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Dissertation title: Functional norm regularization for margin-based ranking on

temporal data

Abstract: Quantifying the properties of interest is an important problem in
many domains, e.g., assessing the condition of a patient, estimating the risk of an
investment or relevance of the search result. However, the properties of interest are
often latent and hard to assess directly, making it difficult to obtain classification
or regression labels, which are needed to learn a predictive models from observable
features. In such cases, it is typically much easier to obtain relative comparison of
two instances, i.e. to assess which one is more intense (with respect to the property
of interest). One framework able to learn from such kind of supervised information
is ranking SVM, and it will make a basis of our approach.

Applications in bio-medical datasets typically have specific additional challenges.
First, and the major one, is the limited amount of data examples, due to an expen-
sive measuring technology, and /or infrequency of conditions of interest. Such limited
number of examples makes both identification of patterns/models and their valida-
tion less useful and reliable. Repeated samples from the same subject are collected
on multiple occasions over time, which breaks IID sample assumption and introduces
dependency structure that needs to be taken into account more appropriately. Also,
feature vectors are highdimensional, and typically of much higher cardinality than
the number of samples, making models less useful and their learning less efficient.

Hypothesis of this dissertation is that use of the functional norm regulariza-
tion can help alleviating mentioned challenges, by improving generalization abilities
and/or learning efficiency of predictive models, in this case specifically of the ap-
proaches based on the ranking SVM framework.

The temporal nature of data was addressed with loss that fosters temporal

smoothness of functional mapping, thus accounting for assumption that temporally
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proximate samples are more correlated. Large number of feature variables was han-
dled using the sparsity inducing L; norm, such that most of the features have zero
effect in learned functional mapping. Proposed sparse (temporal) ranking objective
is convex but non-differentiable, therefore smooth dual form is derived, taking the
form of quadratic function with box constraints, which allows efficient optimization.
For the case where there are multiple similar tasks, joint learning approach based
on matrix norm regularization, using trace norm L, and sparse row Ls; norm was
also proposed. Alternate minimization with proximal optimization algorithm was
developed to solve the mentioned multi-task objective.

Generalization potentials of the proposed high-dimensional and multi-task rank-
ing formulations were assessed in series of evaluations on synthetically generated and
real datasets. The high-dimensional approach was applied to disease severity score
learning from gene expression data in human influenza cases, and compared against
several alternative approaches. Application resulted in scoring function with im-
proved predictive performance, as measured by fraction of correctly ordered testing
pairs, and a set of selected features of high robustness, according to three similarity
measures. The multi-task approach was applied to three human viral infection prob-
lems, and for learning the exam scores in Math and English. Proposed formulation
with mixed matrix norm was overall more accurate than formulations with single

norm regularization.

Key words: SVM ranking, scoring function learning, functional norm
regularization, proximal algorithms for optimization, temporal data
Scientiffic field: Electrical Engineering and Computer Sciences
Scientiffic subfield: Data analysis and machine learning

UDC number: 004.8
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Naslov teze: Primena funkcionalnih normi za reularizaciju rangiranja nad

temporalnim podacima

Sazetak: Kvantifikovanje osobina (karakteristika) od interesa je vazan problem
u mnogim domenima, npr. utvrdivanje tezine bolesti kod pacijenata, ocena rizika
investicije ili relevantnost vracenih rezultata pretrage. Medutim, osobine od interesa
su cesto latentne i tesko se mogu izmeriti direktno, Sto otezava dobijanje klasifika-
cionih oznaka (labela) ili ciljeva za regresiju, koji su potrebni za ucenje prediktivnih
modela iz merljivih karakteristika. U takvim sluc¢ajevima obi¢no je mnogo lakse
pribaviti relativno poredenje dva slucaja, tj. proceniti koji od dva je intenzivniji (iz
ugla karakteristike od interesa). Jedna klasa algoritama koji mogu uéiti iz ovakvih
informacija je SVM za rangiranje i on ¢e biti osnova ovde predlozenog pristupa.

Aplikacije na biomedicinskim skupovima podataka obi¢no imaju dodatne (specifiéne)
izazove. Prvi, i najvazniji, je ograni¢ena koli¢ina primera u podacima. To se najceSce
desava zbog skupih tehnologija merenja i / ili retkosti stanja od interesa (na primer
oblik raka koji pogada jako mali broj pacijenata). Takav ogranic¢eni broj primera ¢ini
i identifikaciju obrazaca / modela i njihovu validaciju manje korisnim i pouzdanim.
Ponovljeni uzorci (od istog procesa / subjekta) prikupljaju se u vise navrata tokom
vremena, $to razbija pretpostavku o identi¢noj i nezavisnoj rspodeli (IID) uzorka i
uvodi strukturu zavisnosti koju je potrebno uzeti u obzir. Takode, vektori obelezja
su visokodimenzionalni i obi¢no imaju mnogo vecu kardinalnost u odnosu na broj
uzoraka, ¢ine¢i modele manje korisnim a njihovo obucavanje manje efikasnim.

Hipoteza ove disertacije je da koriScéenje funkcionalnih normi za regularizaciju
moze pomoci ublazavanju prethodno pomenutih izazova, pritom poboljsavajuci gen-
eralizacione sposobnosti i / ili efikasnost uc¢enja prediktivnih modela, u ovom scuéaju
konkretno o pristupima zasnovanim na rangiranju pomoc¢u SVM-a.

Vremenski karakter podataka adresiran je koriS¢enjem objektiva koji podstice
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vremensku glatkost funkcionalnog mapiranja, ¢ime se uzima u obzir pretpostavka da
su vremenski bliski uzorci vise korelisani, te trebaju imati sli¢nije vrednosti mapirane
funkcije. Problem velikog broja promenljivih je adresiran koris¢éenjem L; norme koja
indukuje proredenost, tako da vecina varijabli nema efekat na nauc¢eno funkcionalno
mapiranje. Predlozeni objektiv za proredeno (vremensko) rangiranje je konveksan,
ali ne-diferencijabilan, stoga se izvodi glatka dvojna forma, koja ima oblik kvadratne
funkcije sa konstantnim ogranic¢enjima, Sto omogucava efikasnu optimizaciju. U
slucajevima gde postoji vise slicnih zadataka, predlozen je i zajednicki pristup ucenja
zasnovan na normativnoj regularizaciji matrice, koris¢enjem “tragovne” norme L,
i norme za proredenost po redovima Ls;. Pomenuti viSestruki objektiv je resen
predlozenim metodom naizmeniéne minimizacije upotrebom algoritama proksimalne
optimizacije.

Generalizacioni potencijal predlozenih formulacija za resavanje visokodimenzion-
alnih i visestrukih problema rangiranja procenjen je u nizu evaluacija na sinteticki
generisanim i realnim podacima. Visoko-dimenzionalni pristup primenjen je na
ucenje funkcije bodovanja tezine bolesti iz podataka o ekspresiji gena kod slucajeva
ljudskog gripa i uporedivan je sa nekoliko alternativnih pristupa. Aplikacija je rezul-
tirala funkcijom bodovanja sa poboljsanim prediktivnim performansama, mereno
udelom ispravno poredanih test parova i skupom odabranih obelezja visoke robus-
nosti, prema tri mere slicnosti. Visestruki pristup je primenjen na problemima sa
ispitivanjem tolerancije ljudi na tri virusine respiratorne infekcije, kao i za bodovanje
ispita iz matematike i engleskog jezika. Predlozena formulacija sa meSovitom ma-
tricnom normom se ispostavila superiornijom u odnosu na formulacije sa regulacijom

pomocu pojedinacnih normi.

Kljuéne reci: SVM rangiranje, ucenje funkcija za bodovanje, funkcionalna

regularizacija normama, proksimalni algoritmi za optimizaciju, temporalni podaci
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CHAPTER 1

INTRODUCTION

Quantifying properties of interest is integral to many domains, e.g., assessing the
condition of a patient (Vincent et al., 1996), estimating the risk of an investment (An-
derson, 2007), or predicting binding affinity of a ligand (Ashtawy and Mahapatra,
2015) when developing new drugs. For example, diseases and other health conditions
require continuous monitoring and assessment of the subject’s state. The severity
of the condition needs to be quantified, such that it can subsequently be used to
guide medical decisions and allow appropriate and timely interventions. Hence, var-
ious measuring technologies and sensors are devised to quantify such properties of
interest, which are in turn utilized for informing decisions and making appropriate
actions.

However, very often, the properties of interest are not easy to obtain, whether
they are difficult to measure directly or completely unobservable. This is usually
the case when the properties are conceptual, i.e. they are latent constructs, such as
health, satisfaction, or intelligence, and are notoriously difficult to capture physically.
Under these circumstances, other measurable characteristics, considered related and

informative of the true underlying target, are observed and used as surrogate vari-
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ables. For example, in clinical settings, variables like temperature, blood pressure
and various biomarkers measured from tissues are commonly tracked and considered
when determining the health of the patient.

Typically, some heuristic rules are decided to map these surrogate variables into
the desired score. The process of deciding these heuristic rules (or scoring functions)
is usually long and tedious. For example, disease severity scores that are needed in
clinical practices for patient diagnostics require years of effort and consensus of the
medical community before the scoring functions can become part of the protocols.
Fortunately, developments in machine learning and increasing amounts of the col-
lected data allowed for an alternative and complementary way for engineering the
scoring functions by extracting rules automatically from the data, which facilitates
and complements traditional approaches.

Algorithms for learning scoring functions from data were previously proposed,
mainly in the medical domain, with the objective to learn disease severity scores (Yang
et al., 2012; Santolino and Boucher, 2009; Dyagilev and Saria, 2015b,a; Zhou et al.,
2012). Initial approaches posed the problem as traditional supervised learning tasks
of classification (Yang et al., 2012; Santolino and Boucher, 2009) and regression (Zhou
et al., 2012). However, classification and regression approaches require scores to al-
ready be accessible up front, which limits their applicability to problems with a good
surrogate. The approach in (Dyagilev and Saria, 2015a,b) suggests the very appeal-
ing idea that there is a more convenient alternative form of supervised information
to learn the scoring function from. Namely, ranked pairs are much easier to obtain
than direct score estimates, and moreover, learning from pairs of ranked examples
may result in more reliable and robust scoring functions.

First, we extend the suggested ranking-based approach (Dyagilev and Saria,
2015a) for score learning in multi-task settings. These efforts are motivated by
applications in which there are multiple related tasks, with a limited amount of data
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for each task. Related tasks commonly share underlying regularities which could be
learned more accurately by modeling all tasks together. For example, in education,
scores on different subjects (e.g. Math and English) are dependent on the same char-
acteristics of a particular student and a particular school. In the medical domain,
disease severity scores for related illnesses (e.g. various respiratory viral infections)
are expected to share common underlying biological mechanisms. Consequently, we
propose a novel multi-task formulation for learning scoring functions from pairwise
comparisons, by enforcing structural regularities on joint parameter space, using a
matrix norm regularization. In addition, we provide another contribution by devel-
oping an optimization algorithm in the form of an alternate minimization scheme
based on a proximal gradient method.

