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Spin-orbit interakcija u niskodimenzionalnim
sistemima: simetrijski pristup

REZIME

Koncept dvostrukih grupa je primenjen na simetrijsku analizu efekata spin-

orbit interakcije u niskodimenzionalnim sistemima. Prvi zadatak je konstrukcija

dvostrukih grupa za grupu geometrijskih simetrija datog sistema, zajedno sa skupom

ireducibilnih reprezentacija. Koristeći simetriju razmatranog sistema i dobijene ire-

ducibilne reprezentacije, može se odrediti da li spin-orbit interakcija izaziva cepanje

orbitalnih zona. Klebš-Gordanova serija tenzorskog proizvoda ireducibilnih repreze-

ntacija koje karakterǐsu orbitalne zone i spinske reprezentacije pruža informaciju da

li cepanje zona postoji, dok malo suptilnija grupno-teorijska analiza pokazuje da li

je cepanje orbitalnih bendova praćeno ukidanjem spinske degeneracije. Korǐsćenjem

tehnike modifikovanih grupnih projektora, svojstveni problem Hamiltonijana koji

opisuje dinamiku sistema se može rešiti numerički, čime se dobijaju elektronske zone

sa pridruženim ireducibilnim reprezentacijama i kvantnim brojevima obične/dvostru-

ke grupe. Konačno, razni efekti spin-orbit interakcije se razmatraju kvalitativno ili

numerički, uključujući predikciju veličine cepanja zona i analizu spinske polarizacije.

Geometrijske simetrije kvazi-jednodimenzionalnih sistema su opisane grupama

koje pripadaju jednoj od 13 beskonačnih familija linijskih grupa. Da bi se ispitali

efekti spin-orbit interakcije u kvazi-jednodimenzionalnim sistemima, dvostruke lini-

jske grupe i njihove ireducibilne reprezentacije su konstruisane. Na osnovu tih rezu-

ltata pokazuje se da je spinsko cepanje zabranjeno u familijama 6-13 zbog simetrije

vertikalne ogledalske ili klizne ravni. Ukoliko je i vremenska inverzija θ uključena u

analizu, ispostavlja se da samo grupe iz familija 1 i 5 dozvoljavaju spinsko cepanje

zona, jer zajedničko delovanje horizontalne ogledalske ili roto-refleksione ravni sa

θ zabranjuje ukidanje spinske degeneracije zona. Dobijeni rezultati ove analize su

kasnije primenjeni na ugljenične i MoS2 nanotube.

Izvršena je detaljna simetrijski zasnovana analiza efekata spin-orbit interakcije u

ugljeničnim nanotubama. Kod kiralnih nanotuba se pokazuje da je nenulta očekivana

vrednost 1o ⊗ σ duž ose tube. Takode, pravilo nepresecanja zona unǐstava ukupnu

spinsku polarizaciju zone. Specijalna pažnja je posvećena razlici u eksperimentalnim



i teorijskim predvidanjima veličine spinskog cepanja najniže provodne zone u kvazi-

metalnim tubama. Dobijeni rezultati pokazuju da postoji anizotropija cepanja va-

lentnih i provodnih zona oko Fermi nivoa; ona je vrlo osetljiva na konfiguraciju tube

i primenjeno aksijalno istezanje. Aksijalno istezanje drastično povećava cepanje na-

jniže provodne zone, tako da njegovo prisustvo u eksperimentu može biti potencijalno

objašnjenje gore navedene razlike izmedu prethodnih teorijskih i eksperimentalnih

rezultata.

Simetrije kvazi-dvodimenzionalnih sistema su opisane sa 80 diperiodičnih grupa.

Ovde je konstruisana samo dvostruka Dg78 grupa, zajedno sa njenim ireducibilnim

reprezentacijama, koja je grupa simetrije familije prelaznih metal-dihalogenidnih

slojeva. Efekti spin-orbit interakcije u ovim sistemima su detaljno razmatrani,

predvidajući veliko spinsko cepanje. Sa druge strane, efekti spin-orbit interakcije

u metal-dihalogenidnim nanotubama nisu proučavani, iako je spinsko cepanje u

ugljeničnim nanotubama, u poredenju sa grafenom, često pripisivano postojanju

krivine. Medu kvazi-dvodimenzionalnim metal-dihalogenidnim materijalima, MoS2

je najvǐse proučavana familija, sto je motivisalo fokusiranje upravo na te nanotube.

Uvid u rezultate dobijene za tube daje metod savijanja zona sloja MoS2 i nje-

gova simetrija Dg78, koja omogućava dodeljivanje kvantnih brojeva ireducibilnih

reprezentacija elektronskim zonama sloja. Simetrija sloja objašnjava zašto duž

odredenih pravaca Briluenove zone ne postoji cepanje elektronskih zona, daje deta-

ljan uvid u njihovo cepanje (kada ono postoji), i odreduje koje su dozvoljene orbita-

le u valentnim i provodnim zonama. Konačno, data je analiza efekata spin-orbit

interakcije u MoS2 nanotubama. Kao i u ugljeničnim nanotubama, simetrija daje

kvantne brojeve zona koje se ne cepaju kada je uključena spin-orbit interakcija. U

odnosu na sloj, u nekim tačkama Briluenove zone cepanje je značajno smanjeno,

dok je u drugim tačkama krivina uticala na njegovo povećanje. Dakle, krivina ne

utiče uvek povoljno na efekte spin-orbit interakcije.
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Spin-orbit interaction in low dimensional systems:
symmetry based approach

SUMMARY

In order to perform full symmetry analysis of spin-orbit coupling effects on the

electronic band structure in low dimensional systems, concept of double groups is

applied. First goal is to construct double group of system’s geometrical symmetries,

along with the set of irreducible representations. Occurrence of orbital band splitting

depends purely on the symmetry of the studied system. Clebsch-Gordan series of the

tensor product of irreducible representations characterising orbital bands and spin

representation provide an information about band splitting, while further symmetry

based analysis can show whether obtained splitting of orbital bands is followed by

the removal of initial spin degeneracy. Finally, using the modified group projected

technique, eigenproblem of the Hamiltonian describing the dynamics of the system

is solved numerically. This provides electronic bands assigned by quantum numbers

labeling the irreducible representations of single/double groups. Study of spin-orbit

coupling effects is then enabled, including the magnitude of the predicted splitting

and the study of spin polarization.

Geometrical symmetries of quasi-one dimensional systems are described by groups

belonging to the one of 13 infinite families of line groups. In order to investigate

spin-orbit coupling effects in quasi-one dimensional systems, all double line groups

and their irreducible representations are constructed. Based on these results, it is

shown that spin splitting is forbidden in families 6-13 due to vertical mirror or glide

plane symmetry. If the time reversal symmetry θ is taken into account, only groups

from families 1 and 5 allow spin splitting, since the joint action of horizontal mir-

ror plane or roto-reflection with θ preserves spin degeneration of the bands. These

results are then applied to MoS2 and single walled carbon nanotubes.

First, thorough symmetry based analysis of spin-orbit coupling effects in sin-

gle walled carbon nanotubes is performed. For chiral nanotubes, it is proved that

nonzero expectation value of 1o⊗σ must be along the tube’s axis. Also, non-crossing

rule may destroy the overall band polarization. Special attention was given to the



existing contradictory experimental and theoretical calculations regarding the mag-

nitude of spin splitting in quasi-metallic tubes. It is shown that anisotropic electron

and hole splitting near Fermi level is indeed present, but it is highly sensitive on

the tube’s configuration and applied axial strain, i.e. opposite results regarding the

ratio of the magnitude of top valence and lowest conductance bands splitting is

obtained. This can be the possible answer of the reported discrepancy, since in an

experimental setup a small strain can be indeed present, contributing significantly

to the measured results.

Symmetries of quasi-two dimensional systems are gathered into 80 diperiodic

groups. Here, only the double group of Dg78 is constructed, along with its irre-

ducible representations; this is the symmetry group of a larger family of transition-

metal dichalcogenide monolayers. Spin-orbit coupling effects in these systems have

been intensively studied, predicting large spin splitting. Although the order of mag-

nitude larger spin splitting in single walled carbon nanotubes, in comparison to

graphene, is attributed to the curvature effect, study of spin-orbit coupling effects

in transition-metal dichalcogenide nanotubes is lacking. As among transition-metal

dichalcogenide materials, MoS2 is the best studied family, spin-orbit coupling effects

in MoS2 nanotubes are investigated. In order to elucidate results obtained for the

tubes, double Dg78 diperiodic group is applied in order to obtain monolayer elec-

tronic bands, assigned by relevant quantum numbers. Symmetry of the monolayer

also explains the observed absence of band splitting in particular directions in the

Brillouin zone, yielding better insight on the band splitting and orbital contribution

in the top valence and the lowest conductance band. Finally, analysis of spin-orbit

coupling effects in MoS2 nanotubes is given. As in single walled carbon nanotubes,

symmetry points to quantum numbers of bands which do not split when spin-orbit

coupling effects are included. For these which do split, results show significantly

suppressed band splitting in some points of the Brillouin zone, compared to the

related monolayer values, while in some other points we indeed see the increase of

splitting. Thus, curvature does not necessarily enhance spin-orbit coupling effects.
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Introduction

Spintronics [1–3], a growing field in the context of electronics, is focused on manipu-

lation of the electron spin. Initially, usage of external magnetic fields was proposed

to achieve this goal, but magnetic fields are hard to control at the nanoscale. This

difficulty has motivated proposals for spin manipulation by using different spin-orbit

coupling (SOC) mechanisms. In solids, spin dependent structure of the electronic

bands occurs due to the crystal potential (Dresselhaus effect) [4], vibrational po-

tential of the crystal (spin-phonon coupling) [5–8] or external electric field (Rashba

effect) [9, 10].

Band theory of solids is tightly connected to symmetry. Irreducible representa-

tions (IRs) of a crystal’s symmetry group can be used to reduce the eigenproblem

of the Hamiltonian and get the bands and corresponding eigenstates assigned by

quantum numbers (QNs), enabling further applications of selection rules. If SOC

is neglected and only the orbital degree of freedom of the electrons are considered,

single groups are used, and the obtained orbital bands are thus spin degenerated.

Since configurations in space can be three-dimensional, quasi-two dimensional (Q2D)

or quasi-one dimensional (Q1D), space groups [11], diperiodic groups [12] and line

groups [13], respectively, and their IRs are needed in order to classify and analyse

energy bands.

The impact of SOC on the energy bands in solid state systems was first noticed

by Elliot [14] and Dresselhaus et al. [15]. Besides topology, SOC also effects the

number of bands, since splitting of the orbital bands may occur. Dresselhaus [4]

observed that in zinc-blend structures SOC induces band splitting which cancels

spin degeneration of the orbital bands, i.e. the so called spin splitting of the bands

occurs. This effect (named Dresselhaus effect) is present in crystals without spatial

inversion symmetry. If the system has spatial inversion symmetry then, for example,

electric field can be used to break this symmetry and induce the spin splitting of

1



the bands (Rashba effect) [9, 10]. Clearly, the symmetry of the system provides the

clarification of the observed impact of SOC.

Proper symmetry analysis of SOC needs to include the full symmetry group

of the studied system. When the electron spin degree is included, the action of

geometrical transformations on the orbital part of wave function is accompanied

by its counterpart in the spin space. It is well known that to each element of the

rotational group SO(3) two elements of the group SU(2) are assigned in the spin

space; on the other hand, spatial inversion and translations act trivially on spin. In

order to avoid working with two-valued representations, in physics concept of double

groups is introduced [16–19].

Bethe [16] and Opechowski [17] have classified double point groups and their

method was easily extended to space groups [11]. However, in Q1D and Q2D crys-

tals, double groups are lacking. The subject of this dissertation, full symmetry

analysis of spin dynamics of Q1D systems, assumes derivation of double group sym-

metries of these structures. Since their geometrical symmetries are described by the

line groups [13], the first goal is to derive double line groups (DLGs). First, IRs of

DLGs are found, enabling analysis of SOC effects. General results are then applied

on concrete systems, giving an insight into all the advantages of symmetry based

analysis. We have particulary focused on MoS2 and single walled carbon nanotubes

(SWCNTs), as these are one of the most studied Q1D systems.

Assuming that external fields are not present, within the Born-Oppenheimer

approximation the only potential that couples spin and orbital degrees of freedom

is the crystal potential. More concretely, we have included Dresselhaus SOC in the

on-site approximation. Atomic (on-site or l · s) approximation assumes that SOC

contribution is relevant only close to the atomic cores. Atomic SOC is equal to λsol·s,

where l is an orbital angular momenta, while s = 1/2σ is electron spin 1/2 operator.

In the case of MoS2 nanotubes, Dresselhaus SOC was not analyzed before, while SOC

effects in SWCNTs were studied in several papers. It was shown that spin splitting is

possible only in chiral SWCNTs [20, 21], while in the achiral case only band splitting

can be present. Furthermore, spin splitting of the top valence and the bottom

conductance band was investigated in chiral SWCNTs. Theoretical predictions [22]

have confirmed the first experimental results [23]. However, another experimental

data [24] do not accommodate to theory and, up to the author’s knowledge, this

discrepancy is still unresolved.
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To summarize, after the introductory part, the thesis gives a brief overview of

Euclidean group and its double group. Afterwards, recapitulation of the line groups

is given, DLGs are constructed and corresponding IRs are determined (derived tables

of IRs are gathered in Appendix C). In Chapter 2, SOC Hamiltonian is introduced

and general remarks about the perturbational approach in the study of SOC effects

are given. In the case of Q1D systems, DLG IRs are used in the analysis of spin split-

ting and spin polarization of the bands. Furthermore, the formalism of DLGs and

the modified group projector technique [25] were applied in the study of SOC effects

in SWCNTs. We were able to address the discrepancy of the observed experimental

and theoretical results, thus closing the mentioned gap in the literature (Chapter 3).

It is particulary interesting to mention that in layered carbon system, i.e. graphene,

SOC effect is negligible. On the other hand, since in SWCNTs spin splitting is on

the meV scale (can be experimentally detected), many authors have attributed this

behaviour to the curvature effects. In order to test this hypothesis, we have focused

on MoS2 nanotubes and its layered counterpart. SOC effects in MoS2 monolayer are

studied using the double Dg78 diperiodic group, while for MoS2 nanotubes groups

from DLG families 1, 4 and 8 are needed. Our results show that curvature effects

significantly suppress band splitting in some points of the Brillouin zone, although

in some others band splitting values are indeed increased, as compared to the layer.

Also, SOC interaction effects are more pronounced in the valence bands than in the

conductance. In the chiral case, SOC causes spin polarization of the bands, while in

the armchair and zig-zag case, band splitting with zero spin polarization is present

(Chapter 4).
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Chapter 1

Symmetry in composite orbital
and spin space

When the spin degree of freedom is included, it is well know that projective (two-

valued) representations [26] have to be used. Instead, in physics the group-theoreti-

cal apparatus of double groups [16–19] and their IRs are commonly applied to nat-

urally incorporate the spin into the electronic band picture. This approach enables

the use of concepts and methods developed for ordinary, i.e. single-valued, repre-

sentations.

As symmetry groups of low dimensional systems are subgroups of the Euclidean

group, in this Chapter we first give short overview of the Euclidean group and its

double group [27]. Special attention is paid to double groups of its subgroups, being

important for constructing DLGs and double diperiodic groups. Next Section is

devoted to the symmetries of Q1D systems, comprised of short introduction on line

group structure, their IRs and, finally, results regarding the DLGs. On the other

hand, as symmetry group of a Q2D systems is one of 80 diperiodic groups, in Chap-

ter 4 we will construct only the double group of diperiodic group Dg78, along with

their IRs, which is relevant for the transition-metal dichalcogenide monolayers [12].

1.1 Double groups

Here, we present general considerations on the structure of double groups, introduc-

ing the notation that will be used in this work.

4



1.1.1 Euclidean group

Each geometrical (point, line, diperiodic or space) group G of the physical system

is a subgroup of the Euclidean group E(3). As well known, the three-dimensional

translational group T is the invariant subgroup of E(3), and the Euclidean group

can be written as a semidirect product of T and the orthogonal group O(3)

E(3) = T ∧O(3). (1.1)

On the other hand, orthogonal group is a direct product of the rotational group

SO(3) and the cyclic group CJ = {e, J} of order two, generated by the spatial

inversion J . Thus, Euclidean group can be factorized as

E(3) = T ∧ (SO(3)⊗CJ), (1.2)

with its elements

g = g(j, φ,n, t) = (J jR(φ,n) | t ), (1.3)

counted by j = 0, 1, two three-dimensional real vectors n, t and parameter φ.

Furthermore, R(φ,n) is rotation for φ ∈ [0, 2π) around the axis defined by the unit

vector n, while t is a translational vector. The identity element of E(3) is denoted

by e = (13 | 0 ).

1.1.2 Double Euclidean group

When the half-integer spin degree of freedom is taken into account, two antipodal

elements

± u(φ,n) = ±e
i
2
φn·σ (1.4)

from the covering double group SU(2) of SO(3) correspond to each rotationR(φ,n).

Since the spatial inversion and translations do not change the spin, there is an unique

double extension

Ẽ(3) = T ∧ (SU(2)⊗CJ) (1.5)

of the Euclidean group E(3), with elements

g̃ = g̃(j, φ,n, t) = (J ju(φ,n) | t ), φ ∈ [0, 4π), (1.6)

such that the covering homomorphism F of Ẽ(3) onto E(3) is the unique trivial

(with respect to T and CJ) extension of the canonical homomorphism (mapping

5



±u(φ,n) into R(φ,n)) of SU(2) onto SO(3). Thus, the Euclidean group is identi-

fied with Ẽ(3)/ker(F).

Automatically, for each g ∈ E(3) there exist two antipodal elements g̃ and g̃′

such that

F(g̃) = F(g̃′) = g. (1.7)

Since ker(F) = {ẽ, ẽ′}, where ẽ = g̃(0, 0,n, 0) is the group identity for arbitrary

n, while ẽ′ = g̃(0, 2π,n, 0) is rotation for 2π (the only involution in Ẽ(3) which

commutes with all its elements), connection between g̃′ and g̃ is the following:

g̃′ = ẽ′g̃. (1.8)

It is convenient to identify the elements of Ẽ(3) with the pairs g̃ = {g, u} (where

g = g(j, φ,n, t) and u = u(φ,n)), which act on the pair {r, s} of spatial (from RI 3)

and spin vector (from C/ 2) as:

g̃{r, s} = {gr, us} = {(J jR(φ,n) | t )r, u(φ,n)s}. (1.9)

This is isomorphic presentation, since both components are homomorphisms with

the trivial intersection of the kernels. Namely, according to (1.9), g is the image of g̃

by F , while u(g̃(j, φ,n, t)) = u(φ,n) is a linear representation of Ẽ(3), with kernel

T ∧CJ (as all u(g̃(j, 0,n, t)) = 1). Representation u(g̃(j, φ,n, t)) = u(φ,n) will be

called natural spin representation. In particular, for mirror plane orthogonal to n,

σn = JR(π,n), the natural representation is u(σ̃n) = u(g̃(1, π,n, 0)) = in · σ.

For any subgroup G of the Euclidean group, Noether’s isomorphism theorem1

shows that there is unique double group

G̃ = F−1(G) (1.10)

of G, being the subgroup of Ẽ(3) which contains ker(F) and satisfies

F(G̃) = G̃/ker(F) = G. (1.11)

Finally, we will illustrate the gathered results on the example of cyclic groups,

being the starting point in the construction of groups relevant in different types of

problems in physics. For cyclic group G generated by g of order |g|, if and only if

g̃|g| = ẽ′, (1.12)

1In group theory, Noether isomorphism theorem is often referred as the first group isomorphism
theorem; see, for example, mathworld.wolfram.com/FirstGroupIsomorphismTheorem.html
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its double group G̃ is cyclic, generated by g̃ (of order 2|g|). If the relation (1.12) is

not satisfied, double group is equal to

G̃ = G′ ⊗ ker(F) = G′ ⊗ {ẽ, ẽ′}, (1.13)

where G′ is cyclic (isomorphic to G), generated by g̃ (of order |g|).
Specifically, cyclic finite subgroups of SO(3) (generated by R(2π

n
,n)) and mirror

plane groups {e, σn = JR(π,n)} have cyclic double groups with |R̃(2π
n
,n)| = 2n

and |σ̃n| = 4, respectively.

The double group of the roto-reflectional group S2n, generated by g = (JR(π +
π
n
,n) | 0 ) (of order |g| = n) is cyclic if n is odd, while otherwise it is of the prod-

uct type (1.13). Double CJ group is also cyclic, as well as double infinite groups

(translational, helical axis and glide plane group).

1.2 Symmetry of Q1D systems: Line groups

A Q1D system is comprised of monomers periodically arranged along one direction,

conventionally denoted as z-axis. Geometrical symmetry groups of such systems are

called line groups [13]. Unlike for the case of 3D and 2D periodic systems, there

are infinitely many symmetry groups of Q1D systems which, on the other hand, are

gathered within 13 infinite families of line groups. Their structure and IRs have

been successfully used in study of various properties of nanotubes [13, 28–31]. First,

we give brief remainder of the line groups and necessary details regarding their IRs.

