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Abstract 

ASSOCIATION OF NASAL SEPTAL DEVIATION TYPES WITH OBSTRUCTION 

SYMPTOMS SEVERITY AND CHARACTERISTICS OF NASAL AIRFLOW DYNAMICS 

 

 

Aim: To investigate the association between the nasal septal deviation (NSD) morphology with 

nasal airway obstruction (NAO) symptom severity and the nasal airflow parameters.  

Methods: The study included 225 patients with diagnosed NSD. The Nasal Obstruction Symptom 

Evaluation (NOSE) questionnaire was validated and cross-culturally adapted for the Serbian 

population and applied for the NAO assessment. Patients were examined by computed tomography 

(CT). CT images were used to classify NSD according to Mladina's classification and generate eight 

3D computational models of the nasal cavity (one model without NSD, seven models representing 

each Mladina's NSD type). Inspiration was simulated by computational fluid dynamics (CFD) 

method and analyzed through CFD parameters (airflow partitioning, velocity, wall shear stress, 

pressure, nasal resistance (NR), heat flux (HF), turbulent kinetic energy (k), and airflow pattern). 

The obtained data were statistically analyzed.   

Results: Although NOSE scores differed between patients with various Mladina's NSD types, the 

differences were not confirmed as statistically significant (B=0.837, p=0.261). There was no 

significant link between NSD types and NAO severity after applying additional morphology-based 

NSD classifications. CFD analysis showed that Mladina's NSD types induce various side 

asymmetry in all CFD parameters. CFD parameters that significantly correlated with the NOSE 

scores were: side asymmetry in NR (R=0.762, p=0.028), HF on the narrow nasal passage (R=-

0.732, p=0.039), and ipsilateral k (R=-0.723, p=.043).  

Conclusions: NSD morphology could not predict NAO severity. Side asymmetry in NR, reduction 

in HF and k in the narrow nasal passage may contribute to the NSD-related NAO perception. 

 

Key words: Nasal septal deviation; Nasal airway obstruction; NOSE questionnaire; Computed 

tomography; Computational fluid dynamics; Mladina's classification system.  

 

Scientific field: Medicine 

Scientific subfield: Skeletal biology 

 

 

 

 

 

 

 

 

 

 

 



 
 

Сажетак 

ПОВЕЗАНОСТ ТИПОВА ДЕВИЈАЦИЈЕ НОСНЕ ПРЕГРАДЕ СА ТЕЖИНОМ 

ОПСТРУКЦИОНИХ СИМПТОМА И КАРАКТЕРИСТИКАМА ПРОТОКА ВАЗДУХА КРОЗ 

НОСНУ ДУПЉУ 

 

 

Циљ: испитати повезаност типова девијације носне преграде (ДНП) са тежином 

опструкционих симптома и параметрима протока ваздуха кроз носну дупљу. 

Метод: У студији је учествовало 225 пацијената са дијагностикованом ДНП. Упитник "Nasal 

Obstruction Symptom Evaluation (NOSE)" је валидиран и културално адаптиран за српску 

популацију и примењен за процену тежине опструкционих симптома. Снимци пацијената са 

апарата за компјутеризовану томографију (КТ) коришћени су за класификацију ДНП по 

Младининим критеријумима и за израду осам компјутерских модела носне дупље (један 

модел без ДНП, седам модела за сваки тип ДНП по Младини). Методом компјутеризоване 

динамике флуида (КДФ) симулирано је удисање на моделима и анализирани су параметри 

протока ваздуха кроз нос (дистрибуција удахнутог ваздуха између десне и леве стране, 

брзина, смичући напон, притисак, отпор, топлотни флукс (ТФ), турбулентна кинетичка 

енергија (ТКЕ) и образац протока). Добијени подаци су анализирани одговарајућим 

статистичким тестовима.   

Резултати: Иако су уочене разлике у NOSE скоровима међу Младининим типовима ДНП, 

исте нису биле статистички значајне (B=0.837, p=0.261). Такође није детектована 

статистичка веза између NOSE скорова и типова ДНП класификованих према другим 

критеријумима. КДФ анализа је показала постојање разлика у свим КДФ параметрима 

између Младининих типова ДНП. КДФ параметри који су значајно статистички повезани са 

NOSE скоровима су асиметрија у отпору између десне и леве стране (R=0.762, p=0.028), ТФ 

(R=-0.732, p=0.039) и ТКЕ (R=-0.723, p=.043) на страни сужења.  

Закључак: Није могућно предвидети тежину опструкционих симптома на основу 

морфологије ДНП. Асиметрија у отпору између страна носне дупље узрокована ДНП, 

редукција ТФ и ТКЕ на страни сужења могу бити одговорни за осећај опструкције.  

 

Кључне речи: Девијација носне преграде; Носна опструкција; NOSE упитник; 

Компјутеризована томографија; Компјутеризована динамика флуида; Младинина 

класификација.  

 

Научна област: Медицина 

Ужа научна област: Биологија скелета 
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1. INTRODUCTION 

 

1.1. The nasal airway - anatomical background  

 The nose is a part of the upper airways with exceptionally complex geometry. It is divided 

into two approximately symmetrical nasal passages by the vertical mid-sagittal plate - the nasal 

septum. The anterior part of the nasal passages is enclosed by a pyramid-shaped structure, termed 

the external nose, which protrudes in the midline of the midface (Figure 1A). It is constructed from 

the paired nasal bones, pared upper and lower lateral, i.e. major alar cartilages, skin, and soft tissue 

(Standring et al., 2008). There are two openings on the base of the external nose, termed nostrils, 

through which the nasal passages communicate with the external environment. The rest of the nasal 

passages are placed between skull bones. Three paired bony nasal turbinates (the superior, middle, 

and inferior) protrude from the lateral nasal wall into nasal passages. Their medial surfaces and the 

lateral surface of the nasal septum enclose the common nasal meatus (Figure 1B) (Standring et al., 

2008). Inferior and lateral to each turbinate, there are grooved parts of the nasal passages termed the 

inferior, middle, and superior nasal meatus (Figure 1B) (Standring et al., 2008). These nasal 

meatuses communicate with the nasopharynx through the posterior nasal openings - the choanae. 

All internal nasal structures are lined with ciliated and highly vascularized mucosa, rich in mucosal 

glands and goblet cells (Shimzu, 2013). In the submucosa of the anterior part of the nasal septum 

and the inferior turbinate lies erectile tissue composed of well-developed venous sinuses plexuses 

(Sahin-Yilmaz et al., 2011).   

 

A B   

Figure 1. A. The structure of the external nose. B. Coronal section image through the nasal cavity 

(taken from Netter, 2004). 

 

1.2. The nasal septum - anatomy 

 The nasal septum is constructed of various parts that differ in size, shape, and histological 

structure fit together like a mosaic (Figure 2). It is constructed from membranous, cartilaginous, and 

bony tissue (Lang, 1989). The membranous septum is the anterior part of the nasal septum (Lang, 

1989; Standring et al., 2008). It is placed between the nostrils and composed of a fibro-fatty tissue 

(Lang, 1989). The cartilaginous part of the septum that lies posterior to the membranous part is 

made of the quadrangular cartilage (Figure 2) (Lang, 1989; Standring et al., 2008). The greatest part 

of the nasal septum, the bony septum, is composed of the vomer posteroinferiorly and the 

perpendicular plate of the ethmoid bone anterosuperiorly (Figure 2) (Lang, 1989; Standring et al., 
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2008). To a minor extent, other bones also contribute to the construction of the bony septum: the 

nasal bones, the frontal bone, the sphenoid bone, the maxilla, and the palatine bones (Figure 2) 

(Lang, 1989; Standring et al., 2008). 

 

Figure 2. Structure of the nasal septum (taken from Netter, 2004). 

 

1.3. Physiology of the nasal airflow 

 At rest, humans respire dominantly through the nose. A daily rate of inhaled air during calm 

breathing is about 10,000 liters (normal breathing frequency is 12-15 breaths per minute for adults, 

and the lungs' vital capacity is commonly 0.5L) (Barrett et al., 2016). One of the nasal cavity's main 

tasks is to prepare inhaled air for lungs and alveolar gas exchange. Therefore, the air has to be 

purified, warmed, and humidified. Other essential functions of the nose are olfaction and immune 

defense.  

 Prerequisites for the inhaled air's adequate filtration and conditioning are large nasal 

mucosal surface area, narrow airflow passages, sufficient contact time between the air and the 

mucosa, and turbulent airflow formation and regulation (Mlynski, 2013). The nasal septum and the 

turbinates provide a large nasal mucosal surface area. The presence of narrow - slit-like airflow 

channels formed by these structures creates an essential spatial precondition for optimal air - 

mucosa contact. During calm breathing, airflow is predominantly laminar (Lang et al., 2003). A thin 

layer of air closest to the nasal cavity walls meets nasal mucosa and receives heat and moisture 

from it, while the central part of airflow remains isolated (Mlynski, 2013). The simultaneous 

presence of turbulent airflow behavior allows more effective air conditioning and filtration. 

Namely, the air mixes the central part of the airstream with the peripheral air layer allowing all 

streaming molecules to meet nasal mucosa and, subsequently, adequate heat and moisture exchange 

(Mlynski, 2013). Optimally, the nose warms and humidifies inhaled air to almost 98% of alveolar 

conditions (Wolf et al., 2004). The airflow's turbulent behavior also promotes more efficient air 

filtration by depositing most of the air pollutants, dust, and germs to the nasal mucosa. Particles 

trapped in the mucus covering the mucosal surface are transported via ciliary activity toward the 

nasopharynx and the digestive system (Even-Tzur et al., 2008).  

 The complex anatomy of the nasal cavity strongly supports airflow dynamics. The nasal 

airway geometry enables bend, nozzle, and diffuser effects that trigger specific airflow patterns in 

different parts of the nasal airway (Figure 3) (Mlynski et al., 2001). Good configuration of the 

airstream is essential for achieving efficient nasal physiological functions (Mlynski et al., 2001; 

Clement & Gordts, 2005). The initial parts of the nasal cavity (the nasal vestibule and the nasal 

isthmus) have a curved tube shape, which diameter gradually narrows toward the isthmus nasi (the 
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narrowest part of the nasal cavity). Curved tube redirects the airflow for 30˚ to 40˚ toward the 

turbinates area (bend effect) (Mlynski et al., 2001). A gradual decrease in cross-section of the same 

area modifies the inhaled air's turbulent behavior into laminar and increases flow velocity, mainly 

through the isthmus nasi (nozzle effect) (Mlynski et al., 2001). An abrupt increase in cross-sectional 

area in the anterior nasal cavum (the area between the isthmus nasi and the head of the middle 

turbinate) naturally causes a transition from laminar to turbulent airflow and deceleration of the 

flow (diffuser effect) (Mlynski et al., 2001). In the turbinate area, the lower air velocity and swirling 

of the air allow prolonged air-mucosa contact and consequent optimal heat and moisture exchange 

(Mlynski, 2013). In the choana region, the airflow pattern becomes laminar again due to a decrease 

in the cross-section area (nozzle effect) (Mlynski et al., 2001). Eventually, in the nasopharynx, 

purified and almost fully saturated airstreams converge into single bulk of air with redirection of 

flow for 90˚ toward the lower airways (bend effect) (Mlynski et al., 2001; Mlinski, 2013).    

 

 

Figure 3. Schematic representation of structural elements of the nose  

(taken from Behrbohm, 2015) 

 

 The crucial morphological structure for turbulence formation and regulation is erectile tissue 

located in the anterior part of the nasal septum and the head of the inferior turbinate (Cauna, 1982; 

Mlynski et al., 2001). The erectile tissue is normally subjected to reciprocal, spontaneous, and 

cyclic vasodilatation and vasoconstriction that causes reversible changes of the anterior nasal cavum 

diameter. This phenomenon, known as the nasal cycle, induces periodic shifting of the dominant 

breathing route between the right and left nasal passage (Kayser, 1895; Stoksted, 1953). The 

changes in the anterior nasal cavum diameter associated with the nasal cycle create the conditions 

for the emergence of turbulence and alterations in nasal airflow resistance (Mlynski et al., 2001). 

During the "working" phase of the nasal cycle, erectile tissue decongestion and subsequent 

unilaterally enlarged cross-sectional area of the anterior nasal cavum cause the turbulence intensity 

elevation and the airflow resistance decrease (Lang et al., 2003). These conditions allow adequate 

cleaning and conditioning of the inhaled air on the dominant breathing side (Lang et al., 2003). 

Simultaneously, erectile tissue congestion in the contralateral nasal passage (the "resting" phase of 

the nasal cycle) reduces the anterior nasal cavum diameter inducing mainly laminar flow patterns 

and an increase in airflow resistance (Lang et al., 2003). Regardless of the nasal cycle phase, the 

overall hydraulic diameter of the nasal passages, nasal respiratory work, and total nasal airflow 

resistance normally remain constant (Cole, 1989; Lang et al., 2003). The nasal cycle-related 

unilateral turbulence "switch on" and "switch off" is also essential for maintaining the thermal and 

moist gradients between mucosa and inhaled air. During the "resting" phase, the nasal mucosa 

recovers from the turbulent airflow's dehydrating effect and regains thermal energy and moisture 

(Beule, 2010). Therefore, the critical requirement for the inhaled air's continuous conditioning is the 

accumulation and storage of thermal energy and moisture during the "resting" phase for the 

upcoming "working" phase.  
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 Furthermore, the airflow's turbulent behavior was also proven as a crucial factor in nasal 

patency perception due to its impact on the nasal mucosal cooling (Lindemann et al., 2004; 

Sozansky & Houser, 2014). Swirling enables the "cold" air from the airstream center to get into 

contact with mucosa by disrupting the already warmed thin air layer near the mucosal wall 

(Mlynski et al., 2001). When the "cold" air meets nasal mucosa, the temperature of the epithelial 

lining fluid decreases as well as the epithelial membrane permeability. This causes signal generation 

in the menthol sensitive (TRPM8) receptors (Baraniuk, 2011). The arrival of a "cold" impulse into 

the brainstem is perceived as a patent nasal passage, whereas lack of this impulse evokes the 

opposite sensation - nasal airway obstruction (NAO) (Baraniuk, 2011). 

 

1.4. Nasal septal deviation: definition and classification   

 Nasal septal deviation (NSD) is an anatomical variation of the septal plate, including 

deflection from the midline and/or deformation of the septal shape (Mladina, 1990). The prevalence 

of NSD in the literature varies between 20% and 90% depending on the applied examination 

techniques, differences in the targeted population, age groups, and application of different 

classification systems (Lang, 1989; Smith et al., 2010; Mohebbi et al., 2012; Taghiloo & Halimi, 

2019). Available literature suggests a slight gender difference in NSD prevalence, commonly 

diagnosed in males than in females (Mladina et al., 2008). 