Second, we propose an approach to the problem of learning disease severity scores
in presence of irrelevant or large number of variables. We build on top of existing
efforts by simultaneously performing feature selections that are most relevant for
severity score learning. In particular, we are introducing the L; norm in the for-
mulation of ranking SVM (Joachims, 2002) along with the temporal smoothness
loss (Dyagilev and Saria, 2015a). Attractive regularization properties of L; norm are
already well acknowledged and exploited in a number of statistical learning methods
since its introduction (Tibshirani, 1996; Shaobing and Donoho, 1994). The proposed
formulation of sparse severity score learning forces weights of (most of) the features
to be exactly zero, therefore effectively performing feature selection by learning the
sparse linear scoring function. This novel severity score objective function is convex
and non-smooth and it precludes the direct use of convenient optimization tools like
gradient-based methods. Therefore, we are also providing the reformulation of the
problem into its dual that is smooth and that allows efficient optimization. Other
than learning the severity score from the data, which is an important instrument for
assessing severity, the methodology may also be used to discover the most relevant
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variables/features for the disease severity phenotype. Such findings might be further
used to suggest novel (testable) hypotheses about causal relations leading to disease
manifestation, and also to inspire novel therapeutic approaches.

The reminder of the thesis is structured as follows:

First, a current state of the art in scoring function learning, high-dimensional
and multi-task methods, as well as proximal algorithms is reviewed in Related Work
Chapter.

Next, the proposed methodology is described in two Method Chapters, one for
multi-task method, and another for high-dimensional approach. The two Method
Chapters details the proposed new formulations of multi-task, and of high-dimensional
ranking in temporal conditions, along with the derivation of their solutions. The re-
sults of application and evaluation of the two approaches are also divided in two
Chapters.

In the first Results Chapter we evaluated generalization ability of multi-task
framework. Initially, the evaluation is performed on synthetic data and subsequently
in two real-world applications. The objective of the first application is learning exam
scores of elementary school pupils, while the objective of the second application is
learning the tolerance to respiratory viral infections in humans. The results suggests
increased prediction accuracy of the proposed approach over the alternatives that
are trained on individual tasks.

The following Results section is dedicated to evaluation of high-dimensional rank-
ing model on a set of intuitive synthetic examples, where the advantages of sparse
severity score framework over the non-sparse one are apparent. The results section
continues with the assessment on a real-life applications, a gene expression dataset of
H3N2 viral infection responses in humans, and gene expression data of (frog) tadpole
bacteria infection. Efficacy, as well as the robustness of the proposed method, are

compared favorably against multiple alternative methods. The analysis is followed

4



with gene ontology over-representation analysis of the discovered subset of genes
most relevant for the scoring function.

Finally, contributions and limitations of the work presented in this thesis, are
summarized and discussed in the Conclusion Chapter. Two additional appendices
details used human respiratory virus datasets and part of the results regarding the
feature selection stability analysis. At the end of the dissertation, there are Bibliog-

raphy and author Biography details.



CHAPTER 2

RELATED WORK

Early efforts to learn scoring functions were dependent on complete supervised in-
formation (e.g. classification and regression tasks). In the classification settings,
where the discrete class labels are provided, the classification methods were used to
estimate the probability of a sample belonging to a certain class; these probabilities
were used as a scoring function. For example, the method in (Yang et al., 2012) uses
sparsity inducing L; norm in combination with a classical logistic loss function to
learn the disease severity scoring function for assessing the abnormality of the skull

in craniosynostosis cases.
2.1 Ranking Based Methods

The problem with such completely-supervised methods is the necessity of providing
direct values of scores for training purposes, which render the approaches as less pow-
erful in settings where characteristics of interest are latent and not directly accessible.
However, rather than giving direct estimates of the score, an easier task seems to be
comparing two samples and asserting whether one has a higher score than the other.

Ranking SVM (Joachims, 2002) was the first approach that recognized the benefits of

6



learning desired functional mappings from ordered pairs of examples. This method
was applied to learn an improved relevance function for documents retrieval from
click-through data. Main insight was that clicked links are certainly more relevant
for the search, as compared to non-clicked ones. And such kind of data is much more
abundant than the user provided rankings. Sparse versions were proposed afterwards
like (Bi et al., 2003; Lai et al., 2013). Recently, the ranking SVM-based method was
adopted for Sepsis severity score learning (Dyagilev and Saria, 2015a) and extended
for temporal applications by introducing a term that ensures gradual score change
over consecutive time points. Another ranking method with addition of fused lasso
regularization was proposed, which simultaneously performs supervised binning to
discretize the continuous features and aid in model interpretability (Sokolovska et al.,

2017).

2.2 Multi-task Learning

Multi-task learning is based on the idea that generalization (predictive performance)
can be increased by accounting for the intrinsic relationships among multiple tasks.
Multi-task approach is perceived particularly effective when the number of samples
for each particular task is small.

One of the approaches is structured regression, which seeks to discover and exploit
the relatedness structure among the tasks. Common class of modeling approaches to
structured regression are undirected Probabilistic Graphical Models named Markov
Networks, or Markov Random Fields (MRF). Discriminative models are often pre-
ferred, over the generative ones, as more accurate due to relaxations of indepen-
dence assumptions (Sutton and McCallum, 2006). That is why Conditional Random
Fields (Lafferty et al., 2001) are extensively applied in various domains, including
Computer Vision (Peng and McCallum, 2006), Natural Language Processing prob-
lems (Kumar and Hebert, 2004) and Bioinformatics (Sato and Sakakibara, 2005), and
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various formulations of CRF models named Gaussian Conditional Random Fields
(GCRF) were proposed (Tappen et al., 2007; Radosavljevic et al., 2010; Stojanovic
et al., 2015, 2016; Gligorijevic et al., 2015, 2016; Vujicic et al., 2017).

Other multi-task regression methods exist that learn the structure among the
tasks using norm regularization (Wytock and Kolter, 2013; Zhou et al., 2011), or
methods that utilize fixed relatedness structure (Stojkovic et al., 2016a) obtained
from domain knowledge (Stojkovic and Obradovic, 2017a) or learned from a sta-
tistical correlation (Stojkovic et al., 2017a). However, since they are not directly
proposed for ranking-based learning of the scoring functions, we will not consider
them, nor will compare with them in this work.

To the best of our knowledge, there are no published multi-task formulations
for ranking-based scoring functions, that is, for methods that learn from pairwise
comparisons. And especially the ones that handle temporal data. Hence, we propose
such formulation and provided solution for its training. The closest approaches are
the multi-task regression-based models for Alzheimer’s disease progression (Zhou

et al., 2012) and search results ranking (Bai et al., 2009).
2.3 Functional Norm Regularization

The main problem in multi-task learning is finding the most appropriate assumption
on how the tasks are related and incorporating such assumption into the model.
Typically, in linear models, such structural assumptions are imposed on the joint
parameter matrix, where rows correspond to features and columns correspond to dif-
ferent tasks. Kernel methods assume that all tasks are related and similar (Evgeniou
et al., 2005), but some methods enforce tasks to be grouped into clusters (Jacob et al.,
2009). For example, “Dirty method” (Jalali et al., 2010) encourages block-structured
row-sparsity in the joint parameter matrix by ||.||;,1 norm, and element-wise sparsity

with ||.|1,,0. The robust approach (Gong et al., 2012) selects sparse rows of features
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for related tasks with |.|2,; and dense columns for outlier tasks with ||.|; 2, in order to
discern between related and unrelated tasks. Other approaches assume some shared
common set of features (Argyriou et al., 2008) or shared common subspace (Ando
and Zhang, 2005; Chen et al., 2009). The approach proposed in (Chen et al., 2011)
attempts to learn such relatedness subspace with trace (nuclear) norm |.|. by en-
couraging the parameter matrix to have low rank, and finding outlier tasks with
additional sparse group norm |.|; 2. While, the approach in (Ghalwash et al., 2016)

combines |.|; and |.|, to perform structured feature selection.
2.4 Proximal Algorithms

Proximal algorithms are a general class of algorithms for solving nonsmooth, con-
strained and/or high dimensional cases of convex optimization problems (Parikh and
Boyd, 2014). Elementary operation in such algorithms is evaluation of the proximal
operator of a function, which boils down to solving another (usually simpler) convex
optimization problem, that often can be solved very efficiently (for example having
a closed form solution). There are number of optimization algorithms that belong
to this class, like proximal minimization algorithm (Bertsekas and Tseng, 1994), al-
ternating direction method of multipliers (Boyd, 2011) and proximal gradient meth-
ods (Schmidt et al., 2011). Such algorithms have been applied in number of problems
with norm induced regularization, like sparse inverse covariance selection (Scheinberg
et al., 2010), sparse linear models (Bach et al., 2012) and nuclear-norm regularized
models (Toh and Yun, 2010). The optimization approach we propose for multi-
task ranking framework is an instance of the projected gradient method, although
augmented with the alternating minimization scheme in the outer loop. And even
the method of Lagrangian multipliers proposed for solving the dual formulation of
high-dimensional ranking framework can be interpreted as special case of alternating

direction method of multipliers (Parikh and Boyd, 2014).



2.5 Scoring Function Learning

As mentioned in the Introduction section, some of the first proposed severity score
learning methods are supervised approaches that solve classification or regression
tasks, and whose solution provides a way to calculate a severity score.

For example, in (Zhou et al., 2012) the Alzheimer’s Disease severity, as measured
by cognitive scores, was modeled as (temporal) multi-task regression using the fused
sparse group lasso approach. The approach was more concerned with the progression
of the disease, hence the multi-task formulation. However, as we are mostly interested
in severity score mapping from a single time-point set of measurements, here we are

presenting its more influential ancestor, the LASSO model (Tibshirani, 1996):

1
argmin LASSO(w) = §HY — Xw|3 + Mw|; (2.1)

Here, Y is column vector of n given numeric scores, associated with d dimensional
measurement matrix X, .4, while w denotes the solution in form of a d-dimensional
column weight vector. We will use this model as one of the baselines for comparison
as it is one of the main workhorses of biomarker selection (Ghosh and Chinnaiyan,
2005) and even statistical learning in general.

Another approach used sparsity-inducing L; norm in combination with classical
loss function for learning disease severity scoring function (Yang et al., 2012). They
proposed using L; regularized Logistic regression model (among others), to model

the severity scores for the abnormality of the skull in craniosynostosis cases:

argminl, LogReg(w) = Z log(1 + exp(=Y;(X;w))) + A|w]s (2.2)

i=1
This Sparse Logistic Regression formulation is another related model, as it also

results in a sparse vector of feature weights w that essentially regress the decision
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boundary between the severity classes and might be used as a mapping function for
severity scores. In eq. 2.2, ¥; € {—1,1} is a binary label for i-th row of data matrix
X.

As outlined previously, these forms of supervision where estimates of severity
score functions (or severity classes) are needed, might be hard to obtain in order
to be utilized for training the severity score automatically. On the other hand,
obtaining the pairs of comparisons is an easier task. Seminal work of learning the
scoring functions from the comparison labels is proposed in (Joachims, 2002). In that
work, the ranking SVM formulation (eq. 2.3) is developed to learn better document
retrieval from click-through data. This great insight came from noticing that the
clicked links automatically have greater ranks compared to the ones not clicked.