Next, DLGs are constructed along with their IRs, following [27].

1.2.1 Structural properties

Periodic system is a system generated with the help of pure translations from its

minimal part, called an elementary cell. However, a Q1D system can be an infinite

chain of monomers regularly arranged along z-axis (not necessarily possessing the

translational symmetry), i.e. it can be generated from a single monomer by the

action of more general geometric transformation g = (X|f). Here, translational

part f = fez may be period, or its part (fractional translation); however, in some

cases, so called incommensurate, there is no translational period at all. Another

part of g is the orthogonal transformation X, which must leave z-axis invariant. As

g2 = (X|f)2 = (X2|Xf + f), this allows only one possible action of X on ez if

7



we want to generate the infinite system: Xez = ez. Only two types of orthogonal

transformations have this feature: rotation CQ around z-axis for an angle 2π
Q

(here

Q can be any real number, but for the sake of uniqueness we use Q ≥ 1; note that

Q=1 gives identity transformation C1 = 13) and vertical mirror plane σv (i.e. any

plane containing the z-axis). Mirror plane symmetries are involutions, so we have

g2 = (13|2f), i.e. the system has a translational period a = 2f . Further on, we will

use convention to write f and a instead of f and a (keeping in mind the z direction

of the vectors).

Thus, we can construct two types of groups Z which are cyclic and infinite:

1. screw axes group TQ(f) generated using gZ = (CQ|f),

2. glide plane group T ′(a/2) generated using gZ = (σv|a/2).

Arrangement defined by the screw axis group is translationally periodic if there is a

translational subgroup T (a) of TQ(f). We will call this type of system, commensu-

rate in order to distinguish it from incommensurate which do not have translational

periodicity. Translational group is also cyclic: generated by element (13|a). In or-

der to find the element of TQ(f) which is pure translation, we must find minimal

natural number q such that (X|f)q = (Xq|qf) = (13|a). This equation gives us

two conditions: Xq = 13 and a = qf . For the screw axis group, the first condi-

tion yields Q = q/r, where r is a natural number less or equal than q (because

Q ≥ 1), i.e. system has translational periodicity only when Q is a rational number.

By the convention we take that q and r are coprimes. Obtained period a = qf

means that elementary cell contains q monomers. Generator of the screw axis group

becomes (Cr
q |a/q). Especially, for q = 1 we obtain pure translational group with

Q = q = r = 1. For q > 2 or irrational Q, generator is usually called helical

generator.

To conclude, there are two types of periodic arrangements, which correspond to

the generalized translation groups Z:

1. screw axis group, TQ(f), generated with the help of (CQ|f). For the special

case of rational Q = q/r, screw axis T r
q (f) is commensurate, with the period

a = qf ; for q = 1 and q = 2, screw axis group degenerates into translational

and zig-zag group, respectively.
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2. glide plane group, T ′(f = a/2), generated with (σv|a/2), has a halving sub-

group of pure translations with the period a = 2f .

On the other hand, monomer, being a building block of Q1D system, is a finite

set of atoms which possesses its own symmetries, gathered into point group PM .

However, in order to be the symmetry of Q1D systems, an element of PM must

leave the z-axis unchanged. Maximal such point group is D∞h, concluding that the

axial point group P = PM ∩D∞h is a maximal subgroup relevant for Q1D systems.

Generators of this subgroup can be rotation Cn for an angle φ = 2π/n around z-axis,

rotation U for an angle π around an axis perpendicular to the z-axis, horizontal and

vertical glide planes σh i σv and roto-reflection plane S2n = C2nσh (note that S2 is

actually spatial inversion J). It turns out that with these operations one can make

7 infinite families of an axial point groups

Cn,S2n,Cnh,Dn,Cnv,Dnd and Dnh, (1.14)

while within each family groups differ from one to another by number n = 1, 2, 3, ...,

representing the order of a principal axis, i.e. z-axis.

Last part in the construction of the line groups is inquiry of compatibility between

intrinsic monomer symmetry PM and an arrangement symmetry Z. We want to

construct group L whose each element l ∈ L can be written as a product ` = lZ lP ,

where lZ ∈ Z and lP ∈ P . In other words, we wish to find all possible pairs P and

Z for which the set PZ has a group structure. Product of two subgroups is a group

if and only if the two subgroups commute with one another [32]. In our case, if for

every lP and lZ there exist l′P and l′Z such that lP lZ = l′Z l
′
P , we obtain a group.

Thus, compatibility of each axial point group with every generalized translation

group needs to be examined.

Group Cn is compatible with each generalized translation group TQ(f), since

rotation Cn commutes with the the generalized translation generator (CQ|f). Their

product TQ(f)Cn comprise the first family line groups L(1). Line groups from this

family are the simplest line groups and are subgroups of all line groups from other

families. Screw axis group TQ(f) is also compatible with Dn, because U(CQ|f) =

(C−1
Q | − f)U . Horizontal mirror plane commutes with rotations around the z-axis,

so σh(Ct
Q|tf) = (Ct

Q| − tf)σh = (C−tQ | − tf)C2t
Qσh. It follows that for every integer t

rotation C2t
Q must be an element of P , i.e. there is an integer s for which 2t/Q = s/n.

Clearly, solution exits only if Q is rational. Solving the condition over s yields
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that Q must be of the form Q = 2n/j where j = 1, 2, . . . . For j even, generator

of the screw axis becomes (CQ|f) = (Cj
2n|f) = (C

j/2
n |f) = C

j/2
n (13|f), yielding

that f = a and TQ(f)Cn = T (a)Cn. In case of odd j, the generator can be

written as (Cj
2n|f) = (C2j′+1

2n |f) = (C1
2n|f)Cj′

n , i.e. following sets are identical:

T j
2n(f)Cn = T 1

2n(f = a/2)Cn. To conclude, we have shown that the following

line groups can be constructed: T (a)Cnh,T (a)Dnh,T
1
2n(a/2)Cnh,T

1
2n(a/2)Dnh. The

similar conclusions can be drown for roto-reflection S2n = C2nσh. As for vertical

mirror symmetry σv, we test the relation σv(Ct
Q|tf) = (C−tQ |tf)σv = (Ct

Q|tf)C−2t
Q σv,

concluding that rotation C−2t
Q must be from P . Condition s/n = −2t/Q differs from

the one for horizontal mirror plane only by sign, thus the compatibility must be the

same.

It remains to examine compatibility of P with the glide plain group T ′(a/2).

First, Cn(σv|a/2) = (σv|a/2)C−1
n and σh(σv|a/2) = (σv| − a/2)σh = (σv|a/2)−1σh,

yielding that both T ′(a/2)Cn and T ′(a/2)Cnh have group structure. If we have

another σ′v , it follows that σ′v(σv|a/2) = (CQ|a/2), such that π/Q is the angle

between these two vertical planes. As (CQ|a/2)2 = (C2
Q|a), we conclude that these

mirror planes coincide (this case actually means that the system has translational

period a/2, rather then a) or that σv bisects two mirror planes from the set {σ′vCs
n|s =

1, 2...n − 1}. Similar conclusion can be made for U , i.e. it is in the plane σv or σv

bisects the angle between horizontal axes from P .

To summarize, we have found all the products of axial point groups P and groups

of generalized translation Z generating line group L = ZP . Although with different

factors, some of these product are equal, giving different factorizations of the same

line group. Since section of P and Z is the identity element only, product is at least

semi-direct (∧, with only the first factor invariant). If both subgroups are invariant

subgroups, L is their direct product (⊗). In total, there are 13 infinite families of

line groups listed in Table 1.1 along with their factorizations, invariant subgroup

from the first family, generators and isogonal point group PI (point group obtained

when the translational part of the line group symmetry is neglected). Each family

includes all groups of the specific type differing among each other by parameters n,

a, and/or Q, and f . Incommensurate line groups are either from the first or from the

fifth family (commensurate between them are excluded by the condition Q = q/r),

while in all other families generalized translation group is glide plane group, pure

translation T (a) or the zig-zag group T 1
2n(a/2).
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Table 1.1: Factorization of the line group families. For every family we give different
factorization, subgroup from the first family L(1), generators and isogonal point
group PI .

F Factorized notation L(1) Generators PI

1 TQ ⊗Cn TQ ⊗Cn (CQ|f), Cn Cq

2 T ∧ S2n T ⊗Cn (13|a), S2n S2n

3 T ∧Cnh T ⊗Cn (13|a), Cn, σh Cnh

4 T 1
2nCnh = T 1

2nS2n T 1
2nCn (C2n|a2), Cn, σh C2nh

5 TQ ∧Dn TQ ⊗Cn (CQ|f) , Cn, U Dq

6 T ⊗Cnv = Cnv ∧ T ′ T ⊗Cn (13|a), Cn, σv Cnv

7 Cn ∧ T ′ T ⊗Cn (σv|a2), Cn Cnv

8 Cnv ∧ T 1
2n = Cnv ∧ T ′d T 1

2nCn (C2n|a2), Cn, σv C2nv

9 T ∧Dnd = T ′ ∧Dnd T ⊗Cn (13|a), Cn, Ud, σv Dnd

10 T ′S2n = T ′dDn T ⊗Cn (σv|a2), S2n Dnd

11 T ∧Dnh = T ′Dnh T ⊗Cn (13|a), Cn, U, σv Dnv

12 T ′Cnh = T ′Dn T ⊗Cn (σv|a2), Cn, σh Dnh

T 1
2nDnh = T 1

2nDnd =
13 T ′dDnh = T ′dDnd T 1

2n ⊗Cn (C2n|a2), Cn, U, σv D2nh

Further, we discuss the relation of different line groups with respect to the first

family line group L(1). Groups of the first family L(1) are invariant subgroups of

index 2 of the groups from the families L(F ′) (F ′ = 2, ..., 8). As evident form the

Table 1.1, additional generators for these families are C2nσh, σh, σh, U , σv, (σv|a/2),

σv, respectively. For families L(F ′′) (F ′′ = 9, ..., 13), a group from the first family

L(1) is an invariant subgroup of index 4, while the groups from the following families

L(F ′) are invariant subgroups of index 2: L(6), L(7), L(7), L(7), L(8) respectively, with

additional generators Ud, Ud, U , U , U . To conclude:

L(1) 2
< L(F ′) 2

< L(F ′′), (1.15)

while each element ` of a line group L can be uniquely factorized as a product of

generators to the integer power:

` = `i11 `
i2
2 `

i3
3 `

i4
4 , i1 ∈ Z, i2 = 0, . . . , n− 1, i3 = 0, 1, i4 = 0, 1, (1.16)

where the first two generators are the ones from the invariant subgroup belonging

to L(1). Using (1.16), any group representation can be given in terms of matrices

corresponding to these generators.
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1.2.2 Irreducible representations of line groups

The structure of line groups indicate the procedure for construction of their IRs.

Namely, first the IRs of the first family line group should be found. Then, IRs

for families 2-8 are constructed using the induction procedure [33] from its halving

subgroup belonging to L(1), while the IRs for families 9-13 are constructed using the

same procedure, only the halving subgroup is different (see previous paragraph).

IRs of the first family line groups

First family line group L(1) is a direct product of a screw axis group TQ(f) and an

axial point group Cn. This is very suitable since IRs in this case can be constructed

as a direct product of IRs denoting each subgroup. On the other hand, since both

subgroups are cyclic, we know that all their IRs are one-dimensional. For finite

rotational group of the order n generated by Cn, n inequivalent IRs are characterized

by integer m̃ from the interval (−n
2
, n

2
]: D(m)(Cs

n) = ei 2πm̃
n
s.

On the other hand, as screw axis group TQ(f) is infinite, there are infinitely

many IRs. We classify them with the help of the parameter k̃

D(k̃)((CQ|f)t) = eik̃ft. (1.17)

Obviously, for k̃ ∈ (−π
f
, π
f
] a set of inequivalent IRs is obtained.

Finally, we conclude that the first family line group L has infinitely many IRs

which we label as k̃Am̃(L) defined as

k̃Am̃(CQ|f) = eik̃f , k̃Am̃(Cn) = eim̃ 2π
n . (1.18)

QNs k̃ and m̃ classifying IRs can be interpreted as quasi-momentum and z compo-

nent of an angular quasi-momentum, respectively. As for nontrivial Q, action of the

line group elements on a monomer generates a helical arrangement along the z-axis,

k̃ and m̃ are called helical QNs. Domain of k̃, i.e (−π
f
, π
f
] is called helical Brillouin

zone.

For commensurate systems (Q = q/r, GCD(q, r) = 1, with translational period

a = qf), group can be written as T r
q (a/q)⊗Cn. In this case, we can make different

choice of QNs based on the IRs of translational subgroup T (a)

D(k)((13|a)) = eika, k ∈ (−π
a
,
π

a
], (1.19)
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and IRs of the isogonal group Cq

D(m)(Cq) = eim 2π
q , m ∈ (−q

2
,
q

2
]. (1.20)

Domain (−π
a
, π
a
] of the linear momentum k is well-known as Brillouin zone. While

m̃ represents only a part of an angular quasi-momentum not present in k̃, QN m,

corresponds to the full angular quasi-momentum. Since Cq is not a subgroup of

L, when one multiplies these two representations we will not get the representation

of L. It can be shown [34, 35] that resulting representations written in terms of

generators (Cr
q |f) and Cn, using QNs k and m, are

kAm(Cr
q |f) = eikf+im 2πr

q , kAm(Cn) = eim 2π
n . (1.21)

Other families

After finding the IRs of first family line groups, IRs of other families can be con-

structed using the inductive procedure explained in Appendix B.

It is convenient to present IRs by matrices representing generators of the group

since any group element can be written as a monomial over generators (1.16). Each

IR is characterized by a set of QNs which obviously contains the helical (k̃ and m̃)

or linear (k and m) momenta. Beside them, in families F ′ = 2, . . . , 8 parity QNs Πh,

Πh, Πh, ΠU, Πv, Πv and Πv, correspondingly, are present. In families F ′′ = 9, . . . , 13

two additional generators induce three parity QNs. 2

1.2.3 Construction of DLGs

According to Noether isomorphism theorem DLGs follow the classification of line

groups. There are thirteen families L̃(F ) of DLGs, having the relation between them

L̃(1) 2
< L̃(F ′) 2

< L̃(F ′′), (1.22)

where L̃(i) is i-th family DLG, with F ′ = 2, ..., 8 and F ′′ = 9, ..., 13.

Each DLG is a product of Abelian double groups

L̃ =
K∏
p=1

L̃p. (1.23)

2Since σhσv = U , parity ΠU is a product of parities of horizontal and vertical mirror plane
symmetry.
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Infinite cyclic subgroups TQ(f), T (a), T 1
2n(a

2
) and T ′(a

2
) with corresponding genera-

tors (CQ |f ), (13|a), (C2n | a2 ) and (σv|a2) remain of infinite dimension. Translational

double group T̃ (a) with generator (̃13|a) has trivial action in the spin space. On

the other hand, double groups T̃Q(f), T̃ 1
2n(a

2
) and T̃ ′(a

2
) have generators ˜(CQ | f ),

˜(C2n | a2 ) and (̃σv|a2) with nontrivial action in the spin space (due to the existence

of nontrivial rotational part in the group generator).

Regarding the generators of axial double point groups, the situation is the fol-

lowing: C̃n and S̃2n are of order 2|n|, while σ̃h, σ̃v and Ũ are of order 4. Axial double

point groups are cyclic in the case of C̃n, C̃nh, D̃n, C̃nv, D̃nd and S̃2n (n - odd). If

n is even, S̃2n can be written in the product form.

To summarize, in the case of cyclic groups L̃, we can connect each element `p

of the single cyclic group Lp with two double group elements ˜̀
p and ˜̀′

p = ẽ′ ˜̀p that

belong to the doubled group L̃p. For cyclic double groups L̃p we can write

L̃p = {ẽ, ˜̀
p, . . . , ˜̀2|`p|

p }, ˜̀|`p|+i
p = ẽ′ ˜̀ip (0 ≤ i < |`p|). (1.24)

If this is not the case, L̃p can be written in the product form

L̃p = {ẽ, ˜̀
p, . . . , ˜̀|`p|−1

p } ⊗ {ẽ, ẽ′}. (1.25)

In both situations, double group element ˜̀ of the group L̃ can be written as a

product of generators to the ip integer power, similarly as in line groups. However,

in the second case exponents ip are not unique. This problem can be overcome by

considering ẽ′ as an additional generator (although not necessary, the same can be

done for cyclic groups), yielding a unique presentation of double group elements

˜̀= ˜̀i1
1 · · · ˜̀

iK
K ẽ
′ε, 0 ≤ ip < |`p|, ε = 0, 1. (1.26)

Using the (1.26), any group representation can be given in terms of matrices corre-

sponding to these generators. We conclude this subsection with the summary, given

in Table 1.2, of obtained results that describe the structure and generators of DLGs.

1.2.4 Construction of IRs

The structure of DLGs (1.22) implies that IRs of DLGs can be constructed by a

following procedure: as first step we construct IRs of the first family DLGs, being

14



Table 1.2: Double line groups. For each family F = 1, . . . , 13 factorization,
generators and their orders are tabulated. In the last column, values of |`p| to be
used in (1.26) for generators, as well as the order of ẽ′, are given.

F Factorization Generators (1.26) Orders |`p| with |ẽ′|

1 T̃Q(f)C̃n
˜(CQ | f ), C̃n ∞,2n ∞,n,2

2 T̃ (a)S̃2n
n odd
n even

(̃13|a), S̃2n, ẽ
′

˜(13 | a ), S̃2n

∞, 2n, 2
∞, 4n ∞,2n,2

3 T̃ (a)C̃nh (̃13|a), C̃n, σ̃h ∞,2n,4 ∞,n,2,2

4 T̃ 1
2n(a

2
)C̃nh

˜(C2n|a2), C̃n, σ̃h ∞,2n,4 ∞,n,2,2

5 T̃Q(f)D̃n (̃CQ|f), C̃n, Ũ ∞,2n,4 ∞,n,2,2

6 T̃ (a)C̃nv (̃13|a), C̃n, σ̃v ∞,2n,4 ∞,n,2,2

7 C̃nT̃
′(a

2
) (̃σv|a2), C̃n ∞,2n ∞,n,2

8 C̃nvT̃
1
2n(a

2
) ˜(C2n|a2), C̃n, σ̃v ∞,2n,4 ∞,n,2,2

9 T̃ (a)D̃nd (̃13|a), C̃n, Ũd, σ̃v ∞,2n,4,4 ∞,n,2,2,2

10 T̃ ′(a
2
)S̃2n

n odd
n even

(̃σv|a2), S̃2n, ẽ
′

(̃σv|a2), S̃2n

∞, 2n, 2
∞, 4n ∞,2n,2

11 T̃ (a)D̃nh (̃13|a), C̃n, σ̃v, σ̃h ∞,2n,4,4 ∞,n,2,2,2

12 T̃ ′(a
2
)C̃nh (̃σv|a2), C̃n, σ̃h ∞,2n,4 ∞,n,2,2

13 T̃ 1
2n(a

2
)D̃nh

˜(C2n|a2), C̃n, Ũ , σ̃v ∞,2n,4,4 ∞,n,2,2,2

the direct product of cyclic groups, just by multiplying IRs of cyclic subgroups (see

Appendix A). IRs of other groups can be found by inductive method [33] (see also

Appendix B) from IRs of a halving subgroup: for L̃(F ′) this is the first family DLG,

while for L̃(F ′′) halving subgroups belong to L̃(F ′).

IRs of the first family DLG

First family DLG L̃(1) is a direct product TQ(f) ⊗ C̃n of the screw axis TQ(f) and

double axial point group C̃n. Due to their product structure, IRs can be directly

obtained (see Appendix A).

In helical QNs, IRs represent arbitrary element ˜(CQ | f )
t

C̃s
n of the first family

DLG as

k̃Am̃( ˜(CQ | f )
t

C̃s
n) = eik̃fei 2π

n
m̃, (1.27)

where k̃ takes continuous values from the range k̃ ∈ (−π/f, π/f ]. Allowed values of
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m̃, belonging to the domain (−n/2, n/2] are obtained from the equation

k̃Am̃(C̃2n
n ) = ei 2π

n
m̃2n = ei4πm̃ = 1, (1.28)

yielding integer and half integer m̃ values. It should be noted that sometimes domain

(0, n] of allowed values of m̃ is used. However, since equation (1.28) is independent

on the choice of domain region, half integer and integer m̃ values remain.

Furthermore, if the system is translationally periodic along z-axis (Q = q/r)

linear QNs are used. Generators in this case are represented as

kAm( ˜(Cr
q | f )) = eikf+i 2πr

q
m, kAm(C̃n) = ei 2π

n
m, (1.29)

with k ∈ (−π/a, π/a] and m ∈ (−π/q, π/q]. Again, allowed values of m are deter-

mined from the equation

kAm(C̃2n
n ) = ei 2π

n
m2n = ei4πm = 1, (1.30)

giving integer and half integer values of m. The results are presented in Table C.1.