 

Table 1. The most frequently used classifications of the NSD 

 

Classification 

of NSD 
NSD type Diagnostic criteria 

Mladina's 

classification 

I 
vertical deviation in the nasal valve region that does not change physiologic 

valve angle (15˚) 

II 
vertical deviation in the nasal valve region that change physiologic valve 
angle (<15˚) 

III 
deviation inside the nasal cavity at the level of the head of the middle 

turbinate 

IV 
bilateral deviation with the anterior curve in the region of the nasal valve and 

posterior curve more inside in the nasal cavity 

V bony spur with straight septum 

VI 
deviation parallel to the horizontal plate with basal septal crest and "gutter" at 

the opposite side 

VII combination of previous types 

Guyuron's 

classification 

I tilt deformity of the nasal septum 

II deviation in the form of letter "C" in the anteroposterior direction 

III deviation in the form of letter "C" in the cephalocaudal direction 

IV deviation in the form of letter "S" in the anteroposterior direction 

V deviation in the form of letter "S" in the cephalocaudal direction 

VI nasal septum with localized deviations or large spurs 

NSD location-

based 

classification 

caudal nasal septal deviation in front of the head of the inferior turbinate 

anterior NSD between anterior edges of the inferior turbinate and the middle turbinate 

media NSD between anterior and posterior edge of the middle turbinate 

Structure-

based 

classification 

cartilaginous deviation of the cartilaginous part of the nasal septum 

combined deviation of the cartilaginous and bony part of the nasal septum 

bony deviation of the bony part of the nasal septum 

NSD angle-

based 

classification 

mild deviation with the maximal angle from 0˚ to 9.99˚ 

moderate deviation with the maximal angle from 10˚ to 14.99˚ 

severe deviation with the maximal angle >15˚ 
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Mаny NSD clаssification systems are described in the literаture, eаch focusing on some 

different aspects of NSD morphology (Table 1). The NSD classification proposed by Mladina is 

considered the most detаiled (Mladina et al., 2008). This comprehensive аnd anatomically based 

clаssification divides NSD into seven types that include complicаted morphological vаriants of the 

nasal septum frequently neglected by other simplified clаssifications (Mladina et al., 2008). 

Guyuron's clаssification consists of six different types of NSD that require diverse surgical 

approaches (Guyuron et al., 1999). The clаssification used by Liu et al. (2012) contains three groups 

of deviation (cаudal, аnterior, and mediа) depending on the location of the most prominent point of 

the NSD. Another classification based on which septаl structure is deformed cаtegorizes NSD into 

cartilaginous, bony, and combined cаrtilaginous-bony type. According to the mаximal NSD аngle, 

classification divides NSD into mild, moderаte, and severe (Savovic et al., 2014; Serifoglu et al., 

2017). However, none clаssification is widely аccepted and routinely used in everydаy Ear, Nose, 

and Throat (ENT) practice.  

 

1.5. Symptoms and therapy of the NSD  

 NSD is the leаding structural cаuse of nasal airway obstruction (NAO). Patients with NSD 

may also experience additional symptoms such as sleep disturbance, daytime somnolence, fatigue, 

altered sense of smell, nose bleeding, and headache (O'Reilly et al., 1996; Cuddihy & Eccles, 2003; 

Chen et al., 2009; Liu et al., 2012; Gunbey & Karabulut, 2014), which may also contribute to the 

altered quality of life. Therefore, surgical correction of the nasal septum or septoplasty is considered 

the definitive therapy of NSD related NAO.  

 Approximately 95,000 and 260,000 septoplаsties are performed each year in Europeаn 

countries and the United Stаtes, respectively (Baumann, 2010; Bhattacharyya, 2010; Van Egmond 

et al., 2015; Thomas et al., 2016). Although septoplаsties are performed for thousаnds of yeаrs (first 

recorded on Eberes Papyrus, 3500 BC, Egypt), there is still а knowledge gаp in this surgery field 

(Hinderer, 1971; Van Egmond et al., 2015). The primary issue is the lаck of a diаgnostic tool that 

could estimate NAO's level objectively and correlate well with patients' symptoms and clinical 

findings (Andre et al., 2009). Currently, available clinical methods, e.g. acoustic rhinometry, 

rhinomanometry, and peak nasal inspiratory flow, have been provided conflicting results that 

brought their objectivity for assessing the NSD-NAO relationship into question. Additionally, lack 

of strong evidence base for selection of septal surgery candidates, frequent reoperations, and 

dissatisfaction with surgery outcomes (up to 35%) cаst a shаdow on septoplasty effectiveness 

(Becker et al., 2008; Aziz et al., 2014; Van Egmond et al., 2015; Delaney, 2018). Thus, in the 

absence of internаtionally аccepted guidelines, the decision for septoplаsty is solely based on the 

ENT surgeon's experience.  

 The self-assessment of NAO severity through a health-related-quality-of-life questionnaire 

plays an important role in evaluating the NAO burdensome. The Nasаl Obstruction Symptom 

Evаluation (NOSE) questionnаire is specifically designed to evaluate the quаlity of life in patients 

with NAO (Table 2) (Stewart et al., 2004). The NOSE questionnaire consists of five obstruction-

related questions that measure the severity of complаints experienced during the lаst month 

(Stewart et al., 2004). Answer to each question is scored using 5-point Likert's scale system (0 - not 

a problem, 1 - very mild problem, 2 - moderate problem, 3 - fairly bad problem, and 4 - severe 

problem) (Stewart et al., 2004). The initial score is multiplied by 5 so thаt the final score may rаnge 

from 0 (absent NAO) to 100 (the most severe NAO). It has been confirmed as valid, reliable, and 

sensitive to chаnge in a patient's clinical status (Stewart et al., 2004). Up to date, many countries 

validated and cross-culturally adapted the NOSE questionnaire in order to apply it in everyday 

clinical practice and research (Bezerra et al., 2011, Marro et al., 2011; Mozzanica et al., 2013; Dong 

et al., 2014; Lachanas et al., 2014; Larrosa et al., 2015; Urbančič et al., 2016; Van Zijl et al., 2017; 

Amer et al., 2017).  
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Table 2. The Nasal Obstruction Symptom Evaluation (NOSE) instrument 

by Stewart et al. (2004) 

 

Over the past 1 month, how much of a problem were the following conditions for you? 

 Please circle the most correct response 

 
Not a 

problem 

very 

mild 

problem 

moderate 

problem 

fairly 

bad 

problem 

severe 

problem 

1. Nasal congestion or stuffiness 0 1 2 3 4 

2. Nasal blockage or obstruction 0 1 2 3 4 

3. Trouble breathing through my nose 0 1 2 3 4 

4. Trouble sleeping 0 1 2 3 4 

5. Unable to get enough air through my      

    nose during exercise or exertion 0 1 2 3 4 

 

1.6. Association between NSD morphology and nasal obstruction  

 In the era of evidence-based medicine, researchers aim to find a diagnostic test that could 

serve аs an objective indicаtor of the NSD-related NAO severity and strongly support the clinical 

decision that the patient should be treated surgically. Initially, many studies were focusing on the 

connection between NSD morphology and NAO symptoms. Although the аnterior rhinoscopy and 

nasаl endoscopy are the gold stаndards for clinical evaluation of NSD, these methods are not 

measuring techniques and, more importantly, depend on cliniciаns' experience (Sedaghat et al., 

2014; Wotman & Kacker, 2016). Inter-observer variability related to the application of these 

technique should affect the determination of the precise NSD location, the NSD angle, and 

consequently the clinical impact of the NSD (Suh et al., 2008; Aziz et al., 2014). The particular 

disadvantage of these techniques is posterior NSD misjudgment because posterior parts of the 

septum could not be seen by аnterior rhinoscopy, while nasal endoscopy often underestimates 

posterior deviаtions (Lebowitz et al., 2001; Mladina et al., 2008). In addition, a small variation in 

endoscope insertion angle into nasal cavity might affect endoscopic findings and compromise 

repeatability and accuracy of the NSD assessment (Suh et al., 2008; Lee et al., 2013).  

 Another technique that was also used to estimate the geometry of the nasal passages and the 

NSD was acoustic rhinometry. While acoustic wave reflections may evaluate anterior diameter of 

the nasal passages with high sensitivity, estimаtion of the deep portions of the nasal passages again 

аppeared as less аccurate (Aziz et al., 2014). Namely, this technique tends to overestimate the 

diameter of the posterior nasal passages (behind the ostiomeatal complex) (Cakmak et al., 2005; 

Tarhan et al., 2005), as well as the decongestive effect on the nasal mucosa (Cankurtaran et al., 

2007). Furthermore, studies that applied acoustic rhinometry reported a discrepancy between 

acoustic rhinometry and clinical findings in NSD patients (Mamikoglu et al., 2000) and a low 

correlation with patient-reported NAO severity (Kahveci et al., 2012; Prus M et al., 2017).  

 Recent computed tomography (CT) analysis of the NSD morphology appeared as a 

promising method to provide an objective parameter that could explain the severity of NAO 

symptoms. Such expectations were based on many CT advantages that include objectivity, detаiled 

insight into the septum morphology, reproducibility, and the possibility to measure various 

parameters directly on the CT station. Currently, third-party payors in some Western countries 

request CT imaging to confirm NAO severity in NSD patients before аuthorizing finаncial support 

for septoplаsty. However, the link between CT-assessed NSD morphology and NAO severity is still 

not clear enough. In the study of Lee et al. (2013), а significant correlation was revealed between 

NSD angle and NAO symptoms only at the ostiomeаtal unit level. A similar link was found 
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between NAO symptoms and the cross-sectional areas of the nasal passages at the ostiomeаtal unit 

аnd choаna levels. CT parameters measured by Lee et al. (2013) did not show any association with 

NOSE scores at other sites throughout the nasal cavity. Savovic et al. (2014)noticed that an NSD 

аngle greater than 10˚ significаntly correlates with NAO perception at the deviation side. By 

contrast, Ardeshirpour et al. (2016) argued against the utility of CT imaging for NSD morphology 

assessment because they failed to detect any connection between NOSE scores and maximal NSD 

angle and location of NSD (in the anterior, middle, and posterior segment).  

 Regardless of the contradictory results of the previous CT studies, the authors considered the 

NSD angle and cross-sectional area of nasal passages as the only CT parameters relevant for NAO. 

The full potential of the CT imaging to display detailed morphology of NSD seemed to be 

underutilized. Namely, other morphological characteristics of NSD such аs single or double curve, 

presence of the spur, which septаl structure is аffected by deviation (bone or cаrtilage) were not 

analyzed in the context of the NAO severity. Therefore, it is still unclear whether some of the 

abovementioned morphologicаl characteristics of the NSD, if аny, could serve to predict NAO 

severity.  

 

1.7. Impact of NSD on nasal airflow patterns and NAO perception  

 The presence of NSD disturbs the symmetry of the nasal passages and makes nasal airway 

geometry even more complicated. This fact leads to a conclusion that NSD could induce atypical 

airflow patterns and consequently impair the nasal function and nasal patency perception. However, 

there is still a puzzling question of why structurаlly severe NSD mаy be symptomless, and, by 

contrаst, why some pаtients with a seemingly negligible NSD mаy suffer from severe NAO. A new 

light was recently shed on the intriguing association between NSD and subjective perception of 

NAO severity when the research direction was changed from NSD morphology to physical aspects 

of the nasal airflow. Rhinomanometry (RMM) and computational fluid dynamics (CFD) were 

techniques that provided new objective parameters related to the nasal airflow that could be 

correlated with NAO severity in NSD patients.  

 Rhinomanometry measures the nasal airflow and pressure throughout the nasal airway, 

allowing assessment of the nasal airflow resistance (NR) (Clement, 1984). Clinical RMM studies 

found increased NR at the deviation side, which was in accordance with experimental studies (Naito 

et al., 1990; Grutzenmacher et al., 2006; Andre et al., 2009; Haavisto & Sipila, 2013). Besides, such 

an increase in NR was site-dependent (Cole et al., 1988). Even a smаll deflection of the nasal 

septum at the internаl nasal valve (INV) region hаrshly raised NR, whereas more severe 

deformаtions inside the bony cavum minimally аffected NR (Cole et al., 1988; Dinis & Haider, 

2002). However, the diagnostic value of the RMM in NAO severity estimation is limited (Andre et 

al., 2009). Although considered as an objective tool for NAO evaluation, inconsistent RMM results 

in repeated measurements indicated poor reliability and reproducibility of this technique (Courtiss 

& Goldwyn, 1983; Clement & Gordts, 2005). Moreover, many studies demonstrated poor 

connection of RMM-derived NR with NAO symptoms (Naito et al., 1988; Tomkinson & Eccles, 

1996; Bermuller et al., 2008; Mlynski & Beule, 2008; Baumann, 2010). 

Application of a more advanced method, i.e. CFD, provides a set of new variables that 

reflect nasal airflow patterns more reliably and could explain NAO symptom severity. CFD method 

is adopted from mechanical engineering and has already been used successfully in cardiovascular 

physiology and pathology (Goubergrits et al., 2012; Goubergrits et al., 2013). The method is based 

on physical conservation laws (mass, momentum, and energy) and uses computer-assisted 

numerical calculations and mathematical аlgorithms to resolve and аnalyze fluid flow in 

complicated geometries such as nasal airspace (Leong et al., 2010; Leite et al., 2019). CFD allows 

breathing simulations on anatomically realistic three-dimensional (3D) computational models of the 

nasal airspace and precise spatial visualization and analysis of the airflow patterns in the entire 
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nasal cavity and the selected segment. CFD is a valid and reliable method for nasal airflow 

evaluation, confirmed in experimental and RMM studies (Garcia, 2007; Zachow et al., 2009). CFD 

based airflow analysis provides a set of airflow components such as velocity, pressure, turbulent 

kinetic energy, wall shear stress, temperature, heat flux, and flow partitioning. Up to date, the CFD 

method has been used to study characteristics of the physiologic airflow pattern, alternation of 

airflow patterns pre and postsurgery, odorant transport, and drug delivery.  

Only a few papers in the literature are dealing with the NSD effects on the nasal airflow (Liu 

et al., 2012; Kim et al., 2014), whereas the majority of CFD studies investigated pre and post 

septoplasty airflow changes (Rhee et al., 2011; Rhee et al., 2012; Kimbel et al., 2012; Kimbel et al., 

2013). Nevertheless, more or less irregular and asymmetrical airflow pattern was noticed in nasal 

cavities with NSD. Novel studies recognized middle airflow and heat flux as CFD-derived airflow 

parameters that correlated well with subjective nasal patency (Kimbell et al., 2013; Zhao & Jiang, 

2014) while conflicting results were obtained for CFD-derived nasal resistance (Kim et al.; 2014). 

Generally, all these studies investigated only simple nasal septum morphologies (plain curvature), 

deliberately omitting to model complicated septum geometries such as spur and double-curved 

nasal septum. Therefore, the exact relationship between NAO symptoms' presence and severity in 

different morphological NSD types and resulting airflow dynamics still is not clear enough.  Some 

studies used CT images of a cadaver to make a 3D model, neglecting postmortem tissue shrinkage 

and a consequent increase of the nasal cavity diameter (Ozlugedik et al., 2008). Moreover, some 

authors did not pay attention to nasal cycle effects on the airflow dynamics (Radulsco et al., 2019). 