And such kind of data is much more abundant than the user provided rankings.

argminrankingSV M (w) = %|w|§ +c Z maz(0,1 — (X, — X,)w) (2.3)
s {p,q}c0

Set O is composed of comparison of ordered pairs {p, g}, where p has a higher
rank than ¢ and which corresponds to rows of measurement matrix X, and X,
respectively. More recently the approach was adopted for learning the Sepsis Disease
Severity Score (Dyagilev and Saria, 2015b). In it (eq. 2.4), the constraint that scoring
function should gradually evolve over the time was introduced and hence a temporal
smoothness term is added. In addition, nonsmooth Hinge loss (maxz(0,1 — Xw)) is
replaced with its smooth approximation, Huber loss (Ly,), to obtain the formulation

of (linear) Disease Severity Score Learning (DSSL) framework:
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1
argminDSSL(w) = §||wH§ +c 2 Ly(1— (X, — X,)w)

{p.q}eO
) (2.4)
by ((Xfﬂ - Xf)w)
{i,i+1}5eS (te1 = )

Temporal smoothness term in eq. 2.4 penalizes high rates of change in severity
in consecutive time steps ¢; and ¢;,1 of a single subject s. Set of all consecutive pairs
in all subjects is denoted S and constants ¢ and b are hyperparameters determining
the cost of respective loss terms.

Nonlinear version of DSSL framework, and its solution in form of gradient boosted
regression trees, was also proposed in (Dyagilev and Saria, 2015a). Nevertheless,
mentioned DSSL approaches are dense in a sense that they operate on all variables
(in case of a linear version all coefficients are typically nonzero). The utility of the
approaches in (Dyagilev and Saria, 2015a) was presented on an application with a
moderately small number of different clinical information, vitals and laboratory anal-
ysis variables and it is not clear how the approach would perform in situations with
high-dimensional data common in high-throughput techniques like genetic, genomic,
epigenetic, proteomic, etc.

Yet, high-throughput data is also a very rich source of useful biomarkers that
could be used for diagnostic and prognostic purposes, as well as for obtaining insight
into causal relations (Colburn et al., 2001). Therefore we are proposing an approach
that is able to learn a (temporally smooth) scoring function from comparison data

while simultaneously performing the selection of most relevant (important) variables.
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CHAPTER 3

METHODOLOGY: MULTI-TASK
FORMULATION

This chapter is based on the work presented in (Stojkovic et al., 2017b), and here
we are going to outline the methodology behind the proposed multi-task framework
for learning the maximum-margin ranking functions from several distinct but related
tasks. We start by formulating the problem.

Let us assume that we have N samples (examples), where each sample i is rep-
resented as X; € R? and where X;; is the value of the feature j = {1,2,...,d} for
the sample i = {1,2,..., N}. Let us assume that y; € R represents the property of
interest (outcome variable) for the sample i. Scoring function score : R4 — R is then
a mapping X; — y. that provides a close estimate 3} of the true score y;.

However, in many cases the values of the true scoring function are difficult to
obtain. In such situations, it is easier to assess the ranking between the scores of two
samples p and ¢, i.e. to assert that one has perceived higher score than the other:
score(X,) > score(X,). Therefore, a set of multiple such ordered pairs can be used
to find a projection in the space of measured features, that will preserve the orders

in the best possible way, and that might be used as a scoring function.
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Moreover, measurements collected on multiple occasions over time might belong
to the same subject; In this case, the measurements at each time step will be consid-
ered as a sample. We assume that the outcome variable changes gradually (smoothly)
over time for the same subject, e.g. the disease severity score changes smoothly over
consecutive time points for the same patient. This assumption will lead to improving
the quality of the scoring function. We assume that X, represents the feature vector

for the sample p (which could be one particular subject at one particular time point).
3.1 Model

In this work, we constrain such functional mapping score to the linear case, where
the score estimate is computed as a weighted sum of the measured characteristics:
score(X) = wT X. Therefore, the problem of learning the scoring function becomes

finding the appropriate weight (or parameter) vector w € R%.
3.1.1 Single task model formulation

Maximizing the number of correctly ordered training pairs can be performed using
the soft max-margin framework expressed in a Hinge loss form (3.1), as suggested

in (Joachims, 2002).

maz (0,1 — (X, — X,)w) (3.1)

If sample p should have higher score compared to sample ¢, the formulation (3.1)
will favor the weighted difference (X, — X,)w that is positive and greater than 1,
thus even achieving some margin in the score difference.

The Ly norm on the weight vector ||w||?, is introduced to regularize the magnitude
of the weights, and to turn the problem into simultaneous maximization of correct

ordering and maximization of normalized margin.
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Gradual (smooth) change of the scoring function over time can be obtained by
penalizing high changes of the score (e.g. for two samples X7 ,, X7 of the same
subject s), over short time intervals. In (Dyagilev and Saria, 2015b) such effect is

achieved by using the temporal smoothness term:

()

, which essentially ensures that squared magnitude in difference, normalized with the
time interval length, is kept low.

Therefore, for single task formulation of ranking-based scoring function learning,
we adopted the Linear Disease Severity Score Learning formulation (Dyagilev and
Saria, 2015a) which combines attractive properties of ranking SVM (Joachims, 2002),
with temporal smoothness term (3.2) that enforces the gradual change of the scoring

function over time:

1
W = argmin§\|w|\§ +c Z max(0,1 — (X, — X,)w)

{p,q}c0
e ) ) (3.3)
S — X%w
+b i+1 7
; Z ( (t$+1 - ﬁ) )
{i,i+1}s€S v ¢
Every measurement (row) vector X;, i = {1,2,..., N} has associated time-stamp

t, while @ € R? denotes the solution of the objective 3.3.

Set O is composed of ordered pairs {p, ¢}, where p has a higher rank than ¢ (p is
perceived to have a higher score than ¢), and which corresponds to the measurement
vectors X, and X, respectively. Sum of the Hinge loss terms over all pairs from the
O set, serves to reduce the extent of incorrectly ordered pairs.

Set of all consecutive pairs in all subjects is denoted S and the sum of the Tem-

poral smoothness terms in eq. (3.3) penalizes high rates of change in score values in
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consecutive time steps t; and ¢;,1 for all subjects s € S. Scalar constants ¢ and b are
hyperparameters that determine the cost of the respective loss terms, the Hinge loss
and the Temporal loss.

We aggregate the differences of measurements in the Hinge loss term into a single
data matrix Dj4, where k is the number of pairs in the comparison set O. Similarly,
measurement and temporal difference ratios in the Temporal loss term we write as
matrix R;.g, where [ is a number of pairs in the consecutive measurements set .S.
We aggregate the Ly norm and temporal smoothness terms (they are essentially
weighting the square of optimization parameters) into a single weighted quadratic

term %wTQw, where (@) is constant square matrix defined in eq. (3.4):

Q=1+2bR"R (3.4)

, I being the d-dimensional identity matrix.

The formulation (3.3) can now be rewritten more concisely as (3.5):

1 A
w = argmin§wTQw + cZ max(0,1 — D'w) (3.5)

3.1.2  Multi-task model formulation

As mentioned before, in case of a limited amount of data for training the scoring
function for a single task (3.5), it is beneficial to exploit the relatedness among the
multiple similar tasks, by learning them together, as illustrated in Figure 3.1.

For m different tasks, individual parameter vectors w; are aligned into a ma-
trix Wyxm, and a joint objective is obtained as a superposition of individual losses

(eq. (3.5)) over the multiple tasks i € {1,2,...,m}:
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Ficure 3.1: Illustration of joint training of multiple ranking based score learning
tasks. Three distinct task are depicted, where measured data in combination with
supervision in form of ordered pairs, are jointly optimized to obtain the scoring
function parameters, represented as parameter matrix. Parameter matrix is typically
regularized to encode the structural assumptions regarding the task relatedness.

argmin “WEQW; + ¢ ) max(0,1 — D!W,; 3.6
) (2 QW+ Fmas >) 39

Instead of the non-smooth Hinge loss L(a) = maxz(0,a) in eq. (3.6), we work with
the twice differentiable approximation in the form of Huber loss (Dyagilev and Saria,

2015a):

0 Jifa < —h
Ly(a) = 3 @ it o < b (3.7)
a ,if a > h.

, where the approximation threshold A can be chosen arbitrarily small.

Further, we regularize the objective in eq. (3.6) with a joint norm on parameter

pg = (ZZ((Z](VVZ)%)”)% For p = 2 and ¢ = 1, this approach is known

matrix |[W
as a group Lasso penalty on the row groups (of W), which forces sparsity in the

parameter weights corresponding to certain features (Argyriou et al., 2008). Addi-
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tionally, we introduce the trace norm L, in order to get the low rank component,
or in other words, the parameter weight pattern common among all the tasks. To
accommodate such a setup, which will be further clarified in the Optimization sec-
tion, the parameter matrix W was split into two distinct matrices A and B, where
W =A+B.

Multitask Ranking Based Scoring Function Learning (MultiRBSFL) objective is
now given in eq. (3.8), and it takes as an input two matrices (per task i) obtained from
the data: QY. , and D%, ;; hyperparameters b, ¢, A\; and Ay weighting the influence

of Temporal loss, Huber loss, trace norm and sparse group norm, respectively.

argmin £; + A\i[|A]« + Az (3.8)
W=A+B
where
1 m 1 k
. ) T 7 7 7
El_a;(#‘ + BYTQ'(A" + BY) Z n(1— D A+B))> (3.9)

A" and B’ are column vectors R¥!, and D’ is R"** row-vector.
3.2 Optimization

The optimization (3.8) is composed of smooth and non-smooth terms. However,
although the regularization terms are separable in A and B, the loss term £, is not
separable. Therefore, we solve the problem by using the alternating minimization
scheme, where, in each iteration, we fix A and minimize (3.8) with respect to B,
and then fix B and minimize (3.8) w.r.t A. In this case, each subproblem can be
decomposed into two different optimizations. This will be explained in the next
section.
Fix A

argénin Ly + A || Blly, (3.10)
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Fix B
argmin L1 + A [| 4], (3.11)
A

In general, problem (3.10) and (3.11) can be written as:
argmin £y + v [[©]|, (3.12)
e

, where ® = {A, B} and p = {*, {2,1}}.
The optimization (3.12) is convex. The expression £; is smooth and the regular-
iation term (either group lasso or trace norm) is non-smooth. Therefore, we solve

(3.12) using the proximal methods.
3.2.1  Prozimal Algorithm

We solve (3.12) using the proximal gradient method (Parikh and Boyd, 2014).
®k+1 = pI‘OX/\”e”p(@k - AV£1(®k))

_ 1
= argmin <||®y|p + 5% |© - (8" - Wcl(@k))uz) (3.13)

, where prox,;g is the proximal operator of the scaled function [©]],, and A €

(0,1/L] is a constant step size, and L is a Lipschitz constant of V.£;. Problem (3.12)
can be solved analytically, where the proximal operator associated with the norm
can be obtained as in (Bach et al., 2011).