IRs of the fifth family DLG

In order to illustrate the induction procedure from the halving subgroup (see Ap-

pendix B for theoretical details) used to obtain IRs of the remaining families of

DLGs, we give detailed construction of IRs for the fifth family DLG L̃(5) = T̃Q(f)D̃n.

Beside the generators from the index two subgroup L̃(1) = T̃Q(f)C̃n, these groups

have Ũ -axis as an additional generator.

We label the additional element as l̃ = Ũ , while elements of L̃(1) are ˜(CQ | f )
t

C̃s
n.

l̃-conjugation of the first family DLG element gives us

l̃−1 ˜(CQ | f )
t

l̃ = ˜(CQ | f )
−t
, (1.31)

l̃−1C̃s
nl̃ = C̃−sn , (1.32)

l̃−1 ˜(CQ | f )
t

C̃s
nl̃ = ˜(CQ | f )

−t
C̃−sn . (1.33)

For the fixed IR k̃Am̃(L̃(1)) its orbit is singleton if l̃-conjugation transforms IR

into an equivalent set. In helical QNs this leads to the equation

k̃Am̃( ˜(CQ | f )
t

C̃s
n) = k̃Am̃( ˜(CQ | f )

−t
C̃−sn ), (1.34)
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which is satisfied for k̃ = 0, π/f and m̃ = 0, n/2. Induced representation for the

element l̃ can be found by solving the equation

k̃Am̃(l̃2) = k̃Am̃(C̃n
n) = ei2m̃π → k̃A

ΠU
m̃ (l̃) = ±eim̃π, (1.35)

introducing new parity QN ΠU = ±i for half integer m̃ and ΠU = ±1 for integer m̃.

Condition to obtain singleton orbit for representation kAm(L̃(1))

kAm( ˜(CQ | f )
t

C̃s
n) = kAm( ˜(CQ | f )

−t
C̃−sn ), (1.36)

yields the following four possibilities: k = 0 and m = 0, k = 0 and m = q/2,

k = π/a and m = −p/2 or k = π/a and m = (q − p)/2. Induced representation for

the element l̃ is found from equation

kAm(l̃2) = kAm(C̃n
n) = ei2mπ → kA

ΠU
m (l̃) = ±eimπ. (1.37)

Clearly, in this case additional QN is introduced: parity ΠU being ±1 for integer

and ±i for half integer m.

For other pairs of QNs: k̃ = 0, π/f , m̃ ∈ (0, n/2) and k̃ ∈ (0, π/f), m̃ ∈
(−n/2, n/2] (k ∈ (0, π/a), m ∈ (−q/2, q/2]; k = 0, m ∈ (0, q/2) and k = π/a,

m ∈ (p/2, (q − p)/2)) induced IRs are of doubled dimensions. Representation of

generators in helical QNs are

k̃Em̃( ˜(CQ | f )) =

(
k̃Am̃( ˜(CQ | f )) 0

0 k̃Am̃( ˜(CQ | f )
−1

)

)
=

(
eik̃f 0

0 e−ik̃f

)
,

k̃Em̃(C̃n) =

(
k̃Am̃(C̃n) 0

0 k̃Am̃(C̃−1
n )

)
=

(
ei 2π

n
m̃ 0

0 e−i 2π
n
m̃

)
,

k̃Em̃(Ũ) =

(
0 k̃Am̃(Ũ2)
1 0

)
=

(
0 (−1)2m̃

1 0

)
, (1.38)

while in linear QNs we get

kEm( ˜(CQ | f )) =

(
eikf+i 2π

Q
m 0

0 e−ikf−i 2π
Q
m

)
,

kEm(C̃n) =

(
ei 2π

n
m 0

0 e−i 2π
n
m

)
,

kEm(Ũ) =

(
0 (−1)2m

1 0

)
. (1.39)
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In the definition of k̃Em̃(Ũ) (1.38) and kEm(Ũ) (1.39) we introduce a parity number

Πẽ′ = ±1, being 1 for integer and -1 for half integer values of m̃ and m. In Table C.5,

IRs of L̃(5) are tabulated on generators. The complete set of IRs of all DLGs is given

in Appendix C, while the general analysis of the constructed IRs will be given below.

The matrices of generator ẽ′ are not included in Tables given in Appendix C as it is

a priori known that they are equal to 1|µ| for integer and −1|µ| for half integer IRs,

where |µ| is dimension of an IR.

General classification of IRs

As evident from the presented results for DLGs belonging to the first and fifth

family, classification of IRs is essentially the same as for line groups [13], with a

few important subtleties. For convenience, in what follows we will use k and m for

both helical and linear momenta. Similarly as in single line groups, k takes values

from the Brillouin zone (−k∂, k∂] (k̃∂ = π/f , k∂ = π/a). All IRs are classified by k

from the irreducible domain, which is the Brillouin zone for F = 1, 6, 7, 8 and [0, k∂]

otherwise. The angular momentum m can be integer or half integer, belonging to

the interval (−m∂,m∂] (m̃∂ = n/2, m∂ = q/2). Furthermore, additional generators
˜̀
p are present for the groups F > 1, thus introducing new parity QNs Πp. In line

groups parities takes values Πp = ±1, while in DLGs parities can take four values

Πp = ±1,±i. Finally, for an additional generator ẽ′ parity Πẽ′ = ±1 is introduced.

The representations with Πẽ′ = 1 are also representations of L, extended to L̃.

Hence, integer IRs of DLGs form a complete set of IRs of line groups, extended to

the double group, while half-integer IRs are additional ones present in DLGs only.

Thus, Πp takes only values Πp = ±1 for the integer IRs (when (−1)2m = 1) and

Πp = ±i in the half-integer cases (when (−1)2m = −1). Finally, as in line groups,

the general label of an IR of DLG is µ = (k,m,Π), where Π is the set of parities.
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Chapter 2

Spin-orbit interaction

In solid-state physics, the nonrelativistic Schrödinger equation is used for an elec-

tron band-structure calculations. Without relativistic corrections, it leads to even-

degenerate bands, spin-up and spin-down. Spin-dependent term in the Hamiltonian

arise as a relativistic correction, which can cause splitting of the orbital bands. In

some cases, this leads to removal of spin degeneracy. Effects of SOC are tightly

related with symmetry.

In this Chapter, starting from Dirac equation, we first introduce the well known

origin of the SOC term. Also, general remarks concerning the SOC dependent terms

in solid state systems are given, followed by some details regarding the perturbative

approach and symmetry bans which are commonly used. In last Section, results

from Chapter 1 are applied in order to perform full symmetry based analysis of

SOC effects in Q1D systems. More details can be found in [27, 36].

2.1 Origin of SOC

To gain the insight into the relativistic correction of the Schrödinger equation, we

will start from the Dirac Hamiltonian for spin 1/2 particle in the presence of the

external potential V (r)

H = cα · p + βmc2 + V (r)14. (2.1)

Here m is the electron rest mass, c is the speed of light in vacuum, 14 is 4×4 identity

matrix, while β, αx, αy and αz are 4× 4 matrices

β =

(
12

−12

)
, αx =

(
σx

σx

)
, αy =

(
σy

σy

)
, αz =

(
σz

σz

)
, (2.2)
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where 12 is the identity matrix 2× 2, while σi are the Pauli matrices

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (2.3)

Eigenvector ψ of H, i.e. Hψ = Eψ, is the four component wave function which can

be expressed in terms of spinor functions ψ1 and ψ2

ψ =

(
ψ1

ψ2

)
. (2.4)

Consequently, (H − E)ψ = 0 becomes(
(E − V (r)−mc2)12 −cσ · p

−cσ · p (E − V (r) +mc2)12

)(
ψ1

ψ2

)
=

(
0
0

)
. (2.5)

This gives us

(E − V (r)−mc2)ψ1 − cσ · pψ2 = 0, (2.6)

−cσ · pψ1 + (E − V (r) +mc2)ψ2 = 0. (2.7)

From (2.7) we obtain

ψ2 =
cσ · p

(E − V (r) +mc2)
ψ1, (2.8)

and insert it into (2.6)

(E −mc2)ψ1 = V (r)ψ1 + cσ · p cσ · p
(E − V (r) +mc2)

ψ1. (2.9)

Next, we will define new parameter E ′ = E − mc2 and transform the previous

equation to

E ′ψ1 = V (r)ψ1 +
1

2m
σ · p

(
1 +

E ′ − V (r)

2mc2

)−1

σ · pψ1. (2.10)

In the nonrelativistic limit E ′ � mc2, we can keep only the dominant contribution

of
(

1 + E′−V (r)
2mc2

)−1

(
1 +

E ′ − V (r)

2mc2

)−1

≈ 1− E ′ − V (r)

2mc2
. (2.11)

Furthermore, by noticing that

pV (r) = V (r)p− i~∇V (r), (2.12)

(σ ·∇V (r))(σ · p) = (∇V (r) · σ) + iσ · (∇V (r)× p),

(σ · p)(σ · p) = p2,
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equation (2.10) can be written as

E ′ψ1 =

[
V (r) +

(
1− E ′ − V (r)

2mc2

)
p2

2m

]
ψ1 −

~2

4m2c2
(∇V (r))(∇ψ1)

+
~

4m2c2
σ · (∇V (r)× p)ψ1. (2.13)

Nonrelativistic approximation further implies E ′−V (r) ≈ p2/2m and (E ′−V (r))p2 ≈
p4/2m, obtaining the desired form of the Dirac Hamiltonian

E ′ψ1 =
( p2

2m
− p4

8m3c2
+ V (r)− ~2

4m2c2
(∇V (r)) ·∇ +

~
4m2c2

σ · (∇V (r)× p)
)
ψ1.

(2.14)

The first and third term in (2.14) describe the nonrelativistic Schrödinger equation,

the second term is the classical relativistic correction, while the fourth term is a

spin independent relativistic correction that does not have a classical analog, called

the Darwin term. The last term is the SOC Hamiltonian Hso, describing the cou-

pling of spin and orbital degrees of freedom. In what follows, to the nonrelativistic

Hamiltonian, we will add only the Hso term,

Hso =
~

4m2c2
(∇V (r)× p) · σ. (2.15)

In solids, being the subject of this dissertation, crystal potential Vc(r) of the sur-

rounding ions creates external potential which couples to spin due to SOC. This

coupling mechanism is called Dresselhaus [4] SOC. Since ∇Vc(r) and p are polar

vectors, the cross product ∇Vc(r) × p transforms as an axial vector. We may la-

bel this product as LD, since it has the same transformation properties as angular

momentum `. Thus, Dresselhaus SOC term can be written as

HD =
~

4m2c2
LD · σ, (2.16)

resembling the atomic ` · σ coupling.

Actually, it turns out than in most cases atomic approximation of Dresselhaus

SOC interaction is a good approximation, since SOC contribution is relevant only

close to the atomic cores. In other words, we will use atomic SOC Hamiltonian

λso` · s, (2.17)

where s = 1/2σ is electron’s spin operator. Note that both operators are defined

assuming ~ = 1, thus parameter λso is given in energy units.
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In an isolated atom, it is well known that λso increases rapidly with the atomic

number Z. In the theory of atomic spectra [37], perturbative correction of energy

due to SOC reads [38]

Enl = E0
nl +

1

2
λnl[j(j + 1)− l(l + 1)− 3

4
], (2.18)

where n, l and j are principal, angular and total angular QNs, respectively, while

the atomic SOC parameter is equal to

λnl =
( 1

137
)2Z4

n3l(l + 1
2
)(l + 1)

Ry. (2.19)

For carbon atom, n = 2, l = 1 and Z = 4 (effective nuclear charge seen by p-

electrons). In this case we obtain SOC constant close to 12 meV, in accordance

with the common value of λso found in a literature [39]. However, it is to be noted

that other λso values are also used [40, 41].

The Z4 scaling of λnl in (2.19) does not take into account that outer electrons

are the only relevant electrons for SOC, whose QNs n and l change with Z. If we

do not want to worry about them, SOC strength should be scaled like Z2 [18].

Finally, we note that if other sources of potential are present, different SOC

interaction Hamiltonians arise. For example, if an uniform electric field E is present,

equation (2.15) is equal to the Rashba [9] SOC term

HR =
~|e|

4m2c2
(E × p) · σ, (2.20)

as the external potential V (r) satisfies

V (r) = − q︸︷︷︸
= −|e|

E · r = |e|E · r. (2.21)

In this dissertation, we focus on the Dresselhaus SOC solely.

2.2 Perturbative approach

In solid-state physics, it is a first task to analyze Schrödinger equation for the elec-

trons in lattice-periodic potential. Bloch’s theorem gives the solutions of this differ-

ential equation in the form

ψn,k(r) = eik·run,k(r), (2.22)
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where k is the wavevector, n is the band index, and un,k(r) is a function with the

same periodicity as the crystal lattice. For Hamiltonian H

H =
p2

2m
+ V (r) +

~
4m2c2

(∇V (r)× p) · σ, (2.23)

eigenequation Hψn,k(r) = En,kψn,k(r) can be rewritten in terms of invariant func-

tions un,k(r)

Hkun,k(r) = En,kun,k(r), (2.24)

where Hk is equal to

Hk =
p 2

2m
+

~2k 2

2m
+

~
m

k · p + V (r) +
~

4m2c2
(∇V × (p+ ~k)) · σ. (2.25)

Commonly, analysis of SOC effects on electron bands in the vicinity of band gap is

based on k · p [42] perturbation theory [43–50]. Within this approach, the ”unper-

turbed Hamiltonian”

H0 =
p 2

2m
+ V (r), (2.26)

equals the exact Hamiltonian without SOC, while

H ′ =
~2k 2

2m
+

~
m

k · p +
~

4m2c2
(∇V × (p+ ~k)) · σ (2.27)

is treated as a perturbation. Finally, if one is interested in a point in Brillouin zone

other than k = 0, i.e. k0, instead of (2.22) one can use different set of functions [51]

ψn,k(r) = eik·r(eik0·run,k(r)) = eik·rχn,k(r), (2.28)

and write the effective eigenequation (2.24) in terms of χn,k(r) instead of un,k(r).

Within the perturbative approach, some general results regarding the spin de-

generacy of the bands can be given just by analyzing whether the system of interest

possesses both the time reversal and/or spatial inversion symmetry.

Time reversal symmetry operator θ is an antiunitary operator, represented as

a product θ = UK of an unitary operator U and complex conjugation K. For

electrons with spin 1/2, θ is equal to

θ = e−iπσy/2K, (2.29)

where σy is the y component of the vector operator made of Pauli matrices. It is

well known that momentum p and position operator x are odd under time reversal,
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while angular momentum L and spin σ are even. Thus, nonrelativistic Hamiltonian

(2.26) describing the motion of an electron in a crystal is invariant under time

reversal symmetry. The same holds for Dresselhaus SOC HD, since a scalar product

of two operators even under θ (LD and σ) is invariant.

Thus, in an isolated solid at any point k in the Brillouin zone energy of the

electron with spin s is equal to the energy of the electron with opposite spin but at

−k. Therefore:

Ek(s) = E−k(−s). (2.30)

If, in addition, the crystal has inversion symmetry, one gets

Ek(s) = E−k(s). (2.31)

From (2.30) and (2.31) it becomes clear that if both inversion and time reversal

symmetry are present, the bands are spin degenerate

Ek(s) = Ek(−s), (2.32)

while in the absence of spatial inversion spin degeneracy is lifted.

Spatial inversion can be broken by applying the electric field, since r → −r alters

the HR term. In other words, Rashba SOC offers a simple toll to break the spin

degeneracy and to induce tunable spin splitting of the bands, directly dependent on

the electric field strength.

Magnetic field offers a possibility to induce spin splitting at the cost of breaking

the time reversal symmetry. This happens due to the Zeeman coupling B · σ of

magnetic field and spin, which anticommutes with θ. However, since magnetic field

is hard to control at the nanoscale, electrical production of spin polarization is more

convenient.

2.3 Symmetry and SOC in Q1D crystals

The derived IRs of DLGs are to be used in the analysis of electron dynamics in

Q1D systems when the spin degree of freedom is included. In this case, state space

is composed of orbital and spin factors, S = So ⊗ C/ 2. Dynamics is governed by

Hamiltonian

H = Ho ⊗ 12 +Hso, (2.33)
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where Ho is the spin independent Hamiltonian, while Hso is the SOC term.

Hamiltonian (2.33) can be diagonalized with the help of DLG IRs and eigenstates

(which are labeled by QNs) can be found, thus providing the possibility to obtain se-

lection rules necessary for the efficient calculation of transition probabilities. Helical

QNs are the most suitable to study spin dependent properties of systems described

by the first or the fifth family DLGs, or for finite length nanotubes [52], while in

all other cases linear QNs are usually applied. In the first step, we will perform the

group theory based analysis in order to determine whether SOC induces splitting of

the bands or not.

SOC and orbital bands splitting

Let L be the geometrical symmetry group, which in So acts by the representation

Do(L). Representation Do(L) commutes with Ho, i.e. [Do(L), Ho] = 0. In the total

space S acts the double group L̃ by the representation D(L̃) = Do(L̃)⊗ u(L̃).

The eigenproblem of Ho is solved by taking the full advantage of the system’s

symmetry. As the result, the eigenvalues and eigenvectors (forming symmetry

adapted basis (SAB)) are assigned by QNs of corresponding IRs. Namely, for each

IR D(µ)(L) appearing in decomposition

Do(L) =
∑
µ

f
(µ)
Do

(L)D(µ)(L), (2.34)

there are f
(µ)
Do

(L) bands EbmΠ(k) (counted by the superscript b) of the Hamiltonian

Ho. Thus, to each energy assigned by QNs µ = (k,m,Π) corresponds a multiplet of

the degenerate eigenvectors {|µ, j; b〉, j = 1, . . . , |µ|} (where |µ| is the dimension of

the IR), i.e for every j

Ho |µ, j; b〉 = EbmΠ(k) |µ, j; b〉, (2.35)

while for every symmetry element l ∈ L

Do(l) |µ, j; b〉 =

|µ|∑
j′=1

D(µ)(l) |µ, j′; b〉. (2.36)

In the total state space S, the orbital Hamiltonian, trivially extended to Ho ⊗ 12,

commutes with

D(L̃) = Do(L̃)⊗ u(L̃) =
∑
µ

f
(µ)
Do

(L)
(
D(µ)(L̃)⊗ u(L̃)

)
. (2.37)
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Furthermore, D(µ)(L̃) ⊗ u(L̃) is either an IR, or can be decomposed in two IRs of

L̃ of the same dimension

D(µ)(L̃)⊗ u(L̃) = D(µ′)(L̃), (2.38)

D(µ)(L̃)⊗ u(L̃) = D(µ+)(L̃)⊕D(µ−)(L̃). (2.39)

In the (2.38) case, dimension of an IR labeled by µ′ is doubled: |µ′| = 2|µ|. In

the (2.39) case, |µ±| = |µ|. New QNs µ± are (k,m ± 1/2,Π) in linear QNs and

(k̃ ± π/(Qf), m̃± 1/2,Π) in helical QNs1. In some trivial cases, QNs can be equal:

µ+ = µ−. Degeneracy arising from the doubled dimension in (2.38) is removable

only at the cost of symmetry breaking. It is thus clear that SOC may lift only the

second type of degeneracy (2.39), giving rise to band splitting into two branches

labeled by µ+ and µ−.

Spin splitting

Provided that the presence of SOC has induced a band splitting (case (2.39) occurs),

spin degeneracy of the branches remains to be investigated. First, we note that

electron spin polarization [53] in Q1D systems having nontrivial (n > 1) rotational

symmetry is possible only along the z-axis. This conclusion naturally arises when

possible values of the means in the eigenstate |ψ〉 of the operators 1o⊗σi are analyzed

〈σi〉|ψ 〉 = 〈ψ | 1o ⊗ σi |ψ〉. (2.40)

Consider a band EbmΠ(k) of H assigned by the IR µ of L̃ (m is half integer). At any

fixed value of k eigenstate |k,m〉 (possible parity labels are omitted as the analysis

is independent of them) can be expressed as the sum of two terms which are the

tensor product of vectors |k ± ku,m± 1
2
〉 ∈ So and the spin states |↓〉 and |↑〉:

|k,m〉 =|k − ku,m−
1

2
〉 |↑〉+ |k + ku,m+

1

2
〉 |↓〉. (2.41)

Having in mind that eigenvectors of the Hamiltonian H0 are orthogonal, and that

nonzero matrix elements of Pauli matrices are

〈↑| σx |↓〉 = 1, 〈↓| σx |↑〉 = 1,

〈↑| σy |↓〉 = −i, 〈↓| σy |↑〉 = i,

〈↑| σz |↑〉 = 1, 〈↓| σz |↓〉 = −1, (2.42)

1In order to simplify the notation, when convenient, we use joint notation |km〉 for both linear
and helical QNs. In this notation, µ± = (k ± ku,m ± 1/2,Π), where ku = 0 in linear QNs and
ku = π/(Qf) in helical QNs.
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it is simple to show

〈σz〉|k,m 〉 = 〈 k − ku,m− 1
2
| k − ku,m− 1

2
〉 − 〈 k + ku,m+ 1

2
| k + ku,m+ 1

2
〉,

〈σx〉|k,m 〉 = 0,

〈σy〉|k,m 〉 = 0, (2.43)

thus proving the previously stated assumption.

