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Title:

Algebraic topology of complex networks and topological aspects of non-

linear dynamical systems

Abstract

To understand and eventually predict the behavior of complex systems arising

from diverse areas of science such as physics, economics or biology, which have

a widespread impact on our lives, many powerful methods and models have been

developed in the recent years. Research in the area of complex system bifurcates in

different directions using various methods and recent years have witnessed signifi-

cant increase in publications and results related to the understanding how complex

systems function. The tools of algebraic topology, presented in this dissertation,

have a large influence on further development of new methods for obtaining not so

apparent properties which eluded well established approcahes.Simplicial complexes

are becoming an important part of the modern theoretical physics frameworks by

virtue of increased use of methods of algebraic topology in various areas of physics

and other areas of science as well. So far the study of complex systems which are

represented by a large number of mutually interacting agents is to a large extent

based on the concepts and methods which arise in the graph theory (complex net-

works). Analysis of complex networks has resulted in the deeper insight into the

idiosyncrasies of complex systems such as structure and self-organization based on,

for example, the study of aggregation of agents into communities.

In this thesis, the initial focus is concerned on the structure and substructure

of complex systems, through complex network study, and high order aggregations

of elements of complex network. A detailed illustration of construction of simpli-

cial complexes from either the complex networks, from the data embedded in metric

space or from the time series is presented. Application and results of simplicial com-

plexes constructed from various complex systems represented by complex networks,

originating from physics, social and biological sciences, reveal hidden geometry and

topology of higher-order that are not observed via standard methods of graph anal-

ysis and statistical mechanics. In the second part of the thesis a recurrent property

of nonlinear dynamical systems is studied with the use of simplicial complexes and

with the application of the concepts and methods from the algebraic topology. Re-

sults for several benchmark systems are presented in order to show the scope of

the topological framework and topological properties that can be obtained from this
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analysis. Different models of systems which exhibit transition to deterministic chaos

were studied and topological properties of phase space were recognized as generic

indicators of dynamic regime changes. The applications of topology, Q-analysis and

persistent homology in particular, to nonlinear dynamical systems open up new

possibilities for further studies involving the interaction of these disciplines.

Keywords:

statistical mechanics, complex systems, graph, complex networks, combinatorial al-

gebraic topology, simplicial complexes, topological invariant, combinatorial Lapla-

cian, entropy, nonlinear dynamical systems, chaos

Scientific field:

physics

Specific scientific field:
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UDC number:533.9(043.3)
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Naslov:

Algebarska topologija kompleksnih mreža i topološki aspekti nelinearnih

dinamičkih sistema

Rezime

Da bi razumeli i eventualno predvideli ponašanje kompleksnih sistema koji se javlja-

ju u raznim oblastima nauke, od socio-ekonomskih do sistema iz, na primer, fizike

ili biologije, i koji imaju važan uticaj na razne aspekte naših života, naučnici su

razvili veliki broj metoda i modela. Istraživanja kompleksnih sistema se odvijaju u

različitim pravcima analize i modeliranja i u poslednjih nekoliko godina dovela su

do naglog porasta broja rezultata i publikacija koje su proširile perspektive sveta

oko nas. Alati koji proističu iz algebarske topologije, predstavljeni u ovoj tezi, imali

su veliki uticaj kao sredstvo za istraživanje i otkrivanje, ne tako očiglednih osobina,

koje ranije nisu bile poznate. Simplicijalni kompleksi postaju važan predmet studija

u modernoj teorijskoj fizici zahvaljujući potencijalu primene koncepata iz algebarske

topologije u raznim oblastima nauke. Dosadašnja proučavanja kompleksnih sistema

(u fizici i matematici) predstavljenih preko velikog broja elemenata koji uzajamno

komuniciraju putem uparenih odnosa, u velikoj meri su bazirana na konceptima i

metodama koji potiču iz teorije grafova, odnosno kompleksnih mreža. Analiza kom-

pleksnih mreža je dovela do boljeg uvida u neke od osobina kompleksnih sistema kao

što su njihova struktura i samoorganizacija, proučavajući, izmedju ostalog, meha-

nizme formiranja zajednica od interagujućih elemenata kompleksnog sistema.

U ovoj tezi, početni fokus se odnosi na proučavanje struktura i podstruktura

nekolicine kompleksnih sistema putem primene topoloških osobina simplicijlanih

kompleksa konstruisanih iz kompleksnih mreža i kroz agregaciju mrežnih eleme-

nata na vǐsim dimenzijama kompleksne mreže. Predstavljeni su načini na koji se

simplicijalni kompleksi mogu izgraditi direktno iz kompleksnih mreža od podataka

ugradjenih u metrički prostor ili pak, iz vremenskih serija. Primena i rezultati ovih

metoda na različitim kompleksnim sistemima koji proističu iz različitih oblasti kao

što su fizika, društvene i biološke nauke, otkrivaju skrivenu geometriju i topologiju na

vǐsim dimenzijama simplicijalnih kompleksa koja se ne primećuje primenom stan-

dardnih metoda koje kombinuju teoriju grafova sa statističkom fizikom, odnosno

statističkom mehanikom. U drugom delu teze uvedene su metode za proučavanje

rekurentnih osobina nelinearnih dinamičkih sistema (pojava koje se ponavljaju u

faznom prostoru) koristeći algebarsku topologiju i multifraktalne osobine atraktora
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u faznom prostoru. Izučavano je nekoliko standardnih nelinearnih dinamičkih sis-

tema čija dinamika prelazi u deterministički haos i prikazani su topološki obrasci

za prepoznavanje dinamičkih režima takvih sistema. Na ovaj način je prikazan nov,

sveobuhvatan metod za analizu dinamičkih sistema i kompleksnih sistema generalno,

te je otvoren je put za nove primene algebarske topologije u fizici.

Ključne reči:

statistička mehanika, kompleksni sistemi, grafovi, kompleksne mreže, kombinatorna

algebarska topologija, simplicijalni kompleksi, topološka invarijanta, kombinatorni

Laplasijan, entropija, nelinearni dinamički sistemi, haos

Naučna oblast:

fizika

Uža naučna oblast:

statistička fizika

UDK broj:533.9(043.3)
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Chapter 1

Introduction

The intriguing concept of complexity draws attention of scientists from various di-

verse fields of science. The standard approach in physics is of finding common

properties in different systems in order to generalize the methods and the domain of

applicability of the methods used. For example, in the study of critical phenomena

universality indicates that distinct physical systems exhibit the same behavior near

critical points. Hence, it is not coincidence that the concepts from statistical physics

had the biggest influence in generating new approaches and in obtaining significant

results about complex systems. The widely accepted frame of reference for the study

of complex systems are complex networks (graphs) as this framework offers the use

of efficient graph theory methods and the methods of statistical mechanics, due to

their applicability to a large number of interacting elements.

Since there is no unique and widely accepted definition of a complex system

[1], it is a challenge to formulate the theory of complex systems. Nevertheless, this

problem does not averts researchers to adapt concepts and methods from their field

of study on a specific problem, i.e. complex system, and provide results about it.

The main characteristic of complex systems is that they are formed by the large

number of elements which communicate, or in general interact, among themselves

in a pairwise manner. One of the main features of complex systems is that each

constitutive element has rather simple behavior while the aggregation of a large

group of such elements displays a very complex dynamics. Interestingly, as it will

be presented in this thesis, interactions does not have to be restricted to pairwise,

but they can rather be of a higher-order, i.e. simultaneously involve more than 2

elements (agents).

One of the best ways to represent complex system where elements related like

a pairwise interaction is mathematical graph associating elements with nodes (ver-

tices) and their interaction as links (edges) of a graph. Hence, the usual represen-
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tation of a complex system is studied from the aspect of a complex network [2].

There are many ways of representing complex systems by complex networks, and

there are some accepted quantitative and common properties which characterize

complex system in general. These properties are developed by a suitable mathemat-

ical frameworks. More about complex network in general will be introduced in the

Section2.1.

Some specific properties of a complex system can be obtained by studying the

properties of a simplicial complex, that is the object which consist of, in the sim-

plest terms, connected polyhedra and which lives in a discrete geometrical space.

The hierarchical organization inherent in substructures of complex networks may

be efficiently studied by simplicial complexes by the use of combinatorial algebraic

topology [3]. Ron Atkin [4, 5], following the ideas of Dowker [6] for a building

simplicial complex from the relation between the elements of two sets, introduced

the method of Q-analysis [7]. More recently Atkin’s methodology received a fur-

ther development in the work of Barcelo and Laubenbacher [8] who introduce the

A-homotopy theory ( ”A” in honor of Atkin).

Simplicial complexes can be used for the study of topological properties of a

complex system obtained from experimental data [9] and also in discretization of

exterior differential forms. Its geometry and topology may be used as the basis of

many physical theories such as general relativity [10, 11], electromagnetism [12],

gauge theory [13], elasticity [14] etc. To illustrate the importance of simplicial

complexes in theoretical physics research, let us emphasize that the geometric and

topological nature of such theories is often obscured by their formulation in vecto-

rial and tensorial forms due to unavoidable use of coordinate systems. Hence the

complete topological and geometrical nature is obscured hiding for example, local

and global invariants. Exterior derivative of differential forms is, on the other hand,

invariant under a coordinate system change and since every differential equation can

be expressed in terms of exterior derivative of differential forms [15], many physical

laws may be expressed in terms of differential forms. Discretization of differential

forms using finite differences and using their coordinates leads to numerical invalida-

tion of some basic theorems (Stokes, for example) making traditional discretization

methods impractical. It turns out that proper discretization of differential forms

that preserves all the fundamental differential properties is possible only on simpli-

cial complexes [15]. Further advances in the field of complex systems were made by

combining ideas of statistical mechanics and algebraic topology [16]-[20].

An important part of the thesis, represented in Chapter 4, is devoted to the

concept of recurrence in nonlinear dynamical systems. Predictions of dynamical
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properties of a dynamical system are not based on long term calculations of math-

ematical equations, but on two crucial facts from our daily life:

1. similar situations often evolve in a similar way;

2. some situations occur over and over again.

The first phenomenon is about certain determinism [21] in many real-world com-

plex systems, which are very different kind, with different space-time scales. All

these systems are modeled by deterministic differential equations and they behave

deterministically in all sense - we can predict the future state of such systems. Nev-

ertheless, chaos theory taught us that some systems, even deterministic, are very

sensitive to fine fluctuations and even small perturbations of initial conditions, and

they can make precise predictions (on long term scale) almost impossible.

The second phenomenon is fundamental to many systems and is main reason

for the establishment of memory through experience. It helps elements of such a

complex system to remember similar situation and predict the ending and perhaps

help to survive. Remembering the similar situation, for example, hot and humid day

can eventually lead to storm, but only if a system with all features that are driving

the system recur to former states. Such recurrence is a fundamental characteristics

of many dynamical systems. More about recurrence of dynamical systems (complex

systems) will be presented in the Chapter4

The main results of the thesis are that we found proper way to identify simplicial

communities in real-world social networks (emotion propagation network) and iden-

tify ”key players” for switching emotions. Further, in social networks we are able

to reveal detailed structure of the phase space manifolds that contains information

about the system collective behavior. Also, we showed that the study of higher-order

combinatorial structures via algebraic topology tools provides a sensitive method-

ology to quantify the shifts in functional brain networks, under changed activity

or condition. Regarding the nonlinear dynamical systems, main results pertain to

new aspects of topological properties of different dynamical regimes and changes

from one regime to the other. Quantification of these topological properties are

obtained by the use of Q-analysis, persistent homology and multifractal formalism

of statistical mechanics.

Hence, the continuation of the research initiated in this thesis would give a further

insight in broad range of research areas, like sociology, neurology, economics, etc.

Furthermore, study of nonlinear dynamical systems using algebraic topology tools,

i.e. simplicial complexes, is at its beginning and it opens the possibility for expansion

in a many directions.
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Chapter 2

Algebraic topology of complex

networks

2.1 Complex networks

Complex systems are usually represented by complex networks and they should

comply to qualitative properties of complex systems:

• Despite great irregularity that occurs in complex systems, they display some

kind of self organization and can be termed as organized complexity;

• The behavior of a complex system can not be predicted by just knowing the

pairwise relations of elements, but it but it is to the large extent influenced by

the structure built by those elements and their relations;

• Complex system possess hidden hierarchical organization which is reason for

creation of such complexity of a system.

Complex networks are, perhaps, the most important field in complex system

theory and they are focused to transform real world phenomena in unified way

that researchers from different fields can observe such system and exceed research

in their native fields. Mathematical objects from graph theory defined sets of el-

ements together with their pairwise relations has been found convenient for easy

reconstruction of a broad research community.

The beginnings of graph theory originates in the work of Euler [22]. An important

influence on the study of complex networks via mathematical graphs was due to

Paul Erdös and Alfred Rényi. One of their biggest contribution is the introduction

of random graphs and the corresponding random graph theory [23, 24]. Random

graphs are formed from the set of different vertices and the set of edges which connect
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randomly, with pairwise edge being formed with probability p. Interestingly, such

graphs display the small-world property, which means that most pairs of vertices

are connected by a short path through the graph, just like it is observed in the real

world experiments [25].

In contrast to randomness in graph theory are the properties of the emergence of

communities and of clustering [26]. The community structure means that the groups

of densely connected nodes, at least internally, appear in the network. The property

of clustering means that two adjacent vertices which are both adjacent to the third

vertex have an increased probability of also being adjacent of one another. Next,

the clustering of network communities assumes aggregation of a set of nodes in such

a way that nodes in the same cluster are more similar to each other (based on some

measure), than to those in other clusters. In order to satisfy both randomness and

high clustering, Watts and Strogatz designed the small-world network model [27],

which displays both properties for certain specific parameters of the network.

A main problem in modeling real world networks is that we can model a net-

work to resemble the real one based on one property but not for the other one, so

they behave either as a random graph or as the small world network. Albert and

Barabási proposed the scale-free network model [28], which in its essence incorpo-

rates two mechanisms characteristic for many real-world networks: the growth and

the preferential attachment. The first mechanism, the growth, means that networks

are growing by adding new vertices and connecting them to already present vertices

in the network, whereas the likelihood to connect to the vertex already present in

the network depends on the number of neighbors the vertex has, hence preferential

attachment. In other words, the more connection the vertex has, the higher prob-

ability that the newcomer will connect to it. All mentioned models are just few

pioneers of this field of study and the most important models.

2.1.1 Introduction to algebraic topology and overview of

simplicial networks

Lets start with finite set V = {v0, v1, ..., vq−1, vq} of elements which are called vertices

and define a convex hull of q + 1 elements σq = {vσ0 , vσ1 , ...vσq} of the set V called

a q-dimensional simplex or just a q-simplex [29]. The geometrical representation

of q-simplex is a polyhedron embedded in Rd, where q ≤ d [29]. Examples of this

realization are point (0-dimensional simplex), line (1-dimensional simplex), triangle

(2-dimensional simplex), etc. A face σp of a q-simplex σq is a subset of p vertices of

σq, where p ≤ q, so that σq ≤ σq. So if two simplices share p + 1 common vertices,

they share p-face.
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(a) (b)

Figure 2.1: possible construction of a simplicial complex, right (b), from simplices
left (a)

In Figure 2.1 (a) a geometrical representation of simplices for various dimensions

of the set V = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11} with subsets: {1, 2, 3, 4}, {1, 3, 4, 5},
{1, 4}, {5, 6, 7}, {7, 8, 9}, {9, 10}, {6, 7, 11} is presented. In the same figure we

can observe that subset {1, 3, 4} of simplex {1, 2, 3, 4} is also a subset of simple

{1, 3, 4, 5}, indicating that these two simplices share a 2-face and by definition of a

simplex this 2-face is also a simplex.

A collection of all simplices together with all their faces is called a simpli-

cial complex. In more formal terms, a simplicial complex Sσ on a finite set V =

{v0, v1, ..., vq−1, vq} of vertices is a nonempty subset of the power set of V , such that

Sσ is closed under the formation of subsets [29].The maximal dimension of a simplex

in S determines the dimension of the whole simplicial complex, D = dim(S). An

illustration of the construction of a 3-dimensional simplicial complex from several

simplices of different dimensions is presented in Figure 2.1 (b).

For practical purpose, we need some rule how to combine elements of set V

into subsets which form simplices, and we must know what these simplices actu-

ally represent. Let us introduce two arbitrary sets V = {v1, v2, ..., vn} and W =

{w1, w2, ..., wm} and a relation λ which together create two simplicial complexes S

and S ′ where S ′ represents a conjugate complex of S [6]. The binary relation λ as-

signs to every element in W one or more elements in V , ie. for every wi ∈ W there

exist vj ∈ V such that wiλvi. The set W and the relation λ determine the subset

S of the power set of V and we label each element {vα0, vα1, ..., vαq} ∈ S q ≤ m

by the element wi ∈ W for which wiλ, vα0, wiλ, vα1, ..., wiλ, vαq. To distinguish the

element wi from the set W and its associated element from the set W due to the

relation λ, the element of the set W will be labeled as σwi. Therefore, the notation

σ(wi) = 〈vα0, vα1, ..., vαq〉 [32] means that an element wi of the set W is λ-related to
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q elements of set {vα0, vα1, ..., vαq} in V . The elements of set V are called vertices

and elements of set W are called q-dimensional simplices or just q− simplices. So,

element wi is λ-related to any subset of the set {vα0, vα1, ..., vαq} and hence, every

subset of that set is simplex, meaning that every subset is the face of a simplex,

due to definition of q-face. Since each wi ∈ W identifies q-simplex σ(ai), for some

q, together with all its faces, this collection is called simplicial complex S, which we

denote as Sw(V, λ) [5].

Let us introduce two sets to illustrate a construction of simplicial complex, W =

{a, b, c, d, e, f, g} and V = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11} and suppose that elements

of set W are λ-related to the elements of the set V . For example, the elements

(letters) from set W may represent persons, elements of set V (numbers) represent

TV shows and λ correspond whether person are watching TV shows ”person a is

watching TV show 1”. Or, elements of set W represent doctors, element of set V

represent patients and λ correspond to the property ”doctor a is treating patient

1”. Another example, elements of set W represent scientific article, elements of set

V correspond to the coauthors and λ correspond to the property ”an article a is

written by coauthor 1”, and so on.

(a) (b)

Figure 2.2: Creation of the simplicial complex from Fig 2.1 with labeled simplices

A geometrical (polyhedral) representation of simplices collected from elements

from the set W , which are λ-related to the elements of the set V is presented in Fig

2.2(a). The obtained simplices are:

• σ(a) = 〈1, 2, 3, 4〉

• σ(b) = 〈1, 3, 4, 5〉

• σ(c) = 〈4, 8〉
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• σ(d) = 〈5, 6, 7〉

• σ(e) = 〈7, 8, 9〉

• σ(f) = 〈9, 10〉

• σ(g) = 〈6, 7, 11〉

Fig 2.2 represents the simplicial complex formed by attaching simplices along

their shared faces. Difference between Fig 2.1 and 2.2 is that simplices on Fig 2.2

have interpretation. For example, simplices are doctors and vertices are patients

that are treated by different doctors. From this example we can observe that doctor

a is treating patients 1,2,3,4 and doctor b is treating 1,3,4,5, and that both of them

are treating patients 1,3,4. So, it is easy to catch how simplicial complex can find and

display complicated relationships between properties of simplices with vertices that

are constructing them, but it is crucial to assign simplices a ”name” or important

information can be lost.

λ relates elements of set W to elements of set V , so there must be reverse rela-

tion that connects somehow elements of set V to elements of set W . For example,

if λ corresponds to the property ”doctor a is treating patient 1”, inverse relation

λ−1 correspond to the property ”patient 1 is visiting doctor a”. So λ−1 relates

elements of set V to elements of set W : 1λ−1a,2λ−1a,3λ−1a,3λ−1b and so on. Fol-

lowing the procedure, we form simplicial complex Sv(W,λ
−1) on the vertex set W

by relation λ−1, represented in figure 2.3. So elements of sets V and W switched

their roles and in the complex Sv(W,λ
−1) vertices comes from set W and simplices

from set V . A simplicial complex Sv(W,λ
−1) defined on sets V = {v1, v2, ..., vn} and

W = {w1, w2, ..., wm} by inverse relation λ−1 is called the conjugate complex of the

simplical complex Sw(V, λ) [7, 32]. In such a way, conjugate complex is carrying

important information about related system of elements from set V and W . In the

previous example, each simplex in the conjugate complex stores information about

all doctors that are treating the patient. In the case where for sets W = V , hence

Sw(W,λ) simplicial complex is the same as its conjugate complex.

Practical way to represent relation between two sets is by using an incidence

matrix [7, 32] Λ, where rows are related to simplices and columns are related to

vertices, and the matrix element [Λ]i,j is equal to 1 if simplex σ(i) contains vertex

j, otherwise is 0. The matrix representation of a conjugate complex Sv(W,λ
−1) of

the simplicial complex Sw(V, λ) is transpose matrix of Λ (ΛT ).

The matrix that captures the relations between simplices, in the sense of how
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Figure 2.3: Conjugate complex of the simplicial complex from Figure2.2

Figure 2.4: Simplicial complex (left) and its incidence matrix (right)

they are ”glued” to each other, is the connectivity matrix defined as:

Π = Λ · ΛT − Ω, (2.1)

where Λ is incidence matrix and Ω is matrix with all entries equal to 1. Rows and

column of the matrix Π are related to simplices. Diagonal elements of connectivity

matrix represent the dimension of simplices, whereas the non-diagonal element [Π]ij

is equal to the dimension of the face shared by simplices i and j share or the non-

diagonal element is equal to −1 if simplices i and j do not share a face. Connectivity

matrix for example from Fig. 2.4:
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Π =



a b c d e f g

a 3 2 0 −1 −1 −1 −1

b 2 3 0 0 −1 −1 −1

c 0 0 1 −1 0 −1 −1

d −1 0 −1 2 0 −1 1

e −1 −1 0 0 2 0 0

f −1 −1 −1 −1 0 1 −1

g −1 −1 −1 1 0 −1 2


Other good representation for simplicial complex, that is more intuitive, is ge-

ometrical representation, but it is not always pratical because of the size of sets of

vertices and simplices.

2.1.2 Simplicial complex construction

This section contains description of construction methods of simplicial complexes

from graphs, times series and from data embedded in metric space.

From complex networks (graphs)

A simplest way to represent a complex system of mutually interacting elements is by

a complex network, i.e. a large graph. Mathematically speaking, graph is a set of N

vertices, or nodes, connected by links (edges) which can be directed or undirected.

Undirected links, bidirectional ones, are observed as links with two directions, i.e.

they allow information transition in both ways.

A large number of different types of simplicial complexes may be constructed

from a single graph. For example clique complex, neighborhood complex, indepen-

dence complex, matching complex etc., may be constructed from one graph, depend-

ing on the focus of the study and the properties of the underlying network (graph).

By building more than one simplicial complex from graph, it is possible to obtain

different information about the pairwise relations of underlying graph and about

whole complex system which is analyzed. The in depth analysis of these simplicial

complexes reveals different properties and information about the complex network.

Depending on the focus of the research and the properties of the network which

are of particular interest,a simplicial complex or complexes may be constructed that

best suite the purpose.
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Neighborhood complex

neighborhood complex [33, 34, 35, 36] is constructed from simplices associated to

each node i of the original graph. Each simplex consists of the vertices which are

connected to the node i in the graph (network), so that simplices are all subsets of

the vertex set of the underlying graph which have a common neighbor. Incidence

matrix of the neighborhood complex is equal to the adjacency matrix of the under-

ling graph. It is easy to deduce that the neighborhood complex and its conjugate

complex are the same. In the Fig 2.5 each node is associated to its neighbors. So

sets of neighbors {2, 3}, {1, 3, 4}, {1, 2, 4, 5}, {2, 3, 6}, {3, 6}, {4, 5} are associated to

simplices σ1(1), σ3(2), σ3(3), σ2(4), σ1(5) , σ1(6) respectively. Fig 2.5(b) is geomet-

rical representation of neighborhood complex with simplices depicted in different

colors, same colors as nodes of underlying graph Fig 2.5(a). One of the applications

of this type of simplicial complex is to reveal hidden relationships between elements

constituting the complex network.

(a) (b)

Figure 2.5: Constructing a neighborhood complex (b) from an undirected graph (a).
The colors emphasize matching between nodes of the original graph and associated
simplices in the neighborhood complex.

Clique complex

Cliques are originating from social sciences, i.e. social network analysis, and rep-

resenting set of vertices that every two distinct vertices in the clique are adjacent,

as analogy with the highly connected social group. Clique complex consists of the

simplices constructed from the cliques of the underlying graph, whose faces have

the maximal possible dimension. To construct the simplicial complex we need to

create two sets, the first containing all maximal cliques and the second containing all
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vertices of the initial graph. In a graph we try to identify all maximal cliques. For

example, tetrahedron presents a maximal clique of order 3 although it is constructed

from 4 triangles (cliques of order 2). So, a simplicial complex in which simplices are

all maximal cliques of he underlaying graph is called clique complex [37, 38]. Conju-

gate clique complex is a simplicial complex in which cliques and nodes are switching

roles so that the cliques assume the roles of vertices and the nodes are connected

as simplices. Conjugate clique complex is some times needed when want to extract

the information about the relations between nodes with respect to the cliques which

they construct.

In Fig. 2.6(a) 5 maximal cliques may be identified: two triangles and three

links depicted in different colors in the same figure (right). The set of vertices is

{1, 2, 3, 4, 5, 6, } is used to construct a 2-dimensional simplicial complex with the set

of simplices:

• σ2(a) = 〈1, 2, 3〉,

• σ2(b) = 〈2, 3, 4〉,

• σ1(b) = 〈3, 5〉,

• σ1(b) = 〈4, 6〉,

• σ1(b) = 〈5, 6〉,

where superscript is associated with the dimension of the simplex.

(a) (b)

Figure 2.6: Constructing a clique complex (b) from an undirected graph (a). Dif-
ferent colors indicate maximal cliques, i.e. simplices

12



Independence complex

Relationship between nodes of a graph representing complex network is preserved

through links of simplices in the simplicial complex including the information about

communities and clustering. But it is also important to examine nonexisting links

between nodes. In a real world complex network, it may be interesting to explore

missing relationship between nodes. Therefore, it is necessary to build a graph which

is complementary to the initial graph meaning that in a new graph two nodes are

connected if they are not connected in the underlying initial graph, and vice versa,

two nodes are not connected if they are connected in the initial graph. By finding all

maximal cliques of the new graph, called anticliques or independence sets, we create

independence complex [37]. Construction of an independence complex starting from

the undirected graph is presented in Fig 2.8 . After all maximal cliques of such a

graph are found an independence complex 2.8(c) is formed.

(a) (b) (c)

Figure 2.7: Building an independence complex (c) from an undirected graph (a).
Different colors indicate maximal cliques, i.e. simplices, of complementary graph
(b).

Matching complex

So far the focus was on the nodes and how they are connected and we switch the

focus on links now. So, to examine relation between links, underlying graph can

be transformed to a line graph. Nodes of line graph are associated with links of

the initial graph, and they are connected if they share mutual node of initial graph.

The independence complex of a line graph is called the matching complex [39]. It

provide us with information of high order structures built by links that do not share

mutual nodes of the underlying graph.
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(a) (b) (c)

Figure 2.8: Building an matching complex (c) from line graph (b) of undelying
undirected graph (a).