Trace norm. Let us assume that M = UXV is the singular value decompoistion
of M, where ¥ is a diagonal matrix and its entries o; are the singluar values of the

matrix M. The proximal operator of the trace norm is defined as (Cai et al., 2010):

prox, (M) = Udiag(prox,  (¢(M)))V

i.e., the proximal operator of ||.||, can be calculated by carrying out a singular value
decomposition of Z and evaluating the proximal operator of the corresponding ab-

solutely symmetric function at the singular values o(M). Therefore,

prOX)\HA”* (M) = Udiag(ﬁl,ﬁg, Ce ,En)V (314)

19



, where:

Ui_)\ O'l>>\
Ei: 0 _)\< Z’é/\

0'@‘1‘)\ 0'7;<—

Equation (3.14) is sometimes called the singular value thresholding operator.
Group lasso norm. The proximal operator associated with the group lasso
norm is defined as:

(- 2P gl > A
rox U ] = Yall2
[p /\”'”1’2( ) g {0 otherwise

3.2.2  Step size

In order to find an adaptive step size A\* in each iteration k&, we employ the back-
tracking line search algorithm (Beck and Teboulle, 2009), which requires computing
an upper bound for £;. Since L£; is convex and smooth, and VL, is L-Lipschitz

continuous, it follows that:

L
£1(8) < £:(©) + VL,(8M(© — ") + 7 [|© - e (3.15)
£, (.0

By utilizing (3.15), it can be shown that the optimization (3.13) is equivalent
to (Parikh and Boyd, 2014):

©" ! = argmin £,,+(©, %) + ||©]|, (3.16)
e

where A = % So at each iteration, the function £ is linearized around the current
point and the problem (3.16) is solved. The final fast proximal gradient method with
backtracking is shown in Algorithm 1. The final alternate minimization algorithm is

shown in Algorithm (2).
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Algorithm 1 Fast Gradient Proximal Method with Backtracking Step Size

1: Input: ©° (random), n (usually 1/2), L > 0

2
3

14:

15

: /\=%,21=®0,t1=1,k=0
: repeat
k—Fk+1
while true do
z «—Solve (3.12)

if £1(z) < L,(2,2") then
break
end if
A —nA
end while
OF «— 7

T+4/1+483
by = —Y—
zk+l — @F + (E)(@k _ @k—l)

. [
: until Convergence

> use A and zF

Algorithm 2 Alternate Minimization

. Input: A° B° (random)
repeat

until Convergence

Fix A, solve (3.10) using Algorithm (1).
Fix B, solve (3.11) using Algorithm (1).
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CHAPTER 4

METHODOLOGY:HIGH-DIMENSIONAL
FORMULATION

This chapter is based on the material presented in (Stojkovic and Obradovic, 2017b),
and here we present the methodological ground behind the proposed high-dimensional
framework for maximum-margin ranking on temporal data, dubbed Sparse Learning

of Disease Severity Score formulation (SLDSS).
4.1 Model

In SLDSS we combine attractive properties (and terms) of previously mentioned
approaches, ranking SVM (eq. 2.3) (Joachims, 2002), temporal smoothness constraint
(eq. 2.4) (Dyagilev and Saria, 2015a) and L; norm from sparse methods (egs. 2.1
and 2.2) (Tibshirani, 1996; Yang et al., 2012):
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1
minSLDSS(w) = 5”10”3 +c Z maz(0,1 — (X, — X,)w)
’ {pa}e0

2
ooy (X (4.1)
{i,i+1}s€S (tf-i-]. - tf)

+A[wl

In fact, since the model imposes both L; and L, norms on the feature vector
w, it resembles the elastic net regularization (Zou and Hastie, 2005), which has an
advantage of achieving higher stability with respect to random sampling (De Mol
et al., 2009). Similar model was previously proposed in (Wang et al., 2006), just
without the temporal component.

The solution w* of the optimization objective defined in eq. 4.1 serves as a sparse
linear function f(X) = Xw* that may be applied on measurements from the new
patient, to obtain a scalar value of severity that might be compared to previously
assessed cases and inform further actions. The sparse vector w* may also serve as
an indicator of which features are the most influential for pairwise comparison. The
formulation contains two nonsmooth terms, L; and Hinge loss, and therefore it is not
directly solvable using off-the-shelf gradient methods. In DSSL formulation (Dyagilev
and Saria, 2015a) the (non-differentiable) Hinge loss is approximated with twice
differentiable Huber loss, thus making the optimization criterion solvable using the
second order gradient methods (eg. Newton, Quasi-Newton). In order to provide
an efficient solution for the proposed nonsmooth objective, we will solve the smooth
dual problem instead of relying on smooth approximation or nonsmooth optimization
tools.

First we rewrite eq. 4.1 into a more suitable form for which we will later provide

the smooth dual problem. We aggregate the differences of measurements into single
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data matrix Dyyg4, where k is a number of pairs in the comparison set O. Similarly,

we express measurement and temporal difference ratios as matrix R;.4, where rows

(X —X7)
’ (t741—17)

and [ is a number of pairs in the consecutive measurements set

S. We aggregate the Ly norm and temporal smoothness terms (they are essentially
weighting the square of optimization parameters) into a single weighted quadratic
term %wTQw, where Q = I + 2bRT R, I being d-dimensional identity matrix. The
first two terms, weighted quadratic norm and Hinge loss, resemble the well-known
SVM criterion function that we will rewrite in its “soft” form with additional slack
variables z; and their associated constraints. Additional set of “dummy variables”
y is introduced in L; term, with trivial constraints w = y. The equation of the

rewritten SLDSS now reads:

1 k
minSLDSS(w, z,y) = sw' Qu+eY 2 + Ayl w2
v i=1 4.2

st. Dw>=1—2z, 2z>=0, Vie{l, ..k}, w=y

Now we turn this constrained problem with inequalities and equalities into its
Lagrangian dual. Constraints are moved to the criterion function as penal terms
weighted by Lagrangian multipliers «, § and 7. The equation of the SLDSS dual

problem is:

min max  Dual(w,y, z, o =
w,y,2=20  a=0,8=0 ( Y% ’B’f}/)

(4.3)

1
éwTQw +cl’z+ (1 —2— Dw) — T2 + Nyl + " (w —y)

Given that optimization criterion is convex and feasible (Slater’s condition holds
(Boyd and Vandenberghe, 2004)), strong duality allows switching the order of max-
imization and minimization in eq. 4.3, and minimization in primal variables can be
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safely performed first. Now we analyze the expression according to primal variables
w, y and z and find the minimizing conditions for each of them.

The dual formulation is the quadratic function of parameters w and we can find
its optimal form as a function of new free parameters introduced in dual (by equating

its gradient with zero):

mui)nDUAL(w) = mui)n%(wTQ —a"D +y"w
VuwDUAL(w) = w'Q — "D +~7 =0 (4.4)
= w* =Q (a'D —~")
Similarly, the expression for slack variables z is a linear combination of dual

variables and it is minimal when the directional gradient is equated to zero vector,

giving the optimality condition in a form of an equality constraint:

1
min DUAL(z) = mini(clT —af - ")z
V.DUAL(z) = 1T —aT — T = 0 (4.5)
=f=cl—«
Resulting equality constraint § = ¢1—« in combination with inequality 5 > 0 can
be reduced to just one constraint o < ¢1, which removes § from further consideration.
For minimization over dummy variables y we use the convex (Fenchel) conjugate

function of the expression (Boyd and Vandenberghe, 2004), and obtain optimality

condition as inequality constraint over the infinity norm of the dual variable:

myinDUAL(y) = myin)\HyHl — Ty = —myavay — Mlyllx

=0 if |Yeo<A , or = -0 otherwise (4.6)

= |7 <A
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When optimal (minimizing) conditions (eqs. 4.4, 4.5 and 4.6) are replaced in dual

formulation eq. 4.3, it becomes:

max DUAL(«a,) = %(DTOz —N'QT'QQ (D e — )

az0,a<cl, |70 <A (4.7)
~a"DQ N (D"a =) +77Q N (DTa —7) + 170

After negating the equation 4.7 to turn it into minimization problem and after

simplification of the expression, final problem formulation is:

minl(DToc —N'Q YD a —v) - 1"«

2 (4.8)

st. 0<a<cl, —-Al<y<IA

The original nonsmooth problem is turned into the smooth dual problem, which
can be solved for its two sets of parameters o and . Since the strong duality holds,
a solution to the dual is a solution to the original problem, and optimal weight
vector w* can be retrieved after plugging in the solution of dual, a® and +*, into
equation 4.4.

Similar dual formulation, just without the dummy variables y and associated
multipliers v, might be used for DSSL with the exact Hinge loss, instead of the
originally proposed DSSL which uses Hubber loss approximation (Dyagilev and Saria,
2015a).

4.2  Optimization algorithm

The differentiable dual from eq. 4.8 is, in fact, a quadratic optimization problem with

box constraints:

1
min§;1:TH:c +f'z st. Ib<z<ub (4.9)
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C[Oixa I | |Q7" Q7 |Oaxk —1

There are ready to use tools for solving the problem in eq. 4.9, and we utilized
the built-in Matlab “quadprog” solver, which is implemented as a projection method

with the active set.
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CHAPTER 5

RESULTS: MULTI-TASK FRAMEWORK

This chapter is based on the work presented in (Stojkovic et al., 2017b), and here
we are going to present empirical evaluation of the proposed multi-task framework
for learning the maximum-margin ranking functions from several distinct but related
tasks, dubbed MultiRBSFL.

The proposed approach for multitask learning of ranking-based scoring functions
is tested on one synthetic and two real-world datasets. We compared our MultiRB-

SFL approach against the following baseline approaches:

1. Ly - independently learning (L, regularized) scoring functions for each task

(objective (3.3));

2. Ly - independently learning sparse (L regularized) scoring functions for each

task;

3. L, - learning multiple scoring functions by imposing low rank regularization

on their joint parameter matrix (L, regularized objective (3.6));
4. Ly - joint objective (3.6), regularized by mixed .|, norm.
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Our MultiRBSFL approach, which uses composite low rank and mixed norm
regularized joint objective (3.8), we will denote as L + Lo for consistency in naming
the alternative approaches.

We measured the predictive performance in terms of accuracy, which is the num-
ber of correctly ordered test pairs. As the pairwise ranking relation is antisymmetric,
it is sufficient to use only the positive training instances (i.e. where the first sample
in a pair has the larger score). Test pairs are exclusively generated from examples
not contained in the training set. Accuracy values that we report in this study are

obtained by doing 5-fold cross-validation experiments.
5.1 Experiments on Synthetic Data

In this settings, a Gaussian processes model (Rasmussen and Williams, 2006) with
an exponential kernel was used to generate the temporal data (as visualized in Fig-
ure 5.1). We compiled 250 such processes to mimic d = 250 measured variables
(features) per subject. Each single process was used to generate a time series with
10 time points (10 samples). We followed the same principle to generate 10 different
multivariate time series (subjects) for training and 10 subjects for test, resulting in
100 samples X{ram . for training, and 100 samples X1 . for test.