Next, we analyze mean value of 1o ⊗ σz in the eigenstates |ψ〉 = D(˜̀
p) | k,m〉

obtained by the action of generators ˜̀
p of the DLG on | k,m〉. The resulting | ψ〉

states are eigenstates that correspond to the same energy as |k,m〉. It is easy to see

that action of D(˜̀
p) induces either a change of sign of QNs i.e |k,−m〉,|−k,m〉 and

|−k,−m〉 are obtained, or QNs are preserved and only the phase of |k,m〉 is possibly

changed

D(C̃n) |k,m〉 = ei 2π
n
m |k,m〉,

D(S̃2n) |k,m〉 = |−k,m〉 = ei(π
n

+π)m(|−k − ku,m−
1

2
〉 |↑〉+ |−k + ku,m+

1

2
〉 |↓〉),

D(σ̃h) |k,m〉 = |−k,m〉 = i(|−k − ku,m−
1

2
〉 |↑〉−|−k + ku,m+

1

2
〉 |↓〉),

D(σ̃v) |k,m〉 = |k,−m〉 = −|k − ku,−m−
1

2
〉 |↑〉+ |k + ku,−m+

1

2
〉 |↓〉,

D((̃σv|
a

2
)) |k,m〉 = |k,−m〉 = −|k − ku,−m−

1

2
〉 |↑〉+ |k + ku,−m+

1

2
〉 |↓〉,

D(Ũ) |k,m〉 = |−k,−m〉 = i(|−k + ku,−m−
1

2
〉 |↑〉+ |−k − ku,−m+

1

2
〉 |↓〉).

(2.44)

After calculating 〈σz〉|ψ 〉, it turns out that mean value 〈σz〉|ψ 〉 can differ from 〈σz〉|k,m 〉
in sign only. Results are listed in Table 2.1.

It is evident that if vertical mirror or glide plane is a geometrical symmetry

of the system, there are two eigenstates | k,m〉 and | k,−m〉 having the opposite

mean value of spin. Therefore, in such systems band splitting does not lift the spin

degeneracy. These are the only pure geometrical obstacles to achieve spin dependent

band structure.

If, in addition, the total Hamiltonian H commutes with time reversal θ, condi-

tions for spin splitting of the bands are even more rigid. The time reversal has the

same effect on |k,m〉 (up to phase i) and 1o ⊗ σz as Ũ . Consequently, joint effect

of θ and horizontal mirror plane or S̃2n maps | k,m〉 onto | k,−m〉 with identical
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Table 2.1: DLG generators ˜̀
p are in the first column, with parameters defining

them in the second. In the third column mean values 〈σz〉|ψ 〉 are expressed through
〈σz〉|k,m 〉.

˜̀
p (j, ϕ,n, t) 〈σz〉|ψ 〉
C̃n (0, 2π/n, ez, 0) 〈σz〉|k,m 〉
S̃2n (1, π + π/n, ez, 0) 〈σz〉|k,m 〉
σ̃h (1, π, ez, 0) 〈σz〉|k,m 〉
σ̃v (1, π, ey, 0) −〈σz〉|k,m 〉
(̃σv|a2) (1, π, ey, a/2) −〈σz〉|k,m 〉
Ũ (0, π, ex, 0) −〈σz〉|k,m 〉

mean value of spin. Therefore, if the system possesses time reversal symmetry, SOC

induced band splitting in the case (2.39) removes the spin degeneracy, i.e spin split-

ting occurs only in systems whose symmetry group belongs to the first or the fifth

family only. Without the time reversal symmetry, purely geometrical constraints

allow nonzero polarization in Q1D systems within the families F = 2, 3 and 4 also.

Spin splitting can be induced by breaking some of the system symmetries. First,

homogeneous collinear magnetic field can break time reversal, vertical mirror/glide

planes and U -axes, thus leaving symmetries of the families 1-4 that allow spin split-

ting. On the other hand, collinear electric field cannot break time reversal, vertical

mirror and glide planes, and reduces the symmetry to families 1,6,7,8, where only

the first family DLG allows spin splitting. In other words, if collinear electric field is

applied in systems having symmetry group from families 1-5, spin splitting can be

induced. Lastly, non-collinear electric field conserves U -axis and mirror/glide plane,

while breaking rotational symmetry.

SOC effects on band structure

Finally, we address the SOC effects on bands topology in the entire Brillouin zone

using both linear and helical QNs, whose common application gives us interesting

insight into band splitting. Take, for example, the band Em,Π(k) of Ho and the

corresponding bands Em±,Π̃(k) of Ho ⊗ 12. For linear QNs these bands are exactly
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the same

Em,Π(k) = Em± 1
2
,Π̃(k). (2.45)

On the other hand, when using helical QNs, there is an additional shift of k̃ for

±k̃u, such that Em̃,Π(k̃) splits into two branches Em̃± 1
2
,Π̃(k̃) which correspond to two

shifted original orbital bands along k̃ in opposite directions, i.e.

Em̃± 1
2
,Π̃(k̃ ∓ k̃u) = Em̃,Π(k̃). (2.46)

Clearly, we see that in helical QNs band splitting is observable even without SOC,

due to opposite shift of the same energies along the Brillouin zone. If parts of the

shifted bands are pushed out of the irreducible domain, they can be seen on the

other band, complicating the tracing of band splitting.

Additional complexity when relating bands of Ho and Ho⊗12 appears if crossing

of the band Em(k) with the bands assigned by m′ = m± 1 is present, regardless of

the type of QNs. In this situation bands with the same QNs (in DLG picture) cross

at some point k× of the Brillouon zone. Then, the non-crossing rule [18] must be

applied, such that two new bands arise: one new band joins the parts of the initial

bands above the crossing level, and the parts below form the other band. Finally,

the presence of SOC induces an energy gap at k×.

In systems whose symmetry belongs to the first or fifth family DLGs, spin po-

larization of the splitted branches is allowed. In the first family DLG case, each

(one-dimensional) band Em(k) of total Hamiltonian H, with an eigenstate |km〉, has

fixed sign of the polarization, except in the cases where there are crossing points

with other bands having identical QNs. If the band crossing occurs, the non-crossing

rule rearranges the two bands, with a change of polarization sign at k×, i.e. the re-

arranged bands are not overall polarized. In the fifth family DLG case, U -axis

symmetry is present, yielding a double degenerate bands of H for any particular

value of k ∈ (0, π∂) with eigenstates |km〉 and |−k,−m〉 oppositely polarized (±σ
along the z-axis).

As an illustration of the non-crossing rule and spin polarization of the bands,

in Fig. 2.1 we analyze conduction bands of (15, 5) chiral SWCNT in both helical

and linear QNs. In the H0 case, orbital bands whose angular quantum numbers

differ by 1 cross (blue and green curves in Fig. 2.1). When the Hamiltonian Ho⊗12

is analyzed, DLG usage activates non-crossing rule, yielding rearrangements of the

29



bands and change of spin polarization. Finally, in the case of Hamiltonian H, SOC

induces spin splitting of the bands.

Figure 2.1: Conducting band Emc(k) (blue) of SWCNT (15, 5) for Hamiltonian Ho,
branched into Em±c (k) (cyan and magenta) for Ho ⊗ 12 and H for helical and linear
QNs (left and right column). Crossing with another orbital band Em(k) (green) at
k×, such that one of its branches with m−1/2 and m̃+1/2 (dashed purple) equals m+

c

or m−c , activating non-crossing rule: spin polarization along the rearranged bands
(arrows) varies due to sign switches at crossing points (vertical dashed lines). Full
Brillouin zone is plotted for Em̃c(k̃) to comprehend the shift of Em̃±c (k̃) for ±k̃u. In
the last row, bands of unperturbed Hamiltonian (dotted) are supplied to illustrate
the effects of SOC on spin splitting. Figure is taken from [27].
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Chapter 3

Spin-orbit interaction in SWCNTs

Carbon nanotubes (CNTs) are cylindrical molecules made from rolled-up sheets

of graphene. CNTs can be single walled or multi walled (MWCNT), made from

more than one concentric SWCNT. In the pioneer work of Iijima [54], MWCNTs

were created using an arc-discharge evaporation method. Due to small diameters

(4−30nm) of MWCNTs produced, as compared to their length (1µm), these systems

can be considered Q1D.

Experimental observation of MWCNTs and two years later discovery of SWC-

NTs of even smaller diameters (1 nm) [55] was followed by theoretical works in which

electronic structure of SWCNTs was studied using the tight-binding [56–58] and

local-density-functional approach [59]. It was shown that SWCNTs electronic prop-

erties are strongly dependent on the way in which graphene sheet is rolled-up into

a nanotube, varying from a conductor to the 1 eV band gap semiconductor [28, 60].

Tunability of electron properties through small change of chirality has made them

the best candidates for replacing the silicon materials in modern electronics.

Furthermore, measurements of intrinsic thermal vibrations of SWCNTs in the

transmission electron microscope [61] have suggested excellent mechanical properties

and potential usage of nanotubes as lightweight nanoscale fibres. Also, thermal

properties were studied [62] by measuring the specific heat and thermal conductivity,

suggesting that 1D quantisation of the phonon band structure greatly enhances

thermal properties of the structure.

As mentioned above, structure of SWCNTs can be defined using the graphene

rolling along the particular direction: for defined graphene lattice basis vectors a1
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Figure 3.1: Graphene: vectors a1 and a2 build an elementary cell of a graphene
honeycomb, where |a1| = |a2| = a0 = 2, 461Å and the angle between them is 60◦.
Chiral vector c = (n1, n2) (θc is a chiral angle) defines a rolled-up configuration of
SWCNT (n1, n2): tube is obtained by cutting the graphene in such a way that c
becomes the circumference of the tube.

and a2 and integer numbers n1 and n2, chiral vector

c = n1a1 + n2a2 (3.1)

will become circumference of the tube (see Fig. 3.1). By convention, nanotube

axis corresponds with the z-axis, while x-axis passes through the center of carbon

hexagons. The angle θc between the vectors a1 and c is called a chiral angle. SWC-

NTs are commonly labeled as (n1, n2). Due to symmetries of the graphene plane,

it is enough to consider only nonnegative n1 and n2 values to obtain all possible

configurations. Depending on the choice of n1 and n2, all SWCNTs can be gathered

into three different classes

• chiral (C) for n1 6= n2 > 0,

• armchair (A) for n1 = n2 = n, i.e. (n, n),

• zig-zag (Z) for n1 = n, n2 = 0, i.e. (n, 0).

Values θc = 0◦, 30◦ correspond to Z ((n, 0)) and A ((n, n)) tubes, respectively.

Due to the mirror plane symmetry of their configurations, both types are achiral,

while for each chiral tube (n1, n2) its optical isomer is (n2, n1). In most situations
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(e.g. study of electronic and mechanical properties), it suffice to consider only chiral

tubes with θc within the range (0, 30◦) (i.e. tubes with n1 > n2 > 0).

Finally, SWCNTs can be classified according to their conductance properties [56–

59]. They are conducting if the value p
.
= n1 − n2 (mod 3) is equal 0; on the other

hand, if p = ±1 we obtain semiconducting ones. In other words, all armchair tubes

are conducting, while among chiral and zig-zag tubes all three above mentioned

classes are present.

3.1 Full geometrical symmetry of SWCNTs

In order to define the geometrical symmetry of SWCNT, we start from the single

layer of graphite, i.e. graphene [63], whose symmetry group is the symmorphic

diperiodic group DG80 [12], with the isogonal point group D6h and hexagonal lattice

with periods a0 = 0.246nm (rhombic with an angle α = 60◦ between them).

Diameter D of the tube (n1, n2) is equal to

D =
a0

π

√
n2

1 + n2
2 + n1n2, (3.2)

while the chiral vector θc is

sin θc =

√
3n2a0

2|c|
. (3.3)

Geometrical symmetries of chiral and achiral SWCNTs [64]

LC = T r
q (f)Dn, LZ,A = T 1

2n(
a

2
)Dnh, (3.4)

belong to the fifth and thirteenth family line groups. For chiral (n1, n2) tubes group

parameters (order of principal rotational axis n; parameters q, r and fractional trans-

lation f defining the screw axis (Cr
q |f)) are defined as

n = GCD(n1, n2), q = 2
n1n2 + n2

1 + n2
2

nR
,

r =
q

n
Fr
[ n
qR

(3− 2
n1 − n2

n1

) +
n

n1

(
n1 − n2

n
)Eu(

n1
n

)−1)
]
,

f =
a0n√

n2
1 + n2

2 + n1n2

, a =
a0

√
3
√
n2

1 + n2
2 + n1n2

nR
. (3.5)

In (3.5), R is 3 if (n1 − n2)/3n is an integer number or 1 if it is not. Eu(x) is an

Euler function giving the number of the coprimes with x being less than or equal to
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(8,4)

C

(6,0)(8,2)

Achiral

(6,6)

Figure 3.2: In the left panel, chiral (8,2) and (8,4) tubes are given, while in the
right panel, achiral zig-zag (6,0) and armchair (6,6) tubes are presented. U -axis is
along x-axis, while parallelograms are vertical and horizontal mirror planes. Figure
is taken from [13].

x, while Fr(x) = x − [x] is the fractional part of the rational number x. For both

zig-zag (n, 0) and armchair (n, n) tubes group parameters are n, q = 2n, r = 1,

f = a/2, while a =
√

3a0 in the zig-zag and a = a0 in the armchair case. An

illustration of chiral (8,2) and (8,4) tubes, as well as achiral (6,0) and (6,6) tubes is

given in Fig. 3.2.

Arbitrary element of tube’s symmetry group LC and LA/Z can be expressed in

the following way

`tsu = (Cr
q |f)tCs

nU
u, (3.6)

`tsuv = (C1
2n|
a

2
)tCs

nU
uσvv, (3.7)

respectively. Here (Cr
q |f)t with t = 0,±1, ... is an element of the screw axis subgroup

Tr
q(f); elements of the rotation group Cn around the z-axis are Cs

n with s = 0, ...n−1;

U is the rotation around the x-axis for an angle π (thus u = 0, 1). For achiral tubes

additional generator σv is the vertical xz mirror plane (v = 0, 1).

Each SWCNT is a single orbit system, i.e. the whole tube can be constructed

by the action of tube’s symmetry group on a single carbon atom. In the chiral cases

stabilizer of any atom is trivial (the identity element only) and the whole nanotube

represents generic orbit of the fifth family line groups. In the case of achiral tubes

stabilizer has two elements: {e, Cnσx} for zig-zag and {e, σh} for armchair tubes.

Therefore, in order to reconstruct the whole tube for the achiral case, it is enough
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Figure 3.3: Symcell atom C000 and its nearest neighbors 1,2 and 3 at honeycomb are
represented. C2-axis perpendicular to the plane becomes U -axis of the nanotube,
i.e. x-axis on Fig. 3.1. In case of zig-zag and armchair tube the graphene mirror
planes, marked by blue and red lines respectively, survives the rolling becoming σh

and σv symmetries of the tube.

to use the elements from the fifth family subgroup: `tsu0 ∈ T 1
2n(a/2)Dn. These

elements are usually called transversal elements 1.

As the symcell atom we choose the atom C000 of graphene honeycomb (Fig. 3.3).

After rolling, its cylindrical coordinates are

r000 = (
D

2
, ϕ000, z000), ϕ000 = 2π

n1 + n2

nqR
, z000 =

n1 − n2√
6qnR

a0. (3.8)

Acting by the transversal element `tsu on r000 we get coordinates of any other atom

rtsu

rtsu = `tsur000 = (
D

2
, (−1)uϕ000 + 2π(

rt

q
+
s

n
), (−1)uz000 + t

n

q
a). (3.9)

3.1.1 Symmetry-adapted relaxation procedure

The described rolled-up configuration of SWCNTs is not necessarily the equilibrium

one, as one expects that for small diameter tubes the curvature causes additional

1Let H = {h1 = e, h2, ...} be a subgroup of the group G. Set aH = {a, ah2, ...}, a ∈ G, is
called left coset of subgroup H determined by its representative a. By analogy, set Ha is called
right coset. Transversal of a subgroup H in G is a subset of G which contains exactly one element
in every coset of H [32].
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tension with respect to the layer. In order to ”relax” the induced tension and find

the stable configuration, symmetry preserving optimization of the structure needs

to be performed [65].

Since, according to the topological theorem of Abud and Sartori [66], the ex-

tremes of the invariant functions should be searched on the manifolds with maximal

symmetry, we need to examine which SWCNT parameters can be modified without

changing the symmetry of a system. SWCNT structure can be fully determined by

six parameters: three coordinates of the initial atom r000, ϕ000, z000 and three group

parameters: Q = q/r, f and n. Parameter n is discrete and its change would lead

to symmetry breaking. All other parameters are continuous and their modification

preserves the system’s symmetry. This leads us to the conclusion that five param-

eters (Q, f, r000, ϕ000, z000) are allowed to be varied in the chiral case, while in the

achiral tubes four parameter (f, r000, ϕ000, z000) can be changed (recall that Q = 2n

for achiral tubes).

Change of ϕ000 and z000 solely can be seen as relative shift of two sublattices [31],

while changes of parameters Q, f and r000 leads to homogeneous deformation of the

cylinder

• change of the parameter Q to Q′ leads to the tube’s torsion

2π

Q′
=

2π

Q
+ τf, (3.10)

where τ represents torsion per unit length f .

• change of the parameter f to f ′ is equivalent to the axial strain εz

f ′ = f(1 + εz). (3.11)

• by changing the parameter r000 we introduce radial breathing which changes

the diameter of the tube

D′ = D(1 + εc), (3.12)

where εc is the circumferential strain.

If we wish to investigate the impact of some deformations, then its corresponding

parameter should be fixed to the desired value, while the remaining parameters

can be determined by finding the stable configuration with the above mentioned

relaxation procedure. More details can be found in [30, 31, 65, 67].
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3.2 SOC induced effects in SWCNTs

Before we analyze the influence of SOC in SWCNTs using the previously derived

DLGs (Chapter 1), a brief overview of the previously reported theoretical and ex-

perimental results is given.

An overview

In graphene, the presence of inversion symmetry forbids spin splitting of the

bands. Although spin splitting is forbidden, theoretical and numerical studies pre-

dict SOC induced band gap of around 24µeV [68–70], requiring very low tempera-

tures (≈ 0.2K) to experimentally probe the predicted results.

The influence of SOC on the effective mass Hamiltonian of SWCNTs [43] was the

first paper analyzing the effects in the vicinity of high symmetry points of graphene

(K, K ′) based on the zone folding and k · p theory. After that, using the empirical

tight-binding Hamiltonian, Chico et al. [20] had shown that spin splitting is possible

in chiral SWCNTs, whereas in achiral ones the same is not allowed. Later theoretical

study [71] confirmed the presence of spin splitting and gap opening in nanotubes.

SOC effects were then probed in an experimental setup [23], where single electron

was confined in a quantum dot and magnetic field parallel to the tube axis was

applied. The results suggested that electron-hole asymmetry is present, by showing

that SOC induced spin splitting is not the same in conductance and valence bands.

More concretely, the measured value of spin-splitting in the maximum of the highest

valence band was (0.37 ± 0.02) meV, while in the lowest conductance band minima

the corresponding splitting was found to be (0.21± 0.02) meV. After that, in a series

of theoretical papers [21, 22, 72–74] a description of the SOC effects on electronic

structure was given, using tight-binding, non-orthogonal tight-binding and first-

principles calculation. Here we recapitulate these conclusions, mainly focusing on the

Table 3.1: Parameters in equation (3.14), given in nm units.

a
(p)
−,1 a

(p)
−,2 a

(p)
+,1 a

(p)
+,2

Metallic (p = 0) -0.095 -0.090 0.096 -0.090
Type-I (p = 1) -0.087 -0.085 0.105 -0.094

Type-II (p = −1) 0.087 -0.086 -0.105 -0.093
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ones presented in [22] (consistent with other theoretical conclusions). In armchair

SWCNTs, SOC induced energy gap dependence on diameter D is the following

Ea
gap = a(a)λso

D
, (3.13)

where a(a) = 0.098nm. Furthermore, band (spin) splitting of top valence and bottom

conductance bands of zig-zag (chiral) nanotubes is dependent on the diameter D and

the chiral angle θc in a following way:

E
(p)
b,split = λso

a
(p)
b,1 + a

(p)
b,2 cos 3θc

D
, (3.14)

Here, integer p distinguishes metallic (p = 0) from type-I (p = 1) or type-II (p = −1)

semiconducting nanotubes, while b = ± refers to the conductance and valence band,

respectively. Parameters a
(p)
b,1 and a

(p)
b,2 are given in Table 3.1.