Construction of simplicial complex from data in phase (metric) space

When analyzing simplicial complexes constructed from graph, there is no need to

observe distances between nodes, just relationship between them through links. Nev-

ertheless, there are data sets where it is important to incorporate distances between

elements of a system, like the system of antenna towers, sensors, mobile phone tow-

ers, where relationship between elements depend on overlapping of range is of great

importance. Hence, for these systems, elements are associated with coordinates of

an Euclidean metric space. Distances in D-dimensions are defined as

d(p1, p2) =

√√√√ D∑
i=0

(xi,1 − xi,2)2.

It may be of great interest to reconstruct the global structure that originates from

geometrical distances. For that purpose it is necessary to reconstruct the shape of

data, and use Q-analysis presented in Section 2.1.3 and homology, in Section 2.2.1, to

describe global and local properties. From Fig 2.9 we have a 2-dimensional Euclidean

space and now we want to apply the method for simplicial complex reconstruction

to extract information about the system. There are several methods of constructing

the simplicial complex from the data that depends on distances between elements of

which we use the Cech complex, the Vietoris-Rips complex and the witness complex,

among others.

An important thing to know is that distances between elements are not the

only important information, but also the open balls (as range of antenna, mobile
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Figure 2.9: An example of data points distributed in 2-dimensional Euclidean space.

tower coverage) have a significant role because of overlapping. So, in this metric

space we have a set of open balls B = {B1, B2, ..., BN}, such that an aggregation of

balls and their intersection is contractible and union ∪Bi is the space of interest. So,

making each Bi a vertex a q-dimensional simplex is formed whenever the intersection

Bi0 ∩ Bi1 ∩ ... ∩ Biq 6= ∅ appears. With respect to so defined topological spaces,

topological invariants, such as holes, i.e dimension of thre homology group (formal

definition will be introduced in 2.2.1), face vector 2.2.2 are of great importance and

this technique is called the nerve of the cover [40].

Cech complex

Let start with set of data points X in some metric space M and data points are

centers of balls of radius r ∈ R, such that B(xi, r), where for each xi ∈ X

B(xi, r) = {m ∈M | d(xi, r) < r}.

Links (1-simplex) are built between data points (vertices) whenever two balls have

no empty intersection, triangles (2-simplex) are built where three balls intersects

with each other. In a similar manner higher dimensional simplices are created and

so obtained simplicial complex is called the Cech complex [37]. It is clear that the

construction of Cech complex is related to the nerve of the cover, recovering in this

way the shape of space built by data points.

In the example of a 2-dimensional data set presented in Fig 2.9, around each

point a circle is drawn with radius r 2.11. So, following the definition of a Cech

complex, wherever a group of circles overlap each other, a simplex is created. It is

important is to make a difference between subsets of points {a, b, c} and {d, e, f},
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(a) (b)

Figure 2.10: An example of building the Cech complex (b) from data points (a).

because the first subset builds 1-dimensional hole since circles overlap in pairs, not

like in other subset where all three circles have common intersections and they form

a triangle (2-dimensional simplex). As in second subset, same thing holds for subset

{g, h, i, j} which form a tetrahedron (3-dimensional simplex). In case of diameter

increase 1-dimensional holes would be filled and only 1 large (central) hole will

survive.

Vietoris-Rips complex

Vietoris-Rips complex is similar to the Cech complex and it is formed from the

intersection of balls centered around the data points but with a different rule. Instead

of adding a d-simplex when there is a common point of intersection of all the (r/2)-

balls, a simplex is added when all the balls have pairwise intersections.

Unlike when forming a Cech complex in Fig 2.9 where subset of points {a, b, c}
creates a hole, the same subset creates a 2-dimensional simplex in the Vietoris-

Rips complex, as is the case with other 1-dimensional holes from the Cech complex.

The other higher-dimensional simplices from the Cech complex also appear in the

Vietoris-Risp complex, since six 1-dimensional simplices are embedded in four 2-

dimensional simplices which are faces of a 3-dimensional simplex of the Cech complex

(similar procedure as when constructing a clique complex).

Witness complex

Density of data points or large data sets may be impractical and computationally

very demanding. To overcome this problem, there is a need to reduce data sets and
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(a) (b)

Figure 2.11: An example of building the Vietoris-Rips complex (b) from data points
(a).

yet not to loose important information and properties of such system. For large

data point set X in some Euclidean space, there is a choice of small set of points

L ⊂ X called landmarks and together with the set of points X \ L, called the

witnesses, a witness complex is formed on this set of points instead of X. There

the following way. A q-simplex σq = 〈l0, l1, ..., lq〉 is weakly witnessed by x ∈ X \ L
if d(l, x) ≤ d(k, x) for every l ∈ {l0, .., lq} and k ∈ L \ {l0, ..., lq}. Subset of points

{l0, ..., lq} ∈ L is a simplex if and only if there is a point (a witness) x ∈ X \L with

every point in {l0, ..., lq} closer to x than to any other point in L \ {l0, ..., lq}. The

witness complex is defined as the collection of all simplices together and their faces

built on the vertex set L that are weakly witnessed by a point in X [41].

Although the building of a witness complex reduces the size of the initial data

point set, the good choice of landmark set preserve the topological properties of

the original data set. Like in the case of previously introduced simplicial complexes

from data in metric space where good choice of radius led to persistent homology

calculations, same thing holds for the witness complex [42].

In Fig. 2.12 a set of points used in Fig. 2.9 we randomly select 6 landmark points

which form a 1-dimensional simplicial complex and some of the simplices surround

a 1-dimensional hole. This hole is preserve even if all points are connected mutually.

Homological structure persists even when we reduce the number of data points from

the initial sample.
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Figure 2.12: An example of building the witness complex from data points from Fig
2.9

From time series

As in the previous cases of constructing simplicial complexes from a graph and from

data sets in metric space, there are several ways to create simplicial complex from a

time series. All these cases require construction of both the graph and a simplicial

complex. The extraction of properties that drive the dynamics of a complex system

can be revealed from geometrical, combinatorial and topological features of phase

space and the interest in relating them with simplcial complexes recently draw some

attention.

Often the only information that are given about the dynamical complex system

is time series, the time sequence of some known or unknown variable. There is a

need to devise methods for determination of the number of variables, as well as

methods which provide information about the relationship between them.

One of the best ways to reconstruct both a graph and a simplicial complex from

data that comes from a large number of time series in order to determine relation

between them is to use correlations. One of the best and widely used ways is to use

the Pearson’s correlation coefficient for a pair of time series At and Bt

CAB =
1

N − 1

N∑
i=1

(
Ai − µA
σA

)(
Bi − µB
σB

)

where µ and σ are the mean and standard deviation of the corresponding time

series, and N is the length of time series. Further, to separate the strong posi-

tive correlations, which are relevant in almost every context, there is way to use

the filtering algorithm described in [43, 44, 45]. The algorithm enhances those
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matrix elements Cij that have a similar correlation pattern with the rest of the

matrix elements while diminishes those with a dissimilar patterns. First we map

Cij to the range [0, 1] using CPij = (Cij + 1)/2. Then, each element is multiplied

CPij → FijCPij by the corresponding factor Fij, which is computed as Pearson’s

coefficient of the rearranged matrix elements from row i and column j as follows:

{Cij, Ci1, Ci2, ..., CiN}{Cji, C1j, Cj2, ..., CjN}. The resulting filtered correlation ma-

trix is also transfered to a binary adjacency matrix of the graph by retaining the

correlations larger than a threshold value and inserting units for the retained edges.

Big challenges is the choice of threshold. Usually, by fitting distribution of obtained

filtered correlation coefficient and find the value where distribution and fit are dis-

jointed is probably good first choice. To acknowledge this choice there is a need to

check some topological features whether they persist for higher value of the chosen

threshold.

In order to analyze relation between values of one time series and which is par-

ticular suitable in the case of persistent fluctuations a natural visibility algorithm is

used [46, 47]. Every time step is mapped to the node of the graph and the node is

connected by undirected links with all other data points which are ”visible” from

that data point, where the vertical bars are considered as non-transparent. Note that

by varying the mapping procedure different graphs can be obtained. The mapping

procedure is illustrated in Fig. 2.13.

Figure 2.13: The sequence of data points in the lower pannel is mapped onto a graph
in the upper pannel; each data point becomes a node of the graph, while the graphs
edges are inserted according to the natural visibility between data points, indicated
by broken lines.
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For the purpose of analyzing the data that comes from nonlinear dynamical

system where recurrence occurs, we introduced the recurrent simplicial complex. In

depth explanation of implemented method will be in 4.2.

2.1.3 Chains of connectivity, global and local properties of

simplicial complex

So far we have introduced the dimension of the simplex and the relationship (or

adjacency) between two simplices through the shared face, which are stored in the

connectivity matrix. Now we will introduce a higher aggregations of simplices in-

duced through the shared face and, further, how they induce the intrinsic hierarchical

multilevel and multidimensional organization of simplicial complex. The property

that any subsimplex of a simplex is also a simplex induces various levels of adjacency

between simplices, and also various levels of connectivity between collections of sim-

plices. Two simplices are q-near if they share a q-dimensional face, and so on, they

are also (q-1)-,(q-2),....,1 and 0-near. The collection of simplices in which any pair

of simplices is connected through a sequence of simplices where a pair of connected

simplices are q-near is called q-connected component. In other words, simplices σ

and ρ are q-connected [4] if there is a sequence of simplices {σ, σ(1), ..., σ(n), ρ} such

that any two adjacent simplices share at least q-face.

Q-vector (first structure vector) [48, 32] is an integer vector with the length of

maximal dimension of simplicial complex plus one. The values of Q-vector (Qq)

quantify number of q-connected component and they usually start from the number

of connected components from largest dimension in descending order

Q = {Qqmax , Qqmax−1, ..., Q1, Q0}.

An example illustrating this vector is in Fig. 2.14 and for given example we can

observe that first structure vector is Q = {2, 4, 5, 1}.
Another important quantity is called second structure vector Ns which value

Ns(q) gives the number of simplices with dimension larger or equal to q,

Q = {Ns(qmax), Ns(qmax − 1), ..., Ns(1), Ns(0)}.

From example from the Fig 2.14 second structure vector is Ns = {2, 5, 7, 7}.
And finally, the entries of Q̄q (third structure vectors) [49] provides us with the

degree of connectedness at all dimensions of a simplcial complex defined as
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Figure 2.14: Structure vectors of simplicial complex

Q̄q = 1− Qq

Ns(q)
,

and it measures the number of q-connected components per number of simplices

on q-level. From example in Fig 2.14 we can see that third strucure vector is Q̄ =

{0, 0.2, 0.28, 0.86}.
One of the most important vectors that is also a topological invariant is the

f -vector which represents the number of q-dimensional simplices and q-dimensional

faces which are embedded in simplicial complex and from example in Fig 2.14 f -

vector is f = {11, 19, 10, 2}. More about this feature may be found in Section2.2

All these vectors represent certain kind of global properties of a simplcial com-

plex. Let us now observe some local properties of simplicial complex that describe en-

vironment of simplices in simplicial complex. We introduced Node’s Q-vector Qi [50]

associated with node i from underlying graph which entries represents the number

q-simplices in which node i participates and topological dimension dimQi of the node
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i as the number of all simplices in which node i participates as dimQi =
∑qmax

q=0 Qi
q.

The motivation for the use of the term dimension originates in view of the conjugate

simplicial complex. Therefore, dimQi corresponds to the dimension of the conjugate

simplex [51].

2.2 Homology and Combinatorial Laplacian

So far, relationship between two sets have explored structural and connectivity prop-

erties of simplicial complex only through connectivity of simplices. Lets turn around

to topological properties of simplicial complex and to the power set of the set over

which simplicial complex is defined. Keep in mind that every subsimplex (face of

a simplex) is also a simplex in simplicial complex. This premise was not explicitly

emphasize, but implicitly accepted and it of great importance for upcoming con-

cepts. So, when said q-simplices, it actually mean ”all maximal q-simplices and all

q-dimensional faces”, and this represents the definition of f -vector.

2.2.1 Homology group, Betti numbers and reduction algo-

rithm

To show more of the richness of algebraic topology machinery, lets start from exam-

ple as before - Fig 2.15.

Figure 2.15: An example of simplicial complex

Let start with a finite vertex set V = {v1, v2, ..., vn}. An arbitrary ordering of

vertices {vσ0, vσ1, ..., vσq} of a simplex defines an oriented q-simplex which will be

denote as [vσ0, vσ1, ..., vσq], and if all simplices are oriented that means that simplicial

complex Sσ is oriented. Example 0-, 1-, 2- and 3-dimensional simlices is illustrated

in Fig 2.16, and by convection 0-simplex does not have an orientation.
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Figure 2.16: Examples of orientation of 0-, 1-, 2-, and 3-simplex

Let Cq(S) be the vector space whose base is the set of all q-simplices of an

oriented simplicial complex Sσ and the elements are the linear combination of bases

vectors, called chains. THat is, a q-chain is a the formal sum of oriented q-simplices

cq =
∑

i aiσq(i), where coefficients ai ∈ Z are the elements of coefficient group.

Cq(S) is called chain group [52] which dimension is equal to the qth entry of already

mentioned f-vector, f = {f0, f1, ..., fD} (unlike vector like measures from Q-analysis,

the first entries of f-vector and other quantities in homology theory are associated

with 0-dimension, second entries are associated to 1-dimension etc.). fq is equal to

the number of q-simplices (as previously mention by q-simplex we mean all maximal

q-simplices and all q-faces embedded in simplicial complex) of the simplicial complex

Sσ, i.e. f0 represents the number of vertices, f1 number of edges and from example

Fig 2.15 we have f = {11, 19, 10, 2}, so this simplicial complex contains 11 vertices,

19 edges, 10 triangles and 2 tetrahedrons.

For a set of vector space Cq(S) with 0 ≤ q ≤ dim(S) the linear transforma-

tion ∂q : Cq(S) → Cq−1(S) is called boundary operator and it operates on vectors

[vσ0, vσ1, ..., vσq] as [52]

∂q[vσ0, vσ1, ..., vσq] =

q∑
i=1

(−1)i[vσ0, vσ1, ...vσ(i−1), vσ(i+1), ..., vσq].

Fig 2.17 illustrates action of the boundary operator of a 3-simplex and its subsim-

plices.

Taking a sequence of chain groups Cq(S) connected through the boundary oper-

ators ∂q, called chain complex, is defined:

∅→ Cq
∂q→ Cq−1

∂q−1→ ...→ C1
∂1→ C0

∂0→ ∅,

with ∂q∂q+1 = ∅ for all q. For example of the 3-simplex [1, 2, 3, 4] from Fiq 2.17 we

can illustrate how boundary operator works:

∂3[1, 2, 3, 4] = −[1, 2, 3] + [1, 2, 4]− [1, 3, 4] + [2, 3, 4],

and when we apply boundary operator one more time
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Figure 2.17: Action of ∂3,∂2 and ∂1 on 3-simplex and its subsimplices

∂2∂3[1, 2, 3, 4] = −[1, 2]+[1, 3]−[2, 3]+[1, 2]−[1, 4]+[2, 4]−[1, 3]+[1, 4]−[3, 4]+[2, 3]−[2, 4]+[3, 4] = 0.

The kernel of ∂q is the set of q-chains with empty boundary, a q-cycle is a chain in

the kernel of ∂q (an element of the group of cycles Zq). The image of ∂q+1 is the

set of q-chains, which are boundaries of q+ 1-chains is denoted as Bq, known as the

group of boundaries. Bq and Zq are subgroups of chain group Cq. The qth homology

group [52] is defined as

Hq = ker∂q/im∂q+1 = Zq/Bq.

The elements of homology group Hq are equivalence classes of q-cycles which are

not boundaries of (q+ 1)-chain, and can be interpreted that homology characterizes

q-dimensional holes. The rank of the qth homology group, i.e. qth Betti number,

βq = rank(Hq) = dim(Hq) is topological invariant and is equal to the number of q-

dimensional holes in simplicial complex. So, β0 is number of connected components

of simplicial complex, β1 is the number of one-dimensional or ”circular” holes, and β2

is the number of two-dimensional ”voids” or ”cavities”. From example illustrated

on Fig 2.15 we can see that β0 = 1, there is only one connected component and

β1 = 1 (1-dimensional hole bounded by 1-dimensional simplices [4, 5], [4, 8], [5, 7]

and [7, 8]). Dowker [53] have proved, the homology groups of simplicial complex

and its conjugate complex are isomorphic, therefore the values of Betti numbers of

simplicial complex are preserved in its conjugate complex.

One of the important topological invariants, related to Betti numbers and f -
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vector, is Euler characteristic [54]. For a simplicial comples Sσ with f -vector values,

the Euler characteristic is defined as

χ =
D∑
i=0

(−1)ifi,

and from the Euler-Poincaré theorem, using sum of Betti numbers is the same as

Euler characteristic as

χ =
D∑
i=0

(−1)iβi.

Computation of the Betti numbers for real-world complex networks with huge-

dimensional simplicial complexes can be a big problem. So, many algorithms that are

based on this problem either do with 2-dimensional simplices (low-dimension simpli-

cial complex) or reduce (reduction algorithm) simplicial complex to just boundary

simplices around holes, so many information about system is lost. Knowing this,

there is a need for reduction algorithm that will preserve all topological invariants

of simplicial complex and yet reduce it that computing of dimension of homology

groups will be in realistic time. Algorithm is simple, just iterate as much as possible

by the following rule: ”Eliminate all nodes (and their links) which topological di-

mension is one”. To be boundary of a hole, node must be part of at least 2 boundary

links (which before applying reduction algorithm can be part of one simplex).

2.2.2 Combinatorial Laplacian

The content of this section relies on T. Goldberg’s in-depth analysis in his manuscript

Combinatorial Laplacians of Simplicial Complexes [55] and D.Horak’s work with this

subject [56]. As previously mentioned, any face of a simple is a simplex as well. So,

if we have two q-simplices σi and σj, they can share a lower-dimension simplex

(face), from (q− 1)- to 0-simplex and we can say that they are neighbors through a

common face. On the other hand, they can be both faces of some higher dimensional

simplex, for example (q + 1)-simplex, implying that they are neighbors as parts of

same higher-dimensional simplex. So, for defining an appropriate quantity, we rely

on introduced concepts of oriented simplex and boundary operator since we want to

define measure that bound q− and (q−1)-simplex for example. For formal definition,

we need two q-simplices σq(i) and σq(j) of an oriented simplicial complex Sσ. σq(i)

and σq(j) are upper adjacent, denoted σq(i) ∼U σq(j), if they are both faces of some

(q + 1)-simplex in Sσ. The upper degree of a q-simplex σq in Sσ, denoted degU(σq)

is a number of (q + 1)-simplices in Sσ of which σq is a face. If oriented q-simplices
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σq(i) and σq(j) are upper adjacent and have a common (q + 1)-simplex τ , we say

that they are similarly oriented if orientation of them agree with the once induced

in τ . For easier understand, this definitions are illustrated at Fig 2.19. For two

q-simplices σq(i) and σq(j) of an oriented simplicial complex Sσ we say that they

are lower adjacent, denoted σq(i) ∼L σq(j), if they have common (q−1)-face. Hence,

the lower degree degLσq of a q-simplex is defined as the number of (q − 1)-faces in

σq, which is always equal to q + 1. Simplices σq(i) and σq(j) from example in Fig

2.19 have twofold adjacency - they are upper adjacent through part of τ and lowe

adjacent through sharing face, the simplex ϕ.

Figure 2.18: An example of upper and lower adjacency between simplices σi and σj
.

For the definition of combinatorial Laplacian of simplicial complex, we have

already defined the boundary operator and its adjoint. For a simplicial complex Sσ

and an integer q ≥ 0, the qth combinatorial Laplacian is linear operator defined as

Lq : Cq → Cq and given by formula [57]:

Lq = ∂q+1 ◦ ∂∗q+1 + ∂∗q ◦ ∂q.

Relating the upper/lower adjacency and definition above we can rewritten as

Lq = LUPq + LDNq ,

where LUPq =

partialq◦∂∗q is referred as upper combinatorial Laplacian and LDNq = ∂∗q◦∂q is referred

as down combinatorial Laplacian. Corresponding matrix representation relative to

some ordering of the standard bases for Cq for qth Laplacian matrix of Sσ is
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Lq = Bq+1B
T
q+1 +BT

q Bq.

As in the case of the Laplacian operator we can use following notation for convenience

LUPq = BqB
T
q and LDNq = BT

q Bq.

An illustrative example is in Fig 2.2.2 where can be found the matrix represen-

tations of boundary operators and combinatorial Laplacian.

Figure 2.19: An oriented simplicial complex in which every simplex is labeled and
its matrix representations of boundary operators and combinatorial Laplacian

Let assume that Sσ is an oriented simplicial complex, q is and integer with

0 ≤ q ≤ dim(Sσ), and let {σ1, σ2, ..., σn} denote the q-simplices of simplcial complex

Sσ, then from Lq = LUPq + LDNq is easy to deduce that

(Lq)ij =



degU(σi) + q + 1, if i = j

1, if i 6= j and σi and σj are not upper adjacent but have

a similar common lower simplex

−1, if i 6= j and σi and σj are not upper adjacent but have

a dissimilar common lower simplex

0 , if i 6= j and σi and σj are upper adjacent or are not

lower adjacent

(2.2)

since (LUP )ii = degU(σi) and (LDN)ii = degL(σi). Detailed proof of above

expressions can be found in [58].

The above definition of matrix elements is unhandy and impractical for applica-

tions of large simplicial complex, and hence we need to develop some computation-
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ally convenient way to extract useful and meaningful information from combinatorial

Laplacians. In that course, let us focus now on the eigenvalues and eigenvectors of

qth combinatorial Laplacian Lq. For an oriented simplicial complex Sσ and an inte-

ger q with 0 ≤ q ≤ dim(Sσ), the qth Laplacian spectrum is denoted as M(Lq(Sσ)).

It represents set of eigenvalues of Lq(Sσ) together with their multiplicities and is

independent on the choice of orientation of q-simplices in the complex Sσ. Since

the qth Laplacian matrix is positive semidefinite, all its eigenvalues are nonnegative.

The null space of N(Lq(Sσ)) is the eigenspace of Lq(Sσ) and corresponds to the

zero eigenvalues. At this moment, as we promised, we can relate the combinatorial

Laplacian and homology: the combinatorial Hodge theorem states that the qth ho-

mology group Hq(Sσ) is isomorphic to the null space of qth combinatorial Laplacian

[59], that is

Hq(Sσ) ∼= N(Lq(Sσ)),

for each integer q with 0 ≤ q ≤ dim(Sσ). The multiplicity of zero eigenvalues of

qth combinatorial Laplacian is equal to the number of the q-dimensional holes in a

simplicial combplex, i.e. Betti number. This is very useful expression providing a

practical method for calculation of Betti numbers [60].
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Chapter 3

Application and results 1

Application of aforementioned methods in the topological data analysis is performed

on data originating from several different fields are presented in the subsequent Sec-

tions and include the social sciences [50, 61],3.13.2, traffic jamming [62]3.3, analysis

of complex system based on the time series of collective charge transport [63]3.4 and

neuroscience [64]3.5. All results demonstrate wide range of methods and features

of data analysis of complex systems through applications of the algebraic topology

and represents a significant contribution to the various fields of science.

3.1 Hierarchical sequencing of online social graphs

An online communications, patterns of conduct of individual actors and use of emo-

tions in the process can lead to a complex social graph exhibiting multilayered

structure and mesoscopic communities. Using simplicial complexes representation

of graphs, we investigate in-depth topology of the online social network constructed

from MySpace dialogs which exhibits original community structure. A simulation

of emotion spreading in this network leads to the identification of two emotion-

propagating layers. Three topological measures are introduced, referred to as the

structure vectors, which quantify graphs architecture at different dimension levels.

Notably, structures emerging through shared links, triangles and tetrahedral faces,

frequently occur and range from tree-like to maximal 5-cliques and their respective

complexes. On the other hand, the structures which spread only negative or only

positive emotion messages appear to have much simpler topology consisting of links

and triangles. The nodes structure vector represents the number of simplices at

each topology level in which the node resides and the total number of such sim-

plices determines what we define as the nodes topological dimension. The presented

results suggest that the nodes topological dimension provides a suitable measure
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of the social capital which measures the actors ability to act as a broker in com-

pact communities, the so called Simmelian brokerage.Wealso generalize the results

to a wider class of computer-generated networks. Investigating components of the

nodes vector over network layers reveals that same nodes develop different socio-

emotional relations and that the influential nodes build social capital by combining

their connections in different layers.

3.1.1 Introduction

Structure of online social networks emerges via self-organizing processes of social dy-

namics, where the links are being established and used for communications between

individuals. The contents (information, emotion) communicated between pairs and

groups of participants affects their activity patterns and thus shape the networks

evolution. Two prototypal classes of online social networks can be distinguished [65]:

a hierarchically organized multi-layered structure that reflects the level of knowledge

of the involved individuals in the chats-based systems, on one hand, and a wider

class of networks with community structure, on the other. Recently, online social

networks of both types have been studied based on high-resolution empirical data

from a variety of Web portals [65]-[69].

In recent research, efforts have been made on determining the network complex-

ity metric that permits to successfully distinguish between critical and redundant

nodes [70], discover the active cores of the network as compared to the networks

periphery [71] and quantify the networks multiplexity [72]-[75],[68, 76] and the role

of higher-order structures in the network dynamics [77]-[79]. In this respect, several

approaches have focused on introducing suitable graph-theoretic vectors that can

be defined on local graphlets [80], the networks feature vector [81] or the graphs

eigenvalue spectrum [82]. These approaches proved very useful in the study of bio-

logical systems, for example, in alignment of protein networks [83] and uncovering

network function in cancer-related processes [84]. Similarly, characterizing topol-

ogy of molecular graphs [85] as well as determining modules in socio-technological

networks by eigenvectors localization [86] have been successful.

In this work, we exploit the topological concept of a simplex, structure that

extends beyond the nodes and links, i.e., a polyhedron of possibly high dimension,

and their aggregates or simplicial complexes. We investigate in-depth topology of

online social networks and explore the role of nodes in layers and communities. The

concept of simplicial complexes of graphs

citemyspace25,myspace26 allows precise definition, using topological, algebraic and

combinatorial tools, of the nodes natural surroundings in the network. Consequently,
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as we show in this work, it permits to measure the nodes social capital such as the

Simmelian brokerage in social environments.

The considered network in this work is constructed from the original data col-

lected from MySpace social network as described in Ref. [66]. Typically, in online

social networks, such as MySpace and Facebook, certain kind of social graphs exist

a priori. However, the use of connections over time as well as the dominance of

positive emotions in the texts of messages [66] reveal the dynamical structure that

is different from the conventional social networks.

In general, network layers appear due to different types of relationships among

nodes [88]. In MySpace and Facebook social networks, where text messages of mixed

information contents are communicated, the emotion contained in these words can

be inferred [89, 66]. This fact offers the possibility to identify the networks layered

structure in a unique manner. Specifically, one can define layers that propagate

emotions with positive or negative valence (attractiveness and aversiveness). Quan-

titative study of emotions, based on Russells model [90], and the social dimension of

emotional interactions are the subject of an intensive research in recent years [91]. In

this context, the dynamics of emotion spreading on networks has been investigated

by an agent-based model [92, 93]. Here, we employ this model to generate network

layers propagating negative/positive emotion messages.