Four different tasks were created by randomly generating the weight matrix
Wasoxa, with only 5 nonzero rows, which corresponds to the Ly, assumption (row-
sparsity). This row-wise sparse matrix was then superimposed with a dense rank-1
matrix, generated by multiplication of two random vectors, which suits the L, trace
norm part of the objective. True underlying scores on four tasks, for each of the 250-
dimensional samples (one time point of one patient), are calculated as the weighted
sum of the feature values X = W. Zero mean random vector was subsequently su-
perimposed to input X data, before using it to fit the scoring function, in order to

simulate the measurement noise.
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Synthetic features over time

feature values

25 1 1 1 1 1 1 1 1 ]
1 2 3 4 5 6 7 8 9 10

time [h]
FiGUrE 5.1: Example of 5 temporal features obtained from Gaussian Processes, of

one fictitious subject, with enforced assumption that temporally close points have
similar intensities.

A training set is then obtained by making pairs out of samples whose scores are
sufficiently different (in our case we set the threshold to 1). Pairs of examples were
generated independently for each task based on their scores, totaling 14,187 pairs for
all four tasks jointly. Test set pairs were generated in the same fashion, but with a
smaller threshold and consisted out of 19,390 pairs. Training pairs were used to learn
the weight matrix W, which was used to estimate the testing scores from the test
samples. The obtained estimates were used to infer the relative order of the testing
pairs. The accuracy (percentage of correct guesses) is reported in the Table 5.1. Tt
is no surprise that the proposed L, + L; 2 approach achieves the highest accuracy on

all four tasks, as the underlying assumptions are explicitly built into synthetic data.
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Table 5.1: Comparison of accuracy indicators (fraction of correctly ordered pairs)
for alternative score learning methods on the synthetic data of four related tasks.

| Task | Ly | Ly | L. | Lip | L+ Lo |
TASK1 | 0.538 | 0.745 [ 0.680 | 0.744 | 0.757
TASK2 | 0.556 | 0.707 | 0.763 | 0.782 | 0.795
TASK3 | 0.592 | 0.765 | 0.744 | 0.821 | 0.837
TASK4 | 0.466 | 0.864 | 0.700 | 0.874 | 0.885

| AVG [0.5380.770 [ 0.722 [ 0.805 | 0.818

5.2 School Exam Score

Intelligence as well as the capacity for understanding and using mathematics or
languages are all examples of properties that are latent - yet important and often
evaluated (estimated). We have tested the multitask score learning framework on
data from an elementary school study (Mortimore et al., 1988), which contains lon-
gitudinal data on performance in Math and English language for pupils in 50 inner
London schools *. In total there are scores for 3,236 exams (Math and English each),
taken by 1,402 students over three consecutive school years. The goal is to rank the
students’ performances on Math and English test based on known score from Ravens
ability test and additional information like demographics, social status, gender, class
and school type. Distributions of scores for two tasks are given in the Figure 5.2 and
Figure 5.3, respectively.

According to results depicted in Table 5.2, our L, + L2 approach achieved the

best predictive performance in both tasks.
5.3 Tolerance to Infections Score

Tolerance is the host’s behavior that arises from interactions with a pathogen, which
describes the ability of the host to preserve fitness despite the presence of a large

amount of pathogen. Therefore, it is defined as changes in host fitness (health)

L http://www.bristol.ac.uk/cmm/media/migrated /jsp.zip
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Table 5.2: Comparison of accuracy indicators (fraction of correctly ordered pairs) for
alternative score learning methods on the task of learning the performance on Math
and English tests.

’ task ‘ L2 ‘ L1 ‘ L* ‘ LLQ ‘ L* + LLQ ‘
MATH 0.780 | 0.794 | 0.725 | 0.789 0.812
ENGLISH | 0.820 | 0.863 | 0.717 | 0.857 0.870

| AVG  [0.800 | 0.828 | 0.721 [ 0.823 | 0.841 |

Math exam
200 T T T T T T T

180

160

140

120

100

80

nummber of students

60

40

20

0 5 10 15 20 25 30 35 40
score
FIGURE 5.2: Distribution of test scores for Math exam.

with respect to changes in pathogen load (Simms, 2000). However, tolerance is a
very understudied topic, where there is no established scoring function, despite the
necessity.

We analyzed three publicly available datasets ? that allows characterization of
the tolerance behavior in humans. The data comes from the human viral challenge
studies (Zaas et al., 2009) where human volunteers were infected with H3N2 influenza,

rhinovirus (HRV) and respiratory syncytial virus (RSV), respectively, and which is

2 http://people.ee.duke.edu/ lcarin/reproduce.html
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FiGURE 5.3: Distribution of test scores for English exam.

detailed in Appendix A. Table 5.3 shows the viral shedding and symptom scores
for subjects who developed clinically relevant symptoms from H3N2, HRV and RSV
datasets.

Temporal measurements about symptoms (proxy for fitness) and viral (pathogen)
load for each subject were used to derive tolerance scores according to the defini-
tion given in (Simms, 2000). In particular, the tolerance score for each subject was
calculated by dividing the maximum viral load with the maximum severity of symp-
toms (Jackson et al., 1958) observed for that subject (Table 5.3). Gene expression
measurements were used as an explanatory variables in our ranking task.

Biological rationale behind the task relatedness is that the three infections are
viruses that cause similar respiratory symptoms (runny nose, fever, sore throat,
cough) and are quantified by the same Jackson score (Jackson et al., 1958), sug-

gesting that some shared genetic mechanisms might be responsible for the disease
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Table 5.3: Tolerance scores (R) derived by dividing maximum viral load (V) with
maximum severity score (S).
H3N2 HRV RSV
SubID | S Vv R |[SubID | S Vv R || SubID | S Vv R
FLUO5 | 12.00 | 5.45 | 0.45 || HRVO06 | 8.00 | 2.72 | 0.34 || RSVO01 | 11.00 | 0.00 | 0.00
FLUOS8 | 10.00 | 4.70 | 0.47 || HRV19 | 2.00 | 0.95 | 0.47 || RSV20 | 6.00 | 0.00 | 0.00
FLUOL | 9.00 | 4.25 | 0.47 || HRV04 | 8.00 | 3.94 | 0.49 || RSVO07 | 20.00 | 4.46 | 0.22
FLUO7 | 12.00 | 6.25 | 0.52 || HRV15 | 7.00 | 3.45 | 0.49 || RSV02 | 20.00 | 5.10 | 0.26
FLUO6 | 7.00 | 5.00 | 0.71 || HRV07 | 7.00 | 4.44 | 0.63 || RSV12 | 4.00 | 2.50 | 0.62
FLU10 | 5.00 | 3.75 | 0.75 || HRV20 | 6.00 | 4.44 | 0.74 || RSV06 | 9.00 | 5.65 | 0.63
FLU12 | 4.00 | 5.00 | 1.25 || HRV16 | 6.00 | 4.69 | 0.78 || RSV14 | 6.00 | 4.54 | 0.76
FLU15 | 2.00 | 4.50 | 2.27 || HRVO09 | 3.00 | 2.46 | 0.82 || RSV11 | 5.00 | 3.85 | 0.77
FLU13 | 2.00 | 5.45 | 2.70 || HRV11 | 3.00 | 2.47 | 0.83 || RSV03 | 6.00 | 4.70 | 0.78
HRVO03 | 4.00 | 3.45 | 0.86

manifestations. Consequently, we sought to learn the tolerance scoring functions
jointly.

The tolerance scores were used to compile a set of ranked pairs, and the objective
was to learn the scoring functions for tolerance to H3N2, HRV and RSV viruses (3
tasks), from high-dimensional gene expression data. Since 12,023 dimensions is very
computationally expensive to optimize, we reduced the dimensionality of the data to
the 100 most informative genes according to the correlation with the target. Prior
to the model fitting, data was normalized using the method proposed in (Cao et al.,
2016). The results of learning the scoring functions with different approaches are
summarized in the Table 5.4.

Table 5.4: Comparison of accuracy indicators (fraction of correctly ordered pairs)

for alternative score learning methods on learning the tolerance to three human
respiratory viral infections.

[ task | Lo | L1 [ Ly | Lig [ Li+Lio]
FLU [ 0.766 | 0.980 [ 0.809 [ 0.988 | 0.996
HRV | 0.344 | 0.122 | 0.389 | 0.500 | 0.400
RSV | 0.806 | 0.972 | 0.861 | 0.306 | 0.861

| AVG [ 0.638 | 0.692 | 0.686 | 0.598 | 0.752 |

The results from the Table 5.4 show that the HRV task is the most difficult one
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in the described formulation. Although some alternative approaches achieved better
accuracy in two of the tasks, the proposed approach achieved the best generalization

trade-off as can be concluded from the highest average (overall) accuracy.
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CHAPTER 6

RESULTS: HIGH-DIMENSIONAL
FRAMEWORK

This chapter is based on the material presented in (Stojkovic and Obradovic, 2017b),
and here we present the empirical evaluation of the proposed high-dimensional frame-
work for maximum-margin ranking on temporal data, dubbed Sparse Learning of
Disease Severity Score formulation (SLDSS). The high-dimensional framework is

evaluated in number of synthetic and two real applications.
6.1 Severity score characterization on synthetic data

For the initial assessment of the proposed SLDSS framework, we have generated a
synthetic example with properties that motivated the approach. If a large number
of variables is measured, many are expected to be irrelevant for the assessment of
severity.

We defined the severity score as a linear combination of intensities of the first
10 features after initiating a set of 100. In addition, we set the coefficients to have
different magnitudes, as it is expected that contribution of different variables are of

various levels (top panel in Fig. 6.1). The remaining ninety features do not affect
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FIGURE 6.1: Comparison of learned weight vectors (normalized) of sparse SLDSS
method and dense DSSL method with the ground truth.

severity score at all, they are irrelevant and only introduce uncertainty into the
problem. For training purposes, values of all features are randomly sampled from a
uniform distribution for 10 fictitious subjects with 10 different measurements each.
Severity scores are associated based on a linear function with weights depicted in
Fig. 6.1. Comparison labels (pairs) were generated as all possible pairs in which the
first element (sample) have substantially higher severity score as compared to the
second element. This requirement of substantial gap in severity between pairs serves
to mimic the case where a doctor could claim, with high confidence, that one patient
is in more severe condition than another. Such generated training data was utilized
to fit Sparse LDSS, (dense) DSSL, and DSSL model trained on the exact 10 features
that are relevant, which we named Ideal DSSL in Table 6.1.

All models were tested on comparison pairs from an additional 50 test subjects

with 10 measurements each. Testing data was generated by the same protocol as
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Table 6.1: Performance on synthetic data as measured by correctly ordered pairs -
Accuracy, and by aggregated error (magnitude of difference in wrongly ordered pairs)
- Hinge loss

approach SLDSS DSSL IDEAL DSSL

Accuracy 0.9397  0.8373 0.9558
Hinge loss  176.06 3110.20 180.65

explained for training, except the threshold for the required difference of scores was
set several times lower, in order to see how learned functions generalize to more

subtle differences between the cases.