Table 3.2: Conductance band splitting of metallic nanotubes p = 0 with diameter
close to 3nm.

(n1, n2) d [nm] Spin splitting [meV] (n1, n2) d [nm] Spin splitting [meV]

(38, 2) 3.06 0.03 (31, 13) 3.07 0.15
(37, 4) 3.07 0.04 (30, 12) 2.93 0.15
(37, 1) 2.94 0.03 (29, 14) 2.97 0.18
(36, 6) 3.08 0.05 (28, 16) 3.02 0.22
(36, 3) 2.94 0.03 (27, 18) 3.07 0.26
(35, 5) 2.96 0.05 (26, 17) 2.94 0.26
(34, 7) 2.97 0.07 (25, 19) 3.00 0.30
(33, 9) 3.00 0.09 (24, 21) 3.05 0.34
(32, 11) 3.03 0.12 (23, 20) 2.92 0.35

Theoretical results were put on the test after another experimental work [24] in

which spin splitting in metallic SWCNTs (p = 0) was measured. More concretely,

3.4 meV spin splitting value in conductance band minimum of tubes with diameter

3nm is observed. In order to compare theoretical predictions with the measured

value, it is appealing to use equation (3.14). In Table 3.2 we present the values of

spin splittings for minimum of the lowest conducting band of SWCNT with diameter

(3 ± 0.1) nm. The biggest value of spin splitting is 0.35meV, being one order of

magnitude smaller than the experimentally observed value.

Also, quite recent density-functional based study [75] of spin splitting in nearly

metallic chiral SWCNTs wasn’t able to explain discrepancy between theoretical and
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experimental results. Moreover, for tube (10,7) they reported a larger magnitude of

spin splitting of conductance band compared to valence band. This is opposite to

the previously reported results [22].

3.2.1 Symmetry based analysis of SOC effects

Derived DLGs and their IRs allow direct diagonalization of the Hamiltonian using

the POLSym code [29]. The diagonalization procedure in the POLSym code is

based on the modified group projector technique [25], enabling us to calculate only

interaction between r000 and its neighbors, within the range of interaction. Spin

independent Hamiltonian is calculated through the matrix elements of H0 in the sp3

basis [76] using the full range of interaction potentials. As mentioned in Chapter 2,

we will use on-site approximation of the SOC,Hso = λsol·s, where spin-orbit constant

λso is taken to be 12 meV [39], though some other values [40, 41] can be found in

the literature.

As shown in Section 2.3, vertical mirror symmetry bans spin splitting in achi-

ral tubes. Bands of these tubes are assigned by IRs of dimension two or four

(one-dimensional IRs correspond to special points k = 0, π). Orbital band of

Ho corresponding to the four-dimensional representation kGmo(LZ,A) with mo =

1, 2, . . . , n− 1 will be splitted due to SOC, as

kGmo(L̃Z,A)⊗ u(L̃Z,A) = kGmo− 1
2
(L̃Z,A)⊕ kGmo+ 1

2
(L̃Z,A). (3.15)

On the other hand, if the orbital bands are labeled by the two-dimensional repre-

sentations kE
A/B
0 (LZ,A) and kE

A/B
n/2 (LZ,A), band splitting is not allowed

kE
A/B
0 (L̃Z,A)⊗ u(L̃Z,A) = kG 1

2
(L̃Z,A),

kE
A/B
n (L̃Z,A)⊗ u(L̃Z,A) = kGn− 1

2
(L̃Z,A). (3.16)

Equation (3.16) fully explains the behaviour of armchair SWCNT band above and

below the Fermi level, and the emergence of band gap in armchair tubes. Initially,

when solving eigenproblem of the orbital Hamiltonian Ho, two-dimensional bands,

one assigned by kE
A
n (LA) and the other by kE

B
n (LA) [77] cross at the Fermi level

(Fig. 3.4 (left panel)). When the spin degree is taken into account, but without

including SOC term to the Hamiltonian, dynamics of the system is described by the

Hamiltonian Ho ⊗ 12. In this case, DLGs should be used instead of single groups.
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Consequently the bands do not change but, according to equation (3.16), instead

of IRs kE
A
n (L̃A) and kE

B
n (L̃A) each of them is now assigned by four-dimensional

representation kGn− 1
2
(L̃A). Noncrossing rule [18] forbids crossing of bands with

identical QNs, meaning that these two orbital bands have to be rearranged into two

new bands that touch at the Fermi level (Fig. 3.4 (right panel)). In the end, full

Hamiltonian Ho⊗12 +Hso leads to the opening of a band gap (Fig. 3.4, inset in the

right panel).

Figure 3.4: Band splitting in armchair SWCNT: (left panel) Two bands of Ho for
tube (8, 8), assigned by two-dimensional line group IRs kE

A
8 and kE

B
8 cross at the

Fermi level; (right panel) bands of Ho ⊗ 12, labeled in terms of DLG IR kG 15
2

(L̃A),
touch at the Fermi level. Inset: presence of SOC induces a band gap. Figure is
taken from [36].

In the case of zig-zag SWCNTs, lowest conductance and highest valence band

split when SOC is included. This happens due to the fact that both orbital bands are

assigned by four-dimensional representation kGmo(LZ) and due to equation (3.15)

band splitting occurs, illustrated in Fig. 3.5.

Finally, in chiral SWCNTs all orbital bands transform according to one-dimensional

IRs kAm(LC) in linear QNs or k̃Am̃(LC) in helical QNs. SOC induces splitting of all

bands

kAm(L̃C)⊗ u(L̃C) = kAm+ 1
2
(L̃C)⊕ kAm− 1

2
(L̃C),

k̃Am̃(L̃C)⊗ u(L̃C) = k̃+ π
Qf
Am̃+ 1

2
(L̃C)⊕ k̃− π

Qf
Am̃− 1

2
(L̃C), (3.17)
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Figure 3.5: Lowest conductance and highest valence band of zig-zag SWCNT (8, 0).
(left panel) Two bands of Ho are assigned by four-dimensional representations

kG5(LZ) and kG6(LZ). (right panel) When SOC is included, both bands split
into bands of H. Their degeneracy remains the same, but the two branches are
assigned by IRs with different angular momentums 11/2 and 13/2 for the bottom
conductance bands, as well as 9/2 and 11/2 for the top valence bands. Figure is
taken from [36].

which is followed by the removal of spin degeneracy. In other words, each split

branch has opposite spin polarization for fixed k-point. In most cases, sign of spin

polarization along the band is fixed. However, as thoroughly explained in Section 2.3,

in some situations sign of the spin polarization of the band can vary, owing to the

non-crossing rule of two bands with identical QNs (having opposite polarization).

The rearrangement of the bands is such that, after the crossing point, the abrupt

switch of spin polarization occurs. We identify such situations whenever two orbital

bands with angular momentum differing by ±1 intersect; then two of their branches

with identical angular momentum, cross as well.

In Fig. 3.6 we illustrate this situation on the example of tube (9, 3). In the top

panel, conductance band and few relevant orbital bands of the orbital Hamiltonian

Ho are plotted in helical QNs. Their angular QNs are m̃c
0 = −1, m̃0 = 0 and

m̃0 = 1. When the Hamiltonian Ho ⊗ 12 is considered, their branches are assigned

by one of the following values of angular QNs: m̃ = ±1/2,±3/2. The middle

graph in Fig. 3.6, show helical branches of the orbital bands with angular QNs

m̃ = −1/2 and m̃ = 3/2, in order to illustrate cases when bands with identical
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Figure 3.6: Conductance bands of SWCNT (9, 3): (top panel) conductance bands
of the orbital Hamiltonian Ho with angular QNs m̃o = 0, m̃o = 1 and m̃c

o =
−1; (middle panel) branches with angular QNs m̃ = −1/2 and m̃ = 3/2 in the
case of Hamiltonian Ho ⊗ 12; (bottom panel) rearranged bands as the result of
the non-crossing rule, after the application of SOC. Arrows indicate the change of
polarization along them. Figure is taken from [36].
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QNs have/don’t have an intersection (this is situation before the non crossing rule is

applied). First, we will focus on branches with m̃ = −1/2 which intersect. Bottom

graph in Fig. 3.6 shows the rearranged bands with angular QN m̃ = −1/2 as a

result of the non-crossing rule, leading to the change of polarization along them.

Also, at the intersection points, adding the SOC term to the Hamiltonian opens a

gap. On the other hand, bands with m̃ = 3/2 have a constant sign of polarization,

as expected.

It is to be mentioned that the above analysis is valid for optical isomers, i.e.

their band structure is equivalent. The only difference between two isomers is in the

value of spin polarization of the corresponding bands, having opposite values in the

same point of Brillouin zone.

3.2.2 Effects of strain on the magnitude of SOC induced
splitting

When examining diameter and chiral angle dependance of the magnitude of band

and spin splitting, we also found the same behaviour as Izumida et al. [22]. On the

other hand, our method of calculation enabled us to reveal one subtlety, which can

lead us towards understanding the discrepancy between theory and experiment, as

well as opposite numerical results reported for the ratio of valence and conductance

band splitting in chiral tubes.

Namely, we have shown that the ratio is highly dependent on the relaxation (i.e.

small variations of tubes configuration). This is illustrated in Fig. 3.7, where SOC

induced splitting is presented for the rolled-up fully relaxed configuration of the tube

(9, 3). The bands are plotted in helical QNs since the natural torsion [30, 31, 65, 67]

is taken into account; this also makes easier to present the results of the spin splitting

as in helical QNs the two branches are shifted in opposite directions along k̃ for k̃u.

Results for the rolled-up configuration show smaller valence spin splitting compared

to the conductance band. However, the relaxation procedure switches the relative

ratio of these splittings.

Dependance of spin splitting on tube’s configuration in metallic SWCNTs moti-

vated us to investigate the influence of strain. Moreover, in experiments, SWCNTs

configurations can be influenced by the small axial strain εz. As an illustration, in

Fig. 3.8 spin splitting for εz = 2% stretched and εz = −2% compressed tube (9, 3) is

presented. The plot show that stretching induces different magnitude of spin split-
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ting in valence and conductance bands, whereas compressing has small effect on spin

splitting. To conclude, this result offers possible explanation of an experimental re-

sults, i.e. slight change of tube’s configuration due to imposed strain by contact

formation can induce observable effect on measurement. Presented symmetry based

analysis of SOC in SWCNTs has been published in Milivojević et al [36].

Figure 3.7: Lowest conductance and highest valence bands of tube (9, 3), expressed
in helical QNs. Dynamics is governed by the Hamiltonians Ho ⊗ 12 and H, arrows
indicate electron spin polarization, while ∆so = |E↑−E↓| denotes the absolute value
of the spin splitting of valence and conductance bands. Figure is taken from [36].
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Figure 3.8: Influence of strain on lowest conductance and highest valence bands of
tube (9, 3). In the left panel streching of the tube is 2%, while in the right panel
compression εz = −2% is applied. Figure is taken from [36].
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Chapter 4

Spin-orbit interaction in MoS2
nanotubes

Monolayer MoS2 is a direct band gap semiconductor [78–80] with pronounced spin

splitting in the top valence band [81–85], due to the relatively high atomic number of

Mo (ZMo = 42) and the fact that d orbitals of Mo carry the SOC. More concretely,

DFT calculations [81, 84, 86] give spin-splitting in the top valence band of 147-148

meV, while the experiments find it to be in the range of 138-160 meV [87–92]. As

for the minimum of the conductance band, theoretical results predict values from 1

meV to 3 meV [82, 84, 93].

On the other hand, when rolling-up a MoS2 layer into a nanotube, as for SWC-

NTs, chiral, zig-zag and armchair tubes can be formed [94, 95], where the same

description by the pair of numbers (n1, n2) is maintained. However, line groups

describing the corresponding nanotubes are different than in the SWCNT case [96].

Electrical properties of MoS2 nanotubes are also known [97–100]. Zig-zag MoS2

tube is a direct gap semiconductor, where the maximum of the top valence and the

minima of the bottom conductance band is placed at k = 0. Differently, armchair

tube is an indirect gap semiconductor, with the maximum of valence bands at k = 0

and the minima of conductance bands at ka ≈ 2π/3. It is worth noticing that local

valence band maximum appears at the same point as the conductance band maxi-

mum, so its value can be measured by optical spectroscopy. Chiral MoS2 nanotubes

are not as studied as their carbon equivalents. The main reason probably lies in

the fact that, up to our knowledge, there are no experimental reports on isolated

single-wall chiral tubes. Nevertheless, chiral walls in multi-wall tubes are detected

by diffractions [101].
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As far as we are aware, SOC effects on the band structure of transition-metal

dichalcogenide nanotubes have not been studied. In the case of SWCNTs, large

SOC induced splitting as compared to the spin-orbit effects in graphene is commonly

explained as a consequence of their curvature and cylindrical topology, motivating

us to test this hypothesis in the case of a system whose layered counterpart has

already large spin splitting values.

First, we construct double group of the corresponding diperiodic group of the

monolayer, along with its IRs. Next, we perform symmetry based DFTB study of

SOC effects. In this way we can establish a basis for comparison of curvature effects

in nanotubes, being of central interest in this Chapter.

Some general results regarding the SOC effects in MoS2 nanotubes will be ana-

lyzed using the results obtained for DLGs, given in Chapter 1. Finally, in order to

examine the magnitude of SOC induced band/spin splitting, we will perform DFTB

calculation, focusing on the local minima/maximum of the valence/conductance

bands for all three types of nanotubes.

4.1 MoS2 monolayer

Molybdenum disulfide monolayer [102] is made from three equal trigonal lattice

planes (two sulfur and one molybdenum), with basis vectors a1 and a2 of the same

length a0 = 3.16Å [103]. Distance between sulfur planes is δ = 3.17Å [104], with

atoms in one plane straight below the other. Molybdenum plane is in the middle

between sulfur planes, with their atoms in the center of sulfur triangles (see Fig. 4.1).

Elementary cell consists of two S atoms, one from each plane, and one Mo atom.

Monolayer is invariant under translations of the form n1a1 +n2a2, where n1 and

n2 are integer numbers, rotations around the axis perpendicular to the system for an

angle ±2π/3 (C3 symmetry), horizontal and vertical mirror planes and their com-

binations. Thus, symmetry group of the MoS2 layer is the symmorphic diperiodic

group Gml=Dg78 =T ∧D3h [12, 105].

IRs of Dg78 group, necessary for performing symmetry based calculations, have

already been constructed [12]. The procedure goes as follows: first, IRs of first

diperiodic group Dg1=T , being the pure translational group are found. Group

Dg65=C3T is the semidirect product of subgroups Dg1 and C3. In this case, in-

duction procedure from the Abelian subgroup is necessary (see Appendix B.2) in
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Figure 4.1: Structure of the MoS2 monolayer: a) top and b) side view. Molybdenum
atoms are labeled as blue, while sulfur atoms are red circles. Basis vectors of lattice
plane are a1 and a2, building an angle 2π/3 between them. Distance between sulfur
planes is δ.

order to find the corresponding IRs. After that, using the standard induction from

invariant subgroup of index 2 (Appendix B.1), with an additional element σh, IRs

of Dg74=C3hT are constructed. In the last step, IRs of Dg74 are needed to perform

the induction from the invariant subgroup of index 2, with U being the additional

element, yielding IRs of the desired group Dg78.

Irreducible domain of the Brillouin zone for the MoS2 layer is given in Fig. 4.2:

there are two special points Γ = (0, 0) and K = (2π
3
, 2π

3
), special lines ∆ = (k, 0)

and Φ = (0, k) (k ∈ (0, π)), while G represents generic points. The general label of

the IR ΠU
k DΠh

m carries information about the symmetry-based QNs: subscript k =

(k1, k2) is the wave vector from the irreducible domain, m is the angular momentum

taking integer values, while parities Πh and ΠU are equal to ±1. For an IR k2
k1
GΠh ,

corresponding to generic points G, parity ΠU and m are not defined, while values of

k1 and k2 are from the interval (0, π]. In all other cases, instead of D, label of the

special line/point is used.

4.1.1 Double group of Dg78

In order to find IRs of the double covering group of Dg78, i.e. D̃g78=D̃3hT̃ , we

use a different approach compared to that used for Dg78. Starting from the cyclic

subgroupC3, IRs of the double group C̃3 are constructed. Next, as C̃3h = C̃3+σ̃vC̃3,

corresponding IRs are found from the invariant subgroup of index 2, i.e. C̃3. The
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K

b1

b2

M

Figure 4.2: Irreducible domain of the Brillouin zone for diperiodic group D3hT .
Special points in the Brillouin zone, Γ = (0, 0) and K = (2π

3
, 2π

3
), are marked with

black circles. Special lines are ∆ = (k, 0) and Φ = (0, k) (k ∈ (0, π)), while G
represents generic points. Generic point M = (π, 0) is marked with empty black
circle.

same procedure can be applied to find IRs of D̃3h [16, 17]. Now, as D̃g78 is the

semidirect product of T̃ and D̃3h, induction procedure (Appendix B.2) from the

Abelian subgroup is used to obtain IRs of the monolayers double group.

IRs of the double diperiodic group D̃g78 are listed in the Table 4.1. When

compared to IRs of the single group, angular momentum m can take integer and half

integer values, while the rest of the parities can now have four values Πh = ±i,±1

and ΠU = ±i,±1. Additional parity for ẽ′ is defined, Πẽ′ = ±1, distinguishing

integer from half integer representations, as Πẽ′ = (−1)2m = Π2
h = Π2

U. For half

integer m parities can take the values Πh = ±i, ΠU = ±i and Πẽ′ = (−1)2m = −1,

while for integer m they can be Πh = ±1, ΠU = ±1 and Πẽ′ = (−1)2m = 1. The

later are the extension of the single IRs of Dg78 to D̃g78.

It should be mentioned that IR k2
k1
GΠh is not labeled with QN m. However, recall

that σ̃h
2 = ẽ′, yielding Πẽ′ = Πh

2. This IR is for generic points, i.e. monolayer bands

are assigned by these IRs (aside from the special points and lines). Parities Πh = ±1

and Πẽ′ = 1 correspond to the extension of IRs k2
k1
GΠh of the single group to double

group (integer representations). When the spin related properties are addressed,

QNs Πh = ±i and Πẽ′ = −1 (half integer representations) labeled IRs are assigned

to the bands.

In the Table 4.1, unit matrix of dimension d is written as 1d. Additionally, we
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have used the following matrices

E3 = diag(eik1 , e−i(k1+k2), eik2), D3 = diag(ei(k1+k2), e−ik2 , e−ik1),

N3 = diag(eik2 , eik1 , e−i(k1+k2)),M(m) = diag(eim 2π
3 , e−im 2π

3 ), (4.1)

K∆1 = diag(eik, e−ik, 1), K∆2 = diag(1, eik, e−ik),

KΦ1 = diag(1, e−ik, eik), KΦ2 = diag(eik, 1, e−ik), (4.2)

A =

0 0 Πẽ′

1 0 0
0 1 0

 , B =

1 0 0
0 0 Πẽ′

0 Πẽ′ 0

 , C = Πẽ′

0 0 1
0 1 0
1 0 0

 . (4.3)

4.1.2 SOC effects for the monolayer

Having all the IRs found, symmetry based analysis of the SOC effects on orbital

bands can be performed. First task is to find the Clebsch-Gordan series for the prod-

uct D(µ)(G̃ml) ⊗ u(G̃ml). For the IRs ΠUΓΠh
0 (G̃ml),

ΠU
k ∆Πh

0 (G̃ml) and ΠU
k ΦΠh

0 (G̃ml),

products are the following

ΠUΓΠh
0 (G̃ml)⊗ u(G̃ml) = ΓiΠh

1
2

(G̃ml), (4.4)

ΠU
k ∆Πh(G̃ml)⊗ u(G̃ml) = k∆(G̃ml), (4.5)

ΠU
k ΦΠh

0 (G̃ml)⊗ u(G̃ml) = kΦ 1
2
(G̃ml), (4.6)

Thus, in these cases there is no band splitting, and consequently there is no possi-

bility to lift the spin degeneracy by SOC.

On the other hand, for the IRs ΓΠh
1 (G̃ml), K

Πh
m (G̃ml) and k2

k1
GΠh(G̃ml) band split-

ting is allowed, as

ΓΠh
1 (G̃ml)⊗ u(G̃ml) = Γ−iΠh

1
2

(G̃ml)⊕ Γ 3
2
(G̃ml), (4.7)

KΠh
m (G̃ml)⊗ u(G̃ml) = K iΠh

m+ 1
2

(G̃ml)⊕K−iΠh

m− 1
2

(G̃ml), (4.8)

k2
k1
GΠh(G̃ml)⊗ u(G̃ml) = k2

k1
GiΠh(G̃ml)⊕ k2

k1
G−iΠh(G̃ml). (4.9)

First, although the above result for ΓΠh
1 (G̃ml) suggests that spin splitting may

occur, this is not the case. The IR ΓΠh
1 (G̃ml) is two-dimensional and its SAB contains
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Table 4.1: IRs of the diperiodic double group D̃g78 = D̃3hT̃ . Symbol of IRs can
be found in the column 1. In the column 2, range of corresponding QNs (k,m)
in given. In cases when IR is not labeled by m, parity of Πẽ′ is provided, helping
us to distinguish between integer and half integer representations. In columns 3-7,
matrices of the generators are presented. Element ẽ′, represented by the matrix
Πẽ′1d, where d is the IRs dimension, is not tabulated since its representation is a
priory known.

IR (k,m) C̃3 σ̃h Ũ (̃1|10) (̃1|01)

ΠUΓΠh
m

k = 0
m = 0

1 Πh ΠU 1 1

ΓΠh
m

k = 0
m = 1

2 , 1
M(m) Πh

[
1 0
0 Πẽ′

] [
0 Πẽ′

1 0

]
12 12

Γm
k = 0
m = 3

2

−12

[
−i 0
0 i

] [
0 −1
1 0

]
12 12

kK
Πh
m

k = 2π
3

m ∈ (− 3
2 ,

3
2 ]

M(m) Πh

[
1 0
0 Πẽ′

] [
0 Πẽ′

1 0

] [
eik 0
0 e−ik

] [
eik 0
0 e−ik

]
ΠU
k ∆Πh

k ∈ (0, π]
Πẽ′ = 1

A Πh13 ΠUB K∆1
K∆2

k∆
k ∈ (0, π]
Πẽ′ = −1

A⊗ 12 13 ⊗
[

0 −1
1 0

]
B ⊗

[
i 0
0 −i

]
K∆1 ⊗ 12 K∆2 ⊗ 12

ΠU
k ΦΠh

k ∈ (0, π]
Πẽ′ = 1

A Πh13 ΠUC KΦ1
KΦ2

kΦ
k ∈ (0, π]
Πẽ′ = −1

A⊗ 12 13 ⊗
[

0 −1
1 0

]
C ⊗

[
i 0
0 −i

]
KΦ1 ⊗ 12 KΦ2 ⊗ 12

k2
k1
GΠh k1,2 ∈ (0, π]

[
A 0
0 A−1

]
Πh

[
13 0
0 Πẽ′13

] [
0 Πẽ′13

13 0

] [
E3 0
0 D3

] [
N3 0
0 N∗

3

]
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vectors |0mΠh〉 and |0−mΠh〉 with opposite sign of angular momentum. However,

since Ũ maps one vector onto another (up to a phase), spin splitting is forbidden.

The same is valid for two half integer IRs which appear in the decomposition (4.7).

In this case, their SABs {|0, 1
2
,Πh〉,|0,−1

2
,Πh〉} and {|0, 3

2
〉,|0,−3

2
〉} have vectors that

can be mapped via Ũ one onto the other.

Band splitting is allowed at the K point, as follows from (4.7). Furthermore, σ̃h

does not affect orbital and spin state (up to a phase)

D(σ̃h) |kmΠh〉 |sz〉 = sziΠh |kmΠh〉 |sz〉, (4.10)

yielding that the two branches have opposite spin polarization. Thus, spin splitting

is present at the K point. Elements σ̃v and Ũ , as well as time reversal symmetry,

maps (up to the phase) |kmΠh〉 onto |−k −mΠh〉 while changing the spin orientation.

Finally, in the case of an IR k2
k1
GΠh(G̃ml), it can be shown that spin splitting is

allowed. Since QN m is not present in this case, orbital eigenvector from the SAB

is labeled as |kΠh〉. When the spin degree of freedom is included, the eigenstate has

the following form

|ψ〉 .=|k,±i〉 =|kΠh〉(a |↑〉+ b |↓〉), (4.11)

where | ↑〉,| ↓〉 are spin projections along the direction perpendicular to the layer.

Group element σ̃h transforms the vector |ψ〉 to

D(σ̃h) |ψ〉 = Πh |kΠh〉(ia |↑〉 − ib |↓〉). (4.12)

On the other hand, as vector |ψ〉 is from the SAB of the IR, it follows that

D(σ̃h) |ψ〉 = ±i |ψ〉 =|kΠh〉(±ia |↑〉 ∓ ib |↓〉), (4.13)

giving the restrictions on a and b

± ia = Πhia and ∓ ib = −Πhib. (4.14)

There are two possible solutions: a = 1, b = 0 and a = 0, b = 1, meaning that |ψ〉
must be spin-up or spin-down polarized. Thus, orbital band with defined parity

Πh splits into two branches that differ in QN Πh = i,−i with opposite sign of spin

polarization. Furthermore, for fixed k, note that the action on | ψ〉 by the group

element that change spin direction, such as σ̃v and Ũ , gives eigenvector at different

position in the Brillouin zone with opposite polarization. The same conclusions
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can be drawn for time reversal symmetry and, as mentioned above, is also valid

for the K point. Thus, electrons located at valence/conductance band at the K

and K ′ points have opposite spin directions, yielding spin-valley locking in these

materials [106–108].

Spin splitting in valence and conductance bands

Next, we perform numerical calculations of the electronic bands of the total Hamil-

tonian H = Ho + Hso using the POLSym code. MoS2 layer is a system made from

two orbits: one formed by one Mo and the other by one S atom (as group element

σh transforms one S plane into the other). From each atom, only the valence shell

orbitals are considered. In particular, for S one 3s and three 3p, while for Mo 5s, 5p

and 4d atomic orbitals are used. SOC effects are included within the on-site atomic

approximation, with spin-orbit constants λS = 50meV for 3p orbitals of sulfur and

λMo = 87meV for 4d orbitals of molybdenum [84]. The same orbitals and spin-orbit

constants will be used later in the study of SOC effects in MoS2 nanotubes.

As zone folding allows us to relate their valence and conductance bands (within

a crude approximation) to the valence and conductance bands of nanotubes, we

analyze SOC effects on the layer’s valence and conductance bands. In Fig. 4.3 a),

we plot the highest valence and the lowest conductance electron band along the

Γ − K −M − Γ line. Corresponding symmetry labels on the whole line are also

given. In Fig. 4.3 b) effect of SOC on these bands can be seen.

Borders of the Γ − K line represent special points, while points between them

belong to the generic G domain. According to (4.4) and (4.7), spin splitting is absent

at the Γ point, while the maximal 147 meV value of valence band splitting is located

at the K point. This results are in line with both theoretical [81, 82, 84, 86] and

experimental values [87–92].

On the other hand, maximum spin splitting of the conductance band is located

in the middle of the Γ − K line, i.e. around the Q = (π/3, π/3) point. Along the

K−M line, which belongs to the G domain, spin splitting is also allowed, according

to (4.9). For the valence band, spin splitting value decreases to zero, while for the

conductance band there is a rise of spin splitting, followed by a decline to zero.

Finally, band splitting is zero along the M −Γ line, as symmetry analysis shows for

all points that belong to the ∆ domain.
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Figure 4.3: MoS2 monolayer bands. a) The top valence and the bottom conductance
electronic bands along the Γ − K − M − Γ direction. Symmetry label of each
point along this direction is given. b) Spin splitting of these bands along the same
direction. Each point is now labeled by double group IRs. c) Density plot of the
top valence and the d) bottom conductance band splitting, induced by SOC.
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In the G domain, we have defined spin splitting as

∆so
v/c(k) = E↑v/c − E

↓
v/c. (4.15)

Density plots of spin splitting values of the top valence and the lowest conductance

band in the whole Brillouin zone are shown in Fig. 4.3 c) and d), respectively.

Evidently, splitting of the valence bands is such that at the K point branch with

higher energy is ↓ polarized, i.e. the sign of ∆so
V (K) is negative. Conductance band

has the opposite behaviour: the branch with lower energy is ↓ polarized, meaning

that ∆so
c (K) is positive. Beside already mentioned zero splitting along the ∆ line,

plots also show zero splitting along the Φ line, according to (4.6). Also, maximal

value of valence/conductance band splitting is placed along the Γ−K line.

In the end, in Fig. 4.4 and Fig. 4.5, orbital contribution (OC) in the top valence

and the lowest conductance band is given. Note that Mo p0 and d±1 orbitals have

exact zero OC since considered bands have QN Πh = 1 (i.e. their eigenstates have

to be invariant under σh; thus, Mo orbitals of odd parity are excluded).

Generally, plots show dominant contribution of Mo d±2 and d0 orbitals in these

bands. Since the term Lzsz of the SOC Hamiltonian is the dominant and Lzdl = ldl,

it is reasonable to claim that d0 contribute to zero spin splitting value, while d±2

gives nonzero spin splitting. Thus, dominant OC of d2 orbital in the valence band

at the K point suggests position of the maximal spin splitting. In the conductance

band, maximal value of spin splitting is near the Q point, due to the dominant OC

of d−2 orbital. Also, at the K point, d0 is dominant, suggesting weak spin splitting.

In Fig. 4.6 OC of valence Mo d−2 + d2 and d0 orbitals, as well as p−1 + p1

and p0 S orbitals is given, since they are relevant for the SOC effects. Our results

qualitatively agree with [81], except in one minor difference. Their calculations

suggest very weak contribution of dxz + dyz
1 orbitals. As clarified above, symmetry

bans their contribution.

4.2 MoS2 nanotubes

As for the graphene, the molybdenum monolayer can be cut and then rolled-up in

such a way that vector c = n1a1 + n2a2 becomes a diameter of the MoS2 (n1, n2)

1By definition, dx2−y2 , dxy, dz2 , dxz and dyz orbitals are equal to 1/
√

2(d−2+d2), i/
√

2(d−2−d2),

d0, 1/
√

2(d−1 − d1) and i/
√

2(d−1 + d1), respectively.
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Figure 4.4: OC in the top valence band along the Γ−K −M − Γ direction.

nanotube (see Fig. 4.7). Due to the monolayer symmetry, it suffices to consider

the tubes with chiral angle θc = arctan
(√

3n2/(2n1 + n2)
)

(i.e. the angle between

vectors a1 and c) within the range of [0, π/3).

Their symmetry, depending on the chiral vector (as in SWCNTs) was derived by

Milošević et al. [96]. Rolled up structure has the translational symmetry along the

tube axis, but it also possesses screw axis symmetry, with parameters q, r, f defined

by the chiral vector coordinates, in the same manner as in SWCNTs (3.5). Tube can

have rotational symmetry around the tube axis Cn, with n = GCD(n1, n2), but it

lacks rotational symmetry around the horizontal axis U . As for mirror symmetries,
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Figure 4.5: OC in the bottom conductance band along the Γ−K−M−Γ direction.

K MΓ

Figure 4.6: OC of valence Mo d−2 + d2 and d0 orbitals, as well as p−1 + p1 and p0

S orbitals in the top valence (left panel) and the bottom conductance (right panel)
band.
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Figure 4.7: Nanotube (n1, n2) is obtained by rolling-up the molybdenum plane
around the vector c = n1a1 + n2a2, where a1 and a2 are basis vectors of the lattice
plane.

the armchair tubes (n, n) have σh while zig-zag ones (n, 0) have σv. Therefore,

general classification of tubes into chiral C and achiral ones (armchair A and zig-

zag Z) remains valid in this case. Again, tubes (n2, n1) with nonnegative integers

n1 ≤ n2, i.e. with θc ∈ (π/6, π/3), are optical isomers of tubes (n1, n2) having

θc ∈ (0, π/6).

To conclude, group of the geometrical symmetries of chiral, i.e. (n1, n2) with

unequal nonzero integers n1 and n2, MoS2 nanotubes belong to the first family line

groups [96]

LC = T r
q (a)Cn, (4.16)

while for armchair and zig-zag ones they are from the fourth and the eighth family

line groups, respectively [96]

LA = T 1
2n(a0)Cnh, (4.17)

LZ = T 1
2n(
√

3a0)Cnv. (4.18)

As compared to SWCNTs, the main difference between them and MoS2 tubes

lies in the fact that MoS2 tubes actually have three walls or cylinders: inner and

outer ones are formed by sulfur atoms, while the one in the middle is formed from
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molybdenum atoms. As rolling of the monolayer destroys the symmetry which maps

one sulfur plane into another, tube is three orbital system: one ri00 = (ρi, ϕi, zi) for

each cylinder (inner sulfur Sin, molybdenum Mo and outer sulfur Sout, respectively)

rSin
00 = (

D − δ
2

, 0, 0), rMo
00 = (

D

2
, ϕ0, z0), rSout

00 = (
D + δ

2
, 0, 0), (4.19)

where molybdenum cylindrical coordinates are

D =

√
n2

1 + n1n2 + n2
2a0

π
, (4.20)

ϕ0 = π
n1 + n2

n2
1 + n1n2 + n2

2

, (4.21)

z0 =
a0

2
√

3

n1 − n2√
n2

1 + n1n2 + n2
2

. (4.22)

For chiral tubes, position of each atom rits of all orbits is obtained by the action

of the group element `ts = (Cr
q |qa/n)tCs

n on the orbit representatives ri00. In this

case, each orbit representative has trivial stabilizer. In the Z case, coordinates of

the orbit representatives are given in (4.19), where D = na0/π, ϕ0 = π/n and

z0 =
√

3a0/6. In order to generate the system in this case, it is enough to take the

elements of the first family line group with r = 1 and q = 2n, since σv represents

stabilizer element. Finally, in the A case, equation (4.19) yields one should take

D =
√

3a0/π, ϕ0 = 2π/3n and z0 = 0. Stabilizer is again nontrivial as it contains

horizontal mirror plane σh, i.e. again the first family subgroup T1
2n(a0) of the tube’s

symmetry group is sufficient to generate the whole system. To conclude, for MoS2

nanotube (n1, n2) positions of atoms are given by

rits = (Cr
q |
q

n
a)tCs

nr
i
00 = (ρi, ϕi + 2π(

rt

q
+
s

n
), zi +

q

n
ta), (4.23)

where q, r, n, a are the parameters of its first family group and subgroup for the

chiral and achiral case, respectively.

Finally, we note that rolled-up configuration does not describe equilibrium posi-

tion, especially for tubes with smaller diameter [100]. For all studied tubes, symme-

try preserving relaxation procedure described in Chapter 3.1.1 had to be performed

before numerical analysis of SOC effects on the electronic bands. The procedure

itself is more time consuming, compared to SWCNTs, as the system consists of

three orbits. In the chiral MoS2 nanotube case, torsion τ and axial strain εz can

59



be applied. Also the following cylindrical coordinates of three orbit representatives

can be varied: ∆DSin
, ∆ϕSin

, ∆zSin
, ∆DMo, ∆DSout , ∆ϕSout and ∆zSout . In the

achiral case, torsion τ is not allowed, since τ changes the symmetry of the system.

Additionally, A nanotubes do not allow changing of z coordinate of sulfurs, while

Z nanotubes forbid change of ϕ coordinate of sulfur orbit representatives.

4.2.1 Armchair tubes

Figure 4.8: Electronic orbital bands of the armchair (15, 15) tube.

All armchair tubes are small indirect gap semiconductors [98–100], with valence

band maximum placed at ka = 0 and conductance band minimum at ka ≈ 2π/3. In

addition to the indirect gap, direct band gaps are present at ka = 0 and ka ≈ 2π/3.

Indirect band gap varies from 1.10 eV for tubes with 2 nm diameter to the saturation

value 1.15 eV for >9 nm diameter tubes, while direct gap at ka = 0 is in the range

from 1.125 eV for 2 nm to ∼1.30 eV for >15 nm diameter tubes. On the other

side, direct gap at ka = 2π/3 is almost independent on tube’s diameter (∼1.27 eV).

As an illustration, in Fig. 4.8 band structure of the armchair (15, 15) nanotube is

presented. We will particulary focus on top three valence (v, v1 and v2), bottom
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three conductance (c, c1 and c2) and three valence bands with local maximum at

ka ≈ 2π/3 indirect band gap (vd, vd1 and vd2).

Appearance of band splitting can be determined by studying the Clebsch-Gordan

series of a tensor product of orbital group IRs and spin representation. Group of

geometrical symmetries LA have one- and two-dimensional IRs. One-dimensional

IRs are present in k = 0 point and labeled as 0A
Πh
m , with m ∈ (−n, n] and Πh =

±1,±i. For integer m, ±1 parity values are used, while half integer m yields ±i

values of parity. Time-reversal symmetry θ connects | 0mΠh 〉 to | 0−m− Πh 〉,
changing angular momentum and parity of the SAB vector. Thus, it is enough to

consider IRs with positive angular momenta m and Πh = ±1,±i. In the special

m = 0/n case, it is enough to consider Πh = 1, i.

All other points of the irreducible Brillouin zone are labeled by two-dimensional

IRs kEm. More concretely, allowed QNs are: k ∈ (0, π/a], m ∈ (−n, n] and k =

π/a, m ∈ [0, n). SAB is spanned by two vectors |km〉 and |−km〉. Time reversal

symmetry transform these vectors to | −k −m〉 and | k −m〉, respectively, which

belong to the IR kE−m. Thus, we have established connection between IRs with

positive and negative angular momentum m, yielding the usage of IRs with m ≥ 0

solely.

By knowing the IRs, we can investigate the possibility of SOC to induce band

splitting.2 To this end, we calculate Clebsch-Gordan series of the tensor product of

one/two-dimensional IRs and spin representation

0A
±
m0

(L̃A)⊗ u(L̃A) = 0A
±i
mo+

1
2

(L̃A)⊕ 0A
∓i
mo− 1

2

(L̃A), (4.24)

kEmo(L̃A)⊗ u(L̃A) = kEmo+ 1
2
(L̃A)⊕ kEmo− 1

2
(L̃A). (4.25)

Equations (4.24) and (4.25) suggest that band splitting is possible, except in some

special cases: Clebsch-Gordan series for IRs 0A
±
0 (L̃A) and 0A

±
n (L̃A) gives direct

products of IRs

0A
±i
1/2(L̃A)⊕ 0A

∓i
−1/2(L̃A),

0A
±i
−n+1/2(L̃A)⊕ 0A

∓i
n−1/2(L̃A), (4.26)

connected by time reversal symmetry, meaning that band splitting does not oc-

cur. The same happens for two-dimensional IRs kE0(L̃A) and kEn(L̃A), since their

2Spin splitting is not allowed, since symmetry of A nanotube is described by the fourth family
line groups (4.17) (see also Chapter 2.3).

61



Clebsch-Gordan series are the following

kE 1
2
(L̃A)⊕ kE− 1

2
(L̃A),

kE−n+ 1
2
(L̃A)⊕ kEn− 1

2
(L̃A). (4.27)

Finally, band splitting is not present for an IR π
a
E0(L̃A), since π

a
E0(L̃A)⊗ u(L̃A) =

2π
a
E 1

2
(L̃A).

d1 d2

d1

d2

1

2

2

1

Figure 4.9: (left panel) Bands splitting dependance at ka ≈ 2π/3 on the diameter
D for A bands vd1 and vd2 . (right panel) Logarithmic dependance of vd1 and vd2
band splittings on 1/D2.

We now turn to the numerical study of the band splitting values and investigate

splitting of the bands vd, vd1 and vd2 at the position of vd band maximum. Symmetry

labels of these bands are kEn(L̃A), kEn−1(L̃A) and kEn−2(L̃A), respectively, meaning

that vd band does not split, while other two bands can be splitted due to SOC.

In Fig. 4.9 (left panel), dependance of ∆so
mo

(k) on the diameter D (correspond-

ing to the middle Mo wall) for vd1 and vd2 bands of the A tube (n, n) (n =

15, . . . , 40, 44, 54) is studied. Negative values of band splittings mean that the en-

ergy of the branch with mo + 1/2 is higher (but negative) than of the mo − 1/2.

It is clear from the graphs that curvature has negative impact on band splitting,

since for both vd1 and vd2 bands absolute value of splitting increases with diameter.

This behaviour is opposite to that observed in SWCNTs. In order to test the di-

ameter limit, we fitted the vd1 and vd2 data. The best results are obtained for the

exponential function of the form

y = a e
b
D2 + c

D4 , (4.28)
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which gave the following fitting parameters

avd1 = −151.117 meV, bvd1 = −2.98031 nm2, cvd1 = 1.92611 nm4

avd2 = −150.728 meV, bvd2 = −6.30389 nm2, cvd2 = 7.50631 nm4. (4.29)

Thus, for tubes with large diameter value, vd1 and vd2 band splittings are ap-

proaching the layer K point spin splitting value. This is expected, sinceA ka = 2π/3

point corresponds to the layer K point. Similar parameter values are obtained using

the logarithmic fit (see Fig. 4.9 (right panel)), showing us dominant linear depen-

dance of ln (−∆so
mo) on 1/D2.

Figure 4.10: Diameter dependance of the magnitude of band splitting in the A case
for: (left panel) c1 and c2 bands; (right panel) v1 and v2 bands.

The same symmetry based analysis can be performed for the three lowest con-

ductance bands c, c1 and c2, as they are also assigned by IRs kEn, kEn−1 and kEn−2

of L̃A, respectively. Thus, c band does not split, while two orbital bands c1 and c2

can have nonzero band splitting. In Fig. 4.10 (left panel), dependance of c1 and c2

band splitting ∆so
mo

(k) verses tube diameter D in the vicinity of ka = 2π/3 is plot-

ted. Our results show that c1 and c2 band splittings are much less influenced by the

curvature topology of nanotubes than top valence bands. For the majority of tubes

their values are of the same order of magnitude as the conductance band splitting

of the monolayer, i.e. 3 meV, but it can be even smaller. Diameter dependance is

not so sharply pronounced as in the valence bands due to the fact that orbital con-

ductance bands are much denser, leading to the greater influence of neighbouring

bands on the magnitude of band splitting.
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Finally, we focus on the k = 0 point, where the global maximum of valence bands

is placed. Highest orbital bands v, v1 and v2 in this point are labeled with IRs A+
0 ,

A+
1 and A+

2 , respectively. Using the equations (4.24) and (4.27), we again conclude

that valence band v does not split, while bands v1 and v2 are split into two branches.

Diameter dependance of v1 and v2 band splittings is presented in Fig. (4.10) (right

panel), showing us decreasing band splitting value with diameter increase. It is to

be noted that due to zero splitting at the Γ point of MoS2 layer’s top valence band,

we should expect for tubes that splitting at k = 0 tends to zero with further increase

of the diameter D. Therefore, diameter dependance of the band splitting is fitted

using the function

y = a(1− exp(− b

D2
)), (4.30)

giving us fitting parameters

av1 = 132.687 meV, bv1 = 0.813153 nm2,

av2 = 78.1499 meV, bv2 = 2.75225 nm2. (4.31)

4.2.2 Zig-zag tubes

Zig-zag nanotubes are direct band gap semiconductors [98–100], with minimum

of conductance and maximum of valence bands placed at k = 0. Similarly as for

indirect band gap of A tubes, direct band gap varies from 1.10 eV for 2 nm diameter

tubes to 1.15 eV for tubes with >9 nm diameter. In Fig. 4.11 band structure of

zig-zag (15, 0) nanotube is given. We will focus on top three valence (v, v1 and v2)

and bottom three conductance (c, c1 and c2) bands.

Group of geometrical symmetries LZ belongs to the eighth family line groups,

having one- and two-dimensional IRs. One-dimensional IRs k0A/B
Πh
m are present

in the whole Brillouin zone, k ∈ (−π/a, π/a], while m can take values 0 and n.

Time-reversal symmetry θ connects | kmΠv 〉 to | −kmΠv 〉, thus giving symmetric

bands Em(k) = Em(−k). The same happens for two-dimensional IRs kEm, where

k ∈ (−π/a, π/a] and m ∈ (0, n), meaning that it is enough to analyze only half of

the Brillouin zone, i.e. k ∈ (0, π/a].

Once the spin degree of freedom is included, the Clebsch-Gordan series of the

product of orbital band IRs and spin representation u(L̃Z) indicates the possibility
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Figure 4.11: Electronic orbital bands of the zig-zag tube (15, 0).

of band splittings, along with the assignation of the branches

kA/B0(L̃Z)⊗ u(L̃Z) = kE 1
2
(L̃Z),

kA/Bn(L̃Z)⊗ u(L̃Z) = kEn− 1
2
(L̃Z),

kEmo(L̃Z)⊗ u(L̃Z) = kEmo+ 1
2
(L̃Z)⊕ kEmo− 1

2
(L̃Z). (4.32)

In the orbital picture, v band is assigned by one-dimensional IR kA0. When SOC

is included, from (4.32) it follows that to this band corresponds DLG IR kE 1
2
(L̃Z).

Thus, no band splitting arises. On the other hand, both orbital bands v1 and v2,

assigned by kE1(L̃Z) and kE2(L̃Z), respectively, split due to SOC 3.

In Fig. 4.12, diameter dependance of v1 and v2 band splitting ∆so
mo

= ∆so
mo

(0)

is plotted for n = 15, . . . , 40, 44, 54 tubes. The fits are done using the function of

the form (4.30), due to the expected zero limit of band splitting for large diameter

3Since symmetry of the Z nanotube is described by the fourth family line groups (4.18), spin
splitting is forbidden (see Chapter 2.3).
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Figure 4.12: Dependance of valence v1 and v2 band splittings with respect to the
diameter D in the zig-zag case.

tubes. Fitting parameters obtained for the two valence bands are

av1 = 109.069 meV, bv1 = 1.09957 nm2,

av2 = 86.3436 meV, bv2 = 2.64822 nm2. (4.33)

Finally, we study band splitting of the conductance bands c, c1 and c2 at k = 0.

For tubes with n = 0 (mod 3) orbital band c has angular momentum mo = 2n/3.

If we recall that the monolayer has a conductance band minimum at the K point,

similarly as in SWCNTs, zone folding can be used to explain this result. Relaxation

obviously did not significantly change the conductance band spectra near k = 0, as

c can be associated with the line, i.e. the cutting of the layer conductance band

biorthogonal to c and passing through the K point. Tubes with n = 1 (mod 3)

and n = 2 (mod 3) may have mo = [2n/3] + 1 or mo = [2n/3] + 2 as angular

momentum of the band c (there is some irregularity with the increase of diameter).

Orbital bands c1 and c2 have angular momenta differing from mo of c band by ±1.

Thus, according to the equation (4.32), SOC induces splitting in all mentioned cases.

We have grouped the results in three parts, according to the value p (here p = n

(mod 3)). The results are shown in Fig. 4.13. For tubes with smaller diameters,
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Figure 4.13: Dependance of zig-zag c, c1 and c2 conductance band splittings with re-
spect to the tube’s diameter D: tubes are sorted into three groups by p = n (mod 3);
each graph is for the marked value of p = −1, 0, 1.
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SOC has significant (up to an order of magnitude) increase of the absolute value of

band splitting. The results also show good agrement with monolayer as D increases:

for tubes with p = 0 the splitting tends to 3 meV, while for p = ±1 it falls to 1

meV.

4.2.3 Chiral tubes

Figure 4.14: Electronic orbital bands of the chiral (15, 5) nanotube.

Among chiral nanotubes, most of them are direct band gap semiconductors,

although small number of indirect band gap semiconductors is present. In Fig. 4.14

band structure of the chiral (15, 5) nanotube is given. We will focus on three bands

v, v1 and c, presented in Fig. 4.14, corresponding to top two valence bands and

bottom conductance band, respectively. Chiral MoS2 tubes are described by the first

family line groups (4.16), having one-dimensional IRs k̃Am̃ (k̃ ∈ (−π/f, π/f ] and

m̃ ∈ (−n/2, n/2]) in helical QNs and kAm (k ∈ (−π/a, π/a] and m ∈ (−q/2, q/2]) in

linear QNs. Orbital bands are assigned by the integer m̃o(mo) value of helical/linear
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momenta. Inclusion of SOC can induce spin splitting of the bands 4

k̃Am̃o(L̃C)⊗ u(L̃C) = k̃+ π
Qf
Am̃o+ 1

2
(L̃C)⊕ k̃− π

Qf
Am̃o− 1

2
(L̃C), (4.34)

kAmo(L̃C)⊗ u(L̃C) = kAmo+ 1
2
(L̃C)⊕ kAmo− 1

2
(L̃C). (4.35)

In this case, time reversal symmetry connects vectors of the form |km〉 and |−k −m〉,
belonging to IRs with opposite angular QNs. Due to the time reversal symmetry,

it is enough to consider half of the irreducible Brillouin zone, since for each energy

band point with negative QN −k and arbitrary QN m there is a band point k labeled

by −m, having the same energy.

In helical QNs, for each C MoS2 nanotube, maximum of orbital band v is placed

at k̃ = 0. Furthermore, its angular momentum QN is m̃0 = 0. According to (4.34),

IR k̃A0(L̃C) at k̃ = 0 breaks into two due to SOC

k̃A0(L̃C)⊗ u(L̃C) = k̃+ π
Qf
A 1

2
(L̃C)⊕ k̃− π

Qf
A− 1

2
(L̃C). (4.36)

However, since time reversal symmetry operator θ connects these two IRs for k̃ = 0

π
Qf
A 1

2
(L̃C)→ − π

Qf
A− 1

2
(L̃C), (4.37)

we conclude that splitting at this point is zero.

On the other hand, maximum of valence band v1 is placed at ±k̃v1 6= 0 (k̃v1 > 0),

and can be described by two IRs: k̃v1
A1(L̃C) and its time reversal pair −k̃v1

A−1(L̃C).

In this case, using the equation (4.34) and time reversal symmetry, we conclude that

splitting is allowed. Diameter dependance of v1 band splitting can be fitted with

formula (4.30). Fitting parameters in this case are

av1 = 116.191 meV, bv1 = 0.971421 nm2. (4.38)

In Fig. 4.15 comparison between the fitting function for parameters (4.38) and

calculated band splitting is given, showing an excellent agreement between them.

It is interesting to mention that in C SWCNTs dependance of valence/conductance

band splitting was dependent on the diameter D (1/D dependance), as well as on

the chiral angle θc. (see (3.14)). In this case, pure diameter dependance of the

valence band splitting is observed, showing insensitivity on chirality.

4Band splitting with removed spin degeneracy is allowed in systems described by the first family
line group (see Chapter 2.3).

69



Figure 4.15: C tubes: band splitting dependance of valence v1 band maximum on
the diameter D.

Finally, we study the conductance c band and its spin splitting. Minimum

of c band is placed at k̃c 6= 0 (k̃c > 0), described by IRs k̃c
A(n−2+nmod 2)/2(L̃C)

and −k̃cA(−n+2−nmod 2)/2(L̃C). Presence of SOC induces splitting of the bands. In

Fig. 4.16, dependance of splitting for conductance band c minimum with respect

to the tube’s diameter D is presented. In the left panel tubes (4n, 3n) are studied,

having fixed chiral angle θc ≈ 0.44, while in the right panel (2n, n) tubes with chiral

angle θc ≈ 0.33 are given. Figures show irregular dependance on D for fixed θc,

regardless of the θc value. Thus, we are unable to make any general prediction,

except to claim that values of splitting are relatively small.

4.3 Curvature effects on orbital contribution

Results presented in the previous Section suggest that curvature has notable effect

on the magnitude of band splitting of valence bands, motivating us to analyze effects

of curvature on OC in these bands.
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Figure 4.16: Dependance of splitting of the conductance band c minimum with
respect to the tube’s diameter D. In the left panel C tubes (4n, 3n) are presented,
while right panel shows splitting of (2n, n) C MoS2 tubes.

4.3.1 Armchair tubes

First, we analyze curvature effects on OC in valence v, v1 and v2 bands. To this

end, in Fig. 4.17 and Fig. 4.18 OC for A (15, 15) and (40, 40) tubes are given. In

armchair tubes the valence v band does not split. This fact is manifested by equal

weight of dml and d−ml Mo orbitals (ml = 1, 2), as well as p1 and p−1 orbitals of both

sulfur atoms. Metal d±2 orbitals are dominant along the whole Brillouin zone, with

nontrivial contribution of orbitals d±1 and d0: for tube (15, 15) only slight variation

of OC with the change of k is observable, while with the increase of diameter OC

clearly changes. Also, for (15, 15) tube outer S orbitals have bigger OC than the

inner sulfur. Their difference decreases for tubes with greater diameter, having equal

OC in the layer limit. In the case of v1 and v2 bands, unequal contributions of Mo

and S orbitals with opposite atomic quantum number ml is present. This is clearly

depicted in Fig. 4.17 and Fig. 4.18, additionally implying that curvature decreases

OC difference of orbitals with opposite ml, reaching the OC in the v band of MoS2

monolayer. In the k = 0 point, dependance of v1 and v2 band splitting was studied

in Chapter 4.2.1 (see also Fig. (4.10) (right panel)). From OC analysis it is evident

that nonzero values of band splitting are present due to unequal contribution of

orbitals with opposite ml, while the dominant influence is of Mo d2 and d−2 orbitals.

Next, we focus on the direct valence vd, vd1 and vd2 bands. For these bands, OC

of (15, 15) and (40, 40) tubes is given in Fig. 4.19 and Fig. 4.20. Band vd does not

split, which is again manifested by the equal OC of atomic orbitals with opposite
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ml. Around ka ≈ 2π/3, where band splitting values were analyzed (see Fig. 4.9),

dominant orbital is d0. Orbitals d±1 (d±2) have roughly twice (four times) smaller

contribution than d0. Bands vd1 and vd2 have slightly unequal contribution of atomic

orbitals with ±ml, although their difference decreases with diameter rise. For small

diameter tubes outer S orbitals have bigger OC than inner; this difference decreases

with diameter increase. At ka ≈ 2π/3, all three S orbitals have nonzero contribution,

although it is much smaller when compared to metal d orbitals.

d

d
d

d

d
p p p

Figure 4.17: OC in valence v (first row), v1 (second row) and v2 (third row) bands of
(15, 15) nanotube for the orbit representatives Mo, Sin and Sout. Only contributions
of atomic orbitals relevant for the SOC effect are plotted.
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Figure 4.18: OC in valence v (first row), v1 (second row) and v2 (third row) bands of
(40, 40) nanotube for the orbit representatives Mo, Sin and Sout. Only contributions
of atomic orbitals relevant for the SOC effect are plotted.
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Figure 4.19: OC in direct valence vd (first row), vd1 (second row) and vd2 (third
row) bands of (15, 15) nanotube for the orbit representatives Mo, Sin and Sout. Only
contributions of atomic orbitals relevant for the SOC effect are plotted.
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Figure 4.20: OC in direct valence vd (first row), vd1 (second row) and vd2 (third
row) bands of (40, 40) nanotube for the orbit representatives Mo, Sin and Sout. Only
contributions of atomic orbitals relevant for the SOC effect are plotted.
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4.3.2 Zig-zag tubes

Next, we analyse the valence bands v, v1 and v2 OC. In Fig. 4.21 and Fig. 4.22 OC

for Z (15, 0) and (50, 0) tubes are shown. Similarly as for armchair tubes, absence

of band splitting of the v band is manifested in equal OC of atomic orbitals with

opposite ml. For (15, 0) tube: dominant contribution is of d±2 orbitals (≈ 30%),

while OC of d0 orbital varies from ≈ 20% to ≈ 25%, depending on the point in

the Brillouin zone. Orbitals d±1 have negligible influence < 3%, less or comparable

with OC of S orbitals. In the case of (50, 0) tube, OC of d±2 orbitals shows slight

increase, OC of d0 orbital slightly decreases, while contribution of d±1 orbitals is

almost zero. With diameter increase OC of inner sulfur orbitals approaches the OC

of outer ones, as it was observed in armchair tubes.

Similarly as in valence bands of A tubes, nonzero values of v1 and v2 bands

are consequence of nonequal OC of orbitals with opposite ml. This difference is

most pronounced in k = 0. Diameter increase leads to decrease of ±ml difference,

approaching the limit of zero band splitting in the layer case. It is to be mentioned

that OCs in both A and Z valence bands are similar in the large diameter limit:

d±2 metal orbitals contribute with ≈ 70%, d0 with ≈ 15%, while inner and outer

sulfur p±1 atomic orbitals contribute with ≈ 15%.

4.3.3 Chiral tubes

Finally, we analyze valence bands of C tubes. As v band has mo = 0, the two

branches m = ±1/2 touch at k = 0, i.e. thought the band splits due to SOC, at

this point spin degeneracy is not removed. The second band v1 (having mo = −1)

splits at this point, but each branch crosses with the corresponding branch of the

orbital band with mo = 1 and again eigenvalues of H at k = 0 are spin degenerate.

As explained, this is the direct consequence of time reversal symmetry.

In Fig. 4.23 (left panel) electronic bands of the tube (20, 5) near the Fermi level

are plotted for both Ho and H. Valence orbital band v (magenta) and the next

nearest band v1 have orbital QNs mo = 0 and mo = −1, respectively. Both of them

split due to SOC. However, at k = 0 the two branches of v (which have m = ±1/2)

touch, thus at this point the splitting is zero and spin degeneracy remains. As for v1,

it has nonzero splitting at k = 0, though each of its branches (having m = −1/2 and

m = −3/2) touch with the corresponding branch of the orbital band with mo = 1,
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Figure 4.21: OC in valence v (first row), v1 (second row) and v2 (third row) bands of
(15, 0) nanotube for the orbit representatives Mo, Sin and Sout. Only contributions
of atomic orbitals relevant for SOC effects are plotted.
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Figure 4.22: OC in valence v (first row), v1 (second row) and v2 (third row) bands of
(50, 0) nanotube for the orbit representatives Mo, Sin and Sout. Only contributions
of atomic orbitals relevant for the SOC effect are plotted.
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i.e. at k = 0 spin degeneracy is not removed (see right panel of Fig. 4.23).

In Fig. 4.24 OCs in these two valence bands are given. For the v band, in

k = 0 OC of orbitals with opposite ml is equal. However, in other points of the

Brillouin zone, nonequal contributions of orbitals with ±ml gives rise to nonzero

band splitting. The biggest (5%) difference is between d±1 orbitals at k = π/a. In

case of the v1 band, band splitting is allowed at k = 0. Large difference between

d2 and d−2 contribution at k = 0 is the most responsible for the observed large

splitting. Additionally, weak contribution of d±1 metal orbitals is present due to

their ≈ 2% difference. Also, contribution of p±1 orbitals of the Sin/Sout atom differs

by 1.5%/3%. Generally, unequal contribution of ±ml orbitals contributes to band

splitting along the Brillouin zone.

Finally, for large diameter tubes, OC in valence bands at k = 0 corresponds to

OCs of A and Z tubes, additionally resembling the zero splitting of MoS2 monolayer

at the Γ point.

Figure 4.23: (left panel) Electronic bands in linear QNs around the Fermi level of
the C (20, 5) nanotube. Valence v band (magenta) is labeled with QN mo = 0,
while v1 band (cyan) has QN mo = −1. (right panel) Influence of SOC on orbital
valence v and v1 bands. Orbital v band splits into two branches, labeled with QNs
m = 1/2 (magenta) and m = −1/2 (magenta dashed). The same happens with v1

band, which is splitted into two branches with QNs m = −1/2 (cyan) and m = −3/2
(cyan dashed). Although the band v1 splits, spin degeneracy at k = 0 is not removed,
due to the fact that both branches, due to time reversal symmetry, coincide with
branches which originate from QN mo = 1 labeled orbital band.
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Figure 4.24: OC in valence v (first row) and v1 (second row) bands of (20, 5) nan-
otube for the orbit representatives Mo, Sin and Sout. Only contributions of atomic
orbitals relevant for the SOC effect are plotted.
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Conclusions

In this dissertation SOC effects in low dimensional systems are studied with the help

of group theoretical analysis. When spin degree of freedom is taken into account,

double covering of system’s geometrical symmetry group has to be used, making the

construction of these double groups a necessary first step. Geometrical symmetries

of Q1D systems belong to one of 13 infinite families of line groups L. Thus, the

initial task was to determine the structure of DLGs and to construct their IRs,

necessary in the symmetry based study of electron dynamics. Application of DLGs

introduces some differences in the assignation of energy bands (in comparison with

pure orbital bands) by conserved QNs: half integer QNs of linear/helical angular

momentum (orbital bands are labeled by integer values of angular momentum solely)

and imaginary parity values (±i), instead of ±1 parity labels of orbital bands.

First question that can be solved on the purely group theoretical background

is whether SOC may remove spin degeneracy of the orbital bands. This is done

by analyzing the Clebsch-Gordan series of tensor product of orbital IRs and spin

representation. If the resulting tensor product gives only one double group IR of

doubled dimension (as compared to the dimension of an orbital IR), band splitting

is forbidden. On the other hand, appearance of two double group IRs of the same

dimension indicates band splitting unless the two IRs are ∗-conjugated by time

reversal symmetry. If the band splitting is present, the final goal is to check whether

band splitting is followed by the removal of spin degeneracy, i.e. if spin splitting

appears. It has been shown that if vertical mirror or glide planes are geometrical

symmetries of the system, there is no spin splitting. This happens for systems

whose symmetry is described by DLG of the families 6-13. However, if the total

Hamiltonian commutes with time reversal symmetry θ, combination of horizontal

mirror plane or roto-reflections with θ forbids spin polarization of the bands. Thus,

if the system possesses time reversal symmetry, only groups from the first or fifth
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family allow spin degeneracy of the bands to be lifted.

As for Q2D systems, their geometrical symmetries are from one of the eighty

diperiodic groups. The construction of their double groups can be performed in

a similar fashion as for the line groups. Here, results relevant for transition-metal

dichalcogenide monolayers are given, as in Chapter 4 SOC effects in MoS2 monolayer

and nanotubes are studied.

Finally, the derived double groups and their IRs allow calculations of electronic

bands, with or without SOC term included in the total Hamiltonian; numerical part

is performed with help of the POLSym code, based on modified group projector

technique [25]. For concrete low dimensional systems studied in this thesis, spin

independent Hamiltonian matrix elements were calculated within density functional

tight binding method, while SOC is included within the atomic approximation.

SOC effects in SWCNTs, which are the most studied Q1D systems, have already

been experimentally and theoretically studied. Besides obtaining the correct full

symmetry based explanation for reported numerical results of band and spin split-

tings, the thesis addresses to discrepancy between these and experimentally mea-

sured values of spin splitting. DLG analysis of SWCNT bands justifies that diverse

SOC effects on electronic band structure are direct consequence of their symmetry.

Moreover, spin splitting, occurring only in chiral SWCNTs, results in spin polar-

ization along the tube’s axis. The obtained assignation of bands by conserved QNs

makes obvious that spin splitting does not impose the overall spin polarization of

the bands. Namely, intersection of an orbital band of Ho assigned by linear/helical

angular momentum mo and the one assigned by mo± 1, results in rearrangement of

the bands (after including the spin degree of freedom) in order to avoid the crossing

of bands with identical QNs. This prevents the expected overall spin polarization

of some branches of these two orbital bands.

Finally, the discrepancy between experimental and reported numerical results is

addressed. The later predict one order of magnitude smaller value of conductance

spin splitting than experimentally observed. Electronic properties of SWCNTs are

known to be highly sensitive to applied strain, because influence of strain induced

deformations has to be included in order to explain the experimental results for the

electronic band gap. This sensitivity of electronic structure on tube’s configuration

motivated us to investigate the influence of small axial strain on the magnitude of

spin splitting of valence and conductance bands. Our results show that even small

82



stretching can significantly increase spin splitting, thus suggesting that the presence

of strain in the experimental setup can be responsible for the observed difference

between two approaches.

Up to our knowledge, effects of SOC in MoS2 nanotubes have not been anal-

ysed. On the other hand, MoS2 layers are one of the best studied systems within

the transition-metal dichalcogenide family. Symmetry group of chiral, armchair and

zig-zag MoS2 nanotubes are from the first, fourth, and eighth family DLGs, respec-

tively [96]. Thus, according to the above results for spin splitting in Q1D systems,

splitting may occur only in chiral tubes. Due to the mirror plane and time reversal

symmetry, only band splitting is possible for armchair and zig-zag tubes: symmetry

analysis singles out the orbital bands that does not split at all. Enhanced SOC

effects in SWCNTs, as compared to graphene, are commonly explained as a con-

sequence of their curvature and cylindrical topology. In order compare the results

with the MoS2 monolayer, using the constructed double group of the corresponding

diperiodic MoS2 monolayer group, and its IRs, symmetry based numerical analysis

of SOC effects on band structure was performed.

It has been concluded that in armchair MoS2 tubes curvature effects have neg-

ative impact on the band splitting at the point of a direct band gap (ka ≈ 2π/3),

while in the k = 0 point curvature has the opposite influence. This behaviour can be

explained by the fact that ka = 2π/3 point corresponds to the layer’s K point, where

∼150 meV spin splitting value is present, while k = 0 point is, by the zone folding,

related to the layer’s Γ point with zero spin splitting. On the other hand, conduc-

tance band splitting at ka ≈ 2π/3 point is weakly influenced by the curvature, with

band splitting values of the same order of magnitude as in the monolayer case (few

meV). In zig-zag nanotubes, curvature has positive effect on both conductance and

valence band splitting. Spin splitting in conductance bands of chiral tubes is weakly

influenced by the curvature, while in valence bands this effect is more pronounced.

Finally, it is to be mentioned that symmetry of armchair MoS2 tubes allows

breaking of horizontal mirror plane symmetry by means of electric field parallel to

the tube’s axis, thus inducing Rashba spin splitting of the bands. This property,

although not discussed in this work, can be an interesting continuation of the pre-

sented study.
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Appendix A

Irreducible representations of
direct product of groups

If the group G = H ⊗K is a direct product of two groups H and K, whose sets

of nonequivalent IRs are known

{∆(µ)(H)|µ = 1, ..., pH}, {d(α)(K)|α = 1, ..., pK}, (A.1)

complete set of nonequivalent IRs of the group G is

{∆(µα)(G) := ∆(µ)(H)⊗ d(α)(K)|µ = 1, ..., pH , α = 1, ..., pK}. (A.2)
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Appendix B

Induction procedure

Induction is a method for finding group representations by using the representations

of subgroups of the corresponding group [32].

Induced representation D(G) = ∆(H) ↑ G of the group G from the rep-

resentation ∆(H) of the subgroup H with transversal Z = {z1 = e, z2, ..., z|Z|}
(|Z| = |G|/|H|) is joining the element g ∈ G with the representation

D(g) =

|Z|∑
p=1

Egp
p ⊗∆(h(g, zp)) =

|Z|∑
p,q=1

∑
h∈H

δ(z−1
p gzq, h)Ep

q ⊗∆(h), (B.1)

where Eq
p is |Z|-dimensional matrix of the absolute basis, while δ(a, b) is Kronecker

delta function.

A set of matrices D(G) = ∆(H) ↑ G is |D| = |Z||∆| dimensional representation

of the group G. Their matrices consist of |∆|-dimensional blocks. There is only one

nonzero block in each row and each column of every matrix. Induced representation

is independent on the choice of transversal, meaning that for another transversal

one obtains equivalent representation.

On a set of classes of equivalent representations of the invariant subgroup H , G-

conjugation defines group action: group element g ∈ G maps representation ∆(H)

into g-conjugated representation

(g∆)(H) = ∆g(H) = {∆g(h) := ∆(g−1hg)|h ∈H}. (B.2)

Subgroup H is the invariant subgroup of each representations stabilizer. Represen-

tation ∆g(H) is irreducible if and only if ∆(H) is irreducible, i.e. G-conjugation

defines an action into the set of subgroup’s IRs.
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Action in the set of nonequivalent IRs of the subgroup H partitions this set into

orbits Gµ with stabilisators Gµ

Gµ = O(µ) = {∆ν |∃g ∈ G, ν ∼ gµ},where ∆(gµ)(H) := ∆(µ)
g (H), (B.3)

Gµ = L(µ) = {g ∈ G|gµ ∼ µ}. (B.4)

B.1 Induction from the invariant subgroup of in-

dex 2

In physically relevant situations it is often needed to construct IRs of the group G

by knowing the IRs of its halving subgroupH : G = H+gH . Small representations

in this case can be only H (corresponding orbits have two elements) or G (orbit

with one element).

If ∆(µ)(H) is IR of the subgroup H , with small group H and orbit {∆(µ)(H),

∆
(µ)
s (H)}, induction procedure gives us IR of the group G, i.e. representation

D(µ)(G) = ∆(µ)(H) ↑ G with matrices (h ∈H)

D(µ)(h) =

(
∆(µ)(h) 0

0 ∆
(µ)
s (h)

)
, D(µ)(sh) =

(
0 ∆(µ)(s2)∆

(µ)
s (h)

∆(µ)(h) 0

)
.

(B.5)

In the second case, L(µ) = G, O(µ) = {∆(µ)(H)}, operator Z that connects equiva-

lent representations ∆(µ)(H) is defined and ∆
(µ)
s (H)

∀h ∈H ,∆(µ)
s (h) = Z−1∆(µ)(h)Z. (B.6)

Operator Z satisfies the relation Z2 = ∆(µ)(s2), and the corresponding matrices of

IRs are

D(µ,±)(h) = ∆(µ)(h), D(µ,±)(sh) = ±Z∆(µ)(h). (B.7)

B.2 Group is semidirect product of its subgroups

G is semidirect product of its subgroups H and K [12, 33]. Furthermore, it is

assumed that H is Abelian subgroup, with one-dimensional IRs {∆(µ)(H)}.
Subgroup Kµ of K for each µ, is made of elements ` ∈K that satisfy

∆(µ)(`−1h`) = Z−1∆(µ)(h)Z, (B.8)
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for all h ∈H and fixed nonsingular Z.

Then, for each δ(ν)(Kµ) of the subgroup Kµ, IR

Γ(µ,ν)(hkµ) = ∆(µ)(h)⊗ δ(ν)(kµ), (B.9)

of the little group gives one induced IR of G

Γ(µ,ν)(G) = Γ(µ,ν)(HKµ) ↑ G. (B.10)
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Appendix C

Tables of the IRs of DLGs

For each DLG family IRs are presented within a separate table with symbols of IRs

(column 1), range of momenta QNs (column 2), and matrices corresponding to the

generators listed in the first row. General symbol of an IR is kD
Π
m, where D is A,

E and G for 1-, 2- and 4-dimensional IRs; exceptionally, for 1-dimensional IRs of

the groups with vertical mirror or glide plane, parity Πv = ±1,±i is traditionally

signified by letters D = A/B. For the families with pure translational factor TQ = T

linear QNs are listed; as the first and fifth family contain incommensurate groups,

linear IRs are followed by the helical ones. Unit matrix of dimension d is 1d, while:

K2(k) = diag(eik, e−ik), M2(m) = diag(eim 2π
n , e−im 2π

n ),

K4(k) = K2(k)⊗ 12, A4(k,m) = K2(k)⊗M2(m),

M4(m) = 12 ⊗M2(m), N = diag(eim 2π
n , e−im 2π

n , e−im 2π
n , eim 2π

n ).
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Table C.1: Irreducible representations of double line groups L̃(1) = T̃Q(f)C̃n. For
rational Q = q/r (q > r coprimes) groups are commensurate with translational
period a = fq/n, and both linear and helical QNs apply; otherwise only the helical
QNs exist.

IR (k,m) (̃CQ|f) C̃n

kAm
k ∈ (−π

a
, π
a
]

m ∈ (− q
2
, q

2
]

eikfeim 2π
Q eim 2π

n

k̃Am̃
k̃ ∈ (−π

f
, π
f
]

m̃ ∈ (−n
2
, n

2
]

eik̃f eim̃ 2π
n

Table C.2: Irreducible representations of double line groups L̃(2) = L̃2n, L̃n =
T̃ (a)S̃2n.

IR (k,m) (̃13|a) S̃2n

kA
Πh
m

k = 0, π
a

m ∈ (−n
2
, n

2
]

eika eimπ
nΠh

kEm
k ∈ (0, π

a
)

m ∈ (−n
2
, n

2
]

K2(ka)

[
0 Πẽ′e

im 2π
n

1 0

]

Table C.3: Irreducible representations of double line groups L̃(3) = L̃n/m, L̃2n =

T̃ (a)C̃nh.

IR (k,m) (̃13|a) C̃n σ̃h

kA
Πh
m

k = 0, π
a

m ∈ (−n
2
, n

2
]

eika eim 2π
n Πh

kEm
k ∈ (0, π

a
)

m ∈ (−n
2
, n

2
]

K2(ka) eim 2π
n 12

[
0 Πẽ′

1 0

]
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Table C.4: Irreducible representations of double line groups L̃(4) = L̃2nn/m =

T̃ 1
2n(a

2
)C̃nh. Here k̃M̃(m̃) = 2πm̃

na
+ M̃ 2π

a
, M̃ = 0, 1.

IR (k,m) ˜(C2n|a2 ) C̃n σ̃h

0A
Πh
m

k = 0
m ∈ (−n, n]

eimπ
n eim 2π

n Πh

kEm
k ∈ (0, πa ], m ∈ (−n, n]
k = π

a , m ∈ [0, n)
eimπ

nK2(ka2 ) eim 2π
n 12

[
0 Πẽ′

1 0

]

Table C.5: Irreducible representations of double line groups L̃(5) = T̃Q(f)D̃n. Heli-
cal and linear QNs used as in Table C.1.

IR (k,m) (̃Crq |f) C̃n Ũ

kA
ΠU
m

k = 0, m = 0, q2
k = π

a , m = −p2 ,
q−p

2

ei(kf+m 2π
Q ) eim 2π

n ΠU

kEm (a)

[
ei(kf+m 2π

Q ) 0

0 e−i(kf+m 2π
Q )

]
M2(m)

[
0 Πẽ′

1 0

]

k̃A
ΠU

m̃ k̃ = 0, πf , m̃ = 0, n2 eik̃f eim̃ 2π
n ΠU

k̃Em̃
k̃ = 0, πf ; m̃ ∈ (0, n2 )

k̃ ∈ (0, πf ), m̃ ∈ (−n2 ,
n
2 ]

[
eik̃f 0

0 e−ik̃f

]
M2(m̃)

[
0 Πẽ′

1 0

]
(a) k ∈ (0, πa ), m ∈ (− q2 ,

q
2 ]; k = 0, m ∈ (0, q2 ); k = π

a , m ∈ (−p2 ,
q−p

2 ).

Table C.6: Irreducible representations of double line groups L̃(6) = L̃nmm, L̃nm =
T̃ (a)C̃nv.

IR (k,m) (̃13|a) C̃n σ̃v

kA/Bm
k ∈ (−πa ,

π
a ]

m = 0, n2
eika eim 2π

n Πv

kEm
k ∈ (−πa ,

π
a ]

m ∈ (0, n2 )
eika

12 M2(m)

[
0 Πẽ′

1 0

]
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Table C.7: Irreducible representations of double line groups L̃(7) = L̃ncc, L̃nc =
T̃ ′(a

2
)C̃n.

IR (k,m) (̃σv|a2) C̃n

kA/Bm
k ∈ (−π

a
, π
a
]

m = 0, n
2

Πveik a
2 eim 2π

n

kEm
k ∈ (−π

a
, π
a
]

m ∈ (0, n
2
)

eimπ

[
0 eik a

2

eik a
2 0

]
M2(m)

Table C.8: Irreducible representations of double line groups L̃(8) = L̃2nnmc =
T̃ 1

2n(a
2
)C̃nv.

IR (k,m) ˜(C2n|a2 ) C̃n σ̃v

kA/Bm
k ∈ (−πa ,

π
a ]

m = 0, n
ei(k a2 +mπ

n ) 1 Πv

kEm
k ∈ (−πa ,

π
a ]

m ∈ (0, n)
eik a2M2(m2 ) M2(m)

[
0 Πẽ′

1 0

]

Table C.9: Irreducible representations of double line groups L̃(9) = L̃2n2m, L̃nm =
T̃ (a)D̃nd.

IR (k,m) (̃13|a) C̃n Ũd σ̃v

kA/B
ΠU
0 (a) eika eim 2π

n ΠU Πv

kE
Πh
m

k = 0, πa
m ∈ (0, n2 )

eika
12 M2(m) Πh

[
0 Πẽ′e

iπmn

e−iπmn 0

] [
0 Πẽ′

1 0

]
kEm (b) eika

12 −12

[
0 Πẽ′

1 0

]
eiπ n2

[
1 0
0 −Πẽ′

]
kE

Πv
m

k ∈ (0, πa )
m = 0, n2

K2(ka) eim 2π
n 12

[
0 Πẽ′

1 0

]
Πv

[
1 0

0 Πẽ′e
im 2π

n

]

kGm
k ∈ (0, πa )
m ∈ (0, n2 )

K4(ka) N


0 0 Πẽ′ 0
0 0 0 Πẽ′

1 0 0 0
0 1 0 0




0 Πẽ′ 0 0
1 0 0 0

0 0 0 eim 2π
n

0 0 Πẽ′e
−im 2π

n 0


(a) n even: k = 0, π

a
; n odd: k = 0, π

a
, m = 0, n

2
.

(b) only for n even: k = 0, π
a
, m = n

2
.
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Table C.10: Irreducible representations of double line groups L̃(10) = L̃2n2c, L̃nc =
T̃ ′(a

2
)S̃2n. In this table we use α = k a

2
+mπ.

IR (k,m) (̃σv|a2 ) S̃2n

kA/B
ΠU
m (a) Πveik a2 ΠUΠveik a2

kEm (b)

[
eimπeik a2 0

0 e−imπei(m 2π
n −k a2 )

] [
0 Πẽ′e

im 2π
n

1 0

]
kE

Πh
m

k = 0, πa
m ∈ (0, n2 )

[
0 eiα

eiα 0

]
Πh

[
eimπ

n 0
0 Πẽ′e

i(ka−mπ
n )

]
kE

Πv
m

k ∈ (0, πa )
m = 0, n2

Πv

[
eik a2 0

0 Πẽ′e
i(m 2π

n −k a2 )

] [
0 Πẽ′e

im 2π
n

1 0

]

kGm
k ∈ (0, πa )
m ∈ (0, n2 )


0 eiα 0 0

eiα 0 0 0

0 0 0 e−i(m 2π
n +α)

0 0 ei(m 2π
n −α) 0




0 0 Πẽ′e
im 2π

n 0

0 0 0 Πẽ′e
−im 2π

n

1 0 0 0
0 1 0 0


(a) n even: k = 0,m = 0; k = π

a ,m = n
2 ; n odd: k = 0,m = 0, n2 .

(b) n even: k = 0,m = n
2 ; k = π

a ,m = 0; n odd: k = π
a ,m = 0, n2 .

Table C.11: Irreducible representations of double line groups L̃(11) =
L̃n/mmm, L̃2n2m = T̃ D̃nh.

IR (k,m) (̃13|a) C̃n σ̃v σ̃h

kA/B
Πh
m

k = 0, πa
m = 0, n2

eika eim 2π
n Πv Πh

kE
Πh
m

k = 0, πa
m ∈ (0, n2 )

eika
12 M2(m)

[
0 Πẽ′

1 0

]
Πh

[
1 0
0 Πẽ′

]
kE

Πv
m

k ∈ (0, πa )
m = 0, n2

K2(ka) eim 2π
n 12 Πv

[
1 0
0 Πẽ′

] [
0 Πẽ′

1 0

]

kGm
k ∈ (0, πa )
m ∈ (0, n2 )

K4(ka) M(m)


0 Πẽ′ 0 0
1 0 0 0
0 0 0 1
0 0 Πẽ′ 0




0 0 Πẽ′ 0
0 0 0 Πẽ′

1 0 0 0
0 1 0 0


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Table C.12: Irreducible representations of double line groups L̃(12) =
L̃n/mcc, L̃2n2c = T̃ ′(a

2
)C̃nh.

IR (k,m) (̃σv|a2 ) C̃n σ̃h

0A/B
Πh
m (a) Πv eim 2π

n Πh

kE
Πh
m

k = 0, πa
m ∈ (0, n2 )

eimπ

[
0 ei ka2

ei ka2 0

]
M2(m) Πh

[
1 0
0 Πẽ′e

ika

]
kE

Πv
m

k ∈ (0, πa )
m = 0, n2

Πv

[
ei ka2 0

0 Πẽ′e
−i ka2

]
eim 2π

n 12

[
0 Πẽ′

1 0

]
kEm (b)

[
ei ka2 0

0 e−i ka2

]
eim 2π

n 12

[
0 Πẽ′

1 0

]

kGm
k ∈ (0, πa )
m ∈ (0, n2 )


0 ei(ka+mπ) 0 0

eimπ 0 0 0
0 0 0 e−i(ka+mπ)

0 0 e−imπ 0

 M(m)


0 0 Πẽ′ 0
0 0 0 Πẽ′

1 0 0 0
0 1 0 0


(a) n even: k = 0,m = 0, n2 ; n odd: k = 0,m = 0.
(b) n even: k = π

a ,m = 0, n2 ; n odd: k = π
a ,m = 0, n2 ; k = 0,m = n

2 .

Table C.13: Irreducible representations of double line groups L̃(13) =

L̃2nn/mmm = T̃ 1
2n(a

2
)D̃nh. Here, K̃(k̃, m̃) = diag[ei k̃a

2 , ei k̃a−2m̃α
2 , e−i k̃a−2m̃α

2 , e−i k̃a
2 ],

k̃M̃(m̃) = αm̃+2πM̃
a

(M̃ = 0, 1), α = 2π
n

.

IR (k,m) ˜(C2n|a2 ) C̃n Ũ σ̃v

0A/B
Πh
m

k = 0
m = 0, n

eimπ
n 1 ΠhΠv Πv

0E
Πh
m

k = 0
m ∈ (0, n)

M2(m2 ) M2(m) Πh

[
0 1
1 0

] [
0 Πẽ′

1 0

]
kE

A/B
m

k ∈ (0, πa ),m = 0, n
k = π

a ,m = 0
eimπ

nK2(ka2 ) 12 Πv

[
0 1
1 0

]
Πv

[
1 0
0 Πẽ′

]
π
a
EΠU
n
2

k = π
a

m = n
2

[
−1 0
0 1

]
−12 ΠU

[
1 0
0 Πẽ′

] [
0 Πẽ′

1 0

]

kGm
k ∈ (0, πa ),m ∈ (0, n)
k = π

a ,m ∈ (0, n2 )
K4(ka2 )M4(m2 ) M4(m)


0 0 0 Πẽ′

0 0 1 0
0 Πẽ′ 0 0
1 0 0 0




0 Πẽ′ 0 0
1 0 0 0
0 0 0 1
0 0 Πẽ′ 0


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Beogradu, smer Teorijska i eksperimentalna fizika, koji je završio 2012. godine s
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like Srbije.
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i matematička fizika. Osnovna tema je analiza spin-orbit efekata na elektronske
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