), surpassing fintech (77 million
euros) which used to dominate the seed funding landscape up until this point [188]. In that light, a system
such as the one described here could be a timely assistance to help take some of the burden off the
medical staff and speed up the diagnostic process. It could enable interdisciplinary teams of engineers
and clinical doctors to apply the same or similar system for diagnostic aid and share recordings and
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possibly draw deeper insights into the subtle differences between the pathologies, made possible by
polling of multi-center open data. A review on submitted papers focusing on machine learning
applications in health research emphasized the importance of well-annotated data that is easily accessed,
combined with increased involvement of clinical staff in the application development process [189].
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5. ANALYSIS OF GAIT IN PARKINSON’S DISEASE IN DUAL-TASK PARADIGM

This chapter aims to use gait kinematic data and artificial intelligence to answer the questions posed in
Hypothesis 2 and Hypothesis 4 from a different angle. Hypothesis 2 assumes that with the help of
artificial intelligence, patients with PD can be discerned on the individual level from persons without
neurological disorders, and Hypothesis 4 states that is possible to programatically choose a subset of
relevant features extracted from kinematic signals which increase the performance of classification
among the observed disorders, or in this case - between healthy controls and patients with Parkinson’s
disease.

We will use methods of artificial intelligence to identify the subset of spatio-temporal parameters which
are the most useful for discerning de novo PD patients from participants with no neurological disorders
and build on top of these parameters a classification model as a means of assistance in PD diagnostics.

Gait analyses will not be used to test Hypothesis 1 and Hypothesis 3, as they pertain to multi-group
differences and involve patients suffering from atypical parkinsonisms, for which no gait data is available
at this time. This section describes kinematic data describing gait in healthy controls and participants
with PD.
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5.1. Participants

Forty de novo, drug naive patients were consecutively recruited at the Neurology Clinic, Clinical Centre
of Serbia, Belgrade. Inclusion criteria included Step I and Step II criteria of the UK Parkinson’s Disease
Society Brain Bank (PDSBB) Diagnostic Criteria [43]°. The study included participants with unilateral
presentation of disease with or without axial involvement (H&Y stages 1 or 1.5), without regard for
disease duration. MDS UPDRS Part Il [33] and H&Y [48] staging systems were used for clinical
evaluation, and mental status was rated through the Hamilton Depression Rating Scale (HAM-D) [190],
Beck Depression Inventory (BDI) [191], Hamilton Anxiety Rating Scale (HAM-A) [192] and the Apathy
Scale (AS) [193]. Cognitive screening was done using the Mini-Mental State Examination [194], and
more deeply assessed, using the Addenbrooke’s Cognitive Examination Revised (ACE-R) [195]. The
control group was composed of forty healthy, age and gender balanced participants (Table 11). Exclusion
criteria included any condition that could interfere with motor activity, be it of neurological, orthopedic,
or other medical nature. The study was performed in accordance with the ethical standards of the
Declaration of Helsinki and its later amendments. Medical Ethics Committee of Clinical Centre of Serbia
approved the research protocol, and written informed consent was obtained from each participant.

Table 11 Demographic and clinical data for the tested participants

PD patients (n=40) Controls (n=40) P
Age (years) 59.83+10.57 59.79+£11.85 0.989
Sex (females) 16(40%) 19(47.5%) 0.712
Sex (males) 24(60%) 21(52.5%)
Education (years) 13.63+2.71 12.98+2.96 0.302
Disease duration (years) 1.38+1.16 I /
MDS-UPDRS Part 111 15.8+5.49 / / /
Gait item from MDS-UPDRS 0.68+0.53 I /
H&Y 1.16+0.24 I /
HAM-A 4.45+5.12 5.79+5.71 0.264
HAM-D 5.2345.92 2.60+3.28 0.016*
BDI 7.43+6.96 3.79+4.02 0.005*
AS 10.65+7.17 5.60+6.02 0.001*
MMSE 28.7+1.20 29.47+0.98 0.476
ACE-R 91.6+5.47 91.95+6.90 0.737

Values are given as mean + standard deviation; MDS-UPDRS- Movement Disorder Society Unified Parkinson's Disease
Rating Scale; H&Y - Hoehn and Yahr Staging system; HAM-A - Hamilton Anxiety Rating Scale; HAM-D - Hamilton
Depression Rating Scale; BDI - Beck Depression Inventory; AS - Apathy Scale; MMSE - Mini Mental State Examination;
ACE-R - Addenbrooke's Cognitive Examination Revised

¢ Parts of the analysis presented in this chapter have been adapted and published in [113].
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5.2. Instrumentation and protocol

Instrumentation used in this chapter involved the GAITRIte portable electronic walkway (CIR Systems,
Haverton, PA), mat of 5.5m active area with built-in pressure sensors with 1.27cm spatial resolution and
maximum sampling rate of 240Hz. The walkway is intended to provide spatial and temporal information
on the subject’s gait. The dedicated system software uses physics and mathematics to calculate gait
parameters (e.g., velocity). Participants were recorded walking up and down the corridor in comfortable
shoes for 6 passes in each of the following three scenarios: (1) basic walking, pacing at the subject’s
comfortable speed, (2) motor task, during which the subjects walked on the mat while holding a glass of
water and trying not to spill it, and (3) mental task, during which the participants were asked to
recursively subtract 7 starting from 100 [196]. Each task amounted to roughly 50m of walking.

5.3. Gaitdata

The data used for analysis comprised the 37 parameters obtained from the GAITRite walkway system,
grouped by participant and task, and averaged over 6 recorded passes. The initial parameters are listed
in Table 12. Three tasks with 37 parameters resulted in 111 variables total per participant.

Table 12 List of initial spatio-temporal gait parameters obtained from the GAITRIite system

1 Velocity 20 Heel Off On Time

2 Normalized Velocity 21 Heel Off On %

3 Cadence 22 Double Support Load Time

4 *Step Time Differential 23 Double Support Load % of Cycle
5  Step Length Differential 24 Double Support Unload Time

6 *Stride Time Differential 25 Double Support Unload of Cycle
7 Step Time 26 Stride Velocity

8 Step Length 27 Step Length CV

9  *Stride Time 28 *Step Time CV

10  *Stride Length 29 #*Stride Length CV

11  Heel To Heel Base Support 30 *Stride Time CV

12 *Swing Time 31 *Swing Time CV

13  Stance Time 32 Stance Time CV

14 *Single Support Time 33 *Stride Velocity CV

15  *Double Support Time 34  *Single Support Time CV

16  Swing % of Cycle 35 *Double Support Time CV

17  Stance % of Cycle 36 Heel Off On CV

18  Single Support Time % of Cycle 37 *Heel-to-Heel Support Base CV

19  Double Support Time % of Cycle

* CV —Coefficient of variation

Normalized velocity refers to velocity divided by the average leg length. Heel off/on time represents the time between heel-
off and heel-on points of two consecutive steps made by the same foot. Heel-to-heel base support illustrates the perpendicular
distance between the center of the heel on one foot and the line of progression that the opposite foot forms. Step and stride
time differential illustrate asymmetry through the difference seen in the step and stride times respectively between the left
and the right foot. Step length differential represents the difference in step lengths between the left and the right foot.
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5.4.  Classification: Parkinson’s disease vs healthy controls

Given that high data dimensionality, as reflected in 111 parameters per subject, often negatively impacts
classification algorithms, and also makes model interpretation more difficult [197], we sought to reduce
the number of parameters that would be used to detect the presence of PD. We started with pair-wise
cross-correlating all variables using Pearson’s correlation, with the aim of excluding highly correlated
variables. Since simply ranking the correlation coefficients and eliminating the highest ones would bring
into question which of the highly correlated features should we keep, an alternative approach was
employed. Namely, the pair-wise correlation was taken to be the similarity metric between two variables,
and using this similarity as input, the features were clustered via affinity propagation. The exemplars of
the obtained clusters were then passed to the next step of the algorithm, which involved ranking the
features by importance using random forests [198], and relying on mean decrease in accuracy which
illustrates how much the model accuracy suffers when out-of-bag data for the variables are randomly
permuted. The higher the accuracy drop for permuting a particular variable, the more important that
variable is in discerning PD from healthy participants. Highest ranked features were then used as input
to the classification step. The flowchart of the processing pipeline is given in Figure 34. The reason for
including the correlation-based clustering step prior to random forest is that random forest feature
selection method is known to suffer from correlation bias [199], i.e., correlated groups of features lose
in their assigned weights as the size of the mutually correlated group grows, so the importance attributed
to these variables does not reflect their true value to the model.

Affinity propagation is a clustering method focused on finding a subset of representative points,
exemplars. In the famous k-means clustering this would be an analogue of cluster centroids, although a
centroid can be a point that does not exist in the dataset, but an exemplar is a real data point. K-means
starts by randomly choosing the centroids and then iteratively improving the split, whereas affinity
propagation takes into consideration the pair-wise similarity metrics given at input [200]. And while k-
means requires the number of desired clusters to be specified in advance, affinity propagation does not.
This may mean that the clustering in k-means will be dependent on initial conditions, while affinity
propagation tries to remedy this. Affinity propagation does, however, require other input parameters,
namely “preferences”, S(k,k). These are real numbers given for each data point, so that larger values make
the datapoints more likely to be chosen as exemplars. These preferences can be set to a common value
to indicate that all datapoints are equally valid choices of exemplars, as was done in this work. Affinity
propagation observes all data points simultaneously and regards them to be nodes in a network, the edges
of which exchange real-valued messages. The messages are recursively updated, and their magnitude
describes the affinity of data points to one another. There are two kinds of messages exchanged,
“responsibility” r(i,k) and “availability” a(i,k), the first one representing how well point k is suited to be
the exemplar for point i, and the second one tells the point i how appropriate it would be for it to take
point k as its exemplar. Responsibilities and availabilities are updated as:

r(i,k) ==s(i, k) — rlcr;gl){i{a(i, k) +s(i,k)} a7
a(k,i) =min {0,7(k, k) + X;zipzxmax{0,7(, k)}} (18)

With self-availability a(k,k) updated as:

a(k, k) = Yipzrmax {0,r (0, k)} (19)
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These messages are combined to decide the exemplars and clusters. Implementation of affinity
propagation in R package ‘apcluster’ was used in this study.

Random forest is a machine learning model that combines many weak predictors — decision trees — to
make an ensemble strong predictor. Each tree node tests the input data against a threshold and determines
if it passes or not. The subregion created after such a split can then again be divided based on some
threshold-based criterion. Each decision tree’s prediction is considered a vote and the one that takes the
majority (or plurality) vote wins. The trees are constructed on a random subset sampled with replacement
from the set of learning samples, but also from the set of features. This property allows the assessment
of importance of variables for the given model [201], and this approach has been used in various fields,
such as psychology [202] or bioinformatics, for instance to decide on a subset of genetic markers that
contribute most to a certain disease [203]-[205]. Consider there are N input variables and m data points
X1, X,...,Xm. Having constructed the forest, the out-of-bag values of the k-th variable are randomly
permuted and such a permuted dataset is used for inference in the corresponding trees, and the predictions
are saved. This is repeated for k = 1,2,...,N. The plurality vote is then found for each x; and compared to
the true class label to obtain a misclassification rate. The measurement of interest that is then used to sort
variables is the increase in misclassification rate when the data are permuted compared to when they are
left as is [201].

- m >‘<‘ - =5 -
Cross- Correlation Affinity propagation Random forest feature Classification
clustering importance

GaitRite data acquisition

Figure 34 High level flowchart of the performed analyses (Adapted from [113])

A support vector machine (SVM) model (see Chapter 4.5.1.) was built on input data with selected
variables to discern healthy participants from PD patients. A parallel SVM model was build on the same
dataset but using a different set of variables, namely 8 parameters commonly used in gait analysis: mean
values for stride time, stride length, swing time, double support time and their corresponding standard
deviations [24], [196], [206]. The results of the two models were compared for the three test tasks: base,
motor and mental, as well as for their combination. Classification performance was assessed using 10-
fold cross validation. Metrics of interest were sensitivity, specificity, positive predictive value (PPV) and
negative predictive value (NPV).

Sensitivity = No of true positives 100% (20)

No of actual positives

No of true negatives

Specificity = * 100% (21)

No of actual negatives

No of true positives

PPV = x 100% (22)

No of all points classified as positives
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No of true negatives

NPV =

«100% (23)

No of all points classified as negatives

Variable importance was also assessed on a 10-fold basis.

The analyses and plotting were performed using R v. 3.2.2.

5.5. Results

Pair-wise cross-correlation showed certain groups of variables were highly correlated with each other,
as illustrated in Figure 35. For instance, double support time was found to be highly negatively correlated
with cadence, with correlation coefficient of -0.876. Correlation persisted through all three tasks, as well
as when all tasks were analyzed combined (Figure 36).
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Figure 35 Correlation matrix shows high correlation between some groups of variables
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Figure 36 High negative correlation between cadence and double support time

When pair-wise cross-correlation was passed to affinity propagation clustering as the similarity metric,
19 clusters were obtained, and their exemplars were kept for further processing (Table 13). This reduced
the number of features from the initial 37 to 19.

Table 13 Parameters kept for further processing after clustering

Normalized velocity Step length CV

Step time differential Step time CV

Step length differential Stride length CV

Stride time differential Stance time CV

Stride time Stride velocity CV

Stride length Single support time CV
Single support time Double support time CV
Double support time Heel off on CV

Heel off on time Heel-to-heel support base CV
Double support load % of cycle

The 19 exemplars established by affinity propagation were passed to a random forest algorithm for
feature ranking, which yielded the final eight most relevant parameters: stride length and its coefficient
of variation (CV), stride time and stride time CV, swing time and swing time CV, step type asymmetry
and the CV of heel-to-heel base support. The boxplots of these eight parameters are shown in Figure 38,
split by group and by task type, and a corresponding table is given containing mean values and inter-
quartile range (Table 14). The importance ranking showed however that one and the same parameter
may be more prominent in one task over another. Stride time CV was ranked highly for motor and mental
tasks, but not for the base task. We can see from the boxplots that the values for stride time CV are
largely overlapping between groups for the base task, as opposed to the dual tasks. Swing time CV in
the base task was ranked relatively low, while in the mental task it was found to be among the 5 most
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important features. Stride length CV during performance of the mental task was found to be the most
important variable that stood out among all others. Figure 37 shows the 10 most important features as

ranked by the random forest algorithm.

Table 14 Selected parameters grouped by task and test group, given as median (interquartile range)

Parameter

Base Task

Motor Task

Mental Task

HC

PD

HC

PD

HC

PD

Step Time Asymmetry
[s]

0.008
(0.004-0.013)

0.018
(0.007-0.027)

0.008
(0.003-0.012)

0.018
(0.006-0.033)

0.012
(0.005-0.017)

0.023
(0.009-0.037)

Stride Time [s]

1.064

1.091

1.056

1.110

1.129

1.215

(0.359-0.396)

(0.378-0.419)

(0.356-0.394)

(0.375-0.411)

(0.369-0.411)

(1.017-1.105) | (1.058-1.184) | (1.01-1.116) | (1.055-1.183) | (1.075-1.202) | (1.135-1.304)
Stride Time CV 0.026 0.029 0.023 0.031 0.032 0.051

(0.021-0.035) | (0.024-0.037) | (0.02-0.028) | (0.023-0.035) | (0.025-0.042) | (0.035-0.084)
Stride Length [cm] 129.39 122.12 122.29 119.47 119.78 111.344

(115.74- (112.56- (112.35- (107.69- (108.96- (100.35-

137.85) 132.53) 132.38) 125.31) 131.85) 121.89)
Stride Length CV 0.026 0.035 0.026 0.035 0.039 0.058

(0.021-0.036) | (0.028-0.043) (0.021-0.027) | (0.027-0.043) (0.03-0.048) (0.042-0.082)
Swing Time [s] 0.377 0.393 0.368 0.394 0.394 0.416

(0.392-0.444)

Swing Time CV 0.058 0.045 0.052 0.046 0.064 0.066
(0.046-0.08) | (0.037-0.058) | (0.044-0.064) | (0.038-0.055) | (0.054-0.136) | (0.052-0.082)

H-H Base Support CV | 0.183 0.163 0.201 0.17 0.203 0.155
(0.15-0.227) | (0.143-0.182) | (0.161-0.244) | (0.148-0.196) | (0.17-0.23) (0.135-0.189)

*CV - coefficient of variation; HC — healthy controls; PD — Parkinson’s Disease

The chosen set of parameters differs from the standard set found in literature in that it does not feature
double support time and its CV, but instead contains step time asymmetry and CV of heel-to-heel base
of support. Our data did not show significant between group differences in double support time and its
variation, as shown in Figure 39, and variable importance ranking suggested that the inclusion of these
parameters would in fact decrease the classification accuracy.

When the obtained 8 features were fed to an SVM classifier combining all performed tasks, the mean
classification accuracy was 85%, sensitivity and specificity both 85%, PPV 86% and NPV 89%, meaning
the predictions of the classifier could be roughly equally trusted for the PD and the control groups. The
SVM model performed worse when it was fed with the standard set of parameters, achieving 80% in
accuracy, sensitivity and specificity, 82% PPV and 78% NPV (Table 15).

Classification was also performed when the input parameters were selected for one single task at a time
(base, motor, or mental), rather than their combination. The combination of all tasks had the best
performance both for the standard features and those selected in our work. The selected features showed
a decrease in classification performance in the base task compared to the motor and mental tasks, while
this was not the case for the standard set of parameters, where the base task even had a slight advantage
over the others.
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Ten most relevant parameters
0 0.2 0.4 0.6 0.8
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Stride Length CV Mental
Stride Length CV Motor

Step Time Asymmetry Motor
Step Time Asymmetry Base
Stride Time CV Mental
Swing Time CV Mental

H-H Base Support CV Mental
Stride Time CV Motor

Stride Length CV Base

Swing Time Base

Stride Time Mental

Figure 37 Permutation-based variable importance normalized to 1. The 10 highest ranked parameters
are shown (Printed in [113]).
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Figure 38 Selected gait parameters used to build classification models, shown as boxplots for healthy controls
and PD patients, in three tested gait scenarios: base, motor and mental tasks (Adapted from [113])
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Table 15 Classification performance obtained for the standard and the suggested set of parameters in
base, motor, mental and combined tasks

Standard set of parameters Suggested set of parameters
All 3 tasks Base Motor Mental All 3 tasks = Base Motor Mental
Accuracy | 0.80+0.11  0.75+0.16 0.74+0.12 0.74+0.12 | 0.85+0.10 = 0.75+£0.14 0.79+0.14 0.82+0.13
Range 0.62-1.00 | 0.50-1.00 @ 0.50-0.87 @ 0.62-0.87 | 0.75-1.00  0.50-1.00 0.62-1.00 0.62-1.00
Sensitivity | 0.80£0.16 = 0.90+0.13 0.75%#0.17 0.60+0.24 | 0.85+0.13  0.77+0.18 0.80+0.20 0.82+0.21
Range 0.50-1.00  0.75-1.00 = 0.50-1.00 @ 0.25-1.00 | 0.75-1.00  0.50-1.00 0.50-1.00 0.50-1.00
Specificity | 0.80£0.20 @ 0.60+0.21 0.72+0.22 0.87+0.13 | 0.85+0.13  0.72+0.22 0.7740.18 0.82+0.17
Range 0.50-1.00  0.25-1.00 = 0.50-1.00 @ 0.75-1.00 | 0.75-1.00  0.25-1.00 0.50-1.00 0.50-1.00
PPV 0.82+0.13 | 0.85+0.20 0.77+0.16 0.71+0.14 | 0.86+0.12  0.77+£0.18 0.81+0.17 0.85+0.16
Range 0.60-1.00  0.50-1.00 @ 0.50-1.00 @ 0.57-1.00 | 0.75-1.00 @ 0.50-1.00 0.60-1.00 0.60-1.00
NPV 0.74+0.21 | 0.70+£0.20 0.65+0.11 0.78+0.22 | 0.89+0.16  0.72+0.18 0.73+0.15 0.82+0.17
Range 0.40-1.00 | 0.40-1.00 0.50-0.80 @ 0.40-1.00 | 0.57-1.00  0.50-1.00 0.57-1.00 0.60-1.00
* PPV — Positive Predictive Value, NPV — Negative Predictive Value
Double support time Double support time CV
Base Motor Mental Base Motor Mental
p=0.79 + p=0.60 p=0.01 0.15 p=0.11 p=0.33 p=0.75
Diagnosis ‘
E HC . . .
=) .
0.6
0.10
0.4 s ‘
0.05
0.2 0.00
HC PD HC PD HC PD HC PD HC PD HC PD

Figure 39 Boxplots for double support time and its coefficient of variation (CV). P stands for P-value
obtained using unpaired t-test (Adapted from [113]).
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5.6.  Discussion

In this chapter we analyzed data on gait collected using an electronic walkway which provides a plethora
of spatio-temporal features of gait, however without clear standardization on feature selection for
detection of PD pathology. The goal was to identify the parameters that contribute the most to
differentiating early PD from healthy controls on the patient level, and subsequently utilize them as input
to a classification algorithm that would suggest whether an individual is suffering from PD. The walkway
and data manipulation allow for quantification of gait parameters whose subtle differences between
healthy persons and those with a neurological disorder could be captured when they are not so easily
observed by the naked eye.

The performed analysis yielded the following eight parameters as the most relevant for classification:
stride length and stride length CV, stride time and stride time CV, swing time and swing time CV, step
time asymmetry, and heel-to-heel base support CV. When these parameters were used as input to an
SVM classifier, the achieved accuracy was 85%, which was higher than when the same classifier was
used with input parameters which were handpicked to correspond to those commonly found in literature
(78%), and which include: stride time, stride length, swing time and double support time, along with
their CVs. Authors in [207] assessed the gait of PD in comparison to healthy individuals and found
significant differences between the groups in parameters including stride length, cadence, stance time
and double support time. Using these features, they built a classifier which provided 80.4% accuracy.
The choice of parameters used in this analysis has a notable overlap with those commonly found in
literature, confirming their relevance, albeit with some differences. While previous studies found double
support time to be significantly different between PD and control groups, our findings failed to reproduce
that finding, although there was a tendency of group means for double support time and its variance to
differ if observing the mental task specifically, though the difference did not reach statistical significance.
This may mean that double support time may be a more reliable predictor later in the disease progression
than it is in early stages. As one of the highly relevant features this analysis introduces step time
asymmetry, which stands for difference in step duration between the left and the right legs, as an indicator
of asymmetric involvement in PD. Increased gait variability was found to be characteristic of PD,
reflected in the observation that multiple selected parameters were coefficients of variation. This
confirms the findings of earlier research work [24].

The feature ranking algorithm showed the single most important variable for detecting de novo PD from
gait was stride length variation during the mental task, suggesting impairment of gait automation as an
early sign of PD. Another relevant parameter that emerged in this analysis was the coefficient of variation
of heel-to-heel base support, which was found to be smaller in PD than in healthy controls. Patients with
PD are known to walk with a wider base of support than healthy persons possibly to counteract the fear
of falling [208]. Although out data did not corroborate this finding, as we saw no significant differences
in base of support, it is possible that the detected reduction in the variability of the support base has the
same roots as a compensation strategy in the face of the risk of falls.

High predictive power of the performance on the mental task was seen in the results of training the
classifier on data describing one gait task at a time, where the mental task only provided the highest
results of all three (82% accuracy), followed closely by the motor task (81%) and the lowest for the base
task (76%), although the combination of all three tasks outperformed each task taken individually (85%).
This deterioration of performance when walking with a competing dual task reflect the difficulties that
PD patients face in dividing attentional resources [22], and is in line with the findings of a meta-analysis
which observed deterioration of gait in PD when a dual task is introduced, regardless of the baseline
level, and irrespective of the type of the interference task, whether motor, arithmetic, or other [209]. This
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superiority of the mental or motor task in detecting early PD however was not apparent when the
classifier was trained using the standard hand-picked set of features. In this case all three tasks
individually had a comparable accuracy (74-75%), while the combination of all three tasks gave the best
results (80% accuracy).

The gait parameters identified as the most important in this study emphasize gait variability and left/right
asymmetry, particularly in the mental task, reflecting difficulties in attention resource management in
early PD. The variable ranking and task importance may change over the course of the disease, which
could be tested through comparison with a later-stage group of patients that would be recruited and
recorded in the same protocol. There are indications in literature that dual task walking may provide
clues for differential diagnostics too. A study used gait analysis with a cognitive task for discerning PD
from PSP patients and found that PSP gait was poorer than PD already in early stages, showing a greater
reduction in gait speed, and increased cadence and length of cycle in comparison with PD [210].

These results support Hypothesis 4, showing that Al can be used to programmatically select parameters
informative for PD diagnostics, and Hypothesis 2, demonstrating that Al can offer help in discerning
patients with PD from neurologically healthy individuals. This group of tests did not involve patients
with atypical parkinsonisms, so the hypotheses that pertain to differentiation of PD from atypical
parkinsonisms were not tested using gait kinematics, but only through finger motion.

Future work should include recruiting patients with atypical parkinsonisms and using the described
analysis of gait to test Hypothesis 1 and Hypothesis 4, i.e. whether statistical analyses and artificial
intelligence can help guide differential diagnostics between PD and atypical parkinsonisms on group and
patient level.
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6. CONCLUSION

Clinical diagnosis of Parkinson’s disease and atypical parkinsonisms remains a challenging and time-
consuming task. Recent advances in neuroimaging have made this modality a powerful ally in clinical
practice, however the price, required time, limited availability in hospitals and the use of radioactive
agents in some cases do not make this a ubiquitous solution, and quicker and cheaper options are desired.
Kinematic analyses provide a plausible alternative, particularly when combined with the perks brought
in by algorithms of artificial intelligence and machine learning. We hypothesize that this synergy
between motion sensors and artificial intelligence can positively contribute to improving the speed and
accuracy of obtaining a correct diagnosis, which would in turn allow better treatment adjustment and
facilitate participant selection in clinical trials, which would particularly be of interest in early stages of
the disease.

As its main focus, this study sought to utilize artificial intelligence combined with kinematic finger
tapping data obtained by a low-weight, low-cost inertial sensor setup. Repetitive finger tapping is a
simple task, borrowed from the UPDRS battery of tests, and shown to correlate better with the overall
UPDRS score than other forms of repetitive motions.

Three groups of patients have been recruited, namely individuals suffering from PD, PSP, and MSA, as
well as a group of controls without neurological disorders. We tested whether certain parameters can be
determined through such a system that would point to group level differences in finger tapping between
the examined groups (Hypothesis 1), whether using the finger tapping signals Al can help detect PD and
differentiate it from healthy controls (Hypothesis 2), if Al can help differentiate PD not only from
controls, but also from atypical parkinsonisms (Hypothesis 3) and whether particular features can be
extracted programmatically that would offer the most information useful for PD diagnostics (Hypothesis
4).

Statistical analysis of finger tapping parameters showed certain differences in trends between the tested
groups, thus confirming Hypothesis 1 of this thesis. The most notable finding was the lack of progressive
temporal reduction in tapping amplitude for the majority of PSP patients and HC, which was not the case
for PD and MSA groups.

When time-frequency analysis was applied as a preprocessing step to the gyrposcope signals recorded
from healthy individuals and PD patients, and used as input to a multi-layer perceptron neural network,
the patient group was well discerned from the controls, with accuracy of 92%, showing that Al teamed
with kinematic processing can indeed help discern PD patients from healthy controls, as posed in
Hypothesis 2.

When other patient groups were included in the analysis, a KNN model was trained on programmatically
selected features extracted from gyroscope finger tapping data and discerned patients with PD and
atypical parkinsonisms and healthy controls in a multiclass setting with overall accuracy of 85.18% in a
leave-one-out cross validation paradigm, confirming Hypothesis 3. Given that the input to the kNN
model comprised a set of features selected algorithmically through a semi-greedy approach (two features
extracted from the gyroscope mounted on the thumb, and four features from the gyroscope on the index
finger) and giving some insight into the inner workings of the decision model, we also confirm
Hypothesis 4.

Deep learning approaches, although state-of-the-art in the field of artificial intelligence, delivered subpar
performance in classifying the observed neurological disorders, most likely due to insufficient amounts
of data, even when supplemented with synthetically generated samples, and could not be used to support
Hypothesis 3.
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The described methodology using gyroscope-based kinematic analysis could be easily applied in
laboratories world-wide for standardization of data collection protocols, opening the door to creating a
large multi-center finger tapping kinematics database, which could be used to further refine the predictive
power of artificial intelligence algorithms, and gaining new insights into the nature of motion
disturbances, thus providing medical doctors with a quick clinical aid in differential diagnostics of the
selected neurodegenerative disorders. The best use of the system would be to recruit as many early-stage
participants as possible, as this is the time when clinical diagnosis is the most elusive in a more complex,
longitudinal study, where de novo patients would be tested and recorded using the proposed system but
would then go on to be followed for a number of years to make sure the correct diagnosis is reached with
high certainty, damping the effect of possible noise in the labels (non-autopsy-confirmed diagnoses).
Future work should also include turning the presented analyses into a user-friendly application that could
be adopted in the clinical settings, through working closely with experts of clinical neurology.

As a support test for the posed hypotheses, this work also tackled PD diagnostics through the use of
artificial intelligence in kinematic analysis of gait, using a sensorized electronic walkway, which
provides a plethora of spatio-temporal features of gait, however without clear standardization on feature
selection for detection of PD pathology. De novo PD patients and a healthy control group were recruited
for this study and tested in a series of dual-task tests, where the interference task was of motor or mental
type. Analyses relying on machine learning have been done on this set of gait data to test whether this
modality can be used to aid in discerning PD patients from healthy controls (Hypothesis 2) and if a set
of relevant parameters can be obtained programmatically that would be the most informative in aiding
PD diagnostics (Hypothesis 4). This group of tests did not involve patients with atypical parkinsonisms,
so the hypotheses that pertain to differentiation of PD from atypical parkinsonisms were not tested using
gait kinematics, but only through finger motion.

With the help of clustering performed on GAITRite-provided features with inter-correlation as similarity
metrics, and random forest feature importance ranking for further dimensionality reduction, we were able
to programmatically select a subset of parameters that best help in PD diagnostics, and thus confirm
Hypothesis 4, in the scope of differentiating PD from healthy controls. This subset of features included
stride length and stride length CV, stride time and stride time CV, swing time and swing time CV, step
time asymmetry, and heel-to-heel base support CV. The feature ranking algorithm showed the single
most important variable for detecting de novo PD from gait was stride length variation during the mental
task, emphasizing gait variability, particularly in the mental task, suggesting impairment of gait
automation as an early sign of PD.

When the selected parameters were used as input to an SVM classifier, the achieved accuracy was 85%,
confirming Hypothesis 2, that is, showing that Al and kinematic gait analysis can be used to help discern
de novo PD patients from healthy controls on an individual level. High predictive power of the
performance on gait in dual tasks was seen in the classifier results, where the mental task alone provided
the highest results of all three (82% accuracy), followed closely by the motor task (81%) and the lowest
scores were obtained for the base task (76%), although the combination of all three tasks outperformed
each task taken individually (85%).

Future work should include recruiting patients with atypical parkinsonisms and using the described
analysis of gait to test Hypothesis 1 and Hypothesis 4, i.e. whether statistical analyses of gait and artificial
intelligence can help guide differential diagnostics between PD and atypical parkinsonisms on group and
patient level.

This work shows the ability of artificial intelligence algorithms combined with motion sensors to aid in
differential diagnostics of Parkinson’s disease when compared to healthy individuals, as well as with
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selected atypical parkinsonisms, contributing to the diagnostic arsenal used in clinical practice. Apart
from giving blind diagnostic suggestions, artificial intelligence can be used to select a subset of features
that bear the most predictive power in discerning PD from other pathologies, potentially adding weight
to previous findings, or even pointing to new parameters of interest that have so far eluded the scientific
efforts.
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7. APPENDIX

7.1.  Algorithm 1: Semi-greedy feature selection algorithm

Selected_set = {}
best_performance =0
while running time <Y do
/lexpansion phase
Current_set = Selected_set
fori=1:Ndo
//Change M features in Selected_set
forj=1:Mdo
Randomly pick action from set {add, remove, swap}
if 'add' do

Randomly select without replacement a feature from Remaining_features
and add to Current_set

else if ‘'remove’ do
randomly remove a feature from Current_set
else //'substitute’

Randomly replace a feature from Current set with a feature from
Remaining_features

end
end
test and save performance of Current_set
end

Expanded_set = union(K best performing sets)

/Ireduction phase
Reduced_set = {}
for i = 1: Nmax do

Feature_set_list = select combinations of
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exactly i features from Expanded_set
for Feature_set in Feature_set_list do
test performance of Feature_set
if performance > best_performance do
Reduced_set = Feature_set
best_performance = performance
end
end
end
Selected set = Reduced_set

end
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7.2. Code structure: multiclass classification

The code for feature extraction and classification of tapping data based on traditional machine learning
approaches was written in Python 3.7.7. in an object-oriented paradigm, and relies on several major parts:

e Signal

e Artefact

e ArtefactExtractor

e ArtefactNormalizer
ArtefactSelectorGenerator
ArtefactFilter
ArtefactTestGenerator
ArtefactEvaluatorGenerator
ArtefactEvaluator
Parameters

Utility functions

Signal is the class containing a recording and its metadata, including clinical diagnosis, date and time of
recording, participant code, time of the first and last tap in the signal and other. Its methods allow for
signal plotting, transformation into spherical coordinates, copying, and outputting a summary info.

All signals are loaded into their respective Signal objects. Then the ArtefactExtractor module is called to
extract features from each measurement. It first applies a transformation function to the signal, and then
extracts the features, as described in chapter 3.nestonesto.

ArtifactNormalizer is called to normalize each feature to the range [0,1].

Acrtefacts are optionally filtered by ArtefactFilter module, based on a manually chosen subset of features,
and ArtefactSelectorGenerator handles the feature selection process.

ArtefactTestGenerator yields folds for leave-one-out cross validation.

AvrtefactEvaluatorGenerator chooses the machine learning algorithm (or a number of algorithms) to fit
and test, and provides a means to combine evaluations from all crossvalidation folds.

AvrtefactEvaluator is called to evaluate the extracted features on all folds and give final results.
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N3jaBa o ayTopcTBY

Wme u npe3ume aytopa: Mumba benuh

bpoj unnexca: 13/2014

M3jaBmyjem

Jia je JIOKTOpCKa JucepTaryja 1oJ HaclIoBoM ,IIpiMeHa anropuraMa BelTauke MHTEIMICHIM]e 3a
o0paly KMHEMAaTHUKMX CHTHala Y [HjarHOCTHIM IlapKUHCOHOBE OONECTH W ATHITHYHEX
[MapKUHCOHM3aMa"":

®  PpE3yNTaT COICTBEHOI UCTPAKUBAYKOT pajia;

° JlaiucepTaiuja y UEeIMHY HH y JIeJIOBEMA Hje OUia IPEUIOKEHA 3 CTULARE JPYTe JIUIIOME
[IpeMa CTyIMjCKUM TIPOTpaMuMa JIPyTUX BUCOKOIIKOJICKHX yCTaHOBA;

® J1a Cy pe3yNTaTH KOPEKTHO HaBEeIECHU U

® Jla HACAM KpIIWJIa ayTOPCKa IIpaBa U KOPUCTUIIA HHTEJIEKTYATHY CBOJUHY IPYTHX JIHIIA.

V Beorpany, 30.3. 20495, Ilotnne ayropa

/é%% Reti
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N3jaBa 0 HCTOBETHOCTH IITAMIIAHE U eJ1eKTPOHCKE Bep3uje
AOKTOPCKOI paja

me u npesume ayTopa: Muma bemh
Bpoj unnexca 13/2014
Cryamjcku mporpam: BHOMETUIIMHCKO HHKEHEPCTBO U TEXHOUIIOTH]€

Hacnos pana: Ilpumena airopiurama BelTauke HHTETUTEHIHM]e 3a 00paly KAHEMaTHUKUX CUTHAIA y
qujarnocTui [TapkHHCOHOBE GONECTH M aTUIIMYHUX MApKUHCOHU3aMa

Menrtopu: mpod. ap 3axapuje Pagusojesuh, np Cama Pagosanosuh

M3jaBibyjeM aa je mTamMIaHa Bep3uja MOT JOKTOPCKOT pajia HCTOBETHA EEKTPOHCKO] BEp3UjU KOjy caM
npenao/na pany HoxpamrBaka y JlururaanoM penosuropujymy Yuusepsuteray beorpany.

JTozBoJbaBaM Ja ce 06jaBe MOjH JIMYHH ITOJAIM Be3aHH 3a JoOHjarbe aka[eMCKOT Ha3uBa JOKTOpa
HayKa, Kao IITO Cy M€ M IIpe3rMe, TOIMHAa H MECTO pohema u 1atyM oJbpaHe paja.

OB TWYHY [TOJIAIE MOTY ce 00jaBUTH Ha MPEKHHM CTpaHHUI[aMa UTUTaIHe Oubiuorexe, y
eJIeKTPOHCKOM KaTajory U y IyOimKanujama Y HuBepsurera y beorpay.

VY beorpany, 30.5. 20,2 5. [Tornuc aytopa

g/@’%’ Bolis
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N3jaBa o0 kopuinhemy

Osnamhyjem YaupepsuteTcKy 6ubimoteky ,,Cerozap Mapkosuhi* na y JIUruTaifu perno3suTopujyM
VYuusepsurera y beorpay ynece Mojy JOKTOPCKY AMCEPTALH]y 10 HACTIOBOM:

,»1IpuMena anropuTamMa BEIUTAa4YKe WHTEIUIEHIM]e 32 00paly KHHEMATHIKUX CUTHANA Y UjarHOCTHIM
[TapkuHCOHOBE 00JIECTH ¥ AaTUNIMYHUX MAPKUHCOHM3aMa*

KOja je Moje ayTOpCKO JIelo.

Jlucepramujy ca CBUM IIPHIIO3UMa IIPEJAo/Ia caM y eJIEKTPOHCKOM (hopMmarTy IIOrOJHOM 3a TPajHO
apXUBHUPALE.

Mojy moxropcky aucepranmjy ImoxpameHy y JUruTaaHoM peno3uTopujymy Yuusepsurera y beorpamy
U JIOCTyIIHy y OTBOPEHOM IIPUCTYIly MOIY Ja KOPUCTE CBH KOjH MOINTY]y OJpeade CaapiKaHe y
omabpanom tumy nunenne Kpeatusae 3ajegnune (Creative Commons) 3a Kojy caM ce oAIyynia.

1. AytoperBo (CC BY)

2. AytopctBo — HexoMepuujaiaao (CC BY-NC)

3. AyTopcTBo — HekoMmepIjanHo — 6e3 npepaga (CC BY-NC-ND)

4. AyTOopcTBO — HEKOMEPIHjalIHO — eNuTH o uctuM yciouma (CC BY-NC-SA)
5. AyroperBo — 6e3 npepana (CC BY-ND)

6. AytopcTBo — genuty nox uctum yceaosuma (CC BY-SA)

(Momimo 11a 320Kpy>KHTE caMo jeJIHy OJ1 LiecT nmonyhenux jmrennu. Kparak onuc JUIeHIH je cacTaBHy
IIE0 OBe U3jaBe).

VY beorpany, 20.3. 2025, [ToTnuc aytopa

ARl
<
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1. Ayroperso. J[03B0JbaBaTe yMHOXaBambe, TUCTPHOYIHM]Y 1 JABHO CAOIIITABAKE NEIA, U IPEPAJIC, aKO
ce HaBeme HMMe ayTopa Ha HauWH OfpeheH oJ cTpaHe ayTopa WIIM [laBaola JMICHNE, 4YaK H Y
KoMmepuujaane cepxe. OBO je HajcI000MHM)a O/ CBUX JIULCHIY.

2. AyTOpeTBO — HeKoMepuHjaano. Jl03BosbaBaTe yMHOXKABAme, IMCTPUOY M)y U JABHO CAOIMIITABAH:E
jieTTa, ¥ Ipepajie, ako ce HaBe/ie IMe ayTopa Ha HauuH o7ipeheH 071 cTpaHe ayTopa K JlaBaoa JIMIEHIIE.
OBa JHIIeHIA He JI03B0JbaBa KOMEPIHjalHy YIoTpeOy aena.

3. AyTopeTBO — HeKOMepIMjaaHo — 0e3 mpepaja. Jl03BojbaBaTe yMHOXKABAILE, JMCTPUOYIH]Y U JaBHO
CaoIIITaBabe ea, 6€3 IPoMeHa, MPeoOIMKOBaa MIIK YIIOTPeOe [ei1a y CBOM JIeIly, aKo Ce HaBele UMe
ayTopa Ha HauMH oipeheH O] CTpaHe ayTopa WM Jasaoua JjwmieHue. OBa JHIEHNA HE J03BOJbaBa
KOMepLujanHy yrorpedy jena. Y OJHOCY Ha CBE OCTale JMIEHIC, OBOM JIHMICHIIOM CE OrpaHnvaBa
Hajsehu 06um mpaBa Kopuihera Jena.

4. AyTopcTBO — HEKOMEPHHjaIHO — JeJHTH MOJ MCTHM ycloBuMa. Jl03B0JbaBaTe YMHOXABAtbe,
JUCTPUGYIM]Y ¥ jaBHO CAOIIIITABAILE JIENIa, ¥ IIPEpajie, aKo Ce HaBe/le MMe ayTopa Ha Ha4uH OJpeleH of
cTpaHe ayTopa WM JlaBaolla JIMIEHIE M aKo Ce Hpepaja AucTpuOyupa O] HCTOM HIIM CIMIHOM
munennoM. OBa TUIEHIA He J103B0JbaBa KOMEPIHjaIHy yIOTpeOy Jiena 1 mpepaja.

5. AyTopcTBo — 6e3 npepaia. J03B0JbaBaTe yMHOXKaBabe, TUCTPUOYIHM]y 1 JaBHO CAOIINTaBAKLE JIENa,
Oe3 mpoMeHa, peobINKOBaba MK YIOTpede Jiefia y CBOM JIelly, ako ce HaBeJle MMe ayTopa Ha HauMH
onpeljer oj1 cTpaHe ayTopa MM fapaona JmieHre. OBa IHIeHIa 103B0/baBa KOMEPLH]aTHy yrnotpedy
nena.

6. AyTOpPCTBO — XeJMTH TI0J HCTHM ycJoBuMa. J{03BOJbABATE yMHOXKABAMbE, JMCTPUOYIH]Y U jaBHO
CaoIIITaBamke JeNa, H TIpepajie, ako ce HaBejle UMe ayTopa Ha HauuH oxpehen ofl cTpaHe ayTopa Miu
JlaBaoIa JHIEHIIE U aKo ce TIpepajga AUCTpUOynpa MO UCTOM HIIM CIMYHOM JHIeHIoM. OBa JuieHIa
JI03BOJBbABA KOMepLHUjanHy ynoTpeby aena u mpepajga. Cnudna je copTBepCKuM JIMIEHIaMa, OXHOCHO
JIMIIEHIIaMa OTBOPEHOT KOJIa.
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