# Correctly Ranked _# Incorrectly Ranked
# Total Ezxamples # Total FExzamples

Accuracy =

(6.1)

The predictive performance was measured as “Accuracy” eq. 6.1, i.e. the fraction
of the total examples that are correctly ordered, meaning that a linear function
assigned a higher score to the first component of a pair. The results presented in
Table 6.1 show that learning a dense weight vector impairs the predictive accuracy
of the model, while learning a sparse vector approaches the ideal accuracy obtained
by learning a disease severity score from in advance known relevant features. Fig. 6.1
shows the weights of learned severity functions, and it might be seen that reason for
the reduced testing accuracy of the dense DSSL method (bottom panel) is because

it assigned nonzero weights to (by design) completely irrelevant features.
6.1.1 Feature size analysis

We have explored how the number of irrelevant features affects the model perfor-
mance. This time we sampled 100 subjects (with 10 timestep samples each), with
10, 000 features, where only the first 10 contribute to the true score. We varied the
number of features from 10 (all features informative), up to 10,000 in exponentially

progressive increments [10;30; 100;300; 1,000; 3,000; 10,000]. Results presented in
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FIGURE 6.2: Influence of the problem dimensionality (number of features) on the
accuracy of ranking methods.

Fig. 6.2 suggest that when all available features are informative (10 out of 10) DSSL
is slightly better than SLDSS. However, as soon as the irrelevant features are added,
the SLDSS approach becomes substantially more accurate than DSSL. As more ir-
relevant dimensions are added both approaches’ performance decreases, but SLDSS

at a slower pace.
6.1.2 Sample size analysis

We also investigated how the number of training samples affects the predictive per-
formance of the ranking approaches. We generated another synthetic set of 100
subjects (10 samples each). All samples had 100 features, where the first 10 were

relevant for the ground truth score. From such generated examples, we constructed
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357,355 comparison pairs for training. We varied the number of sample pairs, by
randomly sampling from 10, up to 300,000 in exponentially progressive increments
[10; 30; 100; 300; 1, 000; 3, 000; 10, 000; 30, 000; 100, 000; 300, 000]. From the results on
holdout testing set, presented in Fig. 6.3, it can be seen that accuracy increases
with the number of training pairs, and that SLDSS is always more accurate than
DSSL. The IDEAL DSSL, which is always trained only on the 10 relevant features,

is consistently the most accurate.

o
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FIGURE 6.3: Influence of the sample size (number of sample pairs) on the accuracy
of ranking methods.

6.2 Severity score for Influenza A virus

To further assess the proposed approach, we applied it to learning the severity of

H3N2 influenza symptoms.
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The utilized dataset contains temporally collected gene expression measurements
of human subjects infected with H3N2 virus (Zaas et al., 2009). The samples were
collected on multiple occasions (approximately every eight hours) during the period
of one week after the virus was inoculated in subjects. Concurrently, the severity
of their symptoms was tracked (approximately twice a day) and clinically assessed
using the modified Jackson score (Jackson et al., 1958).

When measurement time points were not perfectly aligned with severity score
estimates, we associated the temporally nearest estimate with the gene expression
vector. Having high dimensionality of the measurements (12,032 genes), temporally
collected samples and associated severity score estimates, this dataset was suited
for testing the proposed severity score learning framework. In addition to direct
assessments of severity scores, which could be used for regression, the data samples
are also accompanied with class labels “symptomatic” and “asymptomatic” (Woods
et al., 2013), based on the values of modified Jackson scores.

Our comparison pairs generation process follows the guidelines proposed in (Dyag-
ilev and Saria, 2015a). Ideally, an expert would be presented with example pairs and
would assess which one appears more intense (w.r.t. a property of interest), based
on visual inspection, clinical report or arbitrary convenient source. The alternative
is to use an existing scoring system to generate comparison pairs, and for this appli-
cation we utilized the Jackson score. We generated a third label type by extracting
all possible pairs of samples where the first component is associated with a score
that is substantially larger than the second. In our experiments, the “substantial”
is defined by setting a threshold to 5 for training and 1 for testing.

On the described dataset consisting of 267 samples (17 subjects with about 16
temporal samples each) we have compared the predictive performance of the following

four methods:
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Table 6.2: Performance on H3N2 influenza gene expression dataset as measured by
the fraction of correctly ordered pairs (accuracy)

approach SLDSS DSSL LASSO L, Logistic Regression
Accuracy 0.8097 0.7689  0.9490 0.7815

1. Sparse Learning of Disease Severity Score (SLDSS) from comparison pairs
2. “Dense” Disease Severity Score Learning (DSSL) from comparison pairs
3. LASSO regression on direct values of severity scores

4. Lp-regularized Logistic Regression fitted on binary classification labels of symp-

tom severity

All enumerated methods result in a vector of feature weights that can be multi-
plied with the vector of measured features, and summed up to obtain the estimated
value of a scoring function. Except for the DSSL which results in a dense vector of
weights, all other approaches typically only have a small number of nonzero weights,
while all others are exactly equal to zero.

We compared the mentioned methods in a 10-fold cross-validation procedure
(where all samples belonging to one subject are either all in training, or all in testing
folds) and the results are shown in Table 6.2.

In conducted experiments, the non-sparse method (DSSL) has the lowest accu-
racy, which provides evidence that sparse approaches were beneficial. LASSO was the
most accurate, due to its direct access to the ground truth values (of the underlying
scores), while other methods only had access to partial information. The Logistic
Regression only had information if the score was larger than a certain threshold,
while the DSSL and SLDSS only knew, for a list of pairs, which element in a given
pair had a higher score. This, on the other hand, limits the application of LASSO to

cases where scoring function already exists, thus reducing the necessity for learning
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it from the data. Among the approaches which learn from indirect information about
underlying values of scores (comparison pairs and severity classes) our SLDSS is the

most accurate.
6.2.1 Robustness of selected features

We are also interested in prospective use of the SLDSS approach for feature selection,
that is for discovering the most relevant variables for the condition. Therefore, we
have performed additional analysis regarding the robustness (stability) of the selected
features.

Robustness of selected features is a very important aspect of the feature selec-
tion algorithms that was relatively neglected up until recently (Saeys et al., 2007).
Various fields aim at finding the right subset of variables that would allow reliable
prediction, and the more there are candidates to search from, the harder it is to find
the right subset. Feature selection methods play a crucial role there, but when the
dimensionality of data is much higher than the number of samples, the expectation
of consistently finding high-quality solution decreases (Sima and Dougherty, 2006).
On the other side, L; regularized models have far fewer requirement for sample size
as compared to rotation invariant models (Ls regularized models, Support Vector
Machines, Artificial Neural Networks and DSSL, whose sample complexity grows at
least linearly in the number of irrelevant features), as their sample size requirement
grows logarithmically in the dimension of (irrelevant) features (Ng, 2004), so they
are an attractive tool for such tasks.

Robustness is a metric that quantifies how different training sets affect the affinity
of the algorithm towards the particular features and there are different measures
proposed (Kalousis et al., 2007). Essentially, any similarity metric, which has higher
value when the two compared vectors are more similar, might be used for assessing

the feature selection stability. Here we used the common three:
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1. Pearson coefficient (eq. 6.2), which measures the correlation between the weight
vectors w and w’ learned on different data (sub)sets, and tells magnitude sta-
bility of the weights. In the case when the weight vector is used as a linear

function, it also tells how stable the learned function is.

S )] i)
\/Zz(wz — H)? Zz(w; — )

Cp(w,w’) (6.2)

2. Spearman rho metric (eq. 6.3), which measures how well the orders (ranks) r
and 7’ of weights’ w and w’ magnitudes are preserved between different training
sets. It is important, for example, in the dense methods where features are

selected as some top number of features according to the magnitude of weights.

S ) )
\/Zz(rl — )2 25 (rf = par)?

Cs(r,r") (6.3)

3. Jaccard index (eq. 6.4), which measures the overlap between two discrete sets
s and §" of nonzero features in w and w’, normalized with their union (|.|
is cardinality operator). Jaccard index is the most relevant measure (out of
the three mentioned) regarding the stability of selected features, as studied

frameworks select features in the form of a discrete set of nonzero features.

s |s s

Cy(s,s') (6.4)

N ls U s N |s| + s — |s N

All four severity score learning methods are assessed for consistency/robustness
based on each of the three stability measures (eqs. 6.2-6.4), through a 10-fold cross-
validation procedure on H3N2 data. The sparsity level was tuned with free param-

eters (for sparse methods) such as to produce the average number (over ten folds)
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Table 6.3: Stability of selected feature subsets summarized as an average pairwise
similarity over ten training folds

Measure SLDSS DSSL LASSO L, Logistic Regression
Pearson coefficient 0.8656 0.7402 0.7362 0.5562
Spearman rank  0.8163 0.7204 0.5162 0.3988
Jaccard index 0.6916 0.2946 0.3595 0.2474

of nonzero features of about 100 out of 12,032 possible (SLDSS 97.1 + 16.7; LASSO
99.9 + 8.8; LiLogReg 101.7 £ 22.7), with results presented in Appendix B and sum-
marized in Table 6.3. The dense method, DSSL, was compared to others, according
to Jaccard index, by taking only the top 100 features according to the largest mag-
nitudes in each of the folds separately. The results show that here proposed SLDSS
method is the most stable one according to each of the three measures. This means
that it learns the most stable severity score function (according to Pearson correla-
tion), as well as the most stable set of nonzero features (according to Jaccard index).
This evidence is suggesting that SLDSS is finding the most reliable signal in the
data, out of all the tested approaches. Nevertheless, there are no guarantees that the
selected set of features is free of false positives, as previously it was theoretically con-
cluded that LASSO-like approaches select a super-set of the true features (Bithlmann
and Van De Geer, 2011).