3.1.2 Simplicial complex analysis of the social network with

communities

The components {Qi
q} for each node in the analyzed network can be computed from

the MC matrix. Here we determine the components of each node of the network

in Fig. 3.1(a). Sorting the nodes according to their topological dimensions dimQi,

one can identify the influential nodes in the networks community or a layer. Fig.

3.2, shows the distribution of the nodes dimension for all nodes in the network as a

function of the nodes rank. Notice that the topological dimensions exhibit a broad

distribution (Zipfs law) with two rather than a single slope. Such situation often

appears in the evolving complex systems [94, 95]. Recently, the origin of two slopes

in the Zipfs law has been discussed [96] in connection with the scaling and innovation

in the use of words in the written text of an increasing length. In the present case,

the appearance of new topological forms in the dialogs-based network is related with

the activity patterns of users (nodes in the network). According to the analysis in

Ref. [66], three different groups of users can be distinguished considering the number

of their actions in relation with the interactivity times. Consequently, very active

nodes may build a larger environment resulting in a higher topological dimension.
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(a) (b)

(c) (d)

Figure 3.1: Online social network (OSN), constructed from MySpace dialogs, after
removal of leaves (nodes with degree one) (a); Structure of the largest social com-
munity in that network at different topology layers corresponding to dimensions q
= 2, 3 and 4 (b, c, and d, respectively).

In Fig. 3.2(left), topological dimensions of nodes obey a broad distribution with

two slopes. The curve is fitted with the expression f(x) = Axb(1 + x/c)−d, with

the parameters A = 580, b = −0.667 ± 0.006, c = 148 ± 59, d = 0.68 ± 0.18. In

the following, we study correlations among topological dimensions of the connected

pairs of nodes.

In an analogy with standard assortativity measure in social networks [97], we

plot the nodes topological dimension against the average topological dimension of

its neighbors. The results, shown in the inset of Fig. 3.2(left), indicate that at

the level of triangles and cliques of higher dimension, the graph exhibits disassor-

tativity. The general trend of all points can be approximated with the function

(dimQj)nn ∼ (dimQi)−0.52. This means that gradually fewer number of nodes with

high dimension are connecting between structures of a smaller dimension. These

findings complement the results of disassortativity found in Ref. [66] for the same

network at the level of links (i.e., including leaves).
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Figure 3.2: (Left, main panel) Ranking plot (Zipfs law) of topological dimensions
dimQi of all nodes in the network. Inset: Average topological dimension of the nodes
i nearest neighbors plotted against the nodes i dimension exhibiting disassortative
behavior (slope of the fit line is µ = 0.527 ± 0.026). (Right) Components of the
topology vector Qq

i of the first 100 nodes plotted against the nodes rank and simplex
dimension q. Ranking order of nodes according to the topological dimension dimQi

applies.

3.1.3 Structure vectors of emotion-propagating network lay-

ers

The emotion-propagation dynamics involves different types of contacts among in-

dividual actors in online social network. The diversity of the emotional content of

communicated messages, described by two variablesemotional arousal and valence,

enables to identify different network layers corresponding to a particular type of

emotional content. Consequently, two network layers are recognized. The positive

layer consists of the links along which messages with a positive emotion valence were

communicated up to a given instance of time, and the negative layer with links car-

rying messages with a negative valence. In order to enhance the difference between

these layers, we use the agentbased model of Ref. [92] to simulate the propagation

of a specified emotion. In the model, agents are situated at nodes of the above

described original network from MySpace data. Each agent is characterized by a

fixed ID and two dynamical variablesarousal ai(t) and valence vi(t), that describe

the agents emotional state. The agents activity profile is defined by the action de-

lay probability P (∆t) and the circadian cycle, which is incorporated by the driving

noise p(t). Both P (∆t) and p(t) are taken from the empirical data collected from

MySpace. The action rules of real online social networks are implemented (see Ref.

[92] for details). The agents messages are being sent along the network links; each
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message contains the emotional state of the sender. Then the aggregated messages

at the wall of the recipient agent affect its emotional state. In result, the variables

ai(t) and vi(t) of the recipient node are updated where the influence of the input

noise is also taken into account [92, 93]. Here, we numerically simulated two situ-

ations. In one, the external input noise has prevailing positive emotion astonished

and, in the other, the negative emotion ashamed. As it was shown in Refs. [92, 98],

in such situations the temporal correlations of message streams which mark the

emotion propagation dynamics, lead to collective emotion states in networks. Here,

the positive/negative valence of the input emotion eventually prevails. In this way,

in each case one can distinguish a dominant layer that diffuses the winning emotion

from the counter-emotion layer. These are named PP (positivepositive) and NN

(negativenegative) as dominant layers in positive and negative input, respectively;

counteremotion layers are NP and PN. Here NP designates a layer with links prop-

agating positive emotion in the case when the majority of messages in the network

are negative (following negative emotion input). While PN denotes a layer with the

negative emotion links when the prevailing emotion is positive. Note that, by defi-

nition, the same nodes (and sometimes overlapping links between them) can belong

to both layers. The focus is on in-depth-topology analysis of these layers and in

quantifying the roles of relevant nodes residing in each one of them. The structure

of connections in counter-emotion layers for the two cases of emotion-propagating

dynamics is shown in Fig. 3.3. The results of topology analysis of all emotion prop-

agating layers are summarized in Table 3.1. For a comparison, we also provide the

standard network measures: average degree 〈k〉, clustering coefficient CC, diameter

d, average path length 〈p〉, and the degree of modularity modul.

(a) (b)

Figure 3.3: Counter-emotion layers NP (left) and PN (right) of the online social
network from Fig. 3.1(a).
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Table 3.1: Standard network measures and three structure vectors of the layers in
the OSN propagating negative and positive emotion messages when the majority of
messages are of negative emotional content (NN and NP) and when the majority of
messages in the network are of positive emotional content (PN and PP).

Layer 〈k〉 CC d 〈p〈 Modul q Q Ns Q̂

NNω > 30 4.04 0.051 13 5.11 0.62

4 - - -
3 4 4 0
2 198 198 0
1 6242 6353 0.017
0 1 6353 0.999

NP 0.69 0.046 21 6.24 0.84

4 - - -
3 - - -
2 12 12 0
1 1134 1138 0.003
0 2310 3404 0.321

PN 0.65 0.031 16 5.96 0.84

4 - - -
3 - - -
2 11 11 0
1 1069 1074 0.005
0 2360 3390 0.304

PP 4.05 0.051 14 5.03 0.63

4 - - -
3 5 5 0
2 204 205 0.005
1 6228 6287 0.009
0 4 6352 0.999
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3.1.4 Simmelian brokerage and the nodes Q-vector

In order to estimate the social capital of nodes (users) in the network, we measure

the Simmelian brokerage Bi for each node i = 1, 2, ..., NU . According to Ref. [99],

for a given node i Simmelian brokerage captures opportunities of brokerage between

otherwise disconnected cohesive groups of contacts. Quantitatively, Bi is determined

via the nodes efficiency Ei as [99]:

Bi = ni − (ni − 1)Ei,

where ni is the number of neighbors of the node i inside a considered group Ni; the

nodes local efficiency Ei is determined by

Ei =
1

ni(ni − 1)

∑
l∈Ni

∑
m∈Ni

1

dlm
,

where dlm is the distance between all distinct pairs of nodes l 6= m in the set Ni when

the node i is removed. As stated earlier in our approach, the node’s neighborhood Ni

is precisely defined at different topology levels by simplices and simplicial complexes

in which the node i resides.
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Figure 3.4: For the networks in Fig. 3.1, Simmelian brokerage Bi of nodes plotted
against the nodes topological dimension dimQi. The symbols indicate social graphs
at different topology levels q = 2, 3, 4 (bottom panel), and the entire network q = 0,
and the two emotion-propagating layers (top panel).

Performing the computation indicated in two above equations, we determine

Simmelian brokerage Bi for each node in the network shown in Fig. 3.1(a). In

Fig. 3.4(a) Bi is plotted against the nodes topological dimension dim Qi, where
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each point represents one node of the network. In addition, are plotted the nodes

brokerage values obtained within the emotion-propagating layers. The bottom panel

includes similar plots but only for the higher topological levels q = 2, 3, 4, matching

the social graphs in Fig. 3.1(b), (c), (d), respectively. Note that the whole network

corresponds to the simplicial complex at level q = 0. It is remarkable that in these

plots the majority of nodes follow a universal pattern that can be expressed by

functional dependence

Bi ∼ (dimQi)µ,

where the exponent µ 6 1. Dispersion along vertical axis correlates with the number

of higher-order cliques in the considered graph. we confirm the robustness of the

functional dependence expressed by previous equation. Particularly, we present an

approximate analytical expression (which is exact in some limiting geometries) as

well as numerical work for a wider class of networks.

Bi = ni −
∑

l∈Ni

∑
m∈Ni

1
dlm

ni

This sum can be computed analytically in some limiting cases. For instance, con-

sider the situation where the node i belongs to a (q + 1)-clique, which implies

that its number of neighbors is ni = q and all distances within the clique are

dlm = 1. After removal of the node i, the remaining nodes contribute to the sum as∑
l∈Ni

∑
m∈Ni

1
dlm

= q(q−1). A straightforward extension to the situation where the

node i connects k such cliques leads to
∑

l∈Ni

∑
m∈Ni

1
dlm

= kq(q − 1). In this case,

removal of the node leaves the cliques separated from each other, i.e., the distance

between pairs of nodes from different cliques is infinite, while the distance inside

each clique is one. Note that in the topology analysis, the number of (q+ 1) cliques

related to the node i is given by the nodes q-level component, Qi
q. Hence, the sum

at q-level gives
∑

l∈Ni

∑
m∈Ni

1
dlm

= Qi
qq(q − 1). The situation is exact for top-level

cliques, for example 5-cliques in Fig. 3.1(d). A similar reasoning can be extended

to (q− 1)-level, provided that at this level no shared faces occur between the q-level

cliques. Hence, in this case we can rewrite Brokerage equation as

Bi =
∑
q

Qi
qq −

∑
qQ

i
qq(q − 1)∑
qQ

i
qq

,

where we also note that ni can be expressed via the components of the topology

vector as ni =
∑

qQ
i
qq. By extending the summation over topology levels, we

obtain an approximate expression that can be written as

37



Bi ' dimQi〈q〉 − 〈q
2〉
〈q〉

+ 1,

where we used the definition about dimQi and introduced an abbreviation 〈q〉 =∑qmax
q=0 Qiq/

∑qmax
q=0 Qi.

Note that in the case of tree structures, where the highest topology level corre-

sponds to links, i.e., q = 1 is the maximal clique, we have that Bi = dimQi with the

exact exponent µ = 1. In a more complex network cliques of higher order occur and

are weakly connected at lower topology levels, as in the case of studied online social

network (OSN in Table 3.3). Consequently, the contribution of the second term

in last equation induces corrections eventually resulting with an exponent µ 6 1.

The dispersion in the number of cliques in last equation and the number of their

shared faces at lower q-levels can be considerably greater in the case of more com-

pact networks. Nevertheless, a power-law dependence appears, with different values

of the exponent µ. The reasons for the occurrence of such power-law dependence in

a general network structure are not evident. Here, we provide a numerical proof by

considering a wider class of networks.

The analysis in previous sections suggests that the relation between Simmelian

brokerage of nodes and their topological dimension depends on the graph architec-

ture. Therefore, by varying the building rules of the network, one can vary the topo-

logical dimensions of different nodes and test the robustness of brokerage equatin.

We consider several types that are shown in Fig. 3.5. In these networks, the nodes

neighborhood can be varied by control parameters of the growth, ranging from the

tree-like to a highly clustered compact structure. These networks, consisting of ap-

proximately 1000 connected nodes, are generated by the algorithm that is initially

described in Ref. [86] for growth of scale-free networks with clustering and com-

munities. The basic idea of clustered scale-free networks by preferential attachment

and preferential rewiring of Ref. [100] is implemented for the case where different

communities (node groups) are allowed to grow. Thus, the attachment of new nodes

is preferred within a currently growing community while rewiring can take part both

within and outside of that community. Three parameters that control the structure

are: pthe probability of a new community, α and βthat appear in the preferential

shift-linear rules for attachment and rewiring probabilities [100], respectively, and

Mthe number of nodes added per growth step. In addition, we consider a dense

single-community graph consisting of 100 nodes, shown in Fig. 3.5d. The results

of the topology analysis of these networks is summarized in Table 3.3. Topological

dimension dimQi of each node in these networks is also determined. Then Sim-

melian brokerage is computed, according to the original formula, for each node and
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(a) (b)

(c) (d)

Figure 3.5: Computer-generated networks with different topology: (a) scale-free tree
(SF-Tree); (b) network with clustered and weakly interlinked scale-free communities
(SF-Comm); (c) same parameters as (b) but stronger connections between commu-
nities (CL-Comm); (d) a strongly clustered single community network (CL-Str).

plotted against the nodes topological dimension. The results are shown in Fig. 3.6.

The powerlaw dependence holds for each network type in the corresponding range

of nodes topological dimensions. Values of the corresponding exponent µ are also

given in Table 3.3.

3.2 Topology of innovation spaces in the knowl-

edge networks

The communication processes of knowledge creation represent a particular class of

human dynamics where the expertise of individuals plays a substantial role, thus of-

fering a unique possibility to study the structure of knowledge networks from online

data. Here, we use the empirical evidence from questions-and-answers in mathe-

matics to analyse the emergence of the network of knowledge contents (or tags) as

the individual experts use them in the process. After removing extra edges from
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Table 3.2: Standard network measures and the q-components of the three structure
vectors for online social network from the MySpace data (OSN) and four computer-
generated network. Error bars for the exponent are within ±0.02.

Graph 〈k〉 CC d 〈p〉 Modul q Q Ns Q̂ µ
SF-
Tree

1 0 20 6.46 0.92
1 998 998 0
0 1 998 0.99 1

SF-
Comm

1.94 0..201 9 4.42 0.40

3 2 2 0
2 328 328 0
1 1322 1602 0.175
0 10 1611 0.994 0.974

CL-
Comm

3.83 0.081 7 3.36 0.40

4 16 16 0
3 65 80 0.188
2 837 900 0.07
1 2269 3090 0.269
0 12 3101 0.996 0.898

CL-
Str

14.5 0.269 2 1.71 0.21

5 9 9 0
4 264 266 0.008
3 1302 1522 0.145
2 367 1887 0.806
1 1 1887 0.995
0 1 1887 0.995 0.442

OSN 2.30 0.183 8 4.07 0.74

4 5 5 0
3 90 91 0.011
2 1064 1103 0.035
1 5397 6437 0.161
0 1 6437 0.999 0.969

Table 3.3: Standard network measures and the q-components of the three structure
vectors for online social network from the MySpace data (OSN) and four computer-
generated networks. Error bars for the exponent are within ±0.02.
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Figure 3.6: Brokerage versus topological dimension of nodes for computer-generated
network types and for OSN MySpace, as indicated. Network characteristics are
summarized in Table 3.3.

the network-associated graph, we apply the methods of algebraic topology of graphs

to examine the structure of higher-order combinatorial spaces in networks for four

consecutive time intervals. We find that the ranking distributions of the suitably

scaled topological dimensions of nodes fall into a unique curve for all time intervals

and filtering levels, suggesting a robust architecture of knowledge networks. More-

over, these networks preserve the logical structure of knowledge within emergent

communities of nodes, labeled according to a standard mathematical classification

scheme. Further, we investigate the appearance of new contents over time and their

innovative combinations, which expand the knowledge network. In each network,

we identify an innovation channel as a subgraph of triangles and larger simplices to

which new tags attach. Our results show that the increasing topological complex-

ity of the innovation channels contributes to network’s architecture over different

time periods, and is consistent with temporal correlations of the occurrence of new

tags. The methodology applies to a wide class of data with the suitable temporal

resolution and clearly identified knowledge-content units.

3.2.1 Introduction

The knowledge creation through online social interactions represents an emerging

area of increased interest both for technological advances and the society [101] where

the collective knowledge is recognised as a social value [102]-[104]. Recently studied

examples include the knowledge accumulation in systems with direct questions-and-

answers [105], crowdsourcing scientific knowledge production [106, 107] and scientific

discovery games [108]. Similar phenomena can be observed in business/economics-

associated online social networking [109]-[111]. On the other hand, the study of

the collective knowledge creation opens new topics of research interests. In partic-
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ular, it provides ground to examine a novel type of collective dynamics in social

systems in which each actor possesses certain limited expertise. In the course of

the collaborative social efforts to solve a problem, such as communications through

questions-and-answers that we consider here, the tacit knowledge and the expertise

of individual actors are externalised and dynamically shared with other participants

who take part in the process. When a systematic tagging applies to the shared cog-

nitive contents, the process leads to an explicit knowledge [103] as the output value

(the network of knowledge contents), from which others can learn. Furthermore, the

dynamics underlying knowledge creation exemplifies multi-scale phenomena related

to the cognitive recognition, which may occur in a wider class of systems, social,

biological and physical [112].

By the nature of the underlying stochastic processes, the knowledge networks

that emerge through the collaborative social endeavours necessarily reflect the ex-

pertise and the activity patterns of the involved participants. Furthermore, these

networks tend to capture the logical relationship among the used cognitive contents

as it resides in the mind of each participating individual. In this regard, these net-

works substantially differ from the commonly studied knowledge networks, which are

produced in ontological initiatives [113]-[115] such as those from the online biblio-

graphic data and Wikipedia, or the mapping citation relationships between journal

articles [116], to name a few. Also, the stochastic process of knowledge creation

through questions and answers are different from the spreading dynamics of scien-

tific memes, whose inheritance patterns are identified in citation networks [117].

In recent work [105], we have shown that the knowledge creation by questions-

and-answers involve two-scale dynamics, in which the constitutive social and cogni-

tive elements (individual experts or actors and the knowledge contents that they use)

interact and influence each other on the original scale. This complex system evolves

in a self-organised manner leading to the emergence of socio-technological structures

where the involved actors share the accumulated knowledge. These structures are

visualised as communities on the related bipartite network of actors and their arte-

facts [105]. Furthermore, the advance of innovation in this process, which builds on

the expertise of the involved participants, leads to the expansion of the knowledge

space by adding new cognitive contents. The central question for the research and

applications of the collective knowledge creation is how these stochastic processes

work and potentially can be controlled to converge towards the desired outcome.

Furthermore, what is the structure of the emergent knowledge that can be used by

others? A part of the answer relies on the structure of the networks, co-evolving

with the knowledge- sharing processes among the actors possessing the required
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expertise. In [105] the empirical data from the Stack Exchange site Mathematics

(http://math.stackexchange.com/) were downloaded and analysed, as a prototypal

example. The sequence of events in the process of questions- and-answers (Q&A)

suitably maps onto a growing bipartite network of actors, as one partition, and their

questions and answers, as another partition. The emergent communities on these

networks have been identified, consisting of the involved actors and the connected

questions- and-answers. As a rule, in each community a dominant actor is found,

representing an active user with a broad expertise. The knowledge elements of each

question are specified according to the standard mathematical classification scheme

by one to five tags (for instance, functional analysis, general topology, differential

geometry, abstract algebra, algebraic number theory). Consequently, the expertise

of the actor can be specified as a combination of tags that the actor had frequently

used. Assuming that a minimal matching applies among the actors expertise and

the contents of the answered question, and using theoretical modelling based on the

empirical data, it was shown [105] that the emergent communities and the knowl-

edge that they share strongly depend on the population of the involved experts and

their activity patterns.

In this work, using the same empirical dataset, our focus is on the networks of

cognitive elements (tags) that emerge in these processes with questions-and-answers.

Different from the aforementioned bipartite networks, these emergent knowledge

networks contain subelements of both partitions, namely, knowledge contents of

questions as well as a measure of the users expertise. Such networks, supported

by the current information and computer technology (ICT) systems, embody the

collective knowledge that emerges via the cooperative social efforts and can be used

by others to learn. Moreover, the relevance and speed of knowledge acquisition from

these networks may be more efficient than from the networks generated through

widescale ontological plans and efforts. We apply the techniques of algebraic topol-

ogy of graphs [118]-[122] to investigate higher-order structures that characterise

the connection complexity between knowledge elements in the emergent networks.

Specifically, we aim to determine:

• the metrics to quantify the higher-order combinatorial structures which contain

the logical units of knowledge as the actors use them in communication;

• the role of innovative contents brought over time by the experts in building

the network architecture.

In addition to the standard graph-theoretic metrics and community detection in

the emergent networks of knowledge units, we describe their hierarchical organisa-
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tion using several algebraic topology measures. Further, we identify the appearance

of new tags over time and investigate the subgraphs (innovation channels) where

these new cognitive elements attach to the existing network. By tracking topology

measures over the consecutive time periods for the innovation channel together with

the topology of the entire network, we quantify the impact of the new-added con-

tents. Our main findings indicate that the networks of cognitive elements map to a

nontrivial hierarchical architecture which contains aggregates of high-order cliques.

The increasing structural complexity of these networks over time, owing to the in-

novation expansion, is consistent with the logical structure of knowledge that they

contain and temporal correlations in the appearance of new cognitive contents. In

the following, the networks of tags are built from the empirical data for four suc-

cessive one-year periods. At the initial stage, the networks are filtered to remove

redundant links. At the next stage, network measures are obtained at the graph

level, and the community structure is determined. At the final stage, the alge-

braic topology analysis of these networks for different periods and filtering levels

is performed. The analysis is focused on the subgraphs, which are related to the

appearance of new tags, representing the innovation channels of these networks.

3.2.2 Emergence of the tags networks - The Q&A process

and structure of the empirical data

In this work, we have constructed knowledge networks from the empirical data,

which are collected and described in Ref. [105]. In the data, the knowledge contents

are mathematical tags used in the communications on Q&A system Mathematics

Stack Exchange. In particular, the content of each question is specified (tagged) by

one or more (maximum five) tags according to the standard mathematical classifi-

cation scheme.While in Ref. [105] we investigated the role of expertise in the social

process taking part on the co-evolving bipartite network of users-and- questions,

here we focus on the network of tags as the elementary units of knowledge that are

used by the actors in this process. With the help of the agent-directed modeling,

in Ref. [105] we have demonstrated that the considered empirical process obeys the

fundamental assumption of knowledge creation, i.e., that at least minimal matching

between the contents of the question and the expertise of answering actor occurred

in each event. Therefore, the emergent network of tags reflects the way in which

these knowledge units are used in the process and, indirectly, the expertise of the

social community. Moreover, the architecture of the emergent network of tags is ex-

pected to mirror the logical structure of knowledge, as it is presented by the experts

involved in the knowledge-creation process.
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To be consistent with the previous studies and the associated analysis of Ref.

[105], we use the same dataset that was downloaded on May 5, 2014, from https://archive.org/details/

stackexchange and contains all user-contributed contents on Mathematics since the

establishment of the site, July 2010, until the end of April 2014. Specifically, the

considered dataset contains 269818 questions, posted and answered by 77895 users,

400511 answers, and 1265445 comments. For the present analysis, from the avail-

able high-resolution data we use the information about questions, i.e., ID of each

question, its content as a list of tags, and time stamp. The tags and their com-

binations define the knowledge landscape whose size is not constant but increases

with time and the number of posted questions. In this way, the innovation increases

as the key feature of the collective knowledge creation [105]. By investigating the

network of tags, here we examine how the knowledge creation can be expressed by

the topological complexity of the expanding knowledge landscape.

Mapping data to networks of tags is performed within four consecutive periods;

a period is one-year long. First, the questions that are posted within the considered

year period are selected, and a unique set of tags that are involved in these questions

is formed. Each tag represents a node of the tags network. Two tags (i, j) are linked

by multiple connections wij, where the link multiplicity wij = 0, 1, 2, ... represents

the number of common questions in which the considered pair of tags appeared in the

selected dataset. The resulting networks are termed tagNetY-k, where k = 1, 2, 3, 4

indicates the considered year period.

3.2.3 Graph measures of tags networks without redundant

connections

The raw networks of tags contain a large number of redundant connections leading

to a large density graph, cf. an example in Fig 3.7. To move forward, we first apply

an advanced procedure to eliminate the potentially redundant links.

Filtering redundant connections in a network of tags is motivated by the follow-

ing facts. In the data, the number of tags is between 500 and 1000 while the number

of posted questions per year are between 15 and 120 thousand, which results in a

quite dense network of tags. On the other hand, a broad distribution of the tags fre-

quencies [105] suggests that a relatively small number of tags occurs quite frequently.

Among the most frequent tags are homework, proofwriting, reference-request, and

terminology, which are not related to any particular field of Mathematics but rather

determine the type of question asked. For this reason, these tags can occur in many

different combinations of tags, thus increasing the networks density. Here, we apply

an algorithm to decrease the networks density by identifying the edges that do not
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incur as a result of a random process. For this purpose, the weighted network is

considered as a multigraph where the weight wij represents a multiplicity of links

between the pair of nodes (i, j). We apply the filtering technique described in Ref.

[123]; it utilizes a random configurational model for weighted graphs that preserves

the total weight of the realised links,W =
∑

k sk, as well as the nodes strength

sk =
∑

j wij on average. To avoid the influence of the filtering on higher structures,

we apply the algorithm to each link independently.

Figure 3.7: The network tagNetY-1: a close-up of unfiltered network near some
large nodes (left) and the whole network filtered at confidence level p = 0.1 (right).

A pair of nodes (i, j) is selected proportionally to their strengths si and sj. In

the considered network, the selected pair is connected by the weighted link of the

multiplicity wij. In the random configurational model, the occurrence of a link

with multiplicity m between the selected pair of nodes is given by the conditional

probability

Pij(m|si, sj,W ) =

(
W

m

)
(
sisj
2W 2

)m(1− sisj
2W 2

)W−m

Then the probability that the realised weight wij of the link (i, j) occurred by chance

(p-value) according to the marginal distribution given by last equation is computed

as [123]

Pr(wij) =
∑
m≥wij

Pij(m|si, sj,W )

The links for which the probability Pr(wij) appears to be larger than a preset

confidence level p are removed. The remaining edges, which satisfy the condition

Pr(wij) ≤ p, represent the filtered network with the specified confidence level. Here

we examine the structure of the filtered networks obtained for several values of the

parameter, p ∈ {0.1, 0.05, 0.01}. As an example, the right panel in Fig 3.7 shows

the first year network after the filtering procedure with the confidence level p = 0.1.
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The networks of tags for different periods and filtered at various confidence lev-

els are analyzed by algebraic topology techniques, as presented in the following

Sections. In this regard, we turn the weighted networks into binary graphs, which

retain all important topological features of the weighted graphs while making the

computation less demanding. Here, we first show that the filtering process leads to a

reduced-density graph but preserves the relevant (nonrandom) connections. Specif-

ically, the thematically connected groups of nodes (cf. labels of nodes in Figs 3.7

and 3.8) appear to form distinct communities on the network. In these networks,

mostly non-overlapping communities occur. Consequently, they are suitably identi-

fied by methods based on the optimisation of the modularity [124]-[126]. A module

is recognised as a densely connected group of nodes that are sparsely connected to

nodes in other groups [127]. For a better comparison of different networks, the com-

munities are systematically determined at the same resolution parameter (standard

resolution 1.0 in Gephi, the open graph visualization platform http://gephi.org).

This large-scale clustering of the knowledge networks appears systematically during

the network growth. See also the structure of innovation channels studied in the

following Section.

Figure 3.8: The community structure of the network of tags for the fourth period,
which is filtered at p = 0.1. In each community, the mutually connected cognitive
contents (mathematical tags) are indicated by the nodes labels.

For comparison, in Table 3.9 we summarise the standard graph-theoretic mea-

sures [127] of the networks of tags for four consecutive periods and the confidence

level p = 0.1. Note that the network of tags grows over years by the appearance
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of new tags, but also shrinks by the number of tags that appeared in the previous

period and were not used in the current period.

Figure 3.9: The number of nodes N, average degree 〈k〉, average path length 〈l〉,
diameter d, clustering coefficient Cc, graph density ρ = L

N(N−1)
, and modularity M ,

where the summation runs over different communities.

3.2.4 Topology of the tags networks

In addition to the standard graph-theoretic analysis, cf. Table 3.9, we apply tech-

niques of algebraic topology to determine simplices and simplicial complexes, which

describe higher order structures of these networks. Definitions and detailed expla-

nation of topological quantities used in this presentation may be found in Ref. [119]

and references within. The simplices are identified as maximal cliques of all orders,

i.e. dimensions. Then the topological complexity of the simplicial complex con-

structed from the complex network is quantified by the number of cliques at each

topological level (dimension) q, starting at q = 0 up to the qmax − 1. A clique at

level q = 0 is an isolated node while q = 1 is a link, q = 2 is a triangle and so on up

to the level qmax − 1 representing the largest clique found in the network.

To demonstrate the relevance of nodes, we compute the topological dimension of

each node in the original and filtered network of tags for the first-year interval, which

are shown in Fig 3.7. The components at each q level of the top 40 nodes (tags),

ordered according to their topological dimension, are displayed by three-dimensional

plots in Fig 3.10. As this figure shows, the applied elimination of the links reduces

not only the nodes topological dimension but also changes the structures at q-levels

where the considered node is present. Consequently, the ranking order of a particular

node can be changed (see the corresponding lists of nodes in Table 3.12), which is

compatible with the altered importance of that node in the filtered network.

We further compare the role of individual nodes in the networks evolving over

time, which are filtered at different confidence levels, i.e., p = 0.1, p = 0.05 and

p = 0.01. We determine the topological dimensions of all nodes in the corresponding

filtered networks for the four successive year-periods. The ranking distributions of

the nodes topological dimensions are displayed in Fig 3.11a. This Figure shows

that, first, nodes with a gradually higher topological dimension appear at later
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Figure 3.10: Components Qi
q of the first 40 tags ranked by their topological dimQi

for the tagNetY-1 network filtered at p = 0.1 (a) and with no filtration (b).

periods, suggesting that topological complexity of tags networks increases over years.

Furthermore, within each year, the reduced confidence level p results in a simpler

structure of the nodes neighborhood (and possible shifts in the ranking order of

nodes, as

Figure 3.11: Ranking distributions of the topological dimension of tags dimQi for
all years and all p values (a) and scaled distribution dimQi/max(dimQi) of all data
(b). The legend abbreviations: 1Yp001 indicates the first-year network filtered at
the level p = 0.01, and so on. Fit lines are according to the discrete generalised
beta function; in panel (a) the parameter b = 0.67± 0.03 and c varies from 0.32 for
1Yp001 and 0.71 for 2Yp001 to 0.82 for 3Yp001 and 4Yp001, with error bars ±0.03.

mentioned above). However, all networks exhibit a broad ranking distribution

of the nodes topological dimension with a power-law section. The distributions are

fitted by the discrete generalised beta function

f(x) = ax−b(N + 1− x)c
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Figure 3.12: Names of the first twenty tags ordered according to their topological
dimension in the network of tags before filtering and after filtering at the indicated
confidence level p has been performed.

with different parameters a, b and c. The robustness of the observed scaling feature

is further confirmed by the scaling collapse of all curves to a master curve, shown

in Fig 3.11b. The scaleinvariant ranking, where the nodes topological dimension is

scaled by the maximal dimension found in the corresponding network, suggests that

the relative topological complexity of the tags networks is preserved over time and

the degree of filtering.

3.2.5 Topological spaces in the filtered networks of tags

Fig 3.13 summarizes the components of two structure vectors for the tags networks

emerging over different periods and varied filtering level p.

By comparing the curves for different one-year periods but fixed filtering level,

say p = 0.1, we observe that the network topological complexity increases over time.

It manifests in the increased number of connectivity classes (components of the first

structure vector) at all topological levels as well as the shift of the maximum from

q = 2 (triangles), in the first year, to q = 3 (tetrahedra) and q = 4 (5-cliques), in

the fourth year. At the same time, we observe that the number of topological levels

increases as well as the connectivity among the cliques at each topology level, cf.

the third structure vector in the Fig 3.13b.

On the other hand, by decreasing the filtering confidence level p, a more sparse

network is obtained having a smaller number of topological levels and a reduced

number of simplicial complexes. However, they proportionally preserve the above-
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Figure 3.13: The components of (a) the first structure vector Qq and (b) the third
structure vector Q̄ plotted against the topology level q for each year period and
three filtering levels p = 0.1, 0.05, 0.01.

described tendency of the enhanced complexity of combinatorial spaces over time.

The corresponding curves for p = 0.05 and p = 0.01 are also shown for each year-

period in Fig 3.13. According to the structure vectors in Fig 5, all filtered networks

exhibit a systematic shift towards richer topology in later years. Once again, these

results confirm the structural stability in Fig 4 of the emergent networks of tags,

which complements the logical organisation of knowledge contents in the communi-

ties in these networks, demonstrated in Fig 3.14 and in the following section.

3.2.6 Clustering of the innovative contents - Three aspects

of innovation in the knowledge creation

The innovation growth [105, 128] is a crucial element of the process of knowledge

creation. In the voluntary system, the innovation that comes from the expertise of

the actors involved in the process was shown [105] to expand the knowledge space

over time. To quantify the impact of innovation onto the architecture of the emerging

knowledge networks, we consider the following three aspects of the innovation:

• the appearance of new tags due to the actors expertise;

• the occurrence of new combinations of tags expanding the knowledge space;

• the emergence of new combinatorial topological structures enriching the archi-

tecture of the knowledge network.

In the following, we discuss in detail these features of innovation.

Fig 3.14a contains time sequence of the first appearance of tags that are present in

the data of each one-year period. Naturally, the sequence for Year-1 is the shortest,
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Figure 3.14: The temporal sequence of the appearance of new tags present in the
networks for Year-1, Year-2, Year-3 and Year-4 periods (a). Temporal resolution
is two days. The scaling of the standard fluctuation function (b) and the power
spectrum (c) of these time series. Panel (d) displays increase in the number of new
combinations of tags as a function of the number of questions over time.

while the sequence for Year-4 is the longest, since some tags that are present in

Year-4 appeared in the earlier periods. The time series contains the number of

new tags appearing in the sequence of two-day time intervals. The fractal analysis

of these time series and their power spectrum, shown in Fig 3.14b and 6c suggest

that the appearance of new tags is not random but exhibits long-range temporal

correlations. Specifically, the plots in Fig 6b represent the fluctuation function

F2(n) of the standard deviations of the integrated time series at the interval of

length n. They reveal scaling regions (of different length for each time series) which

permit determination of the Hurst exponent via F2(n) ∼ nH . Values of the Hurst

exponent H indicated in the legend suggest the fractal structure of the fluctuations.

It appears that the fractality increases over time from nearly random time series with

H = 0.51± 0.01 in Year-1, to strongly persistent fluctuations with H = 0.72± 0.02,

in Year-4.

Similarly, power spectra of these time series in Fig 3.14c exhibit long-range cor-

relations according to S(3) ∼3−φ with two distinct exponents in high and low fre-

quency regions. While the low-frequency feature is similar for all considered periods,

the pronounced scaling in the highfrequency region gradually builds over years.
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The number of unique combinations of tags was examined in the whole dataset

and plotted against the number of posted questions in Fig 6d. The plot exhibits a

power-law behaviour NTC ∼ Nα
Q in the range above 102 posted questions. It repre-

sents the Heaps law which appears to be in agreement with the ranking distribution

of frequencies of the unique combinations of tags, i.e., the Zipfs law, as discussed

in [5]. The occurrence of Heaps law is a manifestation of the innovation growth

[105, 128] in the process of Q&A. The exponent α < 1 indicates a sublinear growth

of innovation with the number of posted questions. This dependence suggests that

a fraction of displayed items brings new combinations of tags while the remaining

questions use the already identified combinations.

Figure 3.15: The structure of the innovation channel at the beginning of Year-2
(left) and Year-3 (right). New tags were added to the filtered tags network of the
previous year, forming structures of higher dimension than a triangle. Communities
of well-connected nodes show the logical grouping of mathematics subject categories,
indicated by labels on nodes.

3.2.7 The structure of innovation subgraphs

The appearance of new tags in the Q&A process leads to the expansion of the

knowledge network. In particular, the network grows by the addition of new nodes

(cf. Table 3.9), as well as by increasing its topological complexity measured by the

presence of simplicial complexes of a high order. In the remaining part of this section,

we investigate how the new tags attach to the existing nodes and affect the formation

of higher order structures in the knowledge network. For this purpose, we first define

an innovation channel as a subgraph related with the new tags appearing at the end

of a considered one-year period. Specifically, the subgraph in the network (filtered

at p = 0.1) contains newly added tags together with the tags to which they attach
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and form simplices larger than a single link (i.e., triangle or higher dimensional

structure). The two plots in Fig 3.15 show the structure of the innovation channels

at the beginning of Year-2 and Year-3 periods, respectively.

The innovation channels in Fig 3.15 grow over a one-year period; moreover, the

innovative nodes stick with the rest of the network (previously existing nodes and

links) making with them a tight structure that involves higher-order combinatorial

spaces up to the largest clique. The community structure in the innovation sub-

graphs, which is demonstrated in Fig 3.15, reflects the thematic grouping of the

entire knowledge network, as presented in Fig 3.8. For example, the newly added

tag cohomology sticks to the group where we also find algebraic topology, differential

geometry, abstract algebra, complex geometry and other thematically related tags,

cf. the lower left community in Fig 3.15 right panel. On the other hand, the added

tag computational complexity links to the community with discrete mathematics,

algorithms, logics, combinatorics, computer science and others, cf. the rightmost

community in the same Figure. Similarly, the node labels in all identified commu-

nities confirm their thematic closeness. Therefore, the expansion of the knowledge

network by the addition of innovative contents systematically obeys the overall log-

ical structure of (mathematical) knowledge. As mentioned earlier, the core of this

feature of knowledge creation lies in the crucial role of the actors expertise in the

process of meaningful cognitive-matching actions. The logical structure of individual

knowledge of each actor gets externalised during the process of Q&A.

According to the results in Fig 3.14, the appearance of innovative contents boosts

the process of knowledge creation, leading to the observed temporal correlations,

characteristic of collective dynamics. Analogously, here we show that the structure

of innovation channels enriches the topological spaces of the knowledge network.

In Figs 3.16 and 3.17 we summarise the topological measures of the innovation

channels and compare them with the corresponding measures of the entire network.

In addition to the structure vectors defined in structural vectors’ equations, here

we also consider the topological response function fq to express the shifts in the

topology at each level q in response to the changes in the network size. Formally,

fq is defined [120] as the number of simplices and shared faces at the level q.

Interestingly enough, the third structure vectors in Fig 3.16a and 3.16c show

that the corresponding channels exhibit a better connectivity up to the level q = 4

of 5-clique than the background network. This feature of the innovation channels

suggests the leading role of the innovative tags in the observed increase of the topo-

logical complexity of the network over years. This conclusion compares well with

the number of connectivity classes at different topological levels, namely the first
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structure vectors in Fig 3.16b and 3.16d. The topology of the channel determines

the most ubiquitous structure in the entire network, corresponding to the peak in

the first structure vector. Furthermore, the increase of the topological complexity

of the knowledge graphs over consecutive periods is illustrated by the topological

response function fq, which is shown in Fig 3.17. It manifests in the increase of the

number of topology levels, as well as the number of simplices and shared faces at

each topology level. Also, the maximum of the function fq shifts towards more com-

plex structures, i.e., from triangles at Year-2 to tetrahedra in Year-4. As the plots

in the lower panel of Fig 3.17 show, these topological shifts in the networks of dif-

ferent periods are tightly reflected in the structure of the corresponding innovation

channels.

Figure 3.16: (a) and (c) The third structure vector and (b) and (d) the first structure
vector for the networks of tags in Year-2 (left panels) and Year-4 (right panels) and
the corresponding innovation channels above the level q = 2 and q = 3.

3.2.8 Conclusion

Information processing underlines the evolution and structure of various social net-

works [129][131]. The creation of knowledge through questions-and-answers requires

meaningful interactions with the actors expertise adjusted to the needs of other par-

ticipants; consequently, it leads to the accumulation of the sound knowledge and the

expansion of knowledge space [105]]. In the studied example, we have demonstrated

how the algebraic topology measures can characterise the connection complexity of

the emergent knowledge networks. Using the data of questions-and-answers from

the Stack Exchange system Mathematics, we have shown how the network of math-
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Figure 3.17: Response fq plotted against the topology level q for networks of Year-2,
Year-3, and Year-4 (top panel) and for the corresponding innovation channels scaled
with the year maximum value (bottom panel).

ematical tags, as constitutive elements of knowledge, appears and evolves with the

actorquestionactor-answer interactions over time.

The connections among different tags reflect their use by the actors possessing

the expertise, which (at least partially) overlaps with the contents of the considered

question. The networks of tags are filtered by removing the extra edges which may

have appeared by chance with a specified confidence level. We have applied the

filtering at the level of (uncorrelated) edges to preserve the higher-order structures,

which have been the focus of this study. Our results reveal that the process preserves

the genuine structure of knowledge networks consisting of thematically connected

tags communities. For example, five communities in Fig 3.8 appear in the filtered

network of tags in Year-4. Considering the higher-order topological spaces, the

filtered networks of tags exhibit a robust structure. The hierarchy of nodes sorted

out according to their suitably scaled topological dimension is represented by a

unique curve, independent of the evolution time and the filtering level.

The appearance of new contents (tags) over time plays a significant role in the

process of knowledge creation and the related networks. As it was shown in [105],

the occurrence of new contents and new combinations of contents are chiefly related

to the expertise of newly arriving users. Therefore, the introduced combinations

of tags obey the logical structure as it is presented by the participating experts.
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The growing number of unique combinations leads to the advance of innovation

[105], as also shown in Fig 6d. Moreover, their appearance is conditioned by the

cognitive-matching interactions and the users activity patterns. These features of

the social dynamics are manifested in the non-random (persistent) fluctuations and

long-range temporal correlations, as demonstrated in Fig 3.14a, b and c. Further,

the performed algebraic topology analysis has revealed the role of these innovative

contents in building the architecture of knowledge network. Specifically, we have

found that:

• the newly appearing tags connect to the current network at all levels from a

single link to the cliques of the highest order;

• the innovation channel is recognised as a subgraph containing simplices larger

than or equal to a triangle in which at least one of the new tags occurred;

its growth and the increased topological complexity over time provides the

evolution pattern of the entire network;

• the growth of the innovation channel is consistent with enhanced fractal fea-

tures and temporal correlations of the appearance of new contents over time; it

systematically obeys the sensible connections of contents, as also demonstrated

in Fig 3.15.

The presented results reveal that the creation of new combinations of knowl-

edge contents (or innovation) is compatible with the non-random correlations in the

sequence of new contents and their linking to the knowledge network. Hence the in-

novation expansion, as a core of each knowledge-creation process, can be additionally

quantified by the fractal features of time series of new tags as well as the algebraic

topology measures of the networks innovation channel. Hidden beneath these quan-

tifiers of the emergent knowledge networks is the dynamics of human actors and their

expertise, which provides the logical structure of the collective knowledge. Our ap-

proach consists of the appropriate data filtering, fractal analysis of time series, and

algebraic topology techniques applied to the emergent knowledge networks and their

innovative channels. The methodology can be useful to the analysis of a wide class

of networks where the actors and their artefacts, as well as the cognitive elements

used in the process, are clearly identified. These may include, among others, net-

works created by science, engineering, business and economics communities based

on online collaborations. Further, such examples may also include a collection of

articles (e.g. journal articles) referring to each other, where their logical units are

marked. In some such situations, keywords, memes, and concepts can be identified

by machine learning methods.
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3.3 Hidden geometry of traffic jamming

We introduce an approach based on algebraic topological methods that allow an

accurate characterization of jamming in dynamical systems with queues. As a pro-

totype system, we analyze the traffic of information packets with navigation and

queuing at nodes on a network substrate in distinct dynamical regimes. A tempo-

ral sequence of traffic density fluctuations is mapped onto a mathematical graph in

which each vertex denotes one dynamical state of the system. The coupling complex-

ity between these states is revealed by classifying agglomerates of high-dimensional

cliques that are intermingled at different topological levels and quantified by a set

of geometrical and entropy measures. The free-flow, jamming, and congested traffic

regimes result in graphs of different structure, while the largest geometrical com-

plexity and minimum entropy mark the edge of the jamming region.

3.3.1 Introduction

The geometrical characterization of complexity opens new horizons in the analysis

of complex systems. Recent examples include introducing structural quantifiers for

quantum entanglement [132], classical sandpiles [133], bioinformatics [134], and em-

ploying algebraic topology [135, 136] to characterize particulate systems. The traffic

of information packets on sparse networks [137]-[139] is a paradigm of a broad class

of transport processes with jamming. It exhibits complex features that are influ-

enced by the underlying substrate, as well as by the dynamical building up of queues

at nodes of high centrality, and local density fluctuations that control the global be-

havior [139]. At high traffic densities, the dynamical coupling between neighboring

queues leads to the phenomenon of jamming. Its features resemble the congestion

in granular flow [135], urban traffic [140], and other queuing problems [141]. The

universality of the jamming transition on networks, however, remains a challenging

problem. Recent studies provided indications for a first-order [137] as well as a

continuous phase transition [138] and properties of an explosive percolation [142].

In this work, we employ methods of algebraic topology, in particular, simplicial

complexes of graphs, to quantitatively characterize the jamming in systems with

dynamically interacting queues. We analyze the hierarchical structure of the math-

ematical graphs, which suitably map the sequence of traffic density fluctuations

in the sense of time-seriesgraph duality [143, 144]. In this context, we introduce

geometrical and entropy measures based on the global graph structure and topo-

logical spaces around each particular vertex. These quantifiers surprisingly well

describe couplings between the dynamical states in different traffic regimes, which
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are rendered by interwoven topological complexes. In particular, the geometrical

characterization of the jamming region is far more substantial than the conventional

detrended time-series analysis. Using the model introduced in Ref. [139], we gener-

ate the traffic time series by performing simulations of the transport of information

packets in dynamically distinct regimes. The transport is simulated on a substrate

network with 103 nodes and a correlated cyclic scale-free structure [137]. The traffic

density is controlled by a parameter R, the probability of a new packet being gener-

ated at a node per time step. The dynamics consists of guided walks from a specified

origin to a destination of each packet using the next-nearest-neighbor search rule

[137]. The packets at a given node make an ordered queue, whosemaximum length

is fixed (hmax = 1000).At each time step, every node transmits the packet that has

arrivedmost recently; that is, the topmost packet in its queue (the last-in first-out

algorithm). If the queue of a neighboring node along a packets path is full, the pack-

etwaits at its current node until the next transmission opportunity. Upon reaching

its destination, a packet is removed. The diffusive traffic dynamics shows a cer-

tain regularity that simplifies the studies by transforming them into graphs [145].

With increased rates R, gradual changes in the network load occur; at the same

time the strength of fluctuations differs, which permits the identification of three

typical traffic regimes. They can be distinguished by various statistical measures

[137, 139], and by the properties of the traffic time series. For a low generation

rate R = 0.1, the trajectories of packets rarely intersect, resulting in the free-flow

regime, which is characterized by sporadic queuing and short waiting times. The

average delivery rate of the network adequately balances the creation rate R. The

power-lawdistributions of the packets travel time and waiting times reflect the struc-

ture of the substrate network [139].However, for R ≥ 0.25, finite queues can form

at nodes. The jamming regime is characterized by considerable effects of queuing,

which results in the increase of waiting times of packets in different queues along

their paths. A large number of nodes attempt packet transmission simultaneously.

A very central node can receive many packets in a single time step. Thus, a packet

can get buried deeper in the queue due to increased activity of neighboring nodes.

Consequently, the total number of packets that are still in the traffic, Np(t), starts

rising. It has been understood [137, 138] that the onset of jamming depends on the

navigation rules and network structure. A comparative study of the two substrate

networks and the navigation rules that we refer to in this work can be found in Ref.

[137].
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3.3.2 Traffic density fluctuations and the representative traf-

fic visibility graphs

We consider six distinct pairs of time series. Specifically, for two representative

values of R in each traffic regime, we generate the time series of Np(t), the number

of packets on the network, and ng(t), the number of active queues at a time t . Figure

3.18 shows the network load Np(tω) for a sequence of time windows, tω = 100 time

steps; the bold lines indicate the densities where queuing affects the traffic, and the

jamming can occur. Although colossal queues can form in this regime, none of the

queues is full. At the edge of the jamming regime (corresponding to the maximal

number of simultaneously active queues, the line R = 0.35 in the simulations),

enormous fluctuations in packet density occur in which the system struggles to clear

accumulated packets via increased activity. A natural cycle of the length ∼ 400 time

windows appears (cf. Fig. 3.18). When the first queue is full (i.e., at a hub) only one

packet can enter that queue after one has left. Hence, the congestion spreads to the

neighbor nodes, and so on. The spreading manifests in a drop of the overall activity

and reduced fluctuations, which are distinguishing features of the congested regime.

Np(tω) exhibits a sharp increase after a certain simulation time, which is shorter

for large R. The growth rate λ = log10Np(tω)/log10tω, which serves as an order

parameter, is plotted in the top panel of Fig. 3.18 against the packet generation

rate R.

The first six time series which are displayed in Fig. 3.18 span three traffic regimes

where the fluctuations dominate load increase; they are transformed into six graphs,

that we call traffic visibility (TV) graphs. Each TV graph contains 103 vertices;

each vertex represents a traffic load Np(tω) in the sequence of tω = 1, 2, ..., 1000

time windows. The resulting TV graphs have different structure and should not

be confused with the substrate network; see Fig. 3.19. As was pointed out in the

Introduction, in this work our focus is on the analysis of the in-depth topology

of these TV graphs beyond standard network measures. The closeup of a typical

structure with interconnected high-order cliques studied in this work is shown in

Fig. 3.19(d).

For comparison, we also consider the graphs representing a randomized version

of these time series. Each data point i = 1, 2, ..., N in the time series is exchanged

with a point randomly selected among the other N − 1 data points. Note that

the y-axis value of a particular data point is preserved; only its surrounding data

represent some random points from the original series. Note that the resulting TV

graphs are not random graphs because triangles of neighboring data points form

due to the visibility methods used here. However, they have reduced complexity;
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Figure 3.18: (Color online) Bottom panel: Double-logarithmic scale of traffic
load fluctuations Np(tω) against time window tω for different driving rates R =
0.1, 0.25, 0.3, 0.35, 0.4, 0.425, 0.5, 0.6, 0.7, and0.8 (bottom to top). Top panel: The
logarithmic growth rate λ of the time series (·) plotted against R; the scaled maximal
topological dimension dmax/125 of a node in the corresponding TV graph computed
for the range of topology levels q indicated in the legend (solid symbols) and in the
graphs of the randomized time series (×) plotted against R.

see Table 3.4 and Fig. 3.20.

For completeness, we determine the ranking distribution of degree Fig. 3.19(c),

and the average degree 〈k〉, the clustering coefficient CC, the average diameter

d, the average path length 〈p〉, and the modularity of these TV graphs, Table 3.4.

These standard network measures can yield some insights into the studied dynamical

regimes. However, in the case of TV graphs, rather small variations of these network

measures are observed; cf. Table 3.4. As we show in the next section, the major

discrepancies between the studied traffic regimes are observable at the level of higher-

order simplexes and their aggregates occurring in TV graphs.

3.3.3 Simplicial complexes of tv graphs

To reveal the connections between dynamical states Np(tω) in the sequence of time,

we analyze and compare higher topological features of these TV graphs using the

concept of simplicial complexes of graphs [87]. In the method that we use [87,

146] simplices are identified as maximal complete subgraphs (cliques). Topological
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components of the TV graphs representating the three traffic regimes are shown in

Fig. 3.20. The complete data are given in Table 3.5.
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Figure 3.19: (Color online) (a) The giant cluster of the substrate network with two
hubs and different scale-free distributions for incoming and outgoing links, finite
clustering coefficients and disassortative mixing characteristic for Webgraph [137].
The vertex size correlates with its degree. (b) TV graph representing the traffic
density Np(tω) time series for R = 0.35. Here, vertices stand for data points while
edges indicate natural visibility connections between data points. (c) Ranking dis-
tributions for the vertex degree ki in the studied TV graphs, indicated by R values,
against the vertex rank ri . (d) Three-dimensional rendering of a closeup of the
TV graph for R = 0.35 illustrating a typical pattern of connections analyzed in this
work. Varying colors from dark to pale indicate vertices of a larger degree.

Topology and entropy measures reveal the nature of traffic jamming

In particular, in the spirit of characterizing local graph properties [134], we describe

the extended surroundings of each vertex by the Qi vector [136]

Qi = {Qi
qmax , Q

i
qmax−1, ..., Q

i
1, Q

i
0}

where Qi identifies the number of different simplices of order q in which the vertex i

participates. Then the vertex topological dimension dimQi =
∑qmax

q=0 Qi
q represents

the number of all simplices to which the vertex i belongs. By definition, each vertex

of the visibility graph represents one dynamical state of the original system. Then

the vertex topology vector directly describes the structure of the manifold in the

phase space to which a given dynamical state belongs. Each component Qi further

specifies the number of states that are connected to state i, i.e., by links or triangles,

tetrahedra, and higher structures involving other states. Thus, the dimension dimQi
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Figure 3.20: The first, second, and third structure vectors (top to bottom panel)
of the visibility graphs representing the traffic density fluctuation in three differ-
ent traffic regimes (solid symbols) and the corresponding randomized time series
(+, ?,×). In the latter group, the connectivity at q = 2 drops below 40% (indicated
by →). On the other hand, the most complex graph has 51% connectivity at the
topology level q = 8 (indicated by ↓).

includes not only the number of states to which the state i is connected (and can

influence them), but also the geometrical forms in which these states organize.

Then the entropy of a topological level q is defined by

SQ(q) = −
∑

i p
i
qlog10p

i
q

log10piq

where pi =
Qiq∑
iQ

i
q

is the occupation probability of the q level. The sum runs over all

vertices, and Mq =
∑

i(1− δQiq ,0) is the number of vertices with a nonzero entry at

the level q in the entire graph. In this context, the entropy measures the degree of

〈k〉 CC d 〈p〉 Modularity
R = 0.1 8.2 0.76 11 4.92 0.86
R = 0.25 8.62 0.75 10 4.56 0.85
R = 0.3 9.38 0.74 9 4.60 0.84
R = 0.35 10.37 0.72 9 4.8 0.81
R = 0.4 10.55 0.73 12 5.16 0.85
R = 0.425 10.2 0.72 10 4.8 0.80

TS-randomized R = 0.35 5.82 0.75 12 5.18 0.87

Table 3.4: The standard network dimensions for the traffic visibility graphs corre-
sponding to time series at different R, and the graph from a randomized version of
the time series (TS) for R = 0.35.
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R=0.1 R=0.25 R=0.3 R=0.35 R=0.4 R=0.425 randomized R=0.35

q Q Ns Q̂ Q Ns Q̂ Q Ns Q̂ Q Ns Q̂ Q Ns Q̂ Q Ns Q̂ Q Ns Q̂
0 1 823 0.99 1 906 0.99 1 979 0.99 1 1138 0.99 1 1148 0.99 1 1174 0.99 1 724 0.99
1 9 823 0.99 8 906 0.99 4 979 0.99 6 1168 0.99 9 1148 0.99 8 1174 0.99 12 724 0.98
2 174 822 0.79 136 905 0.85 117 978 0.88 105 1168 0.91 103 1147 0.91 130 1172 0.89 414 723 0.43
3 315 723 0.56 296 823 0.64 275 908 0.7 274 1093 0.75 260 1078 0.76 295 1094 0.73 367 473 0.22
4 298 515 0.42 340 622 0.45 310 715 0.57 312 891 0.65 298 888 0.66 354 877 0.6 170 198 0.14
5 199 302 0.34 235 362 0.35 307 485 0.37 328 657 0.50 292 654 0.55 316 595 0.47 49 59 0.7
6 110 148 0.26 152 177 0.14 171 238 0.28 188 392 0.52 259 422 0.39 227 337 0.33 18 18 0
7 40 56 0.29 43 49 0.12 74 94 0.21 115 234 0.51 149 208 0.28 111 149 0.26 3 3 0
8 14 21 0.33 7 9 0.22 23 32 0.28 65 132 0.51 68 87 0.22 59 64 0.08
9 8 10 0.2 3 3 0 11 12 0.08 51 80 0.36 31 32 0.03 11 12 0.08
10 3 3 0 3 3 0 25 34 0.26 6 6 0 3 3 0
11 1 1 0 1 1 0 12 12 0
12 2 2 0

Table 3.5: The numerical values of the components of three structure vectors, defined
within the theory of simplicial complexes on graphs, for the TV graphs generated
from Np(tb) at all studied traffic rates R. For comparison, we also display the
structure vectors of the graph corresponding to the randomized version of the time
series for R = 0.35.

cooperation among vertices. The vertices that comprise an isolated clique result in

a higher entropy than the vertices that share different cliques at a particular level,

which causes a decrease in the entropy. Unlike the second structure vector nq , the

components fq measure interconnection between simplexes at the level q. By varying

R, the changes that occur in the traffic load and intensity of fluctuations of the time

series cause the cliques to acquire new connections. The quantity fq(R) reflects such

rearrangements of the structure and size of the cliques agglomerates over q levels,

thus representing a sort of response function in the topological space. Considering

the TV graph for a given R value, we find the vertex with the maximum topological

dimension dmax = max(dimQi), i = 1, 2..., N . In the top panel of Fig. refslikatraffic1

we plot dmax against the corresponding R value. Remarkably, the vertex maximum

topological dimension exhibits a sharp peak at the same value R = 0.35 at which

the order parameter λ, estimated from the time series, shows a steep increase. The

smaller values of max(dimQi) appear in all other TV graphs. The dimensions of the

same vertex but computed for higher topological levels q > 3 and q > 4 are shown

in Fig.3.18 (top). They demonstrate that the best-connected vertex in the R = 0.35

graph also belongs to a topological space of higher complexity than the vertices in

other graphs, in agreement with the global topology data in Fig. 3.20. In contrast,

in the graphs from the randomized time series, the vertex dimension has much lower

values with increased q threshold. These findings suggest that the most complex

structure is discovered at the edge of the jamming region, whereas the free-flow as

well as the congested regimes map onto graphs with a relatively simpler structure.

The results for the entropy and f -vector components, shown in Fig. 3.21, support

this conclusion. The concave shape of the entropy SQ(q) as a function of topology
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Figure 3.21: (a) The geometrical response function fq , and (b) the entropy of
occupation of topology level q, SQ(q), plotted against q for graphs representing time
series for different rates R. The corresponding quantities of the graph from the
randomized time series for R = 0.35 are shown by ?

Figure 3.22: Difference between the upper bound fmaxq and the actual fq value for
various TV graphs related to the traffic density time series on the substrate network
Webgraph (a) and a homogeneous network Statnet [137], where the jamming occurs
at R = 0.8 (b).

level q reflects the fact that at both ends isolated cliques may occur (links at q = 1

and (qmax+1) cliques at qmax level), leading to the maximum entropy. Otherwise, the

occurrence of shared (q = 1)-order faces between different simplices at a particular

q level make them mutually dependent and thus reduces the entropy. The lowest

entropy is observed in the most complex structure, the graph for R = 0.35, at q = 8.

At this level, indicated by the vertical arrow in Fig. 3.20, 132 simplices are organized

into 65 distinct connected components Table 3.5.

Thus the degree of connectivity between simplices is 51% at this topology level,

compared with 33% in the free-flow case and 8% in the congested case. Similarly, in

Fig. 3.21(a) the highest peak among the fq components corresponds to the graph for
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R = 0.35. Other TV graphs exhibit peaks with lower values, which gradually move

towards smaller q levels, resembling the familiar glassy response in the frequency

domain [147]. The upper bound of the fq component, fmaxq , which would correspond

to the situation where all simplices at the q level were independent, can be computed

from the structure vectors in Fig. 3.20. Specifically,

fmaxq =

qmax∑
k=q

(nk − nk+1)

(
k + 1

q + 1

)
Hence, fmaxq − fq ≥ nq − Qq = nqQ̂q . The largest difference between the actual

fq and its upper bound is observed in the most complex graph at R = 0.35. A

qualitatively similar behavior is found for traffic on a substrate network of different

structure, where the jamming occurs at a larger density; see Fig. 3.22.

3.3.4 Conclusion and outlook

We have demonstrated how the complexity of connections between the states of a

large dynamical system, which has profound consequences for the systems collective

dynamics, can be quantified by algebraic topology techniques. Exemplified by the

mapping of a suitable time series, the manifolds of connected states in the systems

phase space receive within this approach a clear geometrical interpretation. We have

applied this advanced graph theory analysis in the context of the time-seriesnetworks

duality. Our results reveal a type of graph representing the time series of a collective

dynamics. While the standard network measures of these graphs are similar (cf.

Table 3.23), they possess a rich structure at higher topological levels. The observed

variety of simplicial complexes closely reflects the strength of fluctuations in the

underlying time series. Notably, enhanced fluctuations near the phase transition

transform into visibility graphs of higher topological complexity.

The geometric quantifiers of graphs emanating from the fluctuations of time se-

ries can be useful in many general contexts. As a prominent example, we have

studied traffic jamming, a collective phenomenon that is caused by dynamically in-

teracting queues. The fractal analysis of traffic activity time series gives evidence of

a self-organized dynamics among the nodes of the substrate network. The long-range

temporal correlations, persistent fluctuations, and avalanches of clustered events oc-

cur with gradually changing scaling features throughout the traffic regimes. The

phase space manifolds of this collective dynamics are represented by the studied

TV graphs. Using the algebraic topology techniques, we have explored simplicial

complexes of these TV graphs. In this concept, we have introduced appropriate

topological and entropy measures, which can distinguish the edge of jamming and
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Figure 3.23: (a) Examples of time series ng(t) for R = 0.1 (black) and R = 0.35
[orange (gray)] line; (b) fluctuations around local trends of all time series; (c) power
spectrum; and (d) the distributions of avalanche sizes for different R values. The leg-
end applies to all three panels (b)(d). The corresponding quantities of a randomized
time series in (b), (c), and (d) are shown by × symbols.

give insight into the nature of the jamming transition. In particular, the geometrical

response function fq(R) exhibits a glassy-type behavior suggesting the underlying

hierarchy of time scales across the jamming region. It should be stressed that this

feature of traffic jamming has been elusive to standard methods, for example, the

fractal analysis. In the present approach, it is revealed by the structure of the topo-

logical levels, which encode the correlations in the dynamical states of the primary

system. Further research is necessary to uncover the relevant time scales in traffic

jamming.

In conclusion, the detailed structure of the phase-space manifolds revealed by the

algebraic topology technique contains vital knowledge about the systems collective

behavior. The methods introduced here can yield insights into a variety of dynami-

cal regimes occurring in complex systems, in particular, systems exhibiting a phase

transition, percolation, explosive percolation, and others. The topological struc-

ture vectors are sensitive to differences in the dynamically appearing phases, thus

complementing the behavior of the physical order parameter across the transition.

We note that the studied problem of traffic on networks is of great interest from

the applications point of view. It appears in contexts ranging from traffic on the

internet, urban transport [138, 140], and traffic-related problems [148]. The analysis
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of topological spaces can also reveal relevant relationships [136] in real and data-

driven complex networks. The response and entropy measures introduced here for

studying the jamming region can be applied to quantify the congestion in physical

systems. Moreover, the presented methodology provides the elements for influencing

the course of the dynamics in complex systems by the efficient methods of graph

manipulations. Our work may provide an impetus for inclusion of the algebraic

topology techniques as an additional standard in the analysis of complex dynamical

systems and networks.

3.4 Fractal time series of collective charge trans-

port and topology of phase space manifolds

Charge transport in the Coulomb blockade regime of two-dimensional nanoparticle

arrays exhibits nonlinear I-V characteristics, where the level of nonlinearity strongly

associates with the array’s architecture. Here, we use different mathematical tech-

niques to investigate the collective behavior of the charge transport and quantify

its relationship to the structure of the nanoparticle assembly. First, we simulate

single-electron tunneling conduction in a class of nanoparticle networks with a con-

trolled variation of the structural characteristics (branching, extended linear seg-

ments) which influence the local communication among the conducting paths be-

tween the electrodes. Further, by applying an innovative approach based on the

algebraic topology of graphs, we analyze the structure of connections in the man-

ifolds, which map the fractal time series of charge fluctuations in the phase space.

By tracking the I-V curves in different nanoparticle networks together with the in-

dicators of collective dynamics and the topology of the phase space manifolds, we

show that the increased I-V nonlinearity is fully consistent with the enhanced aggre-

gate fluctuations and higher connection complexity among the participating states.

Also, by determining shifts in the topology and cooperative transport features, we

explore the impact of the size of electrodes and local charge disorder. The results are

relevant for designing the nanoparticle devices with improved conduction; they also

highlight the significance of topological descriptions for a broader understanding of

the nature of fluctuations at the nanoscale.

3.4.1 Introduction

In the science of complex systems, understanding the emergence of distinct prop-

erties on a larger scale is one of the central problems, which requires the use of
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advanced mathematical and numerical approaches [149]. Nanostructured materials

are examples of complex systems exhibiting new functionality at the assembly level

[150, 151]. The concepts of nanonetworks ([152] and references there) facilitate the

application of graph theory methods for a quantitative study of complexity at a

nanoscale. Here, we combine graph theory techniques with additional mathematical

methods to investigate the connection between the cooperative electron transport

through nanoparticle assemblies at applied bias within the Coulomb blockade regime

and the architecture of the assembly.

In conducting nanoparticle arrangements, the Coulomb blockade conditions pro-

vide the single-electron tunneling (SET) conduction between neighbouring nanopar-

ticles ([153, 154, 155] and references within). The prototypes of systems with

the Coulomb blockade transport are self-assembled 3-dimensional arrays [156] and

nanoparticle films on substrates [157, 158], consisting of small metallic nanoparticles

with capacitative coupling along the tunneling junctions. Recently, similar conduc-

tion mechanisms have been described in quantum dot arrays in the reduced graphene

oxide [159, 160], a new electronic and optoelectronic material [161]. In this case,

quantum dots of graphene are separated by non-conducting areas through which

the electrons can tunnel at the applied voltage bias. The relevance of the Coulomb

blockade transport has been experimentally investigated in a variety of other nanos-

tructures including nanowires [162], granular metals [163], and thick films [164] as

well as different molecular arrays [165, 166]. At low temperatures, SET represents a

main process in the assemblies of small nanoparticles arranged with a fixed pattern

of tunneling junctions [167, 168, 169, 170, 171, 157, 158] and graphene quantum

dots [159, 160]. Beside tunneling, another dynamical regimes, occurring in hybrid

nanocomposites [172] and separate time scales due to the motion of molecular linkers

[173], have been investigated.

In the nanoparticle films, at low temperatures and the applied weak bias at the

electrodes encasing the array of nanoparticles the current–voltage characteristic is

nonlinear in a range of voltages V above a threshold VT ,

I(V ) ∼ (V − VT )ζ . (3.1)

It has been recognized that the degree of nonlinearity, which is measured by the

exponent ζ ∈ (1, 5), robustly correlates with the structure of nanoparticle films

[157, 158, 160] and their thickness [164, 174]. The origin of this phenomenon is

in the cooperative charge transport that involves multi-electron processes along the

conduction paths, dynamically emerging between the electrodes. Precisely, the SET

conduction through a single Coulomb island between the electrodes results in a
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linear I(V ) dependence. Similarly, ζ ' 1 is found in one-dimensional chains of

nanoparticles supporting a single conduction path [167, 155]. A detailed theoret-

ical analysis of the tunneling conduction through a chain of metallic grains with

charge disorder can be found in [163]. In contrast, multiple conduction paths

establish between the electrodes in the case of two-dimensional arrays and thick

films. Depending on the structural characteristics of the array at local and global

scale, such paths form drainage basins. Consequently, the cooperative tunneling

events may occur in such basins involving several conducting paths, which increase

current through the system and leads to enhanced nonlinearity in I(V ) curves

[157, 174]. While fluctuations of the current are standardly measured at the electrode

[167, 168, 170, 157, 160, 164, 175, 174], a direct observation of the tunneling events

inside the sample remains a challenging problem to the experimental techniques

[176]. Therefore, the genesis of the collective charge fluctuations and its connection

with the structure of the array remains in the domain of numerical modeling. In

this regard, the idea of nanonetworks [152] provides the framework to quantify the

structure of diverse nanoparticle assemblies by graph theory methods [177]. Further-

more, the numerical implementation of SET on an array of the arbitrary structure

represented as a nanonetwork has been introduced [178, 155].

In this work, we combine different numerical techniques to study collective fea-

tures of charge transport through two-dimensional nanoparticle assemblies; the aim

is to examine cooperative dynamical behavior involving different conduction paths

in connection with the structural elements of the assembly and the size of electrodes

as well as the effects of charge disorder. Our approach consists of three levels illus-

trated in Fig. 3.24, relating to a suitable mathematical modeling (see Methods for

a detailed description).

In particular: (i) We construct several two-dimensional assemblies of nanopar-

ticles connected by tunneling junctions of a given structure. Then, setting the

electrodes (cf. an example in Fig. 3.24 bottom) and slowly ramping the voltage

bias, we simulate SET through such assemblies. (ii) We sample the time series of

the relevant observables and perform the fractal analysis of these time series, as

described in Methods, to determine the quantitative indicators of aggregate fluc-

tuations. Here, we consider temporal fluctuations of the number of tunnelings per

time unit, NQ(tk), an example is shown in Fig. 3.24 middle. (iii) Given recent devel-

opments of time-series–graphs duality [179, 180, 181], we convert these time series

into graphs. The sets of data points specify a manifold in the phase space of the

system’s states that are involved in the course of events; the resulting graph then

contains connections between these states. To explore the connection complexity
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Figure 3.24: Illustration of three levels of the charge transport modeling. Bottom:
Simulations of SET processes on nanoparticle array between the electrodes; Middle:
Fractal analysis of the time series of the number of tunnelings per time unit in the
assembly; Top: Algebraic topology analysis of the graph representing the phase-
space manifold behind the sequence of events in the time series.

among the system’s states, we use algebraic topology techniques (see Methods), and

study higher order combinatorial spaces (simplexes) of these graphs. Our compar-

ative analysis of different nanoparticle assemblies reveals a consistent correlation

between the occurrence of collective charge transport, topological complexity of the

phase space manifolds, and the I(V ) nonlinearity.
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3.4.2 Methods

The modeling approach on three levels mentioned in the Introduction encompasses

different scales and algorithms, from the single-electron tunnelings at each junction

of the nanonetwork in real space to collective charge fluctuations of the whole as-

sembly, which are studied in time and the abstract phase space manifolds. The

computational hierarchy is described as follows.

I. Simulations of SET on nanonetworks. The SET processes are simulated in four

different nanoparticles assemblies represented by the nanonetworks in Fig. 3.26.

First, the structure of the nanonetwork is included by specified adjacency matrix A

and the electrodes are set to some periphery nodes. Usually, we chose P/4 nodes in

the case of extended electrodes, or a single node, in the case of point-size electrodes,

at two opposite sides of the network; here, P is the number of periphery nodes of a

given structure (see Fig. 3.24). Then the capacitance matrix and its inverse are com-

puted and the vectors Q and V+ are initialized as zeros. To start the process, the

time t is initialised and the bias voltage set. For each value of the bias in the range

V ∈ [0, Vmax] the number of steps are performed as follows. At each step, a tuneling

is attempted along each junction i→ j and the values Vc for all nodes updated and

the corresponding energy charges ∆Ei→j(t) are computed. Then, each tuneling rate

Γi→j(t) is determined; the delay time ∆tij of the tuneling along the i→ j-junction

is estimated. Following the description in [155], ∆tij =
−log(1−xij)−

∑
k>k0

δtkΓi→j(tk)

Γi→j(t)
,

where δtk are time intervals between successive tunnelings in the system following

the time tk0 of the last tunneling at the junction, and xij is a uniform random num-

ber. The tunneling along the junction with a minimal delay time is processed and

the time increased accordingly t→ t+ ∆tij. Subsequently, the charge Qi and Vi are

updated for all nodes, and the process is repeated to find next tunneling event and

so on. The simulated data are in the limit C/Cg = 10−4, where a faster algorithm

for computing the inverse of the capacitance matrix can be used [155]. We also keep

T = 0 and Φ− = Φg = 0 while Φ+ = V , the applied voltage. The simulations are

performed until V & 10VT in the corresponding nanonetwork. To sample time series

of interest for this work, we set an appropriate time unit according to the average

tunneling rate δt = a/〈Γij〉 in each nanonetwork. The parameter a = 1 in the one-

dimensional array and takes different values [155] a =4.11 and 17.1 in CNET and

NNET, respectively, in connection with the estimated number of potential paths in

these irregular arrays. Then the time series represents the sequence of the number

of tunnelings NQ(tk), k = 1, 2 · · · in the entire array per the identified time unit.

II. Fractal time series analysis and temporal correlations. The occurrence of col-

lective charge fluctuations manifests in long-range temporal correlations, clustering
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of events and fractal features of time series. Various indicators of the collective

behavior are determined by analysis of the time series of the number of tunnelings

NQ(tk). In particular, the temporal correlations occurring in the streams of events

result in the power spectrum

S(ν) ∼ ν−φ (3.2)

with a power-law decay in a range of frequencies ν. The avalanches of tunnelings

accompany such temporal correlations. Using the standard numerical procedure

[184, 185], the avalanches are identified in the stationary signal above VT . The size

of an avalanche comprises the area below a regular part of the signal above the zero

thresholds. A broad distribution of avalanche sizes with a power-law tail suggests

that, in a state with long-range correlations, the size of a triggered avalanche is not

necessarily proportional to the triggering action. Moreover, the system’s relaxation

in the response to the external driving is characterized by the differences between

the size of consecutive events (first return). The following expression, characteristic

of the nonextensive statistical mechanics [186, 187, 188],

Pκ(X) = A

[
1− (1− qκ)

(
X

X0

)κ]−1/1−qκ
(3.3)

satisfactorily reproduces the distributions of the avalanche sizes, i.e., q1-exponential,

for κ = 1, and the returns q2-Gaussian, for κ = 2.

According to the fractal analysis of complex signals [189], the time series profile

Y (i) =
∑i

k=1(NQ(tk) − 〈NQ(tk)〉 is divided into Nn segments of length n. The

standard deviation F2(µ, n) =
∑n
i=1[Y ((µ−1)n+i)−yµ(i)]2

n
around the local trend yµ(i)

is computed at each segment µ = 1, 2, · · ·Nn. Then the average over all segments

exhibits a scaling law

F2(n) = (1/Nn)
Nn∑
µ=1

F2(µ, n) ∼ nH (3.4)

with respect to the varied segment length n, where H is Hurst exponent. While

H = 1/2 characterises random fluctuations, the values H ∈ (1/2, 1) indicate the

persisten fluctuations of the fractional Gaussian noise signal [190, 189, 191].

III. Mapping time series onto graphs. The sequence of events captured by the

time series of the number of tunnelings represents a manifold in the state space

of the underlying nanonetwork. Dealing with a fractal signal (see Results), we

expect a more complex connections among these states to exist beyond the actually

realised sequence. To reveal such complexity of the system’s phase space, we use the

73



mapping of time series to mathematical graphs recently developed [180, 179]. Here,

we apply the ’natural visibility’ mapping [180, 181], which is particularly suitable

in the case of persistent fluctuations [181]. The mapping procedure is illustrated in

Fig. 3.25. Each data point of the time series is represented by a node of the graph,

here termed QTS-graph to indicate the charge fluctuations time series. The node is

connected by undirected links with all other data points that are visible from that

data point, where the vertical bars are considered as non-transparent. Note that by

varying the mapping procedure different graphs can be obtained. However, here we

use the same mapping procedure for different time series (i.e., charge fluctuations

in different nanonetworks) and perform a comparative analysis of the structure of

the resulting graphs. For this purpose, we map equal parts (2000 data points) of the

time series in each of the considered nanoparticle systems; skipping the initial 8000

points ensures that the regime V ≥ VT has been reached.

1 2 3 4 5 6 7 8 9 10 11

Figure 3.25: The sequence of data points in the lower pannel is mapped onto a
graph in the upper pannel; each data point becomes a node of the graph, while the
graph’s edges are inserted according to the ’natural visibility’ between data points,
indicated by broken lines.

IV. Algebraic topology measures of QTS-graphs. Beyond standard graph theory

measures [192, 193], the algebraic topology of graphs [194] is utilised to determine

the higher-order structures of a graph, i.e., simplicial objects and their collections,

simplicial complexes, closed under the inclusion of faces. Using the paradigm of

Taylor expansion, such combinatorial spaces correspond to higher-order terms while

the graph itself represents the linear term. Recently, the computational topology

techniques have been applied to analyse the hierarchical organisation in online social

networks [195], study of grain connectedness in trapped granular flow [196], and

to reveal the changes in the topological structure of state space across the traffic

jamming regime [181].
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The method that we use [197, 198] identifies simplexes as maximal complete

subgraphs or cliques. Thus, q = 0 represent an isolated node, q = 1 two nodes

connected with a link, q = 2 is a triangle, q = 3 a tetrahedron and so on until σqmax ,

which identifies the highest order clique present in the graph. Faces of a simplex σq

are the subsets σr < σq. The method determines cliques of all orders and identifies

the nodes that belong to each clique. Utilising this rich information, we characterise

the topological complexity of the graph at the global graph’s level, i.e., by defining

various structure vectors, as well as the level of each node [195, 181]. In particular,

having identified the graph’s topology layers q = 0, 1, 2, · · · qmax, we describe the

number of cliques and how they are interconnected via shared faces at each level

from qmax − 1, ..., 1:

• Three structure vectors of graph have the components Gq, nq and Ĝq = 1 −
Gq/nq, which determine, respectively, the number of connected components at

the level q, the number of simplexes from the level q upwards, and the degree

of connectedness between the simplexes at q-level.

• The node’s structure vector is defined [195] by the components Gi
q, the number

of simplexes of order q to which the node i participates. Then dim(Gi) =∑
q G

i
q is the node’s topological dimension.

• The topological entropy SG(q) and the “response” function fq are defined [181]

using the above quantities. Namely, the probability that a particular node i

contributes to the occupation of the topological level q is piq = Gi
q/
∑

iG
i
q.

Then the graph’s entropy is

SG(q) = −
∑

i p
i
qlog10p

i
q

log10

∑
i(1− δGiq ,0)

, (3.5)

where the sum in the denominator indicates the number of nodes with a

nonzero entry at the considered topology level. The q-level component fq

is defined as the number of simplexes and shared faces at the topology level q.

Notice that that the topological “response” fq is different from the component nq of

the above defined second structure vector. The study in [181] have shown that the

function fq precisely captures the topology shifts occurring in the underlying time

series due to changed driving conditions.
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Figure 3.26: Top left: a 3-dimensional rendering of a chain of nanoparticles on
a substrate and the attached electrodes. Top right: A 2-dimensional projection
of the nanoparticle network NNET with 5000 nanoparticles self-assembled by the
evaporation methods (data are from Ref. [157]). The lines indicate the tunneling
junctions while a nanoparticle is found at the intersections. Bottom: CNET with
a point-size electrodes (left) and SF22 with the extended electrodes (right), both
grown by the cell aggregation [177]. The voltage drop across the sample is indicated
by the color of the network’s areas with high, intermediate and low potential.

3.4.3 Results and Discussion

Nanonetworks with different structural components and the origin of

cooperative charge transport

For a comparative analysis of charge transport, the simulations of SET are performed

in four nanoparticle assemblies with different structural characteristics. Specifically,

two self-assembled nanoparticle arrays on a substrate, which are represented by

the nanoparticle networks in the top row of Fig. 3.26, and two computer-generated

structures, in the bottom row. For this work, these structures are identified as fol-

lows. The one-dimensional chain of nanoparticles between the electrodes, where we

assume the presence of charge disorder xi ∈ [0, 1] as a uniform random number, is
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named 1Dwd. Further, NNET is a strongly inhomogeneous structure of nanopar-

ticles, which is self-assembled on the substrate by the evaporation process [157].

The occurrence of empty areas of different sizes as well as the regions where the

nanoparticles appear to be densely packed is the marked characteristics of this as-

sembly. CNET, shown in the lower left, and SF22 in the lower right panel, are grown

by the cell aggregation process [177]. In these networks, we control the appearance

of two relevant structural elements—branching and the extended linear segments—

that appear statistically in the above described self-assembled structures. Namely,

CNET has nearly regular hexagonal cells, resembling the dominant shapes in the

dense areas of the NNET, while SF22 exhibits voids of different sizes; the cell sizes

are taken from a power-law distribution with the exponent 2.2 [199]. Moreover,

both CNET and SF22 have a fixed degree of internal nodes k = 3, which reduces

the branching possibilities for the tunnelings, in contrast with the NNET, where a

broader degree distribution of nodes is found [157, 155]. Furthermore, the electrodes

are set to the left and right edge of the NNET, thus touching the closest layer of

the nanoparticles. Similarly, the extended positive and negative electrode are set

each along a quarter of the periphery nodes, indicated by white and black nodes in

SF22 structure in Fig. 3.26. In contrast, the point-size electrodes are attached to

two periphery nodes in CNET and two nanoparticles at the opposite ends of the

1Dwd chain.

The situation with point-size electrodes in CNET in Fig. 3.26 readily illustrates

the importance of local structure for the collective charge transport of the assem-

bly. Increasing voltage bias permits tunnelings between the electrode and the first

layer, consisting of two connected nanoparticles. Then further tunnelings can oc-

cur by breaking the Coulomb blockade along the junctions towards nearest neighbor

nanoparticles. The preferred direction of tunnelings follows the potential drop, which

is indicated by the different color of nodes. Apart from the long-range electrostatic

interactions, the local balance between the charge and potential at each nanoparticle

depends on its neighbourhood. At V ∼ VT the number of charges in the system is

large enough to allow the first conduction channel to form along the shortest path

between the electrodes. For V & VT the conditions for the appearance of another

next-to-shortest path are met. Here, the branching possibilities for the charge flow

play an important role. Consequently, the process can involve several paths thus

making a river-like structure that drains at the last layer of nanoparticles. These

paths often share some central nodes and junctions. The most used junctions (in-

dicated by thick lines of CNET make the main conduction channels [155], whose

geometry crucially depends on the local structure. Draining along the conduction
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paths can cause a cascade of tunnelings, where each event satisfies the local Coulomb

blockade threshold and charge–potential balance. Thus, in this range of voltages,

the SET represents a dynamical percolation problem [171] where several conduction

paths contribute to the measured current, resulting in the nonlinear I(V ) curves

[63]. The quantitative analysis presented in the remaining part of this section con-

firms this picture. On the other hand, for V � VT , the local potential exceeds the

Coulomb blockade potential yielding Ohmic conduction and the crossover to a linear

I(V ) dependence.

Temporal correlations and the evidence of collective charge fluctuations

The number of tunnelings per the identified unit interval is recorded from the SET

simulations in four nanonetworks of Fig. 3.26. The resulting time series are shown

in Fig. 3.27. The corresponding power spectra displayed in top panel of Fig. 3.27,

indicate the occurrence of temporal correlations that depend on the structure of the

underlying nanonetwork. Specifically, the Eq. (3.2) applies within a different range

of frequencies and different exponent φ, which is shown in the legend. Apart from

slight variations in the exponent, the power spectrum reveals the certain similarity

between the charge fluctuations in the nanonetworks SF22 and 1Dwd, on one side,

and NNET and CNET, on the other. Hence, the dominance of the linear elements,

which is obvious to the chain structure, seems to play a role in the SF22 too. The

spectrum exhibits the power-law decay (3.2) in the entire range of ν. On the other

hand, plenty of branching possibilities in CNET and NNET lead to the occurrence

of multiple paths; a typical scale appears, which leads to the peak in the spectrum

between the correlated high-frequency part and the rest of the spectrum resembling

a white noise.

A further similarity between these two groups of nanostructures is found consid-

ering the nature of fluctuations and the statistics of avalanches, which are displayed

in Fig. 3.28. Computing the standard deviations around a local trend on the seg-

ment of length n of the time series, we find the scaling regions according to Eq.

(3.4) and determine the corresponding Hurst exponent. Note that, according to Eq.

(3.4), the temporal scale of the collective fluctuations can be identified as the range

of the segments n for which the scaling occurs (straight sections of the fluctuations

curves in Fig. 3.28). Similarly, the spatial scale ` ∼ s
1/Df
0 is determined by the

cut-off size s0 in the distributions of avalanches in Fig. 3.28, where Df stands for

the fractal dimension of the avalanches. The values of the exponents for all time

series, which are listed in the legend, are in the range H > 0.5, suggesting persistent

fluctuations of charge transport in all considered nanoparticle networks. The fluc-
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Figure 3.27: Time series of the number of tunnelings (bottom panel) and the corre-
sponding power spectrum (top panel) in four nanoparticle networks from Fig. 3.26.
The legend and color apply to both panels. The signal for NNET is scaled by 1/5
to fit the scale.
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sizes s, bottom left, and the distribution P (d) of the first returns d of the signal.

tuations in the linear chain of nanoparticles and the SF22 structure have a similar

value of the Hurst exponent, again suggesting the relevance of the extended linear

segments in these nanonetworks. Notably, the values of H for these nanostructures

are slightly larger than the case of the randomized time series, where H = 0.5

within error bars. However, the two structures CNET and NNET, which allow the

formation of more communicating paths, exhibit much stronger fluctuations and

consequently larger values of the Hurst exponent. Furthermore, the statistics of the

returns d ≡ NQ(tk)−NQ(tk−1) and the sizes s of clustered events (avalanches) also
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suggests a similar grouping of these nanostructures. On one side, the charge fluctu-

ations in SF22 and 1Dwd structures has the exponential distribution of avalanches

P (s) ∼ sτ exp(−s/s0) (with a larger cut-off s0 in the case of SF22) and Gaus-

sian distributions of the returns. On the other hand, non-Gaussian fluctuations are

found in the case of CNET and NNET. In this case, the distribution of avalanche

sizes exhibits a power-law tail compatible with the expressions (3.3) with κ = 1

and q1 ∼ 1.33. Similarly, the tails of the distribution of the returns can be fitted

with (3.3), where κ = 2, i.e., q2-Gaussian, which is often found in complex signals

[188]. It should be stressed that the part of the data for small returns and small

avalanches s < X0 in Eq. (3.3) in these two nanonetworks virtually coincides with

the ones in the chain and SF22 structures. These weak fluctuations correspond to

sporadic tunnelings away from the main conduction paths. This feature is particu-

larly pronounced in the case of CNET, where the most used area of the nanonetwork

is reduced due to the point-size electrodes (cf. Fig. 3.26).

Topology of phase space manifolds related with the collective charge fluc-

tuations

The time series of charge fluctuations NQ(tk) are converted into QTS-graphs, as

described in Section 3.4.2. With analysis of these graphs, we provide a robust

topological description of the collective charge fluctuations in different nanoparticle

assemblies. For a better comparison, we map an equal segment of each time series in

the considered nanoparticle assemblies. Hence, we generate four QTS-graphs of 2000

nodes; each QTS-graph clearly relates with the underlying nanoparticle structure in

Fig. 3.26, from which the time series is taken. The utilized mapping rules account

for the strength of fluctuations; consequently, the QTS-graphs of different structure

are obtained. Fig. 3.29 displays the adjacency matrices of all four QTS-graphs. The

pronounced block-diagonal structure in the adjacency matrices for QTS-graphs of

CNET and 1Dwd indicates the occurrence of communities of dense links. While in

the case of QTS-graphs of NNET and SF22, a sparse structure of connections among

the diagonal blocks appears, which is compatible with a hierarchical organization of

communities identifiable at the graph level. The ranking distributions of the node’s

degree and topological dimension of all QTS-graphs are shown in Fig. 3.30. Separate

fits for small and large rank according to the discrete generalized beta function are

provided, except for the case of FS22, where a satisfactory fit is obtained by a

power-law decay with a cut-off (see legends).

A collection of standard graph-theoretic measures of all QTS-graphs is given

in Table 3.6, exhibiting small differences at the graph level. However, the higher-
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Figure 3.29: Adjacency matrix of the QTS-graph related with the charge fluctua-
tions in the nanoparticle assemblies: 1Dwd and NNET (top row), CNET and SF22
(bottom row) from left to right.

10
0

10
1

10
2

10
3

rank i

10
0

10
1

10
2

de
gK

i

 −1Dwd
 −SF22
y=90x

−0.3
e

−x/1400

y=13.8x
−0.12

(61−x)
0.27

y=15.8x
−0.48

(2001−x)
0.27

10
0

10
1

10
2

di
m

G
i

 −SF22
 −1Dwd
y=64*x

−0.3
e

−x/802

y=23x
−0.3

(68−x)
0.35

y=6.8x
0.66

(2001−x)
0.5

10
0

10
1

10
2

10
3

rank i

 −NNET
 −CNET
 y=18x

−0.16
(61−x)

0.33

y=3.6x
−0.21

(2001−x)
0.33

 −NNET
 −CNET
y=42(1+1.15x/43)

−0.88

y=42(1+1.25x/40)
−0.8

Figure 3.30: Ranking distributions of the node’s degree (lower panels) and topolog-
ical dimension (upper panels) in the studied QTS graphs of charge fluctuations in
four nanonetworks from Fig. 3.26.

order structures of these graphs, which are described by the algebraic topology

measures, can be considerably different; the results are displayed in Figs. 3.31-3.32

and illustrated by Fig. 3.33.
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QTS-graph d 〈k〉 〈`〉 Cc No.triang modul

−1Dwd 10 6.98 5.14 0.77 10314 0.907

−SF22 10 7.27 4.89 0.76 10987 0.897

−CNET 9 8.91 4.66 0.81 17369 0.906

−NNET 11 8.35 4.86 0.79 15418 0.909

Table 3.6: Standard graph theory measures (d–diameter, 〈k〉–average degree, 〈`〉–
average path length, Cc–clustering coefficient, the number of triangles, modularity)
of the QTS-graphs representing collective charge fluctuations in nanonetworks of
Fig. 3.26.

QTS− −NNET −CNET −SF22 −1Dwd −randomised TS

q Gq nq Ĝq Gq nq Ĝq Gq nq Ĝq Gq nq Ĝq Gq nq Ĝq

0 1 1458 0.99 1 1550 0.99 1 1684 0.99 1 1721 0.99 1 1403 0.99
1 10 1458 0.99 6 1550 0.99 7 1684 0.99 7 1721 0.99 13 1403 0.99
2 265 1457 0.82 193 1549 0.88 455 1683 0.73 503 1721 0.71 904 1400 0.35
3 497 1326 0.63 399 1473 0.73 673 1410 0.52 733 1448 0.49 766 873 0.12
4 570 1025 0.44 594 1238 0..52 638 935 0.31 517 893 0.42 265 283 0.06
5 430 628 0.32 512 826 0.38 346 418 0.17 268 433 0.38 67 69 0.03
6 252 313 0.20 351 438 0.20 103 119 0.13 145 179 0.19 12 12 0
7 86 105 0.18 128 137 0.07 25 25 0 29 37 0.22 1 1 0
8 33 36 0.08 18 18 0 9 9 0
9 8 8 0 1 1 0
10 1 1 0

Table 3.7: Components of three structure vectors of the graphs representing charge-
fluctuation time series in nanonetworks from Fig. 3.26.

The higher-order structures of the QTS-graphs are revealed by determining the

components of three structure vectors, which are defined in section 3.4.2. The

results are displayed in Fig. 3.31. Their numerical values are summarized in Table

3.7. For a comparison, we also show the results for a graph, which is obtained from

a randomized time series; for this purpose, such series is obtained by interchanging

randomly-selected pairs of data points in the time series from NNET.

Notably, the randomized time series results in a graph exhibiting much simpler

structure than the other graphs, which represent the fractal time series. The topo-

logical complexity of these QTS-graphs manifests in the occurrence of a vast number

of topological levels q = 0, 1, 2 · · · qmax in accord with the number of combinatorial

spaces and their interconnections at higher topological levels. As an example, in Fig.

3.33 we display the QTS-graph of NNET assembly. In two separate plots we also

demonstrate the complexity of its top topological levels, q = 8 and q = 9. Specifi-

cally, it contains eight 10-cliques; three 10-cliques are separated, and the other five

are interconnected via 9-cliques at the lower level q = 8. Here, according to the
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Figure 3.31: Components of the 1st, 2nd and 3rd structure vector, Gq, nq and

Ĝq = 1−Gq/nq, respectively, plotted against the topology level q in the QTS-graphs
related with the time series of charge fluctuations in the underlying nanoparticle
structures, which are indicated in the legend, and a randomized time series.
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Figure 3.32: The entropy SQ(q) and the number of simplexes and shared faces fq at
the topological level q of the QTS graphs of the charge fluctuations in the indicated
nanoparticle assemblies.

table 3.7, 36-8=28 additional 9-cliques exist and are interconnected such that 33

components occur at the level q = 8. That is, 33-28=5 components are identifiable

at the upper level, cf. Fig. 3.33 bottom left. Considering the level below, q = 7,

gives 105-36=69 new 8-cliques and 86 components, which suggests that maximally

86-69=17 groups of nodes can be distinguished at the level q = 8. Among these, five

groups contain higher cliques, leaving at most 12 groups that are visually distinct

in the top right figure 3.33. In contrast, the single 11-clique in QTS-graph of CNET

remains isolated down to the level q = 7 (cf. table 3.7). Together with 17 other

9-cliques that appear at the level q = 8, they make 18 components. At the level

below, we identify 137-18 =119 new 8-cliques. Then comparing the number of com-
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Figure 3.33: The structure of connections of the phase space manifolds corresponding
to the charge fluctuations in the nanoparticle network NNET: complete QTS−NNET
graph (top left) and its highest topological layers q = 8, top right, and q = 9, bottom
left. For comparison, the layer q = 8 of the QTS−CNET graph is displayed, bottom
right. In figures of the higher topological layers, ID of each node refers to the index
of the time interval tk of the time series. All edges between these nodes that exist
in the adjacency matrix are shown.

ponents, 128-119=9 suggests that the cliques at the upper level q = 8 make at most

nine groups, one of which refer to the 11-clique of the top levels. This structure is

also shown in Fig. 3.33 bottom right.

According to Fig. 3.31, the second structure vectors of QTS-graphs of SF22

and 1Dwd exhibit certain similarity. Interestingly enough, the presence of charge

disorder in the linear chain of nanoparticles leads to a more complex QTS-graph than

the SF22 assembly. Namely, the charge disorder blocks the only existing path in the

linear chain, which results in a sequence of zero entries in the time series, which is

mapped onto a large clique linked to two or more near non-zero entries. In contrast,

blocking a linear segment in SF22 structure causes tunnelings along the alternative

paths. Hence, no abrupt changes in the time series occur. Apart from the high
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topology levels, the similarity between the QTS-graphs of NNET and CNET, on one

side, and SF22 and 1Dwd, on the other, is apparent at lower q-levels, cf. Fig. 3.31.

These findings also apply to the topological response function fq and the entropy

SQ(q), shown in Fig. 3.32. The occurrence of mutually isolated cliques, i.e, at q = 1

or q = qmax, leads to the occupation probability piq . 1 and the entropy close to zero.

The simplicial complexes that occur at the intermediate q-levels share the faces at

the level q − 1. Hence, same nodes participate in the identified complexes, leading

to a lower occupation probability of the level and the entropy drops, as shown in

Fig. 3.32. The 2-dimensional nanoparticle assemblies exhibit complex QTS-graphs

in which a large number of simplicial complexes, sharing many nodes, is observed.

In contrast, a small number of such compounds occur in the case of the linear chain

structure with charge disorder. Thus, a reduced number of nodes are involved; this

situation manifests in a more pronounced entropy minimum at qmax− 1 than in the

other graphs.

3.5 Multi-brain connectivity networks and func-

tional patterns during spoken communication

Human behavior in various circumstances mirrors the corresponding brain connec-

tivity patterns, which are suitably represented by functional brain networks. While

the objective analysis of these networks by graph theory tools deepened our under-

standing of brain functions, the multi-brain structures and connections underlying

human social behavior remain largely unexplored. In this study, we analyze the

aggregate graph that maps coordination of EEG signals previously recorded during

spoken communications in two groups of six listeners and two speakers. Apply-

ing an innovative approach based on the algebraic topology of graphs, we analyze

higher-order topological complexes consisting of mutually interwoven cliques of a

high order to which the identified functional connections organize. Our results re-

veal that the topological quantifiers provide new suitable measures for differences

in the brain activity patterns and inter-brain synchronization between speakers and

listeners. Moreover, the higher topological complexity correlates with the listener’s

concentration to the story, confirmed by self-rating, and closeness to the speaker’s

brain activity pattern, which is measured by network-to-network distance. The con-

nectivity structures of the frontal and parietal lobe consistently constitute distinct

clusters, which extend across the listener’s group. Formally, the topology quanti-

fiers of the multi-brain communities exceed the sum of those of the participating

individuals and also reflect the listener’s rated attributes of the speaker and the
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narrated subject. In the broader context, the presented study exposes the relevance

of higher topological structures (besides standard graph measures) for characterizing

functional brain networks under different stimuli.

3.5.1 Introduction

In the past few years, a big leap in understanding the structure and function of the

human brain has been provided with both advances in brain imaging techniques

[200, 201] as well as the use of complex networks perspective to analyze the emerg-

ing empirical data [202]. Currently, active research differentiates two aspects of

brain networks, representing anatomic and functional connections between distinct

brain regions [203]-[206]. Anatomical connections are chiefly investigated by diffu-

sion tensor imaging. The functional brain connectivity, on the other hand, can be

detected at different spatial and temporal scales. In this regard, functional magnetic

resonance imaging (fMRI) captures synchronization among blood-oxygenation-level

dependent signals at a good spatial resolution and low frequency. Much shorter time

scales can characterize the brain connections related to different brain function, for

instance, information processing, integration or segregation, cognitive control, em-

pathy, and other. Therefore, electroencephalography (EEG) imaging has received

an increased interest in functional brain research [207]-[211]. In this case, the func-

tional connections are often reconstructed from EEG signals recorded at many scalp

locations. In contrast to fMRI imaging, which measures spatially specific cortical

or subcortical regions, the signal registered by an electrode at a particular scalp

location (i.e., above a cortical region of interest) is spatially less specific, containing

the average electric neuronal activities of all voxels belonging to that area [207, 211].

Nevertheless, regarding the generalized synchronization, the recognizable patterns

of positively correlated EEG signals suitably reflect the macroscopic organization of

the brain network [202]. Thus, the underlying brain activity corresponding to a va-

riety of situations has been analyzed through EEG-based connections, for example,

processing (un)pleasant music [212], the objective identification of emotions [209] or

the pathological changes in the context of epilepsy [210], anesthetic agents induction

[213], and other.

Brain anatomical connections are suitably represented by weighted networks. In

this case, there is a growing consensus about the confidence level that a particular

link is present as well as its weight [214]. On the other hand, a variety of functional

connections have been observed, closely reflecting a particular brain activity, that

map to a different functional network [203]. Such examples of the brain networks

include the recently studied functional paths in integration and segregation of in-
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formation [215], inter-regional communication [216], convergence of information in

hippocampus [217], stimulus selection [218], cognitive control circuits [219], as well

as the effects of different stimuli [218, 220, 221], learning [222], perception of time,

numbers and languages [223, 224], the presence of a mental disease [225] and more.

Although the anatomical connections lay the basis, the functional brain networks

often appear to have a richer structure, which is attributed to dynamical factors: the

appearance of longer paths as well as the avalanches of the cascading activity prop-

agation. Thus, clearly distinguishing between the brain activity patterns related to

particular mental processes remains a challenging task.

In the neuroscience research, a central problem is how to explain the brain func-

tion from microscopic, biochemical processes, on one side, and its impact on human

behavior, on the other. Recently, concerns on how the brain mediates social inter-

actions, which is closely related both to cognitive and affective neuroscience, lead to

the development of the social neurology. In this respect, the research of the social

impact on the processes in the brain [226]-[228] as well as the brain processes that

underly an effective social behavior [229]-[237] is becoming a subject of increasing

interest. New approaches using simultaneous scanning of groups of participants are

being developed to study social cognition [238, 239]. The studies of face-to-face

communications in dyads reveal a significant degree of synchronization in particular

brain areas, depending on the performed task [233, 234, 235, 237]. Whereas, other

types of communications seem to involve different mechanisms [234]. Furthermore,

a higher brain activation level characterizes the leader compared to its follower, the

game builder compared to its partner, as well as the same individual performing

the cooperation compared to the competition role [236]. In contrast to the exten-

sive study of functional brain connections, as stated above, little attention has been

devoted [237, 239] to analyze multi-brain graphs and to identify the social impact

onto the functional brain networks.

In this work, we study a complex network of brains of a group of individuals dur-

ing spoken communications; we map an aggregate data of EEG signals, previously

recorded in the experiment described in [240]. In the experiment, two different

narrations of the speakers are superimposed and presented to the two groups of

six listeners at the same time, while a group’s aim was to focus to a particular

speaker. The EEG signals were recorded simultaneously at all listeners during the

session, while the recording was performed independently for each speaker during

his/her narration, see 3.5.2. Note also that, in contrast to the platforms build on

the face-to-face communications [238], in this experimental set-up the interaction is

unidirectional from speakers to listeners. The self-rated experiences of the listeners

87



collected after each completed session, indicate wide variations of the listener’s con-

centration to the story, correlating to the previous knowledge, interest, as well as

the speaker’s attractiveness and narrative quality.

The previous study of the data [240] focused to the statistically significant group-

averaged features, in particular of the speaker-listener coordination. The aim of the

present analysis is entirely different. We reveal the fine structure of the aggregate

multi-brain network considering the location of each EEG electrode as a network

node. Thus our approach, based on mapping the correlations among EEG signals,

allows us to analyze the networks of connections elicited by the presented stimulus in

each listener’s brain as well as the speakerlistener and listener listener coordination,

and the emerging cross-brain structures. We hypothesized that, while involving the

similar brain areas, the brain activity patterns of each participant (depending on its

role in the session, cognitive and emotional content communicated by the speakers,

and other factors) results in different connectivity in the corresponding functional

networks and brain-to-brain connections. To analyze these significant differences

between brain networks, we develop an approach based on the algebraic topology

of graphs, which identifies higher-order structures containing cliques of a large or-

der and their aggregates beyond the standard network parameters. The applied

methodology offers a new perspective in the analysis of inter-brain synchronization

during social communications and other functional brain networks besides the social

brain problems.

3.5.2 Materials and Methods

EEG data acquisition and preprocessing

We use the empirical data of two sessions, each session containing a different stim-

ulus, from the previously recorded data set of [240]. A stimulus consists of two

superimposed audiovisual recordings of a similar duration (about 4 minutes) where

two speakers, female and male, narrate different stories to the video cameras. As

described in [240], a specific software was used to superimpose onto each other the

two faces of the speakers and the soundtracks of their voices. Thus obtained video

was adjusted so that both speakers appeared equally prominent. The stimulus is

then presented to twelve listeners. While the input was the same to all listeners,

one group of six listeners was instructed to attend to one speaker and the other

group to the other speaker. The attended speaker was introduced to each panel in

the first 5 seconds of the stimulus. The schematic illustration of the experimental

setup is shown in Fig 3.34. In each stimulus, EEG recordings from two speakers
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are made during freely narrating stories, while the EEG scanning of all listeners

is performed simultaneously during the session. We consider data of two different

stimuli, in particular,

• Stimulus1 consists of the storytelling by a male speaker (S1) and a female

speaker (S2), and the corresponding two groups of six listeners. Recalled

by the speaker’s own words, the narration is based on written versions of

international fairy tales.

• Stimulus11 contains an ad-hoc invented narration by a female speaker S3,

attended by the listener’s group 2, and a free narration from the favorite book

or movie of the speaker S1 (the same speaker as in stimulus1), attended by the

group 1. For these narrations, no written text was available to the speakers.

Figure 3.34: The listeners k = 1, 2...6 of each group L1−k and L2−k are instructed
to follow the narration of a particular speaker, indicated by the heavy lines, while
having the narration of the other speaker simultaneously accessible, shown by the
thin lines.

The EEG signals were acquired from 63 scalp locations positioned according to

the International 10/20 System. A detailed description of the EEG acquisition and

preprocessing is given in the original paper [240]. According to [240], the prepro-

cessing included the necessary steps in which (i) EEG recordings were aligned with

the corresponding audio signal for each participant; (ii) the noise was reduced by

applying 50Hz notch filter; (iii) artifactual components (i.e., due to speaking, eye

movement) were removed using an advanced technique based on the independent

component analysis, which can separate the signal components of different origin,

and rating. Moreover, the data were transformed to the average reference and tem-

porally trimmed to the overlapping time segments.
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The data also contain a questionnaire, where we use the part of information

related to the analysed stimulus1 and stimulus11. Specifically, we consider the lis-

tener’s self-rating of the concentration, prior knowledge, interest and understanding

of the story, as well as the sympathy to the appointed speaker, the speaker’s narra-

tive quality and attractiveness.

Mapping EEG data to network and filtering relevant links

Different methods are in use for mapping the brain activity signals to a graph, see

review articles [202, 241]. Each recording method and, consequently, the networks

extracted from it have certain limitations. For example, fMRI has good spatial

resolution, and the network nodes have anatomical locations in the brain, but the

low temporal resolution to detect the neuronal activity. On the other hand, the EEG

recordings are at the right temporal resolution, but the network’s nodes represent the

locations of the electrodes on the scalp. However, by invoking a general operational

principle of complex networks analysis [202], both of these microscopically distinct

networks contain relevant information about the macroscopic organization of brain

function.

Here we apply the methods of correlation matrix that was widely applied for

mapping EEG signals [207, 242], stock market data [243], gene expression data

[43, 44] and traffic signals [244]. In this case, correlations among EEG signals de-

scribe functional connectivity patterns between different brain areas, whose activity

is recorded in 63 points at the scalp. Thus, the data consists of 882 time series. The

length each time series is 83499 time steps in stimulus1, and 120911, in stimulus11,

where one time step corresponds to 1/500 sec. According to [240], the interesting

correlations are expected when the delay 12.5s (6250 time steps) is considered be-

tween speaker’s and listener’s time. In this case, we skip the first 6250 points in

the speaker’s time series and the last 6250 time points in the listener’s. Else, the

speakerspeaker and listenerlistener correlations are determined without any delay.

First, the Pearson’s coefficient is computed for each pair (Ai, Bi) of time series

CAB =
1

N − 1

N∑
i=1

(
Ai − µA
σA

)(
Bi − µB
σB

),

where µ and σ are the mean and standard deviation of the corresponding time

series, and N is the length of time series. Further, to separate the strong posi-

tive correlations, which are relevant in almost every context, there is way to use

the filtering algorithm described in [43, 44, 45]. The algorithm enhances those

matrix elements Cij that have a similar correlation pattern with the rest of the
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matrix elements while diminishes those with a dissimilar patterns. First we map

Cij to the range [0, 1] using CPij = (Cij + 1)/2. Then, each element is multiplied

CPij → FijCPij by the corresponding factor Fij, which is computed as Pearson’s

coefficient of the rearranged matrix elements from row i and column j as follows:

{Cij, Ci1, Ci2, ..., CiN}{Cji, C1j, Cj2, ..., CjN}. The resulting filtered correlation ma-

trix is also transfered to a binary adjacency matrix of the graph by retaining the

correlations larger than a threshold value and inserting units for the retained edges.

Standard graph-theory measures & network communities

In graph theory [245], a graph is a mathematical object consisting of nodes and

edges connecting the nodes; to characterise the graph structure, some measures

[241, 246] are computed, here termed the standard graph measures to emphasise

the distinction between the algebraic-topology measures, defined below. Given the

specific type of graphs, for this work we determine the diameter of the graph d,

the graph density ρ, the average degree 〈k〉 and path length 〈l〉, and the clustering

coefficient Cc, as well as the community structure.

Communities on a network are identified as densely connected subgraphs; these

are groups of nodes in which each node has more connections with the other members

of the group than with the nodes outside of the group. To determine the network’s

community structure [247, 248] in these particular type of networks, we use the

appropriate method based on the maximum modularity [249]

Comparing SB networks: Links overlap

Statistical measures of (dis)similarity between a considered pair of functional single-

brain (SB) networks are quantified. In particular, we identify the fraction of the links

E that are identical in both networks relative to the total number of connections in

both networks. That is, for a pair of the listener’s single-brain-networks, the overlap

measure is given by

O(Lix, Ljy =
E(Lix) ∩ E(Ljy)

E(Lix) ∪ E(Ljy
,

where i, j ∈ {1, 2} denotes the group to which the listener belongs, x, y ∈ 1, ..., 6

and denotes the listener’s identity number. Here L stands for listener; the analogous

expression applies to any pair of L–S and S–S networks.
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Comparing SB networks: Graph-edit distance (GED) GED counts the

number of links that have to be deleted so that the two

GED counts the number of links that have to be deleted so that the two matrices

become equal [250]. These counts are then used to position all listeners relatively

to the two speakers in a 2Dcoordinate space. We set S1 in the origin (0, 0), while

S2 on the coordinate (s12, 0), where s12 is the GED between S1 and S2. The (x, y)

coordinates of a listener are then calculated using trigonometric functions, where

the length of the sides of the triangle are computed GED between the listener and

both speakers.

Randomization of SB networks

We apply two procedures to randomize the network connections. In Random-K,

the procedure preserves the node’s degree. Starting from the original list of links,

considered as oriented, for each link we find a randomly selected link in the list of all

links and cross switch the outlinking between the corresponding pairs of nodes. We

repeat the process until each link is switched at least once. We also apply the fully

randomised procedure, here termed Random-L, which preserves the total number of

connections in the network. In this case, while cutting a link from the original list,

we insert a new link among a randomly selected disconnected pair of nodes.

3.5.3 Results

Correlation matrix and networks of speakers’ and listeners’ EEG signals

We analyse two different stimuli from the corpus of the previously recorded and

pre-processed data of Ref. [240]. A full description of the analysed datasets is given

in Methods. In each stimulus, we consider EEG signals recorded during the session

at 63 locations on the scalp of two speaker and 12 listeners, in total 882 signals.

The correlations among each pair of signals are computed as Pearson’s coefficient.

Between the speaker’s and listener’s events, we take into account the characteristic

delay of 12.5s, which was observed and related to the processing of semantic content

in the original work [240]. The equal-time correlations are considered among signals

of the pairs of listeners. The correlation matrix is filtered (see Methods) to diminish

the potentially redundant correlations. Finally, a threshold value (in this work

w0 = 0.06) is applied to remove weak correlations that are assumed to be normally

distributed, Fig 3.35a and 3.35b. To select the right threshold, we observe the criteria

that the modular decomposition, as chief feature of functional brain networks [247,

251], shows consistency in the multi-brain networks for the values above the selected
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threshold. Also starting from this threshold value, each single-brain connectivity

splits into a frontal and parietal cluster, the structure characteristic to awaken state

according to Ref [213], whereas they may join to a single cluster when the threshold

is lowered, see Fig 3.36. Moreover, we checked that the crossbrain connections

around this threshold form a sparse network but sufficiently connected to ensure

nontrivial structures, as the example in Fig 3.35c; the occurrence of large simplicial

complexes tested by the node’s topological dimension stabilises around the selected

threshold value (see Fig 3.35a,top). The adjacency matrix of a binary multi-brain

graph is then constructed, i.e., Aij = 1 when the matrix element wij > w0 and

zero otherwise, and shown in Fig 3.35d. In this aggregate multi-brain network,

the single list of indexes indicates the standard abbreviations of the 63 EEG scalp

locations belonging to, respectively, speaker S1, speaker S2, then two groups of

listeners L1−k and L2−k, k = 1, 2, ..., 6. Thus, the diagonal blocks in the adjacency

matrix represent the 63 × 63 connectivity matrices related to each brain in the

above-defined order. Whereas, each off-diagonal block contains the corresponding

brain-to-brain correlations.

Here, we first analyze the structure of each diagonal block and some selected

cross-correlations in the aggregate network in Fig 3.35d. Then we turn to the anal-

ysis of the whole multi-brain network, which allows for quantifying the speaker’s

impact onto the listener’s brain activity patterns. Each diagonal block of the ag-

gregate adjacency matrix in Fig 3.35d represents a functional brain network related

to a particular participant, as described below. In the present context, these sep-

arate subgraphs are termed single-brain-networks (SBN) to distinguish them from

the studied multi-brain structures. Fig 3.36 shows examples of SBN obtained at two

different thresholds.

Single-brain networks (SBN) of speakers and listeners: Quantifying the

topological differences

In Fig 3.37 the single-brain networks representing the correlation of the EEG signals

on the scalp of both speakers and the listeners in both groups are shown. As we

stated in the Introduction,the focus is on the occurrence of higher-order structures

in SBN and other relevant subgraphs of the multi-brain network. In this respect, the

topology levels and the corresponding vectors defined in Methods are first computed

for all SBN, as the relevant units of the multi-brain graph. Before turning to the

topology analysis, for comparison, we also determine the standard graph-theoretic

measures for all SBN; they are summarized in Table 3.38. Further, we analyze the

(dis)similarity between these functional connections in all pairs of SBN.

93



Figure 3.35: Maximum topological dimension plotted against various thresholds
w0 (top panel) stabilises near the selected threshold 0.06. The middle part of the
histogram of correlation coefficients averaged over 882 channels (lower panel); the fit
by the normal distribution, dotted line, deviates from the data for the correlations
larger than 0.06. (b) The central part of the histograms for different channels.
For a particular channel, the correlations with other 881 channels are marked by
the corresponding colour indicated in the colour map; the presence of colours over
different bins suggests that all channels obey a similar distribution. (c) An example
of higher-order structure involving the signal locations at two scalpsthe speaker’s S2

and the listener’s L2−3. (d) The adjacency matrix of the multi-brain network of the
two speakers and 12 listeners with the threshold w0 = 0.06. The order of indexes is
as explained in the text.

Comparing two networks is widely used in the literature to uncover the nodes and

links that are responsible for a particular pattern, e.g., disease-related connections

[252], or to infer the relevance of a particular link or a node [253]. In the present con-

text, we expect that speakers and listeners use different activation of the brain areas

to process and perceive the semantic contents during the communication. Thus, the

corresponding brain activity patterns, reflected in several positively correlated EEG

channels, can be differentiated through the differences in the SBN’s topology. First,

we compare the pairs of SBN by examining the presence/absence of a particular

link (the correlated pair of channels). In this regard, the differences in the activity

patterns are observed among both speakers and, evoked by the stimulus, among the
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Figure 3.36: (left) An example of network mapping the functional brain connections
recorded by EEG signals on the speaker’s scalp (labels). The applied threshold
w0 = 0.06. The colour of nodes indicates two identified communitiesfrontal (F)
and parietal (P). (right) Loss of the F/P community structure at a lower threshold
w0 = 0.05 in the correlation matrix.

Figure 3.37: In each network, nodes represent different scalp locations (labels) while
each link indicates the positive correlation that exceeds the threshold among the
corresponding pair of EEG signals. Remarkably, each connectivity network visually
splits into two clusters, which can be identified by the location labels as frontal
(upper) and parietal (lower), also confirmed by the community detection analysis.
See an example of a larger picture in Fig 3.36.

listeners within the same group as well as across the groups. Here, we quantify these

differences using two methods of graph comparisons. First, we determine the extent

to which the edges overlap (see Methods) in each pair of single-brain networks. The

resulting statistics is displayed in Figs 3.39 and 3.40 for the situation in stimulus1

and simulus11, respectively. Furthermore, the occurrence of the excess links leading

to a finite distance between the pairs of single-brain graphs in the topological space

is expressed by graph-edit-distance, as described in Methods.

Link overlap statistics. The link-overlap statistics expresses the degree of simi-

larity between each compared pair of SBNs. In Fig 3.39, we show the outcomes for
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the overlaps for the listeners of both groups in stimulus1 with both speakers, as well

as the overlaps among the pairs of listeners in both groups, exposed to the same

input. Similarly, the overlaps for stimulus11 are shown in Fig 3.40.

As the Fig 3.39 shows, the brain activity patterns of both groups of the listeners

in stimulus1 express a larger similarity to speaker S2 than to speaker S1. It is also

interesting to notice the overlaps among pairs of listeners in each group. Notice-

ably, the overlap between SBN of the two speakers is low (minimal overlap in the

entire set). The situation is just opposite in stimulus11, where the same speaker S1

features, however, narrating a different subject. While the overlap between the two

speakers is larger than in stimulus1, four listeners in group 2 have a better overlap

with speaker S1 than with the attended speaker S3. This situation manifests in a

specific heterogeneity of the overlaps between the listeners in group 2. It is impor-

tant to stress that, while the edges overlap varies among different pairs, it always

stays significantly above the corresponding values for the randomized models.

SBN’s distance between listeners and speakers. The excess links, which are

present in an SBN but do not overlap with another SBN, represent a measure of

distance between these networks in the topology space. Applying the graph edit

distance (GED), as described in Methods, we first compute the distance between

SBNs of speaker S1 and speaker S2. Then the distances of each listener from both

speakers are calculated and presented by a point in the distance plane in Fig 3.41; two

panels are for the stimulus1 and stimulus11, respectively. For a better comparison,

both groups of listeners are plotted on the same graph.

The following features of the distance graphs are interesting. First, in the stim-

ulus1, the majority of the listeners from both groups are closer, suggesting a larger

similarity in the brain connectivity patterns, to the speaker S2, than to the speaker

S1. Excluding the listeners L1−1, L2−2 and, to some extent, the listener L1−3, the lis-

teners of both groups form a cluster in the distance plane. Notice that, by definition

of GED, the closeness of two listeners in this graph is referring to the similar fraction

of the removed links. However, by comparing the exact links, the two listeners may

have a finite distance from each other.

These properties of the distance plots are in good agreement with the histograms

of the pairwise overlap in Fig 3.39. Namely, for the stimulus1, except for L2−2 and

L1−3, the speaker’s S1 overlaps with both groups are worse than the overlaps of the

speaker S2 with the listeners in both groups. Moreover, the listeners in the centre of

the cluster, for instance, L1−2 in group 1 and L2−6 in group 2, have similar overlaps

with the remaining members of the group. Further comparisons of the listeners, for

instance, L2−3 and L1−4, who are quite close in the distance space but have different
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Figure 3.38: Graph-theoretic characteristics of single-brain connectivity networks.
Standard graph measures denoted in the first column (see Methods) for each SBN
of the two speakers and two groups of listeners listed in the top row; data are for
the case of stimulus1. For comparison, we also show the number of topology levels
qmax and the number of cliques of the highest order in the corresponding network.

appointed speakers, reveals different cross-brain correlations, see later.

In the stimulus11, the same speaker S1, here narrating a different type of story,

attracts more attention of the listeners in both groups than the new speaker S3. In

this context, some striking examples are the listener L2−6 and L1−6, cf Fig 3.41. Note

that in this case the listeners L1−6, L1−3, L1−4, L2−3 and L2−5 also form a group

in the distance plane. In the analogy with the above-discussed stimulus1, these

findings of the distance graph are in agreement with the corresponding overlaps in

Fig 3.40 for stimulus11. Hence, the impact of a speaker may strongly depend on

the narrating subject; formally, its corresponding brain activity results in a different

network (see more details in Discussion). These features of SBNs are also reflected in

the appearance of higher organised structures, as discussed in the following sections.

It is interesting to compare these objective graph-theoretic measures with the

subjective experience of each listener; the self-reported ratings of self-concentration.

While in both stimuli, all listeners reported no prior knowledge of the story, their

interest varies in correlation with the self-reported narrative quality of the speaker.

The listener’s report of weak sympathy to the speaker, low speaker’s narrative qual-

ity and attractiveness correlates well with the increased distance between speak-

erlistener SBN and low overlap. Oppositely, self-reported sympathy to the speaker,

qualifications as attractive and good narrator agree well with the increased SBN

overlaps and reduced topological distance, Figs 3.39, 3.40 and 3.41.

Topological spaces of single-brain networks and inter-brain linking. As men-

tioned in the Introduction, we anticipate that the key features of the brain activa-

tion of an individual during social communication are contained in the hierarchical

organization of links between involved brain areas, which leads to the occurrence

of topological complexes. In the multibrain graphs, the occurrence of higher-order

structures is manifested in two ways: (i) the appearance of hierarchical organisa-
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tion along different topology levels in each SBN, and (ii) the inter-brain correlations

leading to a nontrivial community structure of multi-brain graph

Figure 3.39: The similarity of single-brain networks in stimulus1. SBN overlaps
between each listener in group 1 with speakers S1 and S2, the left panel, and each
listener in group 2 with S1 and S2, right panel. Bottom left and right panels show
the SBN overlaps between pairs of listeners in the group 1 and group 2, respectively.
For a comparison, the SBN overlap between two speakers is also shown (the first
bar in each bottom panel). Note that all overlaps are significantly larger than in the
corresponding randomised models.

as well as the hierarchical organisation of these communities. In comparison with

known heuristic approaches for hierarchical communities [251, 254], here we rely on

mathematically strict definition of simplexes and simplicial complexes, as described

in Methods. First, we compute the structure vectors defined in Methods to describe

the higher-order structures in the individual brain connections both for speakers and

listeners. In Fig 3.42, we show the results of the first and third structure vectors for

each of 14 single-brain networks in the case of the stimulus1.

Performing the Q-analysis of each SBN, the components of the structure vectors

Qq and nq are computed at each topology level q = 0, 1, ...qmax, where qmax is

the order of the highest clique found in the corresponding brain connectivity graph.
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Figure 3.40: The similarity of single-brain networks in stimulus11. Link overlaps of
the two listener’s groups, explanations as for Fig 3.39, but with the speakers S1 and
S3, respectively.

Figure 3.41: Graph edit distances between listeners and speakers. In stimulus1 (left)
and stimulus11 (right), the speaker S1 is placed in the origin and the speaker S2 (S3)
at the corresponding distance along the x-axis while the coordinates of the listeners
of both groups are shown in the distance plane. Concerning GED, both groups of
listeners systematically appear closer to a ”right” speaker (S2 in stimulus1, S1 in
stimulus11) according to the listeners’ subjective ratings.
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Figure 3.42: Topology measures of the SBNs of speakers and two groups of listeners
for stimulus1. Components of the second (SSV) and third (TSV) structure vectors
(left panels), and the ranking distributions of the nodes’ topological dimensions
(right panels). The full lines indicate the corresponding measures of the speakers.

Combined with Qq, the components of the third structure vector are deduced, which

quantify the connectivity among different cliques at each topology level. In this

respect, both speakers, as well as the two groups of listeners, differ, as displayed

in Fig 3.42. As a rule, the highest topological level in the case of listener’s SBN

connectivity exceeds one of the speaker’s. Moreover, SBN of the speaker S2 exhibits

higher organisational complexity at all levels q > 10 than the speaker S1. The results

for the majority of the listeners in the group L2−k are quite coherent and mainly

follow the structures found in SBN of the speaker S2. However, in the group L1−k

the listeners’ structures exhibit larger deviations from the speakers’ either at small

or at large q. The striking example is the listener L1−1, whose pattern of connections

exhibit a much lower number of small complexes but also a certain number of vast

complexes reaching at qmax = 29. This situation implies that, in contrast to all other

participants in the stimulus1, in the case of the listener L1−1 a sizeable number of

unusual connections are present, which enable the formation of cliques of the order

from 24, ...30, cf. SBNs in Fig 3.37. Note also that in the graph-distance measure,

the listener L1−1 is far away from the both groups.

The analysis is complemented by the ranking distribution of 63 nodes in each

SBN, according to the node’s topological dimension, right panels in Fig 3.42. Again,

the lines related to different listener’s SBN suggest a higher heterogeneity of these

networks for the listeners in group 1 than the group 2. These quantitative topology

measures correlate well with the listeners’ qualitative experience.

Apart from the diagonal blocks of the adjacency matrix in Fig 3.35, the off-

diagonal matrices exhibiting the inter-brain connections provide valuable informa-
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tion about the communication impact (speaker-listeners) as well as the brain-function

synchronization under the same input stimulus (listener-listener correlations). These

connections contribute to a nontrivial structure of the multi-brain network. In Fig

3.43, we show two representative examples visualizing differences in two-brain net-

works of a listener and a speaker. In one case, L2−3 well correlates with the speaker

S2. The corresponding two-brain network has 630 cross-links and an original struc-

ture with two communities, each of which contains the scalp locations of both indi-

viduals. This super-brain structure confirms a real focus of the listener L2−3 to the

speaker’s S2 story, in full agreement with the corresponding distance and SBN over-

lap measures for L2−3 and S2 discussed above. Oppositely, the two-brain network of

the listener L1−4 and the speaker S1 exhibits very few cross-links (57) and a com-

munity structure featuring separate brains. These results also agree well with the

self-reported low concentration, uninteresting and confusing story, and bad qualities

of the speaker.

Communities and topological spaces in multi-brain network

The interbrain synchronisation, which is often observed during social communica-

tions [230, 231, 237, 238], is also expected in the analysed spoken communication

experiment; in the present context, it is embedded in the structure of the entire

multi-brain network. Here, we perform a formal analysis of the multi-brain graph to

describe the social impact on the brain activity of each participant. Moreover, we

analyse the appearance of mesoscopic structures (communities) that involve scalp

locations over several brains, as well as the hierarchical organisation of a particular

community graph.

In general, the presence of communities is relevant for the synchronisation of

stochastic processes taking part on the graph [251, 255]; the characteristic time

scale of the coherence dynamics on different communities is directly related with

the lowest eigenvalues of the Laplacian operator related with the graph’s adjacency

matrix while the corresponding eigenvectors localise on these communities [256].

Here, the activity patterns, involving different areas in the multi-brain graph, lead

to the enhanced correlations and dense subgraphs or communities that involve scalp

locations of several listeners and a speaker. The community structure of the multi-

brain network both for simulus1 and stimulus11 are shown in Fig 3.44. In each

case, there are several communities of different sizes. While some single-brain net-

work (as the listener L1−1 and L2−2 in the case of stimulus1, and similarly, speaker

S3 in stimulus11) comprises a separate community, the majority of the identified

communities are cross-brain type involving parts of the nodes in SBN of different
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Figure 3.43: Structure of inter-brain linking. Superbrain network of the speaker S2
and the listener L2−3, illustrating proper coordination, (left), and a weakly connected
two-brain structure of the listener L1−4 and the speaker S1, corresponding to wrong
coordination (right). Different colour of nodes indicates the identified functional
communities. The node’s labels belong to the unique list of 882 scalp locations of
all participants; for example, L2−3 − TP9 and S2 − F7 indicate the channel ”TP9”
on the scalp of the listener 3 in group 2, and channel ”F7” of the scalp of the speaker
S2, respectively. See also the overlaps in Fig 3.39 and distances in Fig 3.41 for these
pairs.

participants. Two such communities, related to the speaker S2 in simulus1 are shown

separately in Fig 3.45a and 3.45b. Similarly, examples of the communities related

to the speaker S1 in stimulus11 are shown in Fig 3.45c and 3.45d, respectively. It

is interesting to stress that typically frontal scalp areas across different brains often

form a separate community while parietal areas belong to another (here termed F-

and P-community), cf. labels in Fig 3.45a-3.45d. A similar structure of the com-

munities occurs in the two brain network in Fig 3.43a in a direct relation to a right

speakerlistener coordination.

Synergy in the multi-brain communities. The results of algebraic topology analy-

sis of the entire multi-brain network (MBN) and its largest communities are given in

Fig 3.46. First, we compare the (additive) components of the first structure vectors

FSV of the whole MBN with the sum of the components of all SBN. Remarkably,

the MBN exhibits a more complex structure, i.e., higher values at all topology lev-

els, which can be attributed to the contributions of inter-brain subgraphs, cf. the

adjacency matrix in Fig 3.35. Hence, this feature of the MBN is a good quantifier of

the social impact among the communicating brains. Similarly, the third structure

TSV shows that the simplexes at all topology levels up to q = 28 are strongly inter-

connected in the MBN. In this context, the TSV of the corresponding cross-brain

subgraphs suitably quantifies the speakerlistener coordination. The results of TSV

for the cross-links in the two-brain network in Fig 3.43 show that the proper coor-

dination among the listener L2−3 and the speaker S2 corresponds to a topologically
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rich structure; in contrast, a weaker or improper coordination between L1−4 and the

speaker S1 results in a much simple topology.

Figure 3.44: Multi-brain networks. Communities, marked by different color, of
nodes in the whole multi-brain network in stimulus1 (a), and stimulus11 (b). The
nodes’ labels comprise the unique list of 882 scalp locations of all participants, as
explained in the caption to Fig 3.43.

The two frontal- and parietal-communities from Fig 3.45 are associated with the

speaker S2 and involves several listeners. The topology analysis of these and some

other communities (the SSV is shown in Fig 3.46) reveals an interesting structure. In

general, in the situation of proper focus with a speaker (S2 in simulus1, S1 in stimu-

lus11), a clear differentiation of F-based and P-based communities is found. Among

these, P-based communities exhibit a richer structure, especially in the presence of

higher order simplexes. In contrast, the situation of weak focus with the appointed

speaker (S1 in simulus1, S3 in stimulus11), the speaker-related community involves a

mixture of different SBN nodes of the speaker and the dedicated listeners. The SSV

of such communities resembles an SBN the speaker’s SSV. Also, the absence of a

proper coordination with the speaker, several listeners appear to form a community,

where also F- and P-based structures are present, but they are comparable in the

topological complexity and much simpler than the speaker-based communities, cf.

Fig 3.46.

Communities in multi-brain networks

By mapping a hyper-scanning dataset onto multi-brain network, we developed a

systematic approach to quantify the differences in the brain activity patterns and

inter-brain coordination during social communications. Our analysis of the rep-

resentative spoken communications datasets (two stimuli, each consisting of the

simultaneous EEG recordings of 12 listeners and two speakers narrating different
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stories) confirms the leading idea of this work. Namely, the brain activation of each

participant (depending on its role, communicated contents, and other factors) mani-

fests in particular interconnections of the affected brain areas; these interconnection

patterns lead to significant higher-order structures in the related brain network and

interbrain graphs, which are adequately described by the algebraic topology mea-

sures. Precisely, the hierarchical structure of the scalp connectivity network and

inter-brain graphs are quantified by the number of topology levels qmax given by or-

der of the largest clique found in the network, and the ways that the cliques organise

into larger complexes by sharing nodes at lower levels from q = qmax−1, ..., 1.

Figure 3.45: Speaker-related communities occurring in multi-brain network. Two
communities dominated by frontal and parietal lobe locations are shown as separate
graphs in stimulus1, (a) and (b), and in stimulus11 (c), and (d).

Assuming that the fluctuations of EEG signals on the scalp suitably reflect the

underlying brain activity, the approach allows analyzing the fine-grain correlations

(63 channels) of each participant, as well as cross-correlations between different

brains, and the aggregate multibrain graph of two speakers and twelve listeners. The

major advantage of this approach is that (even without knowing exact relationships

between the correlations of the measured signals and potentially affected deeper

brain areas), a comparative analysis of various networks provides a good measure

of the differences in the underlying brain activity. This type of analysis combines

well with the statistical features as well as with the listeners’ self-rating experience

during the communication.
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According to these higher-order topology measures, we discovered some new

features of the brain activity networks, which are not accessible to the conventional

statistical methods and standard graph theory. In particular:

Significant differences between SBNs occur across the listeners and speakers,

and are quantified by the topology vectors. Across the listeners’ groups, the degree

of heterogeneity strongly correlates with the increased distance to the appointed

speaker. We also find qLmax > qSmax in all studied examples, suggesting that the

listener’s brain activity results in a more complex architecture than the speaker’s.

In agreement with the statistical analysis in [240], this fact relates to the processing

of semantic content in the presence of noise. A more detailed analysis reveals the

excess links in the listener’s SBN; these links correspond to the coherence between

a set of different EEG channels, not occurring in the speaker’s network. Moreover,

these topology quantifiers accurately distinguish the patterns of the brain activity of

the same speaker while narrating different subjects. Fig 3.47 displays the differences

between corresponding EEG correlation networks as graphs and at each topology

level for the speaker S1. Notably in contrast to the stimulus1, the number of big

organised structures (for 16 < q < 24) occur in the case of the speaker’s narration

in stimulus11, which also obtained higher ratings by the listeners.

The proper speakerlistener coordination is suitably quantified by the topolog-

ical similarity of their SBNs and a rich structure of the corresponding two-brain

network. At lower topology levels 1 < q < qSmax, the majority of listeners in both

groups exhibit the brain activity patterns that are more similar, i.e., have better co-

ordination, with one speaker than with the other. These topology findings are also

supported by the statistics of the link overlaps and brain-to-brain distance measures,

which consider q = 1 level, i.e., the presence and absence of each particular link in

the compared networks. Interestingly enough, these findings compare well with the

listener’s self-rating of the sympathy to the speaker, the speaker’s narrative quality

and attractiveness, as well as the clarity and the interest of the story. It turns that

a complex two-brain network suitably represents the case of a proper coordination.

The strong frontalfrontal and parietalparietal connections between the brains appear

as two communities in a super-brain structure, cf. Fig 3.47a. These features are

absent in the case of weak coordination, as the example in Fig 3.43b. Further anal-

ysis of the inter-brain correlations concerning the issues of the experimental design,

questionnaire, and the semantic contents is left for the future work. The coordina-

tion with a right speaker evolves over time, as measured by the distance between

speakerlistener SBN constructed in a sequence of time intervals, cf. Fig 3.48. How-

ever, there is always a gap (minimal distance) between a speaker and anyone of the
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Figure 3.46: Topology vectors of multi-brain graphs. Left panels: Components of
the first (FSV) and the third (TSV) structure vectors plotted against the topology
level q for the whole multi-brain network and for some its subgraphs, as indicated
in the corresponding legends. The additive components of the FSV allow a com-
parison of the whole MBN with the sum of the corresponding component of each
participating SBN, the line is indicated by

∑
kQ

k
q , where k runs over all listeners

and the two speakers in stimulus1. TSV of cross-graphs in two-brain networks from
Fig 3.43 and their counterparts are shown. Right panels: Components of the second
(SSV) structure vector of the largest four communities in stimulus11 (top) and three
communities in stimulus1 (bottom). For comparison, the values obtained for the cor-
responding SBN of the speakers and listeners participating in these communities are
also shown.

listeners, in agreement to the occurrence of higher structures and extra links in the

listener’s activity networks, mentioned above. It is also interesting to note that the

listener’s networks exhibit a high degree of similarity, perhaps suggesting similar

initial brain activity patterns, before focusing to a particular speaker.

Figure 3.47: Subject-specific brain activity patterns of the speaker S1. From left to
right, SBNs represent EEG correlation patterns of the speaker S1 narrating a fairy
tale (in stimulus1) and giving instructions (in stimulus11), and the components of
the first and the second topology vector of these SBNs.

F/P communities in the multi-brain networks reveal super-brain features. At the
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aggregate graph level, the communities occur primarily related to a good narrator.

These communities, as a rule, coordinate frontal brain areas of the speaker with the

listener’s frontal areas, and, similarly, parietal-to-parietal. These communities re-

garded as separate graphs exhibit a rich structure with a large number of high-order

cliques and their complexes. It is interesting to note that in each identified com-

munity structure, the parietal-based community appears to be more complex than

the frontal-based one. The occurrence of speaker-related communities suggests that

a significant number of channels, which are coordinated in the speaker’s brain also

appear to be coordinated in the listener’s brains. In contrast, when the appointed

speaker is not followed (the case of speaker S1 in stimulus1 and speaker S3 in stimu-

lus11), some listeners appear to form communities, again connecting through frontal

(parietal) channels. However, the corresponding topology of the listener’s commu-

nities is quite simpler than the topology of the speaker-related communities. In

this case, the listeners exposed to the same external input synchronise their activ-

ity patterns, without having any direct communication. The observed community

structure is consistent when the stimuli and the threshold values are varied. Note

that the presence of community structure was confirmed as an essential feature of

this type of brain networks in [251] using the local algorithm.

Figure 3.48: Evolution of the brain-to-brain distance. The timeline (16 frames)
of the GED between brain activity networks of the listeners in group 1 (left) and
in group 2 (right) from both speakers S1 and S2 is shown for the stimulus1. Each
circle indicates the minimum distance from the corresponding speaker that occurred
during the process.

Quantitatively, the aggregate graph structure shows new topology features as

compared to the sum of the corresponding individual measures, i.e., in the case

of the additive FSV. In this way, the new structure emanating from the cross-

brain connections appropriately describes the social impact onto the individual brain
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activity that can be captured by EEG signals.

3.5.4 Conclusions

We have considered the social brain structure in two concrete examples of simul-

taneous EEG recordings during spoken communications (of 12 listeners and two

speakers narrating different subjects) by mapping the data onto the multi-brain

network and applying the methods of algebraic topology of graphs. We have shown

that the topology of higher-order complexes precisely quantifies the differences in the

brain activation pattern between the participants during the social communication.

Furthermore, the topology provides the accurate measure for the speakerlistener co-

ordination and the speaker’s impact onto a group of listeners. Our results also sug-

gest that the mechanisms for super-brain functioning during spoken communications

certainly involve strong frontal-to-frontal and parietal-to-parietal synchronization in

dyads. In a more general context, the study of higher-order combinatorial structures

by algebraic topology techniques provides a sensitive methodology to quantify the

shifts in the functional brain networks, e.g., under changed activity or condition.

By complementing the standard graph theory methods, the algebraic topology can

contribute to a more in-depth analysis of other brain imaging data.
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Chapter 4

Topological aspects of nonlinear

dynamical systems

In the research of dynamical systems, physicists observe time evolution of a real

world phenomenon as it evolve in time, where are observations are expressed like

numbers recorded as they change over time. For example, let’s consider the motion

of the planets across the celestial firmament. During the daily motion of stars

from East to West, planets distinguish themselves by moving among the fixed stars.

Ancients discovered that by knowing a sequence of planets positions, latitudes and

longitudes, its future position can be predicted. By tracking these coordinates on

the celestial sphere, it is possible to calculate all possible values for positions and

velocities of the planets and we form the phase space of the system [262][259]. Hence,

in general, a fixed point in phase space, the state of physical system at certain point

in time can be represented by a single point in an abstract space known as the

state space M. As the evolution of system occurs, the system changes and so does

representative point in state space and we assign dynamics to the evolution of such

point. The phase space trajectory represents a set of states located within the total

phase space, and represents a sequence of states of dynamical system, starting from

any initial condition. Evolution rule is a function f t which returns the value where

the representative point is at time t. Then the pair (M, f) characterize dynamical

system. Therefore, the term ”dynamical system” refers to any physical or abstract

singleton whose properties (from M) can be represented by the evolution rule given

on set of numbers, system variables, at any given time, and whose properties in

posterior time are uniquely determined by its present and past properties through

f .

There are two types of transformation rules depending on ”time”, continuous-

time systems and discrete-time systems [262][257]. For purpose of this thesis, focus
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will be on discrete-time dynamical systems. For example, in discrete-time systems

the evolution rules are expressed as equations:

x(t+ 1) = F(x(t); p, t),

where the vector x represents system variables, whereas the vector F represents a

function of all system variables for fixed values of parameters p. In discrete systems

function F directly gives x at the next time step, and the function F is also known

as a map that drive system from one time step to the next.

4.1 Nonlinear dynamical systems

A characteristic feature of nonlinear dynamical systems is that the equations of

motion contain at least one nonlinear term, such as a square or higher power of the

variable whose temporal or spatial, or spatiotemporal, evolution is followed, or some

threshold function. Nonlinear systems are also characterized by multiple attractors

[260][262], which are sets of numerical values toward which a system tends to evolve

for a broad collection of initial conditions of the system. Nevertheless, posterior

system states may be highly sensitive to its initial state and it gives a whole new set

of phenomena that are associated with the way in which the pool of attraction shifts

as parameters are changed. Nonlinearity may also affect the trajectory causing it to

become irregular, eventually lying on the so called strange attractor, and then the

trajectory is constrained to a region of state space where there are no fixed points

or no stable limit cycles. When this occurs, time evolution of two states of the

system that have close initial states rapidly diverge in later time. This phenomenon

is known as the deterministic chaos. The presence and intensity of chaos can be

measured via Lyapunov exponents λi [262], and the system is in the chaotic state

if one of the exponents is positive. Stated differently, two trajectories of variable

x with near initial states x0 and x′0 becomes widely separated in posterior time t,

δx = δx0e
λt, where δx = |x− x′| so that λ > 0 indicates that the system is chaotic.

Classification of dynamical system based on the degree of randomness is as fol-

lows [262] [261][260]:

• no chaos

– integrable systems

• deterministic chaos

– ergodic systems
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– mixing systems

– K-systems

– C-systems

• chaos (not deterministic)

– stochastic systems

An ergodic dynamical system is the one that has the same behavior averaged

over time as averaged over space of all the system’s states in its phase space. For

continuous system, ergodicity implies

lim
x→∞

1

T

∫ T

0

f(x̄(t))dt = 〈f(x̄)〉 ,

where function f is any smooth function of the phase space variable x̄,x̄(t) is a tra-

jectory in phase space and 〈f(x̄)〉 represents the average of f(x̄) over the space. The

last equation holds for almost every initial state considering the invariant measure.

Ergodicity represents the weakest form of randomness and chaos does not necessarily

appear in these systems.

A map is mixing if for any two measurable sets A and B the measure of the

intersection of T−nA with B converges to the product µ(A)µ(B), where T is mea-

surable self transformation of a set and µ is probability measure. Roughly this

means that after a long time every set A will spread evenly over the entire space

(its contribution in every set B will be nearly proportional to the size of B). Every

mixing system is ergodic. The notions of ergodicity and mixing (and many others)

mimic the behavior first observed in physical systems.

We say that the system is theK-system if there occurs invariant sets with positive

metric entropy. C-system is the one which is both chaotic and hyperbolic at every

point in phase space.

4.1.1 Recurrence

In the terminology of dynamical systems recurrence [21] indicates a time after which

the trajectory returns to very close to a location where it has been before (but with

constraints to a dynamical systems with finite volume). The recurrence of states in

nature has been known for a long time and discussed by many physicists, but the

most crucial theorem is given by Henri Poincaré. Poincaré recurrence theorem [268]

says that system will, after sufficiently long and finite time, return very close to the

initial state(time varies depending on the degree of closeness and the exact initial
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state). The Poincaré recurrence time τ is the time it takes for the trajectory to

return close to the phase space point which was visited at some previous occasion.

For the study of recurrence the Takens Embedding Theorem [267] is also of great

practical importance. The theorem shows how a time series of measurements of a

single observable can be efficiently used to reconstruct qualitative features of the

phase space of the system under study. The method relies on the use time delays

of the time series entries in order to reconstruct the trajectory of the system in

phase space. Suppose that a measurement of the system generates a time series

y(t1), y(t2), ...y(tN) which lies on a d-dimensional attractor of an n-th order dynam-

ical system. The initial stage of the application of the theorem is to obtain an

embedding from the time series. This is achieved by using time delay coordinates

for which a delay vector has the following form:

y(k) = [y(k), y(k − τ), ...y(k − (dE − 1)τ ]T ,

where dE is the embedding dimension, τ is the delay time and k is an integer. Takens

has shown that embedding with d 2n + 1 is sufficient generically, so that there is a

smooth map f :Rd → R, such that y(k + 1) = f(y(k)). The practical aspect of

the theorem relates to the estimation of the embedding dimension and the delay

time, which will be explained in the further text.

4.2 Topological view on Recurrence

As a continuation of the analysis of nonlinear dynamical systems from the point of

view of computational topology [272][273], the focus is shifted on the recurrency as

one of the characteristic properties of dynamic systems. Many natural processes ex-

hibit either regular cyclic behavior, e.g. periodic behavior or behavior characterized

by irregular cycles. The distinctive feature of deterministic dynamical systems, and

in particular of nonlinear and chaotic systems, is the recurrence of states in phase

space in the sense that states become arbitrarily close after certain amount of time.

Phase space is often high dimensional and the only way to visualize it is by project-

ing it on a two or three dimensional sub-spaces. In order to visualize the recurrence

of states −→x i in a high dimensional phase space a tool known as the recurrent plots

was introduced [266]. Here the state of the system is a phase space trajectory usually

reconstructed using time series ui(t) of only one dynamical variable [263], [264]

−→x i = (ui, ui+τ , ..., ui+(m−1)τ )
T ,
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where m is the embedding dimension and τ is the delay time (τ = τ ∆t ). After

Takens theorem the topological structure of the original trajectory is preserved pro-

vided that m ≥ 2d + 1, where d is the dimension of the attractor. This approach

provides a means to study trajectories in a phase space, say with dimension m, by

means of a two-dimensional representation of the recurrent states. The recurrence

of a state i at certain subsequent time j is represented in the two-dimensional re-

current plot as a square matrix with, in the original formulation, black and white

dots, with black dots indicating recurrence and with both axis representing time.

Mathematical expression of recurrence of the state −→x i with respect to the state −→x j

is:

Rij = Θ(ε− ‖yi − yj‖),

where Θ(·) is the Heaviside function, ε is the threshold distance and Rij is the

recurrence plot. So if yi ≈ yj, Rij ≡ 1 and we call this the recurrence point.

Choice of parameters τ and m is based on methods originating from phase space

reconstruction like the method of false nearest neighbors and mutual information.

These methods ensure determination of the whole covering of all free parameters,

and the avoidance of autocorrelated effects [265].

The presence of threshold distance ε in the above expression implies that the

recurrence is defined as a state −→x j which is sufficiently close to the initial state −→x i

since the state of the nonlinear dynamic system rarely recurs at the exact initial state

but approaches it arbitrarily close. The state −→x j that belong to a neighborhood of
−→x i of radius εi which may be, for example, in the form of a m-dimensional sphere for

the L2-norm or a box for the L∞ norm, are called recurrent points. The properties

of the dynamical system are inferred from the recurrent plot by considering all

recurrent points in their totality and not from a single recurrent point which, by its

definition, does not involve any information about the current states at times i and

j. Recurrence plots of dynamical systems exhibit specific structural properties in the

form of large scale and small scale patterns [21]. Careful inspection of the expression

4.2 suggests that the recurrence matrix R may be interpreted in several different

ways. First, the recurrence matrix R may be viewed as the adjacency matrix A

of an unweighted complex network. Second, it may be interpreted as an incidence

matrix M of a neighborhood (simplicial) complex associated with the dynamics of

the system.

The choice of the threshold distance requires special consideration, since ideally

it should be as small as possible, however in practice one has to put in use a crite-

rion which would reflect the dynamics of the system as well as the effects of noise.
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Choosing the right parameter ε is crucial moment and special attention is required

for its choice. If ε is chosen to small, almost no recurrence point will be shown

in recurrence plot and we will not be able to learn anything about the structure

of underlying system. On the other hand, if ε is too large, then the large number

of recurrence points will be in ε neighborhood including consecutive points on the

trajectory. In the course of solving these issues, there are several criteria given for

different cases of dynamical systems [269, 270, 271].

Considering the homology of recurrence plot, it is shown that there is no need

that embedding dimension is m > 2n [273]. Namely, the persistence of the rank

of homology groups occurs on dimensions lower than 2n, and the embedded phase

space is homology invariant to underlying dynamical system.

In order to make the dimension of homology groups computable in case of a large

data set, we will also use homology invariant witness complex [272], more precisely

fuzzy witness complex. We determine two data sets W ⊂ Rm, formed by witnesses,

and associated set L ⊂ Rm, formed by landmarks, which may overlap with the set

W . Landmarks represent vertices of the complex and connection between them

depends on geometrical relationships between elements of w ∈ W and l ∈ L. So,

the point w is a witness of a q-dimensional simplex σ = {l1, l2, ..., lq+1} if w ∈ r-

neighborhood of every li ∈ σ. Simpler implementation of this type is fuzzy or lazy

witness complex. The fuzzy witness set of point l ∈ L is a set of witnesses

Wω(l) = {w ∈ W : ‖w − l‖ ≤ min
l′∈L

(‖w − l′‖+ ω)}

A simplex σi in a neighborhood complex represent the density of points represent-

ing states within ”epsilon” environment of a state i in phase space of the underlying

dynamical system. Connectivity chain in neighborhood complex describes density of

states of the phase space at trajectory’s vicinity in the underlying dynamical system.

Hence, the obtained witness complex represents the topological coarse graining of

the neighborhood complex, since structural features are preserved.
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Chapter 5

Application and results 2

Simulations for Lorenz and Rössler dynamical systems as well as for stochastic sys-

tem, are performed for 7000-8000 time steps for different sets of parameters of these

dynamical systems. In order to compare the properties of recurrent simplicial com-

plexes of these systems computed for the same ε-neighborhood, it is necessary to

normalize the amplitudes of time series to the same scale [0, 1]. Then, the mutual

information method is used for finding τ , and relying on the calculations of the [273]

false nearest neighbors method, we set the embedding dimensions to m = {3, 4}.
When systems become stabilized, 2200-2300 points of the underlying time series

were taken for further reconstruction of the phase space features. Results for the

Lorenz and Rössler attractors and for the stochastic process will be presented in the

subsequent Sections. Since there is a large fluctuation in amplitudes of these signals

in order to compare the same results relating to the same ε, the normalization is

performed thus scaling the amplitudes scaled to {0, 1}. For the Lorenz and Rössler

systems only variable was used. We have chosen to represent the results pertaining

to the x-variable while the results are similar for the other two variables, y and z,

when we keep all other parameters the same.

5.1 Lorenz attractor

The Lorenz system, originally developed by Edward Lorenz, is a system of ordinary

differential equations which represent a simplified model of atmospheric convection.

It is notable for having a chaotic solutions for certain parameter values and initial

conditions. The system of three ordinary differential equations of the model is:

dx

dt
= σ(y − x),
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dy

dt
= x(ρ− z)− y,

dx

dt
= xy − βz,

where ρ, σ, β ∈ R are the parameters of Lorenz system which is invariant under the

transformation (x, y, z) → (−x,−y, z). Lorenz system has sensitive dependance on

initial conditions for the set of parameter σ = 10, β = 8/3, and ρ = 28, forming the

well-known butterfly-shaped Lorenz attractor, which is probably the most recogniz-

able example of chaotic attractor. In order to study the recurrent dynamics only

the parameter ρ is changed while parameters σ = 10 and β = 8/3 are kept fixed.

Variation parameter ρ is taking value from the set {10, 13.93, 16, 24.05, 24.73, 28}.
Three values of considerable importance for further analysis are those corresponding

to the chaotic regime of the Lorenz system, i.e. for ρ ≥ 24.05:

1. Heteroclinic bifurcation occurs at ρ = 24.05,

2. Hopf bifurcation at ρ = 24.73 and

3. butterfly at ρ = 28.

The analysis starts with simulation of Lorenz system for various ρ.

Figure 5.1: From the left to right: Lorenz system for parameter ρ = {16, 24.73, 28}.
Top three figures represents Lorenz attractor for different ρ , bottom three figures
represent time series of X axis respectively to the top figures

Using method presented in the previous section, we reconstruct the normalized

time series forming two-dimensional adjacency matrix, i.e. the recurrence plot.
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Using reconstruction parameters m = 3, ε = 0.1, L = 200, the Lorenz attractor 5.1

is reconstructed in adjacency matrices presented in 5.2.

a b

c d

Figure 5.2: Recurrence plot of witness complex (200 landmarks) of the Lorenz at-
tractor for ρ = {16, 24.05, 24.73, 28} respectively

Simplicial complex analysis provide an information about the topological struc-

tures of obtained witness complexes, in the form of structure vectors 5.4. When

approaching chaotic behavior, at bifurcation points above ρ = 24.05, the structure

of simplicial complex displays different organization with respect to the dynam-

ics near other bifurcation points, such as homoclinic bifurcation (ρ = 13.93) or

where perturbation occurs (ρ = 16) [274]. After transition to chaos happens at

heteroclinic bifurcation, all structures of a given simplicial complexes follow the

same behavior. They create more complicated complexes according to formula

ΨQ = 2
(D+1)(D+2)

∑D
i=0(i+1)Qi presented at Fig 5.3a, where ΨQ of simplicial complex

Σ is representing simplicial complexity [275], D = dim(Σ) is dimension of simplicial

complex Σ. Simplicial complexes describing system in chaotic regime are creating
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large number of clusters in terms of connectivity components in structure vectors

compared to complexes that are describing pre-chaotic systems. Since Q-vector in

chaotic regimes has higher component values than in pre-chaotic regime, phase space

is less dense and more replete in the chaotic regime.

a b

Figure 5.3: (a) The complexity ΨQ and the entropy HQ and (b) Simplices volume
distribution of witness complex of the Lorenz attractor

a b

Figure 5.4: Structure vector of witness complex of the Lorenz attractor for various
ρ.

From results presented in Fig 5.5, we can observe that all simplicial complexes

constructed on the butterfly attractor preserve two 1-dimensional holes. Simplicial

complexes reconstructed from attractors at the heteroclinic point and the Hopf bi-

furcation point have almost the same topological structure as simplicial complex

obtained from butterfly attractor, nevertheless the dimension of homology is signif-
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a b

Figure 5.5: (a) Betti1 and the dimension of simplicial complexes for various ρ, and
(b) Betti1 number per connectivity classes Betti1

Qq
for different q dimensions of witness

complex of the Lorenz attractor

icantly higher compared to butterfly attractor and decay toward lower values of ρ.

Hence, when comparing both complexity and homology of these regimes, we can

conclude that more complex simplicial complexes are formed near and in the regime

of chaotic dynamics. Though this conclusion is rather expected, its significance lies

in the inherent topological origins of such behavior, not seen previously by com-

mon methods. Preservation of holes within connectivity class at higher topological

dimension does not occur. Additional holes in the system at bifurcation point disap-

pear at q = 2 and the system become more similar to the chaotic one. These results

are suggesting a way to differentiate various regimes in unknown dynamical system.

At q = 2 all chaotic systems follow the same behavior and the same happens for

pre-chaotic regimes.

We also explored differences in the structure, the simplicial complexity and ho-

mology when system is at the bifurcation point in transition to chaos, and when

system is close to the bifurcation point that is also in chaotic regime as presented

in Fig. 5.6. From the topological structure of complexes we found that they still

follow the same behavior, the complexity is similar, but the main difference is in the

dimension of homology group at dimension 1. From Fig 5.6a we can see that the

homology group dimension at the specified simplicial complex dimension is higher

for states of bifurcation compared to chaotic regimes near bifurcation point, and

hence we are able to differentiate whether the system is at the bifurcation point or

not, when it is already in the chaotic regime.

In figure 5.7 is presented different, but more common, graphical display of di-
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a b

Figure 5.6: (a) Betti1 and dimension of simplicial complexes for ρ above heteroclinic
bifurcation and (b) the first structure vector for ρ above heteroclinic bifurcation for
the witness complex of the Lorenz attractor

mension of the first homology group.

a b

Figure 5.7: Betti1 bar-code of witness complex of the Lorenz attractor

Simplicial volume V =
√
n+1

n!
√

2n
represents subvolume of phase space where simplices

lives and its relative value can serve as the probability of finding the dynamical sys-

tem in that part of initial phase space. Information-like entropy evaluated of the

first structure vector HQ is defined as HQ = −
∑i=qmax

i=0 QilogQi. We can observe

from Fig 5.3a that complexity ψQ has qualitatively similar behavior as HQ. Sim-

plices volume distribution is shown at Fig 5.3b. Following the same behavior as in

previously analyzed properties, chaotic and nearly chaotic system showing us simi-

lar distribution of simplicial volume, but heteroclinic bifurcation shows interesting

distribution that diverges from all other regimes.
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5.2 Rössler attractor

a b

c d

.

Figure 5.8: Attractors of Rössler systems for a = b = 0.2 and for c =
{2.3, 3.3, 5.3, 6.3} respectively

The Rössler system is defined by three nonlinear differential equations, originally

studied by Otto Rössler:

dx

dt
= −y − z,

dy

dt
= x+ ay,

dx

dt
= b+ z(x− c).

where a, b, c are parameters, and x, y, z are three variables of the system. For

certain values of parameters, this system is noticeable for the specific shape of the

Rössler attractor. In this study we fixed parameters a = b = 0.2 and vary parameter

c. For c = 2.3 5.8 (a) we get one limit cycle attractor, for c = 3.3 5.8 (b) two limit

cycle attractor for c = 5.3 5.8 (c) and three limit cycle chaotic attractor for c = 6.3

5.8 (d). Using method presented in the previous section, we reconstructed the

normalized time series into two-dimensional adjacency matrix, i.e. the recurrence

plot. Using reconstruction parameters m = 3, ε = 0.1, L = 200, the Rössler
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attractor 5.8 is presented as a recurrence plot in 5.9.

a b

c d

.

Figure 5.9: Recurrence plot of witness complex (200 landmarks) of the Rössler
attractor for a = b = 0.2 and different values of c = {2.3, 3.3, 5.3, 6.3}

From the aspect of topological structure a similar behavior is found in the Rössler

attractor as in the case of the Lorenz attractor. The homology of obtained simplicial

complexes and its complexity are presented in Figs 5.10 and 5.11. Also structures

increase in complexity, from the topological point of view, with the increasing chaos,

and the dimension of homology group is preserved longer in connectivity classes than

in regimes before the chaotic regime occurs. The same qualitative behavior is seen

when analyzing the simplices volume distribution, presented in Fig. 5.11 (c), where

it is especially interesting to note that the same features are for the one limit cycle

attractor as for the heteroclinic bifurcation in the Lorenz system - far before the

chaos occurs.

5.3 Stochastic signal versus deterministic chaos

In order to compare topological features between deterministic chaos and stochastic

process, we decide to take the time series of a stochastic signal, presented in Fig.

5.12(a), which represents the velocity fluctuations as a function of time in fully

developed turbulence [276].
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a b

Figure 5.10: First (a) and third (b) structure vectors of witness complex of the
Rössler attractor

a b c

Figure 5.11: (a) Betti1 and dimension of simplicial complexes for various c , (b)
Betti1 number for different q dimension, and (c) simplices volume distribution, for
witness complex of the Rössler attractor

a b

Figure 5.12: (a) Time series of stochastic signal and (b) recurrence plot of witness
complex (200 landmarks) obtained from time series of stochastic signal

Comparing first structure vectors, presented in Fig. 5.13(a), we concluded that

topology of simplicial complex obtained from stochastic signal has lower complexity

than in Lorenz and Rössler attractors in chaotic regimes. From our experience, this
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a b

Figure 5.13: (a) First structure vectors and (b) volume distribution of recurrent
simplicial complexes of stochastic signal and Lorenz and Rössler attractors in chaotic
regimes

is expected behavior since first structure vector behaves as in other random processes

which topological complexity turned to has the lowest complexity compared to other

systems. Therefore, the most intense chaos has lower topological complexity than

deterministic chaos.
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Chapter 6

Conclusion and future

perspectives

We found the proper way to recognize simplicial communities in emotion propagating

network and find ”key players” for switching emotions about the current subject.

When emergence of knowledge occurs in temporal complex network, crucial role

for creating collective knowledge is in the innovation channel containing high order

simplices in it and its growth and the increased topological complexity over time

provides the evolution pattern of the entire network. It systematically obeys the

sensible connections of contents.

The detailed structure of the phase-space manifolds revealed by the algebraic

topology technique contains vital knowledge about the systems collective behavior.

The methods introduced here can yield insights into a variety of dynamical regimes

occurring in complex systems, in particular, systems exhibiting a phase transition,

percolation, explosive percolation, and others.

Regarding the social neurology problem, the study of higher-order combinatorial

structures by algebraic topology techniques provides a sensitive methodology to

quantify the shifts in the functional brain networks, e.g., under changed activity

or condition. By complementing the standard graph theory methods, the algebraic

topology can contribute to a more in-depth analysis of other brain imaging data.

Main results regarding the nonlinear dynamical systems showed us that complex-

ity, both from topological and combinatorial aspects, of obtained simplicial com-

plexes from chaotic attractors is more pronounced than in pre-chaotic attractors.

Also, we found behavioral pattern which shows longer perseverance of homology

group within connectivity classes in chaotic than in pre-chaotic dynamical regimes.

Also, the dimension of homology group is highest at the bifurcation points. Us-

ing Takens embedding theorem and adapting algebraic topology tools for analyzing
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nonlinear dynamical systems we are able to detect an unknown regime of dynamical

system from a single time series, regardless of its inherent dimension.

Future perspectives for the studies which rely on topological methods are very

broad since the methods may be applied to a large number of different complex

systems from research areas such as sociology, biology, economics and others. The

use of simplicial complex approach is applicable in every system that is defined in a

discrete form.

All the results obtained by the use of algebraic topology, in particular by studying

the properties of simplicial complexes formed from the available data, offer deep

insight on hidden topology of complex systems which remain unnoticed by standard

methods of analysis of complex systems, particularly the ones based on the analysis

of time-series or graph theory.
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and their statistical properties, in: Computational Science ICCS 2008, in: Lecture

Notes in Computer Science, vol. 5102, Springer, Berlin Heidelberg, 2008, pp.

568575.

[52] -s75 J. R. Munkres, Elements of Algebraic Topology, Addison-Wesley Publish-

ing, California, 1984.

130



[53] -s13 C. H. Dowker, Homology groups of relations, Annals of Mathematics 56,

84, 1952.

[54] -s10 D. Kozlov, Combinatorial Algebraic Topology, Algorithms and Computa-

tion in Mathematics, Springer-Verlag, Berlin Heidelberg, 2008

[55] T. E. Goldberg, Combinatorial Laplacians of Simplicial Complexes, Annandale-

on-Hudson, New York, 2002.

[56]

[57] A. M. Duval, V. Reiner, Shifted Simplicial Complexes are Laplacian Integral,

Transactions of the American Mathematical Society 354(11), 4313, 2002.

[58] -schom22 T. E. Goldberg, Combinatorial Laplacians of Simplicial Complexes,

Annandale-on-Hudson, New York, 2002.

[59] W. V. D. Hodge, The Theory and applications of harmonic integrals, Cambridge

at the University Press, 1952.

[60] J. Friedman, Computing Betti numbers via combinatorial Laplacians, Proc.

28th Annual ACM Symposium, Theory and Computations, 386, 1996

[61] M. Andjelkovic ,B. Tadic , M. Mitrović-Dankulov , M. Rajkovic, R. Mel-
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godine i završio sa prosečnom ocenom 10.00. Master rad pod naslovom ”O uticaju

prenosa informacije i topologije mreže agenata na model dvostruke kontinualne auk-
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