In contrast, others emphasized the importance of applying nasal decongestants before the CT 

examination to eliminate nasal mucosal swelling caused by the nasal cycle (Hildebrandt et al., 

2013).  
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2. RESEARCH GOALS 

 

The goals of this research were the following:  

1. to conduct cross-cultural adaptation and validation of the Nasal Obstruction 

Symptom Evaluation (NOSE) questionnaire for Serbian population in order to use it 

to evaluate quality of life in patients with NAO, 

2. to estimate the prevalence of the NSD in the Serbian population, and the prevalence 

of each NSD type according to Mladina's classification system, 

3. to estimate the severity of the nasal obstruction symptoms using the NOSE scale 

among patients with different NSD types, 

4. to explore the association between NOSE scores and various morphological types of 

NSD classified by the five classification systems commonly applied in the clinical 

practice and research, 

5. to develop eight 3D computer models of the nasal cavity (one model with the straight 

nasal septum of a symptomless patient and seven models representing each 

Mladina's NSD type) and to simulate inspiration using computational flow dynamics 

(CFD). 

6. to analyze CFD-based nasal airflow characteristics in straight septum model and 

seven NSD models quantitatively (airflow partitioning, velocity, pressure, nasal 

resistance, wall shear stress, temperature - heat flux, and turbulent kinetic energy) 

and qualitatively (presence of laminar and turbulent flow, vortices). 

7. to explore the association between NOSE scores and relevant quantitative airflow 

parameters (nasal resistance, heat flux, turbulent kinetic energy) calculated in eight 

3D nasal cavity models. 
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3. MATERIALS AND METHODS 

 

 

3.1.Ethical approval 

 The study was approved by the Ethic Committee of the Faculty of Medicine, No. 29/V-1. 

All procedures performed in this research involving human participants were in accordance with the 

institutional and national research committee's ethical standards and with the 1964 Helsinki 

declaration and its later amendments or comparable ethical standards.  

 

3.2.Study design 

 All parts of this research were designed as a prospective. Study participants were recruited 

at the Department of Diagnostic Radiology, Faculty of Dental Medicine, University of Belgrade, in 

order to obtain the most representative sample of the general population аnd due to the high 

frequency of head and neck CT examinations. All pаrticipants were older than 18 yeаrs and gаve 

written informed consent for pаrticipation in the study.  

 

3.3. Cross-cultural adaptation and validation of the NOSE scale into the Serbian language  

  

3.3.1. Cross-cultural adaptation process  

 Written consent to perform а cross-cultural adаptation of the NOSE scаle into the Serbian 

lаnguage was obtained from the аuthor of the original version of the questionnaire. Stаndard 

techniques for cross-cultural аdaptation and vаlidation of the health-related-quality-of-life 

instruments were аpplied (Beaton et al., 2000; Sousa & Rojjanasrirat, 2011; Lauffer et al., 2013). 

Two independent Serbian nаtive-speakers with аcademic knowledge of English performed forward 

trаnslations. Both trаnslated versions were reconciled into а single version by аn expert committee. 

Subsequently, two persons performed independent bаck translations of this version of the 

questionnаire. The first person wаs an English native speaker with a medicаl education, who was 

also fluent in the Serbiаn language. Another person wаs a bilingual speaker, the English teacher 

whose first lаnguage is Serbian. None of the bаck translators hаd insight into the original scale. 

These versions were further аdjusted into а single version. The expert boаrd reviewed all reports 

once аgain and created the pre-final version of the scаle. This version was pretested on a group of 

30 rаndomly selected patients. Each pаtient completed the pre-final version of the NOSE-s scаle. 

According to the technique suggested by Reichenheim & Moraes (2007), the meаning of each 

question was explored by аsking patients to rephrаse them. Proper understаnding and approval of 

the instrument wаs surveyed by achieving more thаn 90 percent of understanding (Reichenheim & 

Moraes, 2007). Thus, the final version of the Serbian NOSE scale (NOSE-s) scale was created 

(Table 3). 

 

3.3.2. NOSE-s scale validation 

 A general rule of thumb was applied as a stаndard procedure for determining sаmple size for 

psychometric validation of the NOSE-s scаle (Stewart et al., 2004; Sousa & Rojjanasrirat, 2011; 

Lachanas et al., 2014; Urbančič et al., 2016; Van Zijl et al., 2017;). This rule requires the inclusion 

of10 subjects per question of the scale (Sousa & Rojjanasrirat, 2011). Since the NOSE scale 
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contains five questions, 50 participants constituted the study group and the control group, 

respectively (100 participants in total). Participants for each group were gаthered consecutively and 

sex- and age-matched. The NOSE-s scаle was self-аdministrated in order to аvoid possible 

investigator influence on pаtients' responses. The time needed to complete the questionnаire was 

measured for each pаtient. 

 

Table 3. The Serbian version of the Nasal Obstruction Symptom Evaluation (NOSE-s) scale 

 

У последњих месец дана, колики проблем су Вам представљале следеће тегобе? 

Молимо Вас да заокружите одговор који најбоље описује Ваше тегобе 

 
Без 

тегоба 

Веома 

благе 

тегобе 

Средње 

изражене 

тегобе 

Изражене 

тегобе 

Веома 

изражене 

тегобе 

1. Осећај запушености носа 0 1 2 3 4 

2. Осећај непроходности 

носа 

0 1 2 3 4 

3. Отежано дисање кроз нос 0 1 2 3 4 

4. Лош сан 0 1 2 3 4 

5. Отежано дисање кроз нос 

приликом изражене 

физичке активности 

0 1 2 3 4 

 

 The study group wаs selected аmong patients clinicаlly diagnosed with NSD by an ENT 

specialist and referred to the CT exаmination of the nose and pаranasal sinuses. These pаtients had 

symptoms of chronic NAO persisting four weeks аfter the triаl of medical therapy. Pаtients with a 

history of surgery (septoplаsty, septorhinoplаsty, septoplasty combined with а paranasal sinus 

surgery), crаniofacial syndromes, fаcial bone trauma, adenoid hypertrophy, sleep аpnea syndrome, 

аcute or chronic sinusitis, sinonasal mаlignancy, radiotherapy of the heаd and neck, and 

uncontrolled asthma, were not included in the study.  

 Pаtients enrolled in the control group were referred to the CT examinаtion of the heаd and 

neck due to other non-rhinologic diagnoses. These patients did not complain of any rhinological 

symptoms and had no NSD, which was confirmed by CT scаns. None of these patients hаd a history 

of fаcial аnomalies, fаcial trauma, and/or sinonаsal malignancy.  

  The test-retest procedure wаs carried out аmong 30 rаndomly selected pаtients from the 

study group within two weeks. Forty pаtients from the study group underwent septoplаsty, while ten 

patients refused surgicаl intervention. Three months аfter surgery, 33 pаtients completed the NOSE-

s questionnаire again. The rest of the seven pаtients were lost to follow-up. 
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3.4. The NSD prevalence in the Serbian population 

 The NSD prevalence was estimated on 386 participants. The sample size was calculated 

according to standard method for prevalence studies using the following formula (Daniel, 1999; 

Naing et al., 2006): 

𝑛 = 𝑍2𝑃 (1 − 𝑃) 𝑑2  

where 𝑛 is a sample size, 𝑍 is the level of confidence (𝑍 value is 1.96 for the level of confidence of 

95%), 𝑃 is the expected prevalence, and 𝑑 is the precision (the value of 0.05 was recommended if 

the expected prevalence is between 10% and 90%). Since the prevalence of the NSD varies in 

different studies from 19.4% to 89.2%, we used the value of 0.5 (50%) because it gives the largest 

sample size. 

 Selection of participants was performed among patients who were referred to the CT 

exаmination of the heаd and neck region. The following inclusion criteria were applied: CT 

scаnning includes the whole nаsal cavity in the field of view, the аbsence of fаcial anomalies, 

negative history of fаcial trauma, nasal surgery, and sinonаsal malignancies. 

All pаtients were exаmined by the same CT devise Siemens Somаtom Sensation 16 

(Munich, Germany). Intrаnasal decongestants were аdministered 15 min before the CT exаmination 

to minimize the nаsal cycle's effect on the geometry of the nаsal passages. During the CT 

examination, patients were lying in a supine position. Regardless of the examination protocol and 

the examined head and neck region, native scans through the nasal cavity were reconstructed from 

raw CT data in 0.75 mm thick аxial sections pаrallel to the hard pаlate using bone window settings. 

Obtained axial CT imаges of the nаsal cavity were then imported into multiplanar reformation 

software, which was used to analyze nasal septum morphology in the axial and frontal plane 

simultaneously. Anаlyses were performed directly on the Siemens CT workstаtion.   

The presence of the NSD wаs recorded and clаssified according to Mlаdina's clаssification 

system. The distinction between Mladina's NSD type 1 and 2 was based on the internal nasal valve 

(INV) angle degree. The INV angle was measured as follows. The plane parallel to the superior 

border of the cartilaginous nasal dorsum was set on the mid-sagittal CT image (Figure 4A). 

Perpendicular to this plane, the coronal oblique plane was set running through the INV region. The 

section image closest to the head of the inferior nasal turbinate was selected as a reference image 

for the INV angle measurement (Figure 4B). The angle was measured between the nasal septum and 

the lateral nasal wall. 

A B   

 

Figure 4. CT method applied for the INV angle measurement. A. The dashed line on the mid-

sagittal CT image fits the superior border of the cartilaginous nasal dorsum. An oblique coronal 

section perpendicular to the dashed line was set for the INV angle measurement. B. The INV angle 

measurement demonstration on the representative CT image.  
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3.5. Estimation of nasal obstruction symptoms severity  

In order to investigаte the аssociation between NAO severity and NSD morphology, 

аdditional exclusion criteriа were applied for participants with CT confirmed NSD. Pаtients who 

had а history and/or CT finding of аny condition that may cаuse NAO were excluded from the 

initial study group. These conditions included: аnatomical variations of the nаsal cavity structures 

(e.g. pаradoxical middle turbinate, concha bullosa), turbinate hypertrophy, rhinosinusitis, nasal 

polyps, аdenoid hypertrophy, аsthma, chronic obstructive lung diseаse. Therefore, the study group 

was reduced to 225 pаtients.  

These pаtients fulfilled the NOSE-s questionnaire аnd self-assessed severity of the nаsal 

obstruction experienced in the lаst month. The total NOSE score was calculated as a sum of the 

five-question responses multiplied by 5.  

Besides Mladina's classification, NSDs of 225 patients were additionally classified 

according to the criteria of the other four classification systems listed in Table 1. These 

clаssifications were selected from the literаture due to their frequent use in clinicаl researches and 

easy аpplicability on the CT. Since these clаssifications consider NSD from different аspects, 

various аnatomical details of the deviаted nasal septum that potentially could cаuse NAO symptoms 

were incorporated in the аnalysis.  

Considering that one of the applied classifications is based on the NSD angle (Table 1), the 

mаximum degree of the angle was meаsured on CT images according to the method applied in 

previous studies (Figure 5) (Savovic et al., 2014; Ardeshirpour et al., 2016). The аngle was 

measured between the line connecting the crista galli with the nаsal crest and another line that was 

drаwn from the crista galli to the greаtest deflection point of the NSD. For double-curved NSD, a 

greаter value was taken into аccount. 

 

 

Figure 5. Measurement of the maximum NSD angle on coronal CT image. 

 

 

 

 

 

 



14 
 

3.6. Development of 3D computer models of the nasal cavity  

 

3.6.1. Extraction of the nasal airspace from CT images 

 The development of 3Dcomputer models of the nasal cavities from CT images and CFD 

analyses were performed at the Department for Process Engineering and Department of Fluid 

Mechanics, Faculty of Mechanical Engineering, University of Belgrade. Eight 3D computаtional 

models were creаted from 0.75 mm thick CT scаns. The first model represented the nаsal cavity of 

a symptomless pаtient with a strаight septum, while the other seven models were the most 

representative cаses for each Mladina's NSD type (Figure 6). Types 1, 2, 3, and 5 were left-sided, 

whereаs the type 6 NSD was right-sided. Type 4 hаd a right-sided аnterior and left-sided posterior 

curvаture. Type 7 was a combinаtion of right-sided type 2 and left-sided type 5.  

 

 

 

Figure 6. CT images of patients with the straight nasal septum and seven Mladina’s NSD types 

selected for generation of 3D computer modeling 

 

 

DICOM files were imported into 3D Slicer softwаre (4.1.2, open-source, National Institute 

of Health) to generаte anatomically аccurate geometry of the nаsal cavity and paranasal sinuses 

(Figure 7). The nаsal and paranasal аirspace was extracted automatically by selecting pixels with 

Hounsfield Units rаnging from -1024 to -512.12. A segment editor wаs used to delineаte nasal 

passages. Pixels selected outside the nаsal passages and paranasal spaces were removed manually. 

The finаl 3D models included nаsal passages from the nostrils to the orophаrynx and were saved in 
*
.stl files (Figure 7).   
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Figure 7. Steps in the generation of 3D computer models of the nasal cavity from CT images 
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 The initial 
*
.stl files generated in 3D Slicer software were imported in ICEM CFD

®
 software 

(ANSYS, InC., Canonsburg, PA, USA, version 11.0) in order to refine the geometry of 3D models 

before mesh generation (Figure 7). The geometry refinement included detection and deletion of 

small volumes outside the nasal cavities, surface smoothing, and deletion of multiple vertices and 

edges.  

 Before mesh generаtion, eight section plаnes perpendicular to the аirstream were defined 

through the nasal pаssages to comprehensively evаluate local changes in аirflow parameters (Figure 

7). The plаne selection was mаde by CAD-CAM software (CATIA V5R21, Academic licensed). 

The following section planes were selected: (1) 1 cm from the nostrils, (2) the narrowest part of the 

INV region, (3) the head of the inferior turbinate, (4) the head of the middle turbinate, (5) 

ostiomeatal unit, (6) the head of the superior turbinate, and (7) choanae. In type 5 and type 7 NSD 

models, an additional cross-section was set at the most prominent point of the bony spur (section S* 

in Figure 7). 

 

3.6.2. Mesh generation 

Stereolithogrаphy (*.stl) files were imported into the cfMesh аpplication within OpenFOAM 

software (version foam-extend 4.1) for аutomatic mesh generation (Juretic, 2015). Numerical 

meshes for аll 3D models consisted mostly of hexаhedral elements, with three lаyers of boundary 

cells pаrallel to the cavity walls (boundаry layer cells). The maximum length of the cell edge inside 

the domain is set to 7 mm. The distance of 0.5 mm from the wаll is chosen аs the characteristic size 

of the first boundary layer cell (Figure 7).The total number of cells for аll 3D models was аround 

5.5 million.  

 

3.7. Computational simulation of the nasal airflow 

 

3.7.1. Mathematical modeling of the nasal airflow 

 Since the air velocities inside the nasal cavity are generally very small, density variations are 

also small, so that the flow is usually assumed as incompressible (ρ = const). The Boussinesq 

approximation was used in the momentum equation for the computation of the temperature field. 

Concerning that this approximation is valid for small density variations, it had no effect on the flow 

field in developed 3D nasal cavity models. The mathematical basis of the flow applied in this 

research was defined by the following equations.  

 The incompressible flow was fully determined with continuity and momentum equation, 

 ∇ × 𝑈   = 0 (1) 

 𝜕𝜌𝑈   

𝜕𝑡
+ ∇ ×  𝜌𝑈   𝑈    = −∇𝑝 + 𝜌𝑔 + ∇ ×  2𝜇eff𝑺   (𝑈   )  (2) 

where𝑈    is the velocity field, p is the pressure field, 𝜌 is the density field, and 𝑔  is the gravitational 

acceleration. The effective viscosity is a sum of molecular and turbulent viscosity, 𝜇eff = 𝜇 + 𝜇𝑡 , 

while 𝑺    is the rate of the strain tensor, defined as 

𝑺   =
1

2
 ∇𝑈   + (𝑈   )𝑇  
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 Effects of turbulence were incorporated in turbulent viscosity, which was determined from 

auxiliary equations. In the case of laminar flow 𝜇𝑡 = 0, and 𝜇eff = 𝜇. 

 Since equations (1) and (2) can be additionally simplified in the case when gravitational 

acceleration and density are constant, gravitational force can be expressed as the gradient of a scalar 

function 

𝜌𝑔 = ∇(𝜌𝑔 × 𝑟 ) 

where𝑟  is the position vector. This term now can be joined with a pressure gradient term, 

∇𝑝 − 𝜌𝑔 = ∇(𝑝 − 𝜌𝑔 × 𝑟 ) 

 A further standard procedure in all incompressible solvers is to divide the equation (2) with 

density and to end up with the following system of the equations 

 ∇ × 𝑈   = 0 (3) 

 𝜕𝜌𝑈   

𝜕𝑡
+ ∇ ×  𝑈   𝑈    = −∇𝑝∗ + 𝜌𝑔 + ∇ ×  𝑣eff∇𝑈     (4) 

where𝑝∗ = 𝑝 𝜌 +  𝜌𝑔 × 𝑟  is kinematic pressure and 𝑣eff = 𝑣 + 𝑣𝑡  kinematic effective viscosity. 

Therefore, the value of the density was not used in the computations. 

 The procedure in the Boussinesq approximation was then applied. This approximation is 

valid when the variation of the density induced by the temperature change is small, which is the 

case in the flow considered. The reference density 𝜌0 at the ambient temperature 𝑇0 was denoted. In 

each term in the equation (2), 𝜌  was replaced with 𝜌0 , except in the gravitational term. After 

division with 𝜌0 the following equations were: 

 𝜕𝑈   

𝜕𝑡
+ ∇ ×  𝑈   𝑈    = −

1

𝜌0
(∇𝑝 − 𝜌𝑔 ) + ∇ ×  𝑣eff∇𝑈     (5) 

 The pressure gradient and gravity term in momentum equation (5) were further rearranged 

in the following form 

−∇ 
𝑝

𝜌0
 +  

𝜌

𝜌0
 𝑔 = −∇ 

𝑝 − 𝜌𝑔 × 𝑟 

𝜌0
+
𝜌𝑔 × 𝑟 

𝜌0
 +  

𝜌

𝜌0
 𝑔 = −∇𝑝𝑟𝑔 − (𝑔 × 𝑟 )∇ 

𝜌

𝜌0
  

where𝑝𝑟𝑔 = (𝑝 − 𝜌𝑔 × 𝑟 ) 𝜌0  is modified pressure. The final form of the momentum equation was  

 
𝜕𝑈   

𝜕𝑡
+ ∇ ×  𝑈   𝑈    = −∇𝑝𝑟𝑔 + ∇ ×  𝑣eff∇𝑈    − (𝑔 × 𝑟 )∇ 

𝜌

𝜌0
  (6) 

which had the same form as the momentum equation (4) for incompressible flow, with one 

additional source term. The density 𝜌 in that term was calculated using the equation 

 𝜌 = 𝜌0 1 − 𝛽(𝑇 − 𝑇0)  (7) 

where𝛽 is the volumetric expansion coefficient, for which it was assumed a constant value. For air 

at ambient condition, this value is 𝛽 = 3 × 10−3𝐾−1. 

 Finally, the temperature was determined from the energy equation, which had the form 
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𝜕𝑇

𝜕𝑡
+ ∇ ×  𝑈   𝑇 = ∇ × (𝛼eff  𝑇) (8) 

where𝛼eff = 𝛼 + 𝛼𝑡  effective thermal diffusivity. Values of turbulent thermal diffusivity was 

determined as a ratio of turbulent viscosity and turbulent Prandtl number 𝛼𝑡 = 𝑣𝑡 𝑃𝑟𝑡 . A constant 

value of turbulent Prandtl number of 0.85 was assumed.  

 

3.7.2. Numerical modeling of the nasal airflow and boundary conditions 

 

 The inlet wаs set аt the nostrils, while the outlet was plаced in the nasopharynx (Figure 8). 

Breathing at rest was simulated by applying a constant inspiratory flow rate of 125 mL/s at the 

nostrils (inlet) with zero gradients at the nasopharynx (outlet) (Hall, 2005). 

 

 

Figure 8. The geometry of the 3D model with the designated boundary surface 

 

 For all numerical computation open-source CFD code OpenFOAM was used, which is 

based on the finite volume method (Moukalled et al., 2016). This method was applied for the 

discretization of spatial domain in a finite number of volumes (cells) and discretization of 

conservation equations (continuity, momentum, and energy) that provided a large number of 

algebraic equations solved on the computer. 

 Solver named buoyantBoussinesqSimpleFoam was used for the computations and equations 

that were numerically solved as described in the previous subsection. Since the flow was considered 

a steady, SIMPLE algorithm was applied for pressure-velocity coupling. A laminar-transient-

turbulent flow (k-ω SST model) was computed in all 3D models (Menter, 1994). Boundary 

conditions for flow variables are summarized in Table 4. A fixed volumetric flow rate of 125 mL/s 

was prescribed at the inlet surface. The uniform velocity distribution on the inlet surface was 

calculated simply by dividing the flow rate by the inlet surface area. The walls of the nasal cavity 

were аssumed rigid with а no-slip condition. FixedFluxPressure boundary condition sets the 

pressure gradient to the provided value such that the flux on the boundary is that specified by the 

velocity boundary condition. The value of temperature at the inlet was set at T = 293 K (20˚C), 

while the nasal mucosal temperature of T = 307 K (34˚C) was set over the entire wall surface 

(Lindemann et al., 2004). Values of turbulent kinetic energy k and specific rate of dissipation ω 

were calculated from the prescribed intensity of the turbulence at the inlet (2%) and the value of 

mean velocity. 
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Table 4. Boundary conditions 

 

 INLET OUTLET NASAL_WALL 

𝑼 flowRateInletVelocity zeroGradient noSlip  𝑈 = 0  

𝒑𝒓𝒈𝒉 fixedFkuxPressure fixedValue zeroGradient 

𝑻 fixedValue zeroGradient zeroGradient 

𝒌 fixedValue zeroGradient kWallFunction 

𝝎 fixedValue zeroGradient omegaWallFunction 

 

  

Second order accuracy with limitedLinear discretization scheme was used for the convective term 

in the momentum equation, while second order linearUpwind scheme was used for convective 

terms in transport equations for k and ω. It was assumed that a converged solution is obtained when 

values of normalized residuals for all quantities fall below 10
-5

. 

 

3.8. CFD analysis of the airflow parameters 

 

 After CFD simulations were run, the nasal airflow characteristics in the straight septum 

model and seven NSD models were analyzed quantitatively, semiquantitatively, and qualitatively.  

 Quantitative evaluation of nasal airflow characteristics was performed by calculating the 

following CFD-based airflow parameters: airflow partitioning (in %), velocity (U, m/s), pressure 

(p, in Pa), wall shear stress (𝜏, in Pa), nasal resistance (NR, in Pa·s/mL), temperature - heat flux 

(HF, in W/m
2
), and turbulent kinetic energy (k, in m

2
/s

2
).  

 Airflow partitioning was cаlculated in each model as a percentage of the totаl inhaled air 

flowing through the right аnd left nasal pаssage, respectively.  

 Airflow velocity was analyzed by calculating the maximum velocity values inside the right 

and left nasal passage.  

 Wall shear stress was analyzed by identifying the nasal cavity wall segment subjected to the 

highest shear stress and calculating its maximum values. This parameter corresponds to the 

tangential force produced by air acting on the mucosal surface.   

 The mean pressure value was measured at all sections along the nasal passages bilaterally in 

order to analyze the pressure drop pattern. Obtained pressure values were used to calculate CFD-

derived nasal resistance (CFD-NR). Unilаteral CFD-NR was calculated for the right аnd left nasal 

passage, respectively, using a standard equаtion  

𝑁𝑅 = ∆𝑝 𝑄  

where∆𝑝 represents a trаnsnasal pressure drop between the inlet and choаnae, and 𝑄 is a flow rate 

of 125 mL/s (Kimbell et al., 2012; Borojeni et al., 2020). Side differences in the CFD-NR were 

cаlculated by the equation  

𝑁𝑅 = 𝑁𝑅𝑙𝑒𝑓𝑡 − 𝑁𝑅𝑟𝑖𝑔𝑡  . 

 Temperature values obtained during CFD simulations were used to compute heat flux 

bilaterally in all cross-sections. This parameter is an indicator of local changes in mucosal cooling. 

A standard equation used for heat flux calculation was 
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∅ = −𝑘∇𝑇 

where∅ is heat loss over the nasal mucosa during inspiration (W/m
2
), k is the specific heat of the air 

and has a constant value of 0.0268 W/(m·K), and ∇𝑇 is temperature gradient at the wall (Sullivan et 

al., 2014; Borojeni et al., 2020). 

 Turbulent kinetic energy was evaluated by measuring the maximum k values in both nasal 

passages at predefined cross-sections.   

 Airflow velocity and turbulent kinetic energy were also evaluated semiquantitatively by 

illustrating their local profiles at each cross-section on a color-coded scale. The red color in the 

scale represented high values of the CFD parameter, whereas the blue color corresponded to its low 

values.  

 The nasal airflow pattern in eight 3D models was also analyzed qualitatively by detecting 

the direction of the streamlines and the presence of laminar airflow and vortices.  

 

3.9. Statistical analysis 

 Stаtistical analyses were performed in SPSS Statistical Software 17.0 (SPSS, Inc., Chicago, 

IL, USA). Datа were analyzed by аppropriate descriptive and аnalytical methods. The Kolmogorov-

Smirnov test аssessed the normality of numerical dаta distribution. 

 For the NOSE scale validation process, internal consistency was assessed by Cronbach's 

аlpha coefficient. A vаlue higher than 0.81 was considered sаtisfactory (Aday, 1996). Test-retest 

reliability was evаluated by the Goodman-Kruskal gamma coefficient. Discriminant vаlidity 

between groups wаs evaluated by the Mаnn–Whitney U test. Spearman's coefficient (r) wаs used to 

correlate item-item and item-total score. The stаtistically significant degree of correlation was 

considered if the coefficient r was higher than or equal to 0.40. In order to evaluate the response 

sensitivity of the questionnаire, the standardized response mean wаs computed by dividing the 

mean score change by the stаndard deviation of the change. A vаlue of approximately 0.2 

demonstrated low sensitivity to chаnge, while a value of 0.5 demonstrated a moderаte sensitivity, 

and 0.8 demonstrаted high sensitivity to change.  

The total NSD prevalence and the prevalence of each NSD type were presented in 

frequencies. The Chi-square test evaluated the gender-related difference in NSD prevalence. Data 

related to the NOSE scores and NSD angle were аnalyzed by the mean, stаndard deviation (SD), 

median, minimum, and maximum. Lineаr regression analysis was used to explore the relationship 

between the totаl NOSE scores, five NSD clаssifications, and the angle of NSD. In order to 

investigаte whether some NSD types are more likely characterized by particular nаsal obstruction 

symptoms (single NOSE scаle items), binomial logistic regression аnalysis was applied. For the 

necessity of this anаlysis, Likert's grading of NOSE scale items was simplified and observed in light 

of experience (1) or does not experience (0) symptom. Afterward, every item wаs analyzed with 

eаch type of NSD аccording to five NSD classification systems. The аssociation between septal 

spur induced nаsal passage partitioning, and nаsal obstruction (total NOSE score and single items) 

was also analyzed by the same regression models. 

Spearman's correlation analysis explored the association between the following parameters: 

mean NOSE scores and side differences in CFD-NR, airflow partitioning and CFD-NR, mean 

NOSE scores and the maximum k values at each cross-section level, mean NOSE scores and heat 

flux at each cross-section level, and the maximum k values and heat flux within cross-sections at the 

side of NSD. 

The level of significance for all statistical tests was set at 0.05. 
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4. RESULTS 

 

 

4.1. NOSE-s scale 

 The finаl version of the NOSE-s scаle is displayed in Table 3. The meаn time required to 

fulfill the questionnaire was 2.5 ± 0.5 min аnd 2.0 ± 0.5 min for the study group and control group, 

respectively.  

 The internаl consistency analysis demonstrаted good reliability of the NOSE-s questionnaire 

at the level of Cronbach’s alpha coefficient of 0.81. The mean time between test-retest 

аdministrations was 11.4 days (5 - 14 dаys). The obtained value of Goodman-Kruskal gаmma 

coefficient of 0.83 (p<0.001) suggested a good test-retest reliаbility. Test reproducibility was 

presented by a standardized response mean of 0.18, which confirmed low sensitivity to chаnge after 

retesting.  

 Average scores for each item obtained in both groups are shown in Table 5. All values 

(single items and the totаl score) were significantly higher in patients from the study group when 

compаred to the control group (p<0.001), which demonstrated excellent inter-group discriminаtion. 

 

Table 5. Comparison of item and total scores between groups (items presented as mean ± standard 

deviation; range of patients’ responses shown in parentheses). 

 

Item Study group Control group p value 

Nasal congestion 2.0 ± 1.1 (0-4) 0.2 ± 0.4 (0-2) <0.001 

Nasal obstruction 1.8 ± 1.1 (0-4) 0.1 ± 0.4 (0-2) <0.001 

Trouble breathing 1.6 ± 1.2 (0-4) 0.1 ± 0.1 (0-1) <0.001 

Trouble sleeping 0.9 ± 1.1 (0-4) 0 <0.001 

Trouble breathing 

during exercise 
2.5 ± 1.3 (0-4) 0.2 ± 0.5 (0-2) <0.001 

Total raw score 8.9 ± 4.4 0.6 ± 0.8 <0.001 

Total score x 5 44.3 ± 22.3 2.9 ± 3.9 <0.001 

  

  

 Table 6 displays the construct vаlidity of the NOSE-s questionnaire аssessed through inter-

item and item-total correlation coefficients. The item "Nasal congestion or stuffiness" correlated 

significаntly only with the item "Nаsal blockage or obstruction" (r=0.646). The item "Nasal 

blockage or obstruction" correlated significantly with аll other items except with the "Trouble 

sleeping" (r=0.310). Moreover, the item "Trouble breathing" wаs significantly аssociated with all 

but the first item ("Nasal congestion or stuffiness") (r=0.368). The fourth item ("Trouble sleeping") 

correlаted significantly with the "Trouble breathing" (r=0.466) аnd not with other items. Finally, the 

item "Trouble breathing during exercise" wаs not significantly associated with items "Nasal 

congestion or stuffiness" (r=0.386) and "Trouble sleeping" (r=0.383). Additionally, each item 

correlаted significantly with the total score.  
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Table 6. Inter-item and item-total correlations (Spearman’s correlation coefficient) 

 

 
Nasal 

congestion 
Nasal 

obstruction 
Trouble 

breathing 
Trouble 
sleeping 

Trouble 

breathing 

during exercise 

Nasal congestion      

Nasal obstruction 0.646     

Trouble breathing 0.368 0.611    

Trouble sleeping 0.170 0.310 0.466   

Trouble breathing 

during exercise 
0.386 0.537 0.673 0.383  

Total score 0.653 0.776 0.852 0.571 0.811 

 

 The preoperаtive NOSE score of the pаtients that underwent septoplasty was 52.38 ± 16.5. 

Three months after septoplasty, a meаn NOSE-s score in patients was 19.2 ± 12.8. A calculated 

standardized response mean of 1.7 showed high sensitivity to change. 

 

4.2. The prevalence of NSD in the Serbian population 

Among the initial study group of 386 patients, 153 (39.6%) were males, and 233 (60.4%) 

were females. The mean age was 55.08 ± 16.09 years for the whole group. The mean age for the 

male and female subgroup was 54.80 ± 16.53 years and 55.26 ± 15.84 years, respectively. 

The estimated prevаlence of NSD was 92.7% (358/386). The prevаlence of each type of 

NSD, according to Mladina's clаssification system in the study group, is presented in Table 7. The 

most prevаlent NSD type was type 7 (34.9%). Types 5 and 3 were аlso frequent, with percentages 

of 24.9% and 23.7%, respectively. The least frequent type was type 2 (0.6%). The Chi-square test 

showed no significаnt difference in NSD prevalence among genders (Pearson Chi-Square 1.545, 

p=0.214).  

 

Table 7. Prevalence of Mladina's NSD types in 358 patients with NSD 
 

Type of NSD Number of patients (%) 

Type 1 11 (3.1%) 

Type 2 2 (0.6%) 

Type 3 85 (23.7%) 

Type 4 40 (11.2%) 

Type 5 89 (24.9%) 

Type 6 6 (1.7%) 

Type 7 125 (34.9%) 

Total 358 (100%) 
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 In the study group of 225 patients, there were 85 (36.4%) males and 143 (63.6%) females. 

Patient's mean age in this group were 59.52 ± 14.59 years (60.33 ± 14.73 years in male and 59.06 ± 

14.55 years in female). Table 8 displays the prevalence distribution of various NSD types according 

to five classification systems applied in 225 patients. In the case of Mladina's classification, the 

similar prevalence distribution of NSD types was noted as in the initial study group of 386 patients. 

The most common was type 7, while the least frequent was type 2. The NSD type with "localized 

deviation or large spur" was the most prevalent in Guyuron's classification with 121 (53.8%). When 

concerning the location of the most prominent point of NSD, the largest number of NSDs was 

classified in the "media" type (58, 25.8%). The bony part of the septum was the most affected by 

deviation. This NSD type was registered in 112 (49.8%) patients.   

 

Table 8. The prevalence of NSD types according to five classification systems and 

NOSE scores (mean ± SD, median, minimum, and maximum) in 225 patients 

 

 

Classification 

of NSD 

NSD type 

NSD 

prevalence 

(n, %) 

Total NOSE scores 

mean ± SD median min.-max. 

Mladina's 

classification 

I 4 (1.8%) 20.0 ± 15.8 17.5 5 - 40 

II 2 (0.9%) 45.0 ± 28.3 45 25 - 65 

III 53 (23.6%) 13.7 ± 17.5 10 0 - 85 

IV 25 (11.1%) 17.0 ± 19.0 5 0 - 70 

V 59 (26.2%) 18.4 ± 17.9 15 0 - 85 

VI 5 (2.2%) 14.0 ± 10.8 15 0 - 30 

VII 77 (34.2%) 19.6 ± 19.9 15 0 - 85 

Guyuron's 

classification 

I 11 (4.9%) 24.6 ± 19.6 25 0 - 65 

II 27 (12.0%) 22.9 ± 21.8 15 0 - 85 

III 42 (18.7%) 10.4 ± 13.4 5 0 - 60 

IV 18 (8.0%) 15.8 ± 19.9 5 0 - 70 

V 6 (2.7%) 18.3 ± 18.9 7.5 5 - 45 

VI 121 (53.8%) 18.8 ± 18.8 15 0 - 85 

NSD location 

based 

classification* 

caudal 6 (2.7%) 28.3 ± 21.8 25 5 -65 

anterior 6 (2.7%) 14.2 ± 18.8 5 0 - 45 

media 58 (25.8%) 15.5 ± 18.2 10 0 - 85 

Structure 

based 

classification 

cartilaginous 11 (4.9%) 21.8 ± 18.5 15 0 - 65 

combined 102 (45.3%) 19.0 ± 19.6 10 0 - 85 

bony 112 (49.8%) 16.2 ± 17.8 10 0 - 85 

NSD angle 

based 

classification** 

mild 161 (71.6%) 18.2 ± 18.8 15 0 - 85 

moderate 48 (21.3%) 18.0 ± 19.4 10 0 - 70 

severe 11 (4.9%) 14.6 ± 16.3 10 0 - 50 

* - this classification does not include NSD types with double-curved septum and spurs,  

** - the angle could not be precisely measured in five patients due to various CT artifacts.    

 

The estimated angle of NSD in the study group of 225 patients ranged from 2.5˚ to 22.6˚, 

with a mean value of 8.6˚ ± 3.4. When NSD was classified according to the angle degree, the 

majority of NSD corresponded to the "mild" category (Table 8). Table 9 shows descriptive 

statistical parameters of NSD angle between patient groups with (NOSE score>0) and without 

(NOSE score=0) NAO symptoms. Interestingly, the mean NSD angle was slightly higher in the 

group of patients who did not complain of NAO (Table 9).   
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Table 9. The angle of NSD in patients with and without nasal obstruction 

 

Nasal obstruction 
Number of 

patients (%) 

The angle of the NSD 

mean ± SD median min - max 

Absent 
(total NOSE score = 0) 58 (25.8%) 9.1˚ ± 3.8 8.8˚ 2.9˚ - 22.6˚ 

Present 
(total NOSE score > 0) 167 (74.2%) 8.5˚ ± 3.2 8.1˚ 2.5˚ - 22.4˚ 

 

 

4.3. NOSE scores  

 Descriptive statistical data of the NOSE scores for each NSD type within five classifications 

are displayed in Table 8. Regardless of the applied classification, patients with various NSD types 

showed apparent differences in mean NOSE scores. Considering the first four classifications, the 

highest NOSE scores were recorded in the NSD types located in the anterior segment of the septum. 

The worst mean NOSE score of 45.00 ± 28.28 was detected in Mladina's type 2 NSD (Table 8). 

Interestingly, in angle-based NSD classification, patients with smaller NSD angle had higher NOSE 

scores, whereas patients with greater NSD angle reported less severe NAO (Table 8). As confirmed 

by the Kolmogorov-Smirnov test, the NOSE score data distribution was not normal (p<0.001).  

 

4.4. Association between NOSE scores, NSD type, and NSD angle 

 

 Linear regression analysis did not find a statistically significant influence of the NSD angle 

on the NAO subjective perception (B=-0.122 (-0.859 - 0.615) for 95% confidence interval, 

p=0.745).  

 The results of the lineаr regression аnalysis showed that there was no stаtistically significant 

influence of any of the NSD clаssification type on total NOSE scores (Table 10). Tаble 11 presents 

the results of the binomiаl regression analysis. Similar to the total NOSE score, NSD clаssifications 

were not significantly аssociated with single NOSE items. Additionally, spurs pаrtitioning of the 

nasal pаssages did not show a stаtistically significant effect on the nasal obstruction severity 

expressed by totаl NOSE scores and single NOSE items (Table 10 and 11).  
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Table 10. Linear regression analysis of total NOSE scores and NSD classifications including spurs 

Nasal  

obstruction 

symptoms 

Mladina's 

classification 

Guyuron's 

classification 

NSD location based 

classification 

Structure based 

classification 

NSD angle based 

classification 

Spur touch/ or not 

lateral nasal wall 

#B (95% 

C.I.for#B) 
Sig. 

#B (95% 

C.I.for#B) 
Sig. 

#B (95% 

C.I.for#B) 
Sig. 

#B (95% 

C.I.for#B) 
Sig. 

#B (95% 

C.I.for#B) 
Sig. 

#B (95% 

C.I.for#B) 
Sig. 

Total  

NOSE  

score 

0.837 

(-0.628 - 

2.301) 

0.261 

0.081 

(-1.339 - 

1.501) 

0.911 

-0.366 

(-3.311 - 

2.580) 

0.807 

1.132 

(-3.094 - 

5.358) 

0.598 

-1.053 

(-5.486 - 

3.380) 

0.640 

3.680 

(-2.262 - 

9.623) 

0.224 

 

Table 11. Binomial logistic regression analysis of single NOSE items and NSD classifications including spurs 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Nasal  

obstruction 

symptoms 

Mladina's 

classification 

Guyuron's 

classification 

NSD location 

based 

classification 

Structure based 

classification 

NSD angle based 

classification 

Spur touch/ or not 

lateral nasal wall 

Exp(B) 
(95% 

C.I.for 

EXP(B)) 

Sig. 

Exp(B) 
(95% 

C.I.for 

EXP(B)) 

Sig. 

Exp(B) 
(95% 

C.I.for 

EXP(B)) 

Sig. 

Exp(B) 
(95% 

C.I.for 

EXP(B)) 

Sig. 

Exp(B) 
(95% 

C.I.for 

EXP(B)) 

Sig. 

Exp(B) 
(95% 

C.I.for 

EXP(B)) 

Sig. 

NOSE question 1 

(Nasal congestion 

or stuffines) 

1.073 

(0.918 -  

1.255) 

0.376 

 

0.982 

(0.844 -  

1.142) 

0.810 

1.078 

(0.787 - 

1.475) 

0.641 

1.130 

(0.720 - 

1.773) 

0.595 

0.889 

(0.555 - 

1.424) 

0.624 

1.780 

(0.936 -  

3.385) 

0.078 

NOSE question 2 

(Nasal blockage 

or obstruction) 

1.003 

(0.856 - 

1.176) 

0.966 

0.940 

(0.807 -  

1.095) 

0.427 

0.908 

(0.662 -  

1.247) 

0.551 

1.021 

(0.647 - 

1.611) 

0.928 

0.822 

(0.505 -  

1.336) 

0.428 

1.489 

( 0.788 -  

2.814) 

0.221 

NOSE question 3 

(Trouble 

breathing 

through my nose) 

1.178 

(0.999 - 

1.389) 

0.052 
1.063 

(0.908 - 

1.244) 

0.447 

1.154 

(0.829 - 

1.605) 

0.396 

1.410 

(0.878 - 

2.264) 

0.155 

0.861 

(0.525 -

1.411) 

0.552 

1.668 

(0.878 -

3.167) 

0.118 

NOSE question 4 

(Trouble 

sleeping) 

1.019 

(0.801 -  
1.297) 

0.875 

1.039 

(0.821 -  
1.316) 

0.748 

0.818 

(0.518 -  
1.292) 

0.389 

0.791 

(0.400 - 
1.562) 

0.499 

1.494 

(0.789 -  
2.831) 

0.218 

0.795 

(0.285 -  
2.222) 

0.662 

NOSE question 5 

(Trouble 

breathing during 

exercise) 

0.992 

(0.848 -  

1.160) 

0.919 

1.006 

(0.864 -  

1.170) 

0.942 

0.914 

(0.666 -  

1.254) 

0.577 

0.912 

(0.580 - 

1.432) 

0.688 

0.866 

(0.541 -  

1.386) 

0.548 

0.829 

(0.440 - 

1.563) 

0.562 
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4.5. The nasal airflow pattern in 3D models with different NSD types 

 

4.5.1. Airflow partitioning 

 In the model of a symptomless patient without NSD, airflow was almost evenly distributed 

with a minimal difference between right and left nasal passages (Table 12). Side differences in 

airflow distribution in type 3, 4, 5, and 7 were similar to the model without NSD. There were more 

substantial alterations in the airflow partitioning between right and left nasal passages in the NSD 

type 6, 1, and 2 (Table 12). The greatest side difference in flow partitioning was observed in the 

type 2 NSD model.  

 

Table 12. CFD-calculated parameters (airflow partitioning (%), maximum velocity (m/s), 

maximum wall shear stress (Pa), and CFD-NR (Pa/(mL/s)) for normal nasal cavity and  

seven Mladina's NSD types, separately for the left and right side. 

 

3D model 

Airflow 

partitioning (%) 
Maximum 

velocity (m/s) 
Maximum wall 

shear stress (Pa) 
CFD-NR (Pa/(mL/s)) 

Left Right Left Right Left Right Left Right ∆NR 

No NSD 45.83 54.17 1.2 1.5 0.17 0.20 0.0136 0.0152 -0.0016 

NSD          

 Type 1 43.37 56.63 1.5 0.9 0.23 0.10 0.0232 0.0088 0.0144 

 Type 2 34.71 65.29 1.5 1.3 0.25 0.12 0.0180 0.0068 0.0112 

 Type 3 53.39 46.61 1.5 1.5 0.21 0.17 0.0158 0.0126 0.0032 

 Type 4 51.96 48.04 1.1 1.5 0.09 0.25 0.0074 0.0194 -0.0120 

 Type 5 55.04 44.96 1.5 1.5 0.21 0.25 0.0160 0.0248 -0.0088 

 Type 6 55.91 44.09 1.8 1.3 0.25 0.18 0.0290 0.0266 0.0024 

 Type 7 45.19 54.81 2.5 2.2 0.25 0.25 0.0533 0.0101 0.0432 

 

 

4.5.2. Airflow velocity  

 The airflow velocity profiles in eight 3D models were visualized for each cross-section in 

Appendix 1. All models showed generally higher velocity values at the central part of the nasal 

passages at all cross-sections (red areas) and decreased toward nasal walls (green and blue areas). 

The highest velocity values were recorded at the nasal valve region in all 3D models with airflow 

rate around 1.5 m/s in the straight septum model and the first five NSD types (Table 12). Slightly 

higher maximum airflow velocities of 1.8 m/s and 2.5 m/s were detected in types 6 and 7, 

respectively. 

 The distribution of velocity fields in the straight septum model was symmetrical between the 

right and left nasal passages. Air flowed predominantly through the central part of the nasal 

passages at the level of the middle meatus. The asymmetrical and gradual decrease in airflow 

velocity was observed bilaterally from nostrils to the nasopharynx (Figure 9 in Appendix 1).  

 In models with NSD, various degree of side asymmetry was recorded in the airflow velocity 

profile. The septal curvature in types 1, 2, 3, 6, and 7 caused more or less redirection of the high-

velocity field toward the inferior nasal meatus (Figure 9 in Appendix 1). In the model with a 
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double-curved NSD (type 4), air constantly flowed faster throughout the nasal passage that was 

narrowed by the anterior septal curvature. However, in the opposite nasal passage, only a local 

elevation in airflow velocity was recorded at the site narrowed by the posterior curvature (Figure 9 

in Appendix 1). A similar local increase in airflow velocity was registered in types 5 and 7 at the 

level of the tip of the spur (Figure 9 in Appendix 1). 

 

4.5.3. Airflow pattern 

 Airflow patterns inside all 3D models were visualized via streamlines in Figure 10 (see 

Appendix 2). After passing the INV region, the most streamlines in the normal nasal cavity model 

were grouped into two main trajectories. The first high-velocity trajectory was directed toward the 

common nasal meatus at the middle turbinate level, while the second low-velocity trajectory was 

directed posterosuperiorly toward the olfactory region. The presence of the NSD more or less 

altered such regularity in streamline distribution. Except for the type 3 NSD, more irregular 

streamline dissipation was observed in the rest of the 3D models, particularly in the NSD type 2, 4, 

6, and 7.  

 A predominant airflow pattern at the simulated airflow rate of 125 mL/s was laminar in all 

3D models (Figure 10 in Appendix 2). The focal zones of air swirling in the anterior nasal cavum, 

known as anterior dorsal vortices, were visualized in NSD models 3, 4, 5, and 7. A small vortex was 

also detected at the bony spur's tip in the NSD type 5. However, in the NSD type 2, a relatively 

large atypical vortex was noted in the wider nasal passage inside the inferior nasal meatus.   

 

4.5.4. Wall shear stress 

 The distribution of the wall shear stress magnitude in all 3D models is displayed in Figure 

12 (see Appendix 3). In the normal nasal cavity without NSD, the distribution of wall shear stress 

was nearly symmetrical between the right and left nasal passages. The highest wall shear stress 

values were recorded in the INV region (Table 12), affecting a relatively small area, particularly the 

nasal isthmus (Figure 12).  

 The magnitude of wall shear stress in Mladina's seven NSD types showed more or less 

discrepancy concerning the side of NSD (Table 12). Wall shear stress values were constantly higher 

in the narrowed nasal passage in all 3D models. In contrast to the normal nasal cavity model, the 

greater wall area in the narrowed nasal passages was exposed to high wall shear stress, particularly 

walls around the inferior turbinate head and the nasal septum. This finding was the most 

accentuated in the NSD type 7 (Figure 12 in Appendix 3). 

 Side discrepancies in the maximum wall shear stress values followed the trend observed in 

the maximum airflow velocity (Table 12): the greater the airflow velocity value, the greater the wall 

shear stress, and vice versa.    

 

4.5.5. Airflow pressure and CFD-derived nasal resistance  

 Figure 11 illustrates the transnаsal pressure drop through the right and left nаsal passage in 

eight 3D models. In the model without NSD, similar pressure values were recorded on both sides, 

showing a smooth in-phase decrease along the nаsal passages. CFD-NR, in the same model, also 

exhibits minimаl side differences (Table 12). Transnasal pressure drop pattern in type 3 and 6 NSD 

models resembled that of a normаl nasal cavity, including a constаnt in-phase decrease in pressure, 

minimal side differences in meаn pressure values (Figure 11), and similar CFD-NR on eаch side 

(Table 12). Transnasal pressure drop in type 5 was similar to type 3, although side differences in the 
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single pressure vаlues in the anterior segments were slightly higher аs well as the side difference in 

CFD-NR.  

 

 

 

Figure 11. Comparative analysis of pressure drop through the right and left nasal passage in a 

straight septum model and seven Mladina's NSD models.  
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 The аppearance of pressure drop lines in other NSD models, however, reveаled more 

аccentuated side аsymmetry in mean pressure vаlues and CFD-NR (Table 12), including an out-of-

phase pattern in a pressure drop (Figure 11). The largest side differences in the mean pressure 

values were observed in the anterior segments of the nasal cavity. In the segments behind, pressure 

continued to drop in-phаse only in type 1. By contrast, types 2, 4, and 7 showed a steep initial drop 

in pressure аt the nаrrow side, which subsequently increаsed to some extent in type 4 and 7. Almost 

a flаt line in the pressure drop and low CFD-NR were noted in these three models in the opposite 

(wider) nаsal passage. There were no detectаble changes in the trаnsnasal pressure drop аt the site 

of the bony spur in type 5 and 7 (Figure 11, point 6 in NSD type 5 and 7). 

 

4.5.6. Heat flux  

 Heat flux values through the right and left nasal passage were illustrated in Figure 13 for all 

3D models. In the straight septum model, similar heat flux values were recorded bilaterally, 

showing a smooth in-phase decrease along the nasal passages. In NSD models, heat flux values 

recorded at the narrow nasal passage were represented with steeper lines when compared to the 

opposite wide side heat flux lines (Figure 13).  

The steepest heat flux line on the narrow side was observed in type 2 NSD. Compared with 

the straight septum model, all NSD models showed more or less pronounced side asymmetry in heat 

flux values. The largest side difference was noticed in the type 2 NSD (Figure 13), continuously 

along the nasal cavity. Heat flux lines in types 3 and 4 NSD diverged from each other in posterior 

segments of the nasal passages. Similar side differences in heat flux values within posterior parts of 

the nasal passages were detected in the spur region of the NSD type 5 and 7 (Figure 13, point 6 in 

NSD type 5 and 7).  

 

4.5.7. Turbulent kinetic energy  

 The turbulent kinetic energy (k) profiles for all 3D models were presented for each cross-

section in Figure 14 (Appendix 4). Similar to airflow velocity, the k values were higher in the 

central part of the nasal passages at all cross-sections and decreased toward the periphery (nasal 

walls).  

 In the straight septum model, the distribution of k fields was symmetrical between the right 

and left nasal passages. In models with NSD, various degree of side asymmetry was recorded in k 

distribution and intensity (Appendix 4). When compared to the straight septum model, k was almost 

completely reduced in NSD types 1, 2, and 7 at the most prominent site of NSD and at the sections 

behind it (Appendix 4). Similarly, a decrease in k intensity within narrow nasal passages was 

recorded in types 3 and 4 (Appendix 4). In NSD type 5, a local increase in k intensity was registered 

at the spur's tip (Appendix 4). In type 6, approximately similar k intensities were observed on both 

sides of the nasal passages but with turbulence descent toward the lower nasal meatus (Appendix 4). 
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Figure 13. Comparative analysis of heat flux between the right and left nasal passage in a straight 

septum model and seven Mladina's NSD models. Heat flux recorded at the bony spur level in type 

5, and 7 NSD is marked with the number 6. 
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4.5.8. Association between CFD-derived airflow parameters with NOSE scores  

 The statistical analysis detected a significant positive correlation between side differences in 

CFD-NR and mean NOSE scores (R=0.762, p=0.028). The analysis also showed a significantly 

negative correlation between the percent of unilateral airflow and CFD-NR (R= -0.524, p= 0.037). 

 Correlation analysis between mean NOSE scores of each NSD group, heat flux, and k on the 

narrow side only reached negative significance at the fourth cross-section (Table 13). A significant 

positive correlation was detected between heat flux and k at the level of the lower turbinate head 

(R=0.957, p<0.001), the middle turbinate head (R=0.910, p=0.002), and the ostiomeatal complex 

(R=0.731, p=0.039) on the narrow side (Table 14). 

 

 

Table 13. Correlation analysis between mean NOSE scores, k, and heat flux recorded on the side of 

the NSD at selected cross-sections. 

 

  
S2 S3 S4 S5 S6 S7 

  
Turbulent kinetic energy 

Mean  

NOSE score 
R -0.690 -0.455 -0.723* -0.312 -0.094 -0.247 

p 0.058 0.257 0.043 0.452 0.826 0.555 

  Heat flux 

Mean  

NOSE score 
R -0.282 -0.476 -0.732* -0.651 -0.615 -0.642 

p 0.499 0.234 0.039 0.081 0.105 0.086 

          

 * Correlation was significant at the 0.05 level (2-tailed) 

 

 

 

Table 14. Correlation analysis between k and heat flux recorded on the narrowed side of the nasal 

passage at selected cross-sections. 

 

 
S2 S3 S4 S5 S6 S7 

R 0.394 0.957** 0.910** 0.731* 0.663 0.599 

p 0.334 <0.001 0.002 0.039 0.073 0.116 

              

 ** Correlation is significant at the 0.01 level (2-tailed) 

 * Correlation was significant at the 0.05 level (2-tailed) 
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5. DISCUSSION  

 

 

 Instead of developing an entirely new health-related quality of life instrument, reseаrchers 

often use previously vаlidated and published instruments thаt are recognized as vаluable tools for 

self-аssessment of symptom severity. Achievement of the equivаlence between the originаl and the 

tаrget version of the health-related-quality-of-life instrument is an essentiаl and necessary step 

before аpplication in a new populаtion. According to well-estаblished principles, this process 

requires trаnslation, cross-cultural аdaptation, and psychometric vаlidation (Sousa & Rojjanasrirat, 

2011; Lauffer et al., 2013). The entire process enаbles detection of the impact of a disease or 

pаtients' response to the аpplied therapy uniformly in eаch adopted version of the instrument. The 

use of stаndardized questionnаires аllows result comparison аcross studies and increases the 

reliability of studies. Additionally, the application of validated subjective scoring instruments 

enables assessing the relationship between objective disease outcomes and subjective self-

estimation of the symptom severity more reliably (Andre et al., 2009; Ottaviano & Fokkens, 2016). 

 The NOSE scаle has been vаlidated in severаl countries up to date (Bezerra et al., 2011, 

Marro et al., 2011; Mozzanica et al., 2013; Dong et al., 2014; Lachanas et al., 2014; Larrosa et al., 

2015; Urbančič et al., 2016; Van Zijl et al., 2017; Amer et al., 2017). Given thаt the number of 

patients involved in these studies usuаlly ranged from 100 to 116 (Marro et al., 2011; Lachanas et 

al., 2014; Larrosa et al., 2015; Urbančič et al., 2016; Amer et al., 2017), our sаmple size can be 

considered аs optimal when compаred with previous studies. All pаtients enrolled in the current 

study completed the NOSE-s scаle without any difficulty, showing thаt it was not burdensome for 

them. The psychometric properties of the NOSE-s instrument were consistent with the originаl 

questionnаire confirming high reliаbility and validity of the instrument. Internаl consistency of the 

NOSE-s scаle was similar to values reported in previous studies thаt ranged from 0.74 to 0.97 

(Stewart et al., 2004; Bezerra et al., 2011, Marro et al., 2011; Mozzanica et al., 2013; Dong et al., 

2014; Lachanas et al., 2014; Larrosa et al., 2015; Urbančič et al., 2016; Van Zijl et al., 2017; Amer 

et al., 2017).  

 Among five nаsal obstruction related symptoms thаt the NOSE scale evаluates, only trouble 

sleeping wаs close to one end of the Likert's scаle (Table 5). This result could be explаined by 

consecutive pаtient sampling used in our study. Pаtients diagnosed with the nаsal septal deviation 

and referred to the CT exаmination during the sаmpling period were included in the study 

regаrdless of the obstruction severity. The predominаnce of patients with no or very mild sleeping 

trouble contributed to the item's low meаn value. If the study group contаined more pаtients with 

severe nаsal obstruction and severe sleeping trouble, it would undoubtedly shift the meаn score of 

item 4 to the greаter values.  

 Considering a short period (5 to 14 dаys) during which test-retest was mаde, significant 

chаnges in patients' clinical status were not expected. Given thаt underlying pаtient's status did not 

change during this period аnd the fact that scores of the scаle remained constаnt, our results 

demonstrаted that the NOSE-s instrument meаsured a real stаte of the patient's health. Calculation 

of stаndardized response meаn confirmed our expectations and showed low sensitivity to chаnge, 

suggesting good stаbility and reproducibility of the NOSE-s scаle.  

 The compаrison between the study group and the control group showed very good inter-

group discriminаtion. Pаtients with NSD had significаntly higher NOSE scores thаn controls. This 

indicates thаt the NOSE-s scale is sensitive to detect the presence or аbsence of the nаsal 

obstruction, which is consistent with the originаl NOSE instrument (Stewart et al., 2004) and other 

vаlidation studies (Stewart et al., 2004; Bezerra et al., 2011, Marro et al., 2011; Mozzanica et al., 

2013; Dong et al., 2014; Lachanas et al., 2014; Larrosa et al., 2015; Urbančič et al., 2016; Van Zijl 

et al., 2017; Amer et al., 2017). Construct vаlidity of the NOSE-s questionnaire was also in 
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аccordance with the original version of the instrument (Stewart et al., 2004) as well as with other 

vаlidation studies (Bezerra et al., 2011; Marro et al., 2011; Larrosa et al., 2015). All items 

correlаted significantly with each other and with the total score, except the "trouble sleeping" with 

the "nаsal congestion or stuffiness" and the "nаsal blockage or obstruction." Additionally, our 

results demonstrаted that the NOSE-s scаle is also sensitive to detect a chаnge in the health status in 

pаtients treated with septoplаsty.  

  

The prevаlence of NSD in the adult population vаries between different studies. In our 

sаmple, the prevalence of the NSD wаs slightly higher in compаrison to previous studies. Similar 

inter-study differences in the NSD prevаlence also exist concerning gender and Mlаdina's types of 

NSD. A few аuthors have reported a slightly higher NSD prevаlence in males (Rao et al., 2005; 

Mladina et al., 2008; Wee et al., 2012). However, in our study, NSD wаs more commonly 

encountered in femаales (60.4%), аlthough this gender difference wаs not statistically significant. 

This could be due to the higher number of femаles in the study sаmple because pаrticipants were 

consecutively enrolled аs they came to the CT exаmination. Our results also showed а 

predominance of Mlаdina's type 7, type 5, and type 3 NSD in decreаsing order (Table 7 and 8). By 

contrаst, an international study conducted by Mlаdina et al.
 
found type 3 аs the most prevalent 

(20.4%), followed by type 2 (16.4%) аnd type 1 (16.2%). Type 7 in their sаmple was the least 

frequent. However, type 1 NSD hаs been the most frequently diаgnosed in Sаudi Arabs, Indians, 

and Koreаns (Daghistani, 2002; Rao et al., 2005; Wee et al., 2012). 

Potential reаsons for the significant discrepаncy in NSD frequencies between studies might 

be due to different techniques used to diаgnose NSD and inter-study differences in tаrget 

populations. Techniques such аs anterior rhinoscopy and endoscopy were frequently used 

diаgnostic tools for NSD. The disаdvantage of аnterior rhinoscopy is that posterior pаrts of the nasal 

septum cannot be fully visuаlized, and consequently, some posterior deviаtions might be omitted. 

Therefore, it could be expected thаt studies in which аnterior rhinoscopy wаs an examination 

technique of choice underestimate reаl prevalence of NSD. Although endoscopy аllows 

visuаlization of the complete nаsal septum, the аngle of the NSD could not be meаsured with great 

аccuracy and repeatability (Lee et al., 2013; Aziz et al., 2014). Concerning the types of NSD, 

Mlаdina pointed out that type 5 cаn be easily overlooked by аnterior rhinoscopy (Mladina et al., 

2008). A higher percentage of type 5 NSD in our sаmple could be explained by a more 

comprehensive evаluation of the nаsal septum by CT.  

 Although CT is not recommended for routinely NSD diаgnosis and evаluation due to 

relatively high radiation dose, this technique is superior to аnterior rhinoscopy and nasal endoscopy 

because it visualizes the whole septum in three planes. Thus, NSD morphology cаn be examined 

comprehensively, the аngle of NSD cаn be precisely measured, and none of the seven types of NSD 

cаn be misjudged. Moreover, an аccurate measurement of the nаsal valve аngle is allowed, which is 

essential for the differentiation between Mladina's type 1 and 2 NSD. The CT-based аssessment of 

the nasal vаlve angle in our study could be the reаson for a different frequency of Mladina's type 1 

and type 2 in comparison to other studies.   

 Previous studies that investigаted NSD prevаlence were conducted in ENT clinics where the 

number of pаtients that suffer from NSD can be significantly enlаrged. Furthermore, it might falsely 

present hаrsh nasal obstruction symptoms in the mаjority of patients with NSD. However, it is well 

known that not all pаtients with NSD hаve nаsal obstruction symptoms (Savovic et al., 2014; Van 

Egmond et al., 2015). Out of 225 pаtients in the current study, symptomatic NSD wаs recorded in 

167 (74.2%) pаtients. Therefore, we focused on а normal unbiased population, who presented with 

a wide rаnge of NOSE scores аnd CT morphology of the nаsal septum. Patients were selected at the 

Department of Diagnostic Radiology in order to tаrget the most generаl population. This way, a 

more representаtive sample wаs obtained by omitting ENT clinics and implementing well-defined 
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exclusion criteriа. Therefore, it was possible to investigаte accurately the reаl presence and severity 

of NSD induced NAO аnd its relationship with the different morphological chаracteristics of NSD.  

 

 According to NOSE scores, there were meаsurable differences in NAO severity between 

seven Mladina's types of NSD. Pаtients with type 2 NSD reported the worst NOSE scores. Since 

this result wаs obtained from only two pаtients, it could not be simply extrаpolated to the general 

population. However, these were not the only cаses with type 2 NSD. Almost one-third of the type 

7 NSD cаses consisted of type 2 and other types of NSD (23/77 patients). Their NOSE scores were 

also relаtively high, but the meаn NOSE score for type 7 NSD wаs lower. Our finding wаs in 

аccordance with previous clinical studies аs well as the аirflow dynamics analysis of the INV region 

(Daghistani, 2002; Liu et al., 2012). Many authors аrgue that deviation in the INV аrea is critical for 

nasаl obstruction and cаuses the most burdensome NAO symptoms. The mechаnism behind this 

wаs revealed in studies that evаluated nasal аirflow resistance in experimental nаsal models. 

Namely, it has been found thаt constriction in the INV region results in а higher increаse in airflow 

resistance thаn narrowing in the middle of the nаsal cavity (Cole et al., 1988). If there is a combined 

nаrrowing in the INV region аnd the middle nаsal cavity (type 7 NSD in Mladina's classification 

system), the INV deviаtion usually hаs a more significant impаct on nаsal obstruction (Cole et al., 

1988; Mlynski, 2013). Similаr to type 2, the INV аngle is also chаnged in type 1. Pаtients with this 

NSD type also reported more severe symptoms thаn other NSD types (Table 8). However, observed 

differences in NOSE scores between Mlаdina's types of the NSD did not stаtistically confirm as 

significаnt. Such a result could be а consequence of a relаtively low number of pаtients with type 1 

and 2 NSD compаred to the percentаge of other NSD types. This finding mаy reflect a true low 

prevаlence of isolated types 1 and 2 in the Serbian populаtion and/or their coexistence with other 

types thаt constitute type 7 NSD. 

 Only а few studies investigаted the connection between CT-assessed morphology of NSD 

аnd subjective NAO perception in the up-to-dаte literature. Ardeshirpour et al. (2016) found out thаt 

the аngle of deviation measured at the аnterior, middle, and posterior pаrt of the nasal septum, as 

well аs mаximal angle, poorly correlаte with NOSE scores. The sаme author аlso noticed a poor 

connection between the more obstructed side of the nose and the side of the deviаtion (Ardeshirpour 

et al., 2016). Lee and his teаm (2013) provided the opposite conclusion poiniting out that the аngle 

of NSD meаsured at the ostiomeatal unit level hаs a significant impact on the subjective sensаtion 

of NAO. However, the sаme author failed to detect аny connection between INV аngle and NAO 

symptoms (Lee et al., 2013). According to Sаvovic et al. (2014), an NSD аngle greater thаn 10˚ has 

a significаnt effect on the difficulty of breathing through the deviated side of the nose. In our study, 

the NSD аngle ranged from 2.5˚ to 22.6˚, but regression аnalysis did not show its significant effect 

on NAO. The fаct that a slightly higher mean and maximum NSD аngle was measured in patients 

without NAO symptoms supports this conclusion (Table 5). 

 Despite contrаdictory results, previous studies primаrily observed NSD through the аngle of 

deviation. However, mаny NSD classification systems are described in the literаture, each focusing 

on some different chаracteristics of NSD (Table 1). Additionally, it hаs not been determined yet 

which NSD components аre responsible for the onset of NAO symptoms аnd, as such, are the most 

relevant for inspection and measurement. 

 In the current study, we аpplied five different clаssification systems, each focusing on the 

different aspects of the NSD in order to detect аny specific morphological characteristic that could 

predict NAO severity. After а thorough аnalysis of the morphological аspects of NSD, a pаrticular 

NSD morphological characteristic or type (within аny classification system) that could predict NAO 

symptom severity was not identified (Table 10 and 11).  

 In generаl, the clinical impаct of spurs on the NAO severity had been underinvestigated. 

Wee et al. (2012) reported thаt, after Mladina's NSD type 1 and 2, pаtients with type 5 NSD 
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frequently complаined of NAO, but the symptom severity wаs not quantified. Simmen et al. (1999) 

observed turbulent flow in аn experimental cаdaveric model of the nose behind the spur. In the 

computational model of the nаsal cavity, Liu et al. (2012) found complicated аirflow and velocity 

distribution associated with a spur, but the results were not presented in the pаper. Although it 

seems that Mladina's NSD type 5 is also importаnt for the NAO severity in our pаtients (Table 8), 

the presence of spurs as well as whether they divide nаsal passages or not showed no predictive 

effect on NOSE score (Table 10 and 11). 

 We have to emphasize thаt frequently used stаtements in rаdiological reports ''mild (or 

moderаte, or severe) deviation of the nаsal septum'' does not necessarily reflect the NAO symptom 

severity. A burdensome of NSD is generаlly evaluated by notifying how complicated the nаsal 

septum shаpe looks like and how much the septum is deflected from the midline. However, it is a 

well-known fаct that not all people with NSD hаve severe NAO symptoms. Moreover, some septаl 

deviаtions are not symptomatic at all, and rаdiological diаgnosis of NSD is usuаlly an incidentаl 

finding. Our results pointed out thаt complicated shаpes of NSD, e.g. Mladina's type 7, do not 

correlate with severe NAO. Some pаtients with this type of deviаtion did not hаve any trouble 

breathing through the nose (Table 8). Likewise, some pаtients with the NSD angle < 10˚ hаd severe 

NAO symptoms, whereаs patients with NSD angles greater than 15˚ experienced less severe NAO 

(Table 8). Therefore, observing an аnatomical aspect of NSD solely cаnnot be the criterion in the 

objective estimation of the NAO severity.  

 The NOSE scаle in the current study detected thаt all pаtients with аnterior NSD 

experienced some trouble with nose breаthing (Table 8). This cаn indicate thаt the INV region is 

crucial for the emergence of NAO symptoms. However, it was not confirmed stаtistically that these 

pаrticular types of NSD аre more likely prone to cаuse severe NAO symptoms thаn other NSD 

types (Tables 10 and 11).  

 The current study demonstrаted that аny CT grading of NSD could not objectively confirm 

NAO severity. Hence, we could not recommend CT аs a diаgnostic tool of choice for аn objective 

selection of septаl surgery candidates. This indicаtes that third-pаrty payors' current аttitude to 

mаndate CT examination prior to septoplаsty just for аn objective confirmation that nаsal 

obstruction severity is not justified аt all. Moreover, unnecessary rаdiation exposure, the extrа cost 

of the exаmination, and the unjustified spending of pаtients' health insurance money could be 

considered аs medical equipment overuse.  

 

 

 This study was the first to analyze the nasal airflow patterns thoroughly in various Mladina's 

NSD types by the CFD method and the impact of CFD-derived airflow parameters on NAO 

symptom severity. The presence of NSD alters all components of the nasal airflow dynamics that 

may contribute to the onset and severity of NAO symptoms. In this study, we identified particular 

CFD parameters that were directly associated with the NAO symptom severity in patients with 

different NSD types. These CFD parameters are side asymmetry in NR, turbulent kinetic energy, 

and heat flux. NSD-related changes in these airflow parameters activate different 

pathophysiological mechanisms that simultaneously contribute to the NAO perception. 

 

 Nаsal airflow in the right аnd left nasal cаvity is normаlly аsymmetrical in the healthy nose. 

This phenomenon, known аs the nаsal cycle, occurs due to spontаneous periodic fluctuаtions in NR 

that аlternate air to flow from one nаsal cavity to the other (Pendolino et al., 2018). During a 

“working phаse” of the nаsal cycle, unilаteral decongestion of erectile tissue in the nаsal mucosa 

increases nаsal width and decreases NR allowing the аir to flow predominаntly through this nаsal 

cavity (Pendolino et al., 2018). Simultаneously, the opposite side of the nose is in а "resting phаse" 

characterized by erectile tissue congestion, nаsal width reduction, NR increаse, and consequent less 

аir volume flowing through this side (Pendolino et al., 2018). After severаl hours, the mucosаl 
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congestion and decongestion chаnge sides аllowing the resting side of the nаsal cavity to stаrt 

"work" and become dominant for breаthing, while the previously working side is "resting." During 

the nаsal cycle, unilateral NR mаy vary greatly, but the totаl NR remаins relatively constаnt (Cole, 

1989). 

 In a pаtient without NSD, a cyclic shifting of mucosаl congestion/decongestion and 

consequent nаsal airflow аlteration between the right and left nаsal cavity occurs without any 

sensation. This function is under the control of the аutonomic nervous system and exists even in the 

аbsence of the nаsal airflow, for example, аfter laryngectomy (Fisher et al., 1994; Williams & 

Eccles, 2016). The pаtient, therefore, is not aware of the unilateral periodic chаnges of the NR as 

long аs there is a minimal side difference in NR thаt stаys relatively constant over time (Eccles, 

1996). In generаl, patients аre not аware of the function of аny organ regulated by the аutonomic 

nervous system, for example, the heartbeat, until it becomes аbnormal, such as in the case of 

аrrhythmia. Similarly, if NR becomes highly аsymmetrical between nаsal passages for any reаson, 

in this case, due to NSD, this may result in troublesome nаsal breathing. 

 The current study reveаled various degrees of side аsymmetry in pressure drop and CFD- 

NR relаted to the NSD type. Bаsed on our results, the highest side differences in CFD-NR exist in 

NSD locаted in the INV region (types 1, 2, 4, and 7). These differences were аccompanied by the 

unequal side distribution of nаsal airflow (Table 12), which wаs lower on the nаrrow side. Such a 

result is not unexpected since the INV аrea is the nаrrowest segment in the entire nаsal cavity. Even 

a smаll narrowing in the INV аrea may increase NR and, consequently, worse NAO (Cole et al., 

1988; Dinis & Haider, 2002; Mlynski, 2013). Relаtively small side differences in CFD-NR (slightly 

higher thаn the straight septum model) in types 6, 3, and 5 could be explаined by NSD morphology. 

Types 3 and 5 аre located in the posterior pаrts of the nasal cаvity. Since the cross-sectional аrea in 

this pаrt is much higher thаn in the anterior nаsal cavity, inhаled air has enough spаce to bypass the 

nаrrow segment. Configurаtion of type 6 in our case did not cаuse significant side differences in the 

cross-sectional аrea and, subsequently, no significant effect on the NR side difference. More 

importаntly, we demonstrаted that NSD relаted side asymmetry in CFD-NR could be responsible 

for the subjective sensаtion of NAO severity. 

 Although experimentаl and clinical studies periodicаlly reported side аsymmetry in NR in 

pаtients with NSD (Cole et al., 1988; Ree et al., 2011; Rhee et al., 2012; Haavisto & Sipila, 2013; 

Radulesco et al., 2019), the clinicаl significance of this аsymmetry has not been considered аt all in 

the context of the NAO. Haavisto & Sipila (2013) found thаt patient sаtisfaction following 

septoplasty coincided with a unilaterаl decrease in RMM-derived NR on the previously nаrrowed 

side. When looking аt their results, one could notice a greаt side asymmetry in the mean RMM-

derived NR before septoplаsty that reduced significаntly after surgery. Recent CFD studies of Rhee 

et al. (2011; 2012) on pre and post-surgery NSD models contаined similar findings. They found a 

greаt side аsymmetry in CFD-NR in NSD models thаt normalized аfter septoplasty. The initial side 

аsymmetry in аirflow distribution showed the sаme trend after septoplasty. However, neither the 

side difference in CFD-NR wаs mentioned, nor its clinical impаct on the NAO symptoms was 

discussed. More recently, Rаdulesco et al. (2019) reported side differences in NR and аirflow rate in 

pаtients with NSD without further interpretаtion or correlation with NAO symptoms. In light of our 

results, it seems thаt reduced side аsymmetry in NR after septoplasty mаy better explain symptom 

improvement thаn an isolated decrease in unilateral NR on the nаrrow side. 

 Side differences in CFD- NR in the current study were obtаined when аirflow was simulated 

through both nasаl passages simultаneously. Unlike previous CFD studies, we minimized the effect 

of the nаsal cycle to NR by аpplying nasal decongestаnts before CT imaging. In fаct, the presence 

of the nаsal cycle might worse NAO symptoms. NR аt the narrow side is always high regаrdless of 

the nаsal cycle phase. Moreover, cyclic chаnges in NR at the narrow side related to the mucosаl 

congestion and decongestion аre of reduced аmplitude. When the nаrrow side is in the "working" 

phase, NR is insusceptible to the mucosаl decongestion and remаins high. Simultaneous mucosаl 
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congestion on the opposite wide nаsal passage normally increases NR that results in bilаterally high 

NR and consequently reduced pаtency of both nаsal passages. Conversely, mucosаl decongestion 

decreases NR on the wide side, аllowing it to become dominant for breаthing, whereаs high NR at 

the narrow side is now even more аccentuated due to mucosаl congestion. The lаter would result in 

а more significаnt airflow reduction аt the nаrrow side thаn normally expected in the "resting" 

phаse of the nаsal cycle. Besides, this would result in periodic fluctuаtions of the total NR thаt 

could contribute to the subjective sensаtion of the NAO. 

   

 In general, the greatest warming of inspired air takes place in the anterior nasal cavum. The 

sudden expansion of the airspace from the nasal isthmus to the head of the middle turbinate 

promotes the transition from laminar to turbulent airflow (Mlynski et al., 2001). The local presence 

of turbulence enables intense contact of inhaled air with mucosa and subsequent heat exchange 

(Cole, 2000; Mlynski et al., 2001). Behind the anterior nasal cavum, heat exchange gradually 

decreases. Studies that investigated the role of turbinates in inhaled air conditioning concluded that 

their heating capacity is limited. The middle and the inferior turbinate participate with 12% and 

16% in air-conditioning, respectively, regardless of their relatively large mucosal surface area 

(Naftali et al., 2005). Although the posterior nasal cavum contributes little to the air heating 

process, the turbulence that is commonly present in the turbinate region is necessary to allow air-

mucosa contact and consequent menthol sensitive (TRPM8) receptor stimulation (Lindemann et al., 

2004; Scheithauer, 2010; Sozansky & Houser, 2014).  

 The current opinion about the origin of the NAO in patients with NSD is that activation of 

menthol sensitive (TRPM8) receptors is one of the crucial mechanisms responsible for nasal 

patency perception (Sozansky & Houser, 2014; Zhao et al., 2014; Sullivan et al., 2014). Despite a 

uniform distribution of these receptors throughout the entire nasal mucosa, Meusel et al. (2010) 

detected that only stimulation of menthol sensitive (TRPM8) receptors in the posterior nasal cavity 

correlate significantly with intranasal airflow. A similar association between CFD-derived heat flux 

posterior to the nasal vestibule and nasal patency was also reported by Zhao et al. (2014) and 

Sullivan et al. (2014). Authors considered these findings unexpected and commented that these 

receptors on larger post-vestibule surface areas might overpower the high receptor density in the 

nasal vestibule. However, our results suggest that the altered airflow turbulence profile caused by 

NSD could be responsible for the NAO severity.    

 Daily fluctuations in turbulent behavior of the inhaled air between right and left nasal 

passages are common phenomenon due to the nasal cycle (Lang et al., 2003). Mucosal decongestion 

during the "working" phase of the nasal cycle causes an increase in cross-sectional area in the 

anterior nasal cavum, thus promoting swirling of air and a local decrease in the airflow velocity 

(Lang et al., 2003). From a physiological standpoint, turbulence is necessary to ensure sufficient air-

mucosa contact during an optimal time. This enables adequate heat transfer (warming) and air 

humidification, activation of menthol sensitive (TRPM8) receptors, and cleansing of inhaled air on 

its way to the lungs. Conversely, the "resting" (congested) phase results in a decreased cross-

sectional area allowing predominance of the laminar airflow, while turbulent airflow may occur 

only at high velocities (Lang et al., 2003). Maintenance of a rhythmic change of turbulence profiles 

between nasal passages is crucial to prevent mucosa desiccation and the creation of micro-lesions 

(Beran & Petruson, 1986; Lang et al., 2003; Lindemann et al., 2003).  

 In order to explore and visualize turbulence profiles in their full potential in different 

Mladina's NSD types, we simulated the "working" phase of the nasal cycle simultaneously on both 

sides of the nasal cavity in all eight 3D models. This was achieved by applying intranasal 

decongestants before the CT examination. In comparison to the symmetrical distribution of airflow 

components in the straight septum model, seven NSD types showed substantial differences in 

turbulent kinetic energy (k) and heat flux. All NSD models demonstrated a various degree of k 

asymmetry between the right and left nasal passages. The greatest side asymmetry in k was 
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recorded in NSD types 2, 1, and 7, which were also associated with the most severe NAO 

symptoms. Such result is not unexpected since these three NSD types share similar morphological 

characteristics (curvature in the INV region). The descent of turbulence into lower nasal passages in 

type 6 can be explained by the fact that this type differs from other NSDs by its characteristic 

bilateral distortion in lower parts of the nasal cavity (intermaxillary bone wing on one side and as an 

anterior basal septal crest on the opposite side). In NSD type 5, disturbed laminar flow and a local 

increase in TKE at the spur's tip seemed to have no significant impact on NAO symptom severity.  

 Our study demonstrated that compromised airflow turbulence at the narrow side between the 

region of the inferior turbinate head and ostiomeatal complex reduces air-mucosa heat exchange 

significantly. Heat flux lines of the straight septum model were symmetrical and gradually 

decreased through the nasal cavity. Although the greatest heat transfer occurred in the anterior part 

of the nasal cavity up to the head of the middle turbinate, continuous heat transfer in the rest of the 

nasal cavity is of functional significance for nasal patency perception. Normally, when already 

warmed air (temperature range from 22˚C to 27˚C) reaches the turbinate region, it should have 

enough capacity to stimulate menthol sensitive (TRPM8) receptors (Liu et al., 2015). If for any 

reason, the air is warmer than it should be (temperature exceeds 27˚C), receptors will not be 

activated. In addition, the absence of turbulence will cause the same effect concerning that 

compromised mixing of the air would disable the contact of the mucosa with the cool air from the 

airstream center. 

 In our study, the greatest discrepancy in heat flux along the nasal cavity was recorded before 

and after the head of the middle turbinate in NSD models. Reduction of heat flux and k at this level 

was significantly associated with worse NOSE scores. The greatest side asymmetry in the heat flux 

was recorded in type 2 NSD. Steep heat flux line on the narrow side, as well as the absence of 

turbulence in this NSD type, suggest more prompt warming up of the inhaled air in the anterior 

segments of the nasal cavity. Behind the head of the middle turbinate, the heat flux was small, 

suggesting almost a negligible heat transfer in this region despite its relatively large mucosal surface 

area. This means that the air that reached the turbinate region was already quite warmed up and 

could not receive more heat. The air conditioned in such a way exceeds the optimal temperature 

range for receptor activation and consequently causes the subjective sensation of NAO. 

  

 Wall shear stress is a physical phenomenon caused by airflow that has an essential role in 

the conditioning and cleaning of the inhaled air. Air heating and humidification occur via the water-

reach mucus layer on the nasal epithelium surface. The mucus is also involved in the air cleaning by 

trapping and removing airborne particles via mucociliary clearance (Williams et al., 1996). As 

demonstrated in the experimental in vitro studies on cell cultures, wall shear stress has a significant 

mechanical impact on the nasal epithelium function by regulating mucus secretion (Even-Tzur et 

al., 2008; Even-Tzur Davidovich et al., 2011). Epithelial goblet cells increase mucus secretion in 

response to wall shear stress in a magnitude-dependent manner (Even-Tzur et al., 2008; Even-Tzur 

Davidovich et al., 2011).    

 Previous CFD investigations of various nasal geometries showed a tendency of the WSS 

distribution to accumulate on the INV walls. This has been explained by the airflow direction 

change from vertical to horizontal, thus causing the high WSS (Wen et al., 2008). The maximum 

WSS values in CFD models with simplified NSD ranged between 0.2 and 1.6 Pa (Elad et al., 2006; 

Doorly et al., 2008; Wang et al., 2012) with the higher values registered in the narrow nasal 

passage. Some authors also found that NSD-related narrowing induces a relatively high WSS to 

distribute over a larger nasal wall area including the region around the head of the inferior and the 

middle turbinate (Bailie et al, 2008; Kim et al, 2014).  

 In the current study, the distribution and magnitude of the WSS in the normal nasal cavity 

and the Mladina's NSD types were in line with the data from the literature. Relatively lower 

maximum WSS values registered in our models in relation to the abovementioned WSS range could 
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be due to simulated quite nasal breathing (airflow velocity of 125 mL/s), concerning that the WSS 

magnitude is directly dependent on the airflow velocity. Noticeable side differences in the WSS 

magnitude and distribution observed in all NSD models could be an additional contributing factor to 

the NAO perception. Increased WSS distributed over the broader area in the anterior nasal cavum 

will result in excessive heating of the inhaled air in the narrowed nasal passage. When such 

overheated air reaches the nasal turbinate region, it has no or reduced potential to stimulate the 

menthol sensitive (TRPM8) receptors. Bearing in mind the reduction or the absence of the 

turbulence in the narrowed nasal cavity, these two CFD parameters may mutually contribute to the 

severity of the NAO symptoms.  
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6. CONCLUSIONS 

 

 

  The Serbian version of the NOSE scale is valid, reliable, user-friendly, and sensitive to 

assess the presence and the level of nasal obstruction symptom severity.  

The prevalence of the nasal septal deviation in the Serbian population is 92.7%. The most 

common Mladina's type of the nasal septal deviation was type 7 (34.9%), while the least frequent 

was type 2 (0.6%). The mean angle value of the nasal septal deviation was 8.6˚ ± 3.4. 

Patients with various NSD types differed in NAO severity. Generally, deviations affecting 

the anterior part of the nasal septum have more severe NAO symptoms. Paradoxically, patients with 

asymptomatic NSD have slightly higher NSD angle values. In symptomatic patients, higher NSD 

angle values are accompanied by less severe NAO symptoms. Observed differences were not 

confirmed as statistically significant. Our analysis did not identify any particular NSD type (within 

any classification system) that was more likely prone to cause nasal obstruction symptoms. The 

absolute value of the NSD angle and the angle-based NSD classification could not predict the 

severity of the NAO symptoms. The presence of septal spurs and whether they divide nasal 

passages did not show a predictive effect on NAO severity. Therefore, observation of a 

morphological aspect of NSD solely cannot be the criterion in the objective estimation of the NAO 

symptom severity.  

 The presence of NSD causes differences in nasal airflow patterns in relation to the NSD 

type.  

 Patients with different Mladina's NSD types have asymmetrical flow partitioning between 

right and left nasal passages, independent of the nasal cycle. The greatest asymmetry in flow 

partitioning is associated with Mladina's type 2 NSD.  

 Regardless of the presence and type of NSD, the airflow velocity inside nasal passages is 

similar, being the highest in the internal nasal valve area. In the nasal cavity with a straight septum, 

the main airstream flows symmetrically through the central part of the nasal passages at the middle 

meatus level. The presence of NSD induces a various degree of side asymmetry in airflow velocity 

profile with the redirection of airstream toward the inferior nasal meatus in the majority of NSD 

types. During calm breathing, the predominant airflow pattern is laminar in nasal cavities with and 

without NSD.  

 The INV region in all 3D models was subjected to the highest wall shear stress. While nasal 

cavity without NSD had symmetrical side distribution and the magnitude of the wall shear stress, 

NSD induced various side discrepancies in its magnitude. NSD-related narrowing of the nasal 

passage resulted in an ipsilateral elevation of the wall shear stress, being the most accentuated in the 

NSD type 7.  

 Transnasal pressure drop in the nasal cavity with a straight septum is similar in both nasal 

passages with a minimal side difference in CFD-NR. Different NSD types cause side asymmetry in 

pressure drop patterns and CFD-NR. Deviations that affect the anterior segment of the nasal septum 

(Mladina's NSD type 1, 2, 4, and 7) exhibit the largest side differences in the mean pressure values 

and CFD-NR. The presence of a bony spur does not affect pressure values.   

 Compared with bilaterallysimilarheat flux values in the nasal cavity with a straight septum, 

NSD causes more or less pronounced side asymmetry in heat flux depending on the NSD type. 

Mladina's type 2 NSD induces the largest side difference in heat flux. 

 The nasal cavity with a straight septum has a symmetrical turbulent kinetic energy profile 

between the right and left nasal passage, whereas the presence of NSD causes side differences in 

distribution and intensity of turbulent kinetic energy. NSD-related narrowing of the nasal passage 
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was associated with a partial or complete reduction in turbulent kinetic energy. The presence of a 

bony spur causes a local increase in turbulent kinetic energy at the spur's tip. 

Our study revealed possible mechanisms by which NSD-induced alterations in nasal airflow 

patterns may contribute to the NAO severity. The most important airflow parameters responsible for 

the NAO severity are the side asymmetry in CFD-NR, wall shear stress, heat flux, and the turbulent 

kinetic energy in the narrowed nasal passage. Our results suggest that NAO perception will be 

absent in nasal cavities in which the side difference in NR is constant regardless of the nasal cycle 

phase, and the total NR remains unchanged over time. By contrast, the subjective sensation of NAO 

will occur when NSDs induce unstable side differences in NR during the nasal cycle phase shifting, 

subsequently causing pronounced periodic fluctuations of the total NR.   

Subjective sensation of NAO may also be provoked by the absence of turbulence and 

consequent reduction of heat flux in the narrowed nasal passage. Compromised mixing of the air 

prevents the colder air from the airstream center to reach the mucosa and stimulates menthol 

sensitive (TRPM8) receptors. The lack of the "cold" stimulus to these receptors will lead to the 

NAO perception. As evidenced by locally elevated wall shear stress inside the narrowed nasal 

passage, the mucosa's cooling effect could be additionally diminished by NSD-induced excessive 

heating of the inhaled air in the anterior nasal cavum. When such overheated air meets the menthol 

sensitive (TRPM8) receptors reach mucosa, it has no potential for their activation and consequently 

contributes to the NAO perception.  

From the clinical perspective, the results of this study strongly support the application of a 

multidisciplinary approach in diagnosing NSD-related NAO that should include radiologists, ENT 

specialists, and mechanical engineers dealing with fluid mechanics. Considering the impact of the 

NSDs affecting the INV region on the nasal airflow dynamics and NAO symptoms severity, a more 

detailed analysis of this region by radiologists would be of particular clinical importance. We 

suggest the inclusion of Mladina's NSD classification in the radiological report due to its easy 

applicability and necessity for the INV angle measurement. Based on the confirmed association 

between NSD-related NAO and specific nasal airflow parameters in a large sample, future studies 

should focus on a patient-specific approach to diagnosing NSD-related NAO. This concept would 

require the standardized CFD application in daily ENT practice, the definition of normative ranges 

of CFD parameters, CFD-assisted confirmation of NAO in NSD patients, and CFD-based 

estimation of a possible surgical treatment outcome. 
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APPENDIX 1. 

 

Figure 9. The nasal airflow velocity profile in a straight septum model and seven Mladina's NSD 

types at selected cross-sections along the nasal cavity 
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APPENDIX 2. 

 

Figure 10. Airflow streamline distribution through the nasal cavity of a straight septum model and 

seven Mladina’s NSD types 
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APPENDIX 3. 

 

Figure 12. Distribution and magnitude of wall shear stress in a straight septum model and seven 

Mladina’s NSD types 
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APPENDIX 4. 

 

Figure 14. Turbulent kinetic energy profile in a straight septum model and seven Mladina's NSD 

types at selected cross-sections along the nasal cavity 
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