6.2.2 Gene ontology over-representation analysis

To further check the appropriateness of SLDSS method as a biomarker discovery tool,
we performed Gene Ontology Over-Representation Analysis to assess the relevance
of a set of features extracted from the influenza dataset. In the robustness analysis
section, we found that more than two thirds (0.6916) of the nonzero features are, on
average, shared between the different folds of data. In fact, 50 genes were nonzero in
all of the folds, so we took that set of genes and submitted it for over-representation

analysis in the PANTHER (Mi et al., 2016) online tool.
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Table 6.4: Genes selected by the Sparse Disease Severity Score Learning method,
listed in alphabetical order

Gene Symbols

AIM2 CXCL10 IFIH1 MS4A4A  S100A12
ALDH1A1 EIF2AK2  IFIT1 MX1 SERPING1
ATF3 EPB41L3  IFIT2 MYOF SIGLEC1
BLVRA ETV7 IFIT3 OAS1 STAT1
C3AR1 GBP1 IL1ISRAP  OAS2 TFEC
CASP5 HERC5 ISG15 OAS3 TLR7
CASP7 IFI35 LAMP3 OASL TNFSF10
CCL2 IF'T44 LAP3 RIN2 TYMP
CCL8 [FT44L LILRA5 RSAD2 XAF1
CDKN1C IFI6 MAFB RTP4 ZBP1

We analyzed the list of 50 selected genes given in Table 6.4, against all the 12, 032
genes in the dataset. Some of the 12,032 genes were duplicates, and some symbols
were not recognized by the database (Annotation Version and Release Date: GO
Ontology database, Released 2016-03-25) resulting in the comparison of the 50 se-
lected genes against the reference list of 10,792 genes using the PANTHER, Overrep-
resentation Test (release 20160321) with Bonferroni correction. Bonferroni correc-
tion (Haynes, 2013) is a simple and common method for multiple testing correction
of significance value indicators. It is well acknowledged that it might be substantially
conservative, especially when multiple tests are not independent. In multiple gene
ontology process testing, it might be extremely conservative because descendants of
a process are completely dependent on their parents. Nevertheless, even after overly
conservative adjustments, a number of processes are found statistically significantly
overrepresented with the cutoff value of 0.05 for p-value. Significantly overrepre-
sented GO biological processes (listed in a Table 6.5) are related almost exclusively
to immune response and a reaction of the host body to the virus. This is consistent
with the fact that the dataset is about the response to viral infection, suggesting

that the discovered set of features is indeed relevant for the studied process.
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Table 6.5: PANTHER overrepresentation analysis results.
no. - number of associated genes;

exp. - expected number of genes by chance;

fold - number of times enriched

GO biological process GOID no. exp. fold P-value
defense response (GO:0051607) 18 .62 29.21 4.00E-18
to virus
response to virus (GO:0009615) 20 .96 20.75 1.01E-17
type L interferon (GO:0060337) 14 .28 49.54 1.97E-16
signaling pathway
cellular response t0 . 0071357) 14 98 49.54 1.97E-16
type I interferon
response o (GO:0034340) 14 .29  47.96 3.08E-16
type I interferon
immune response (GO:0006955) 32 5.42 591 2.37E-15
immune system process (GO:0002376) 35 8.20 4.27 4.07E-13
innate immune response (GO:0045087) 26 3.79 6.87 1.07E-12
defense response (GO:0006952) 31 6.12 5.07 1.07E-12
defense response t0-6.0008549) 19 173 10.97 1.46E-11
other organism
immune effector process (G0:0002252) 19 1.75 10.85 1.76E-11
cytoline-mediated (GO:0019221) 20 2.13 9.40 3.84E-11
signaling pathway
cellular response to- .0071345) 91 272 772 3.01E-10
cytokine stimulus
response to cytokine (GO:0034097) 22 3.16 6.96 4.80E-10
response to (GO:0051707) 22 3.23 6.81  7.44E-10
other organism
response to external 60013007y 92 393 681 744E-10
biotic stimulus
response o (GO:0009607) 22 3.31 6.65 1.21E-09
biotic stimulus
negative regulation of 0045071y g 19 4111 1.83E-07
viral genome replication
megative vegulation 0048595y 9 36 24.90 T.74E-07
of viral process
regulation of viral (GO:0045069) 8 .30  26.56 5.56E-06

genome replication
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Table 6.6: PANTHER overrepresentation analysis results CONTINUED.
no. - number of associated genes;

exp. - expected number of genes by chance;

fold - number of times enriched

GO biological process GOID no. exp. fold P-value
negavtigel ﬁ%ﬂ;&gn of (GO:1903901) 8 .35  23.02 1.69E-05
response to stress (GO:0006950) 34 14.20 2.40 5.49E-05
rili?t?f;‘;egafiigsﬁagf(i};sfs (GO:0043901) 9 .60  15.06 6.01E-05
extzeriﬁr;stiflzlus (GO:0009605) 26 848 3.06 1.19E-04
Cii‘;ﬁ;gf?;ﬁfn‘;o (GO:0071346) 8 50  16.14 2.59E-04

rvelf;lllifrf?es: (GO:0050792) 9 .79 11.43 6.26E-04
intgffiﬁgﬁfgaﬁma (GO:0034341) 8 .57  13.93 7.95E-04
regulation of symbiosis (GO:0043903) 9 .88 10.17 1.66E-03
regml?ftelocnyglimal (GO:1903900) 8 .74  10.86 5.14FE-03
mterfs‘jgr’ghgj;n;jﬁz;hated (GO:0060333) 6 31  19.33 5.39E-03
response to stimulus (GO:0050896) 43 26.53 1.62  6.68E-03
de?;ig?ggoojse (GO:0031347) 14 3.03 461 8.01E-03
Cytslfign‘ga;zguo;ion (GO:0001817) 12 219 548  9.59E-03
Cigﬁfcr;’iigsjzseo (GO:0071310) 23 836 275 1.01E-02
mulmfgfgit;sﬁ ;iocess (GO:0043900) 11 1.81 6.07 1.07E-02
intr:rsfisss—eafgha (GO:0035455) 4 .09 4544 1.55E-02
ng;rﬁzgfssi’ﬁi‘fu‘;o (GO:0070887) 25 10.06 2.49 1.75E-02
C;l;;ﬁfjgcepz;?;;r (GO:0007166) 23 9.04 254  4.07E-02
multi-organism process (GO:0051704) 22 840 2.62 4.59E-02
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6.3 Tolerance to pathogens in frogs

We applied the SLDSS feature selection approach on the frog tadpole gene expres-
sion datasets to identify genes that best explain tolerance behavior, based on labels
reported in Table 6.7. FEach of the listed pathogen has six samples, that is three
tadpoles specimens with two temporally collected samples, which makes a total of
48 samples. Gene expression measurements consists of 8,726 probes corresponding
to genes in frogs.

Briefly, tolerant behavior is deemed as one where an organism preserves its fit-
ness, despite being infected with high level of pathogens. It should be differentiated
from the resistant phenotype, which achieves high fitness by actively reducing the
levels of pathogen, by acting with his immune system defense mechanisms. Sensitive
(or susceptible) phenotype is the case where organism’s fitness is deteriorating, that
is it cannot withstand pathogen infection, nether through tolerance nor resistance
mechanisms. Pairs of ranked examples for learning were compiled by letting samples
with the “Tolerant” label be paired with samples with the “Sensitive” label, where
“Tolerant” samples were always ranked higher than the “Sensitive” ones. The Tol-
erant group was represented by A. baumannii and K. pneumonia (12 samples), and
sensitive group consists of A. hidrophyla and P. aeruginosa (12 samples). Under this
setup, we applied the SLDSS approach on the gene expression dataset with only EN-
TREZ Maglott et al. (2005) annotated probes and on the complete set of probes, to
find the tolerance-related genes. Analysis with only annotated probes is conducted
since it allows utilization of prior knowledge, and analysis of a complete set of probes
because it provides new insight into previously poorly explored markers.

A set of 35 genes obtained from the ENTREZ annotated subset of the dataset
are listed in Table 6.8, along with the annotation details. One of the interesting

selected features is trnsferrin, which plays important role in iron metabolism on a
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Table 6.7: Phenotypes labeled according to reaction of frog tadpoles to different
pathogens.

Sensitive Resistant Tolerant

P. Aeruginosa S. pneumoniae A. baumannii
K. pneumonia
A. hydrophila LPS - 5000 ug/mL  E. coli F11

S. aureus

cellular level (Hower et al., 2009), which is known to be important factor in infec-
tions (Drakesmith and Prentice, 2008).

In the obtained computational models, the higher the magnitude of the coefficient,
the larger the effect it has in discriminating two groups, and it can be regarded as
gene’s higher importance for the tolerance phenotype. It should also be noted that
this is not just the top 35 probes obtained by truncating the features with lower
coefficients. In fact, all features coefficients, other than for selected 35, are equal
to zero. The number of non-zero features is tuned by a penalization parameter,
and we have empirically chosen the one that gives a few dozen features, as that is
expected number of features with good importance-generalization trade-off. Allowing
all features to have nonzero contribution would lead to the problem of overfitting, and
the other extreme would assess the correlation of only one biomarker with the target
pattern. As tolerance is likely arising from the interaction between many genes,
choosing a handful of features (35 in this case) allowed us to investigate complex
behavior, while avoiding the pitfall of statistical over-fit by using too many features.
In order to test the predictive performance of learned scoring functions, we evaluated
the approach on unused samples. The unused samples consist of two groups, Tolerant
being the E. coli and S. aureus (12 samples), and Resistant being the S. pneumoniae
and LPS (12 samples). Although the originally trained problem was a bit different,
Tolerance vs Sensitivity, and not Tolerance vs Resistance, it still makes sense to test

in this setup, as Tolerant samples are expected to still have higher tolerance scores
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Table 6.8: List of 35 genes with ENTEZ ID selected by the SLDSS approach from

the frog data.

Coefficient

ENTREZ_GENE_ID GeneSymbol

Description

-0.262989006

0.097428008

0.096942664

0.091749873

-0.088071452

-0.060269613

0.058430007

0.046096018

-0.045700082

-0.043493382

-0.036352345
0.023231029
0.019199372

0.01854616

0.014342954

0.011724236

-0.009496875

-0.007811129

-0.000383502

399287

446405

446710

444230

378665

443754

443843

399249

447241

1E+08

446777
379523
447309

447271

444095

431901

380498

447201

444105

"Prkel’
"MGC83803’
"MGC83955’
"MGC80788’

"sox7-A’
"MGC81060’
"MGC83146’

"Copzl’
"MGC84754

'rpsbkad’

"MGC80410’
'shsia-3’

"MGC81740°
"MGC86386’
"MGC83624
"MGC83731’
'pded2’
"MGC80305

"MGC80424’

‘protein kinase
C lambda/iota’
"MGC83803
protein’
"MGC83955
protein’
"MGC80788
protein’
'SRY
protein’
"MGC81060
protein’
"MGC83146
protein’
‘coatomer protein
complex zeta 1’
"MGC84754
protein’
'ribosomal protein
S6 kinase
"MGC80410
protein’
"shisa-3’
"MGC81740
protein’
"MGC86386
protein’
"MGC83624
protein’
"UPF0566
protein’
‘programmed
cell death 2’
"MGC80305
protein’
"MGC80424
protein’

ol



Table 6.9: List of 35 genes with ENTEZ ID selected by the SLDSS approach from

the frog data CONTINUED.

Coefficient ENTREZ _GENE_ID  GeneSymbol Description
9.61E-05 443641 'edesl’ cell division
cycle 5-like
, , "homeo
-9.58E-05 378638 hoxal3-A box A13
9.44E-05 444094 "MGC83623’ MGC8§623
protein
-7.55E-05 444120 "MGC80493’ MG(?S,M%
protein
-6.80E-05 779435 'bdgalt6’ galactosyl- -
-transferase 6
6.51E-05 446532 "MGC80279’ MGQSPQ?Q
protein
ATTE-05 1E+08 pidk2a’ ¢ hosphatidylinositol
4-kinase
-4.65E-05 779259 "MGC154458’ ‘sideroflexin 1’
4.44E-05 379502 "MGC64251° ‘transferrin’
4.00E-05 733312 "des’ "desmin’
-3.71E-05 734196 fancd2’ Fanconi :
anemia group D2
-3.49E-05 446239 "CHML’ CHML,
protein
-3.30E-05 414681 'cbrd’ Carbonyl
reductase 4
3.05E-05 379859 odel’ ornithine
decarboxylase 1
-1.17E-05 779277 ‘renl’ 'reticulocalbin 1’
-4.93E-06 399108 'Corolc’ coroni.
homolog

in comparison with the Resistant ones. The model learned on all probes is applied
to test samples and estimates of their tolerance scores were obtained. Estimates
of the tolerance scores are presented in Figure 6.4. Scores are given on the y-axes,
and represent dimensionless numeric, while the x-axis just gives the sample ID and

does not had to have any particular order. Even though it looks like the predicted

scores are mixed, statistical tests show that there are significant differences in the
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FIGURE 6.4: Predicted values of tolerance scores for testing samples consisting of
tolerant (E. coli and S. aureus) and resistant phenotypes (S. pneumoniae and LPS).

mean values of the scores for the two phenotypic groups on the population level. We
performed a two-sided (unpaired) t-test and results suggest that the null hypothesis
that two groups are no different can be rejected on the significance level of 0.05
(p-value = 0.032). Although not perfectly discriminative, this result shows that the
approach learned some patterns in which tolerance samples differs from the other

phenotypes (sensitive and resistant).
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CHAPTER 7

CONCLUSION

Quantifying a properties of interest is important task in many domains, as that
is necessary for informing decisions and making appropriate actions. For example,
whether to treat the patient with some drug, or whether to hire the candidate for
some job position. Unfortunately, it is not an easy task, as often those very properties
are latent and difficult to assess. However, even when direct assessment is not an
option, many times it is feasible to obtain relative assessment of two examples. Like
noticing that some patient is in more severe condition than the other one, or that
some patient today appears more healthy than he was yesterday.

There exist methods that can effectively use such “pairwise comparison” infor-
mation to build predictive models, which can subsequently be used for assessing the
property of interest from other observable features. We adopted one such framework
named ranking SVM and extended it for use in some special cases. Applications in
bio-medical datasets typically have some specific challenges. First, and the major
one, is the limited amount of data examples, due to an expensive measuring technol-
ogy, and/or infrequency of conditions of interest. Such limited number of examples

makes both identification of patterns/models and their validation less useful and re-
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liable. Repeated samples from the same subject are collected on multiple occasions
over time, which breaks IID sample assumption and introduces dependency structure
that can be exploited, but needs to be taken into account more appropriately. Also,
feature vectors are highdimensional, and typically of much higher cardinality than
the number of samples, making models less useful and their learning less efficient.

We proposed a method that jointly learns multiple scoring functions from a set
of ranked examples. These efforts are motivated by applications in which there are
multiple related tasks, with a limited amount of data for each task. Related tasks
commonly share underlying regularities which could be learned more accurately by
modeling all tasks together. The multitask approach utilizes composite regularization
consisting of the trace norm and row-wise grouped Lasso penalty, to impose structural
regularity among the model parameters of different tasks. We also proposed an
optimization algorithm, based on the alternate minimization and proximal gradient
techniques, for solving such convex multitask ranking based scoring functions learning
objective. We also presented an approach to the problem of learning scoring functions
in presence of irrelevant or high dimensional measurements. We build on top of
existing efforts by simultaneously performing feature selections that are most relevant
for the score learning. Both developed frameworks were thoroughly evaluated on
synthetic and real examples, in order to assess their characteristics.

Multitask framework empirical evaluations in one synthetic and two real-world
datasets suggest the benefits of utilizing the multitask approach for learning related
ranking based scoring functions. According to the results, the model with only L,
performs worse than L, 9, because sparsity in features seems to be the more dom-
inant pattern in the data relative to the low-rank component. However, utilizing
both L, and L;» in the same model turned out to be most beneficial for studied
applications. We also assessed multiple approaches to learning the severity scores in
high-dimensional applications. Our results point to the utility and maybe even neces-
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sity of reducing the dimensionality of the problem through sparse learning techniques,
with the use of L; norm regularization. Combination of the advantages of existing
solutions turned out to be beneficial for the predictive performance, as measured
by accuracy. The robustness of the learned scoring function, on human influenza
virus application, as well as features selected by our approach compares very favor-
ably against the alternatives. Conducted gene ontology over-representation analysis
supports the relevance of the genes identified by the SLDSS approach. Additional
studies are possible to further characterize selected genes and the processes they are
involved in, in order to provide further insight into causal relations underlining the
influenza infection. For example, “transferrin” gene selected in the frog tolerance to
pathogens application, and its role in iron metabolism during the pathogen infection,
will be focus of the further studies, with aim to gain some knowledge on how tolerant
behavior arises. These are all mounting evidence that proposed approach could be
used as a discovery tool for both scoring functions and related informative variables,
which could further motivate novel hypotheses.

Also, there are some limitations and drawbacks to the proposed models and
algorithms. First the models are linear function of the observed features, and there-
fore cannot capture well the nonlinear effects that might affect relations between
the features and target. The remedy for that might be extension of the proposed
frameworks to use the kernel trick to allow for more richer representational abil-
ity (Scholkopf et al., 1999). Second, the proposed proximal gradient algorithm with
alternating minimization for optimization of the multitask objective proved valuable
for applications with low to moderate dimensionality of the feature space. However,
as the contemporary applications have ever increasing number of measured variables,
more efficient optimization approaches with better scalability are required. One po-
tential way to accelerate the proximal gradient algorithm is to adopt the approach
proposed in (Toh and Yun, 2010). The high-dimensional method on the other side
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is appropriate for learning scoring functions from high dimensional cases. However,
it would probably have problem in applications where the number of cases is also
large, since in such applications a quadratic number of comparisons in the number
of samples can be a challenge. That difficulty might be alleviated with appropri-
ate sampling of the training samples, similar to techniques proposed for Gaussian

Processes (Lawrence et al., 2009).

57



BIBLIOGRAPHY

Anderson, R. (2007), The credit scoring toolkit: theory and practice for retail credit
risk management and decision automation, Oxford University Press.

Ando, R. K. and Zhang, T. (2005), “A framework for learning predictive structures
from multiple tasks and unlabeled data,” Journal of Machine Learning Research,
6, 1817-1853.

Argyriou, A., Evgeniou, T., and Pontil, M. (2008), “Convex multi-task feature learn-
ing,” Machine Learning, 73, 243-272.

Ashtawy, H. M. and Mahapatra, N. R. (2015), “Machine-learning scoring functions
for identifying native poses of ligands docked to known and novel proteins,” BMC
bioinformatics, 16, S3.

Bach, F., Jenatton, R., Mairal, J., Obozinski, G., et al. (2011), “Convex optimization
with sparsity-inducing norms,” Optimization for Machine Learning, 5.

Bach, F., Jenatton, R., Mairal, J., Obozinski, G., et al. (2012), “Optimization with
sparsity-inducing penalties,” Foundations and Trends®) in Machine Learning, 4,
1-106.

Bai, J., Zhou, K., Xue, G., Zha, H., Sun, G., Tseng, B., Zheng, Z., and Chang, Y.
(2009), “Multi-task learning for learning to rank in web search,” in Proceedings of
the 18th ACM conference on Information and knowledge management, pp. 1549—

1552, ACM.

Beck, A. and Teboulle, M. (2009), “Gradient-based algorithms with applications to
signal recovery,” Convex optimization in signal processing and communications,
pp. 42-88.

Bertsekas, D. P. and Tseng, P. (1994), “Partial proximal minimization algorithms
for convex pprogramming,” SIAM Journal on Optimization, 4, 551-572.

Bi, J., Bennett, K., Embrechts, M., Breneman, C., and Song, M. (2003), “Dimension-
ality reduction via sparse support vector machines,” Journal of Machine Learning
Research, 3, 1229-1243.

58



Boyd, S. (2011), “Alternating direction method of multipliers,” in Talk at NIPS
Workshop on Optimization and Machine Learning.

Boyd, S. and Vandenberghe, L. (2004), Convex optimization, Cambridge university
press.

Biithlmann, P. and Van De Geer, S. (2011), Statistics for high-dimensional data:
methods, theory and applications, Springer Science & Business Media.

Cai, J.-F., Candes, E. J., and Shen, Z. (2010), “A singular value thresholding algo-
rithm for matrix completion,” SIAM Journal on Optimization, 20, 1956—1982.

Cao, X. H., Stojkovic, I., and Obradovic, Z. (2014), “Predicting sepsis severity from
limited temporal observations,” in International Conference on Discovery Science,
pp. 3748, Springer.

Cao, X. H., Stojkovic, 1., and Obradovic, Z. (2016), “A robust data scaling algorithm
to improve classification accuracies in biomedical data,” BMC' bioinformatics, 17,
1-10.

Chen, J., Tang, L., Liu, J., and Ye, J. (2009), “A convex formulation for learning
shared structures from multiple tasks,” in Proceedings of the 26th Annual Inter-
national Conference on Machine Learning, pp. 137-144, ACM.

Chen, J., Zhou, J., and Ye, J. (2011), “Integrating low-rank and group-sparse struc-
tures for robust multi-task learning,” in Proceedings of the 17th ACM SIGKDD in-
ternational conference on Knowledge discovery and data mining, pp. 42-50, ACM.

Colburn, W., DeGruttola, V. G., DeMets, D. L., Downing, G. J., Hoth, D. F.,
Oates, J. A., Peck, C. C., Schooley, R. T., Spilker, B. A., Woodcock, J., et al.
(2001), “Biomarkers and surrogate endpoints: Preferred definitions and concep-
tual framework. Biomarkers Definitions Working Group,” Clinical Pharmacol &
Therapeutics, 69, 89-95.

Cosi¢, A., Kati¢, D., and Stojkovié, L. (2013), “An Approach to Localization of Mobile
Robots Based on Extended Kalman Filter,” in Proceedings of the 57th ETRAN
Conference, Society for Electronics, Telecommunications, Computers, Automatic
Control and Nuclear Engineering, pp. 1-4.

De Mol, C., De Vito, E., and Rosasco, L. (2009), “Elastic-net regularization in
learning theory,” Journal of Complexity, 25, 201-230.

Drakesmith, H. and Prentice, A. (2008), “Viral infection and iron metabolism,”
Nature Reviews Microbiology, 6, 541-552.

Dyagilev, K. and Saria, S. (2015a), “Learning (predictive) risk scores in the presence
of censoring due to interventions,” Machine Learning, pp. 1-26.

99



Dyagilev, K. and Saria, S. (2015b), “Learning severity score for sepsis: a novel ap-
proach based on clinical comparisons,” in AMIA Annual Symposium Proceedings,
pp. 1890-1898.

Evgeniou, T., Micchelli, C. A.,; and Pontil, M. (2005), “Learning multiple tasks with
kernel methods,” Journal of Machine Learning Research, 6, 615-637.

Ghalwash, M. F., Cao, X. H., Stojkovic, 1., and Obradovic, Z. (2016), “Structured
feature selection using coordinate descent optimization,” BMC' Bioinformatics, 17,
1-14.

Ghosh, D. and Chinnaiyan, A. M. (2005), “Classification and selection of biomarkers
in genomic data using LASSO,” BioMed Research International, 2005, 147-154.

Gligorijevic, D., Stojanovic, J., and Obradovic, Z. (2015), “Improving confidence
while predicting trends in temporal disease networks,” in SIAM SDM jth Work-
shop on Data Mining for Medicine and Healthcare.

Gligorijevic, D., Stojanovic, J., and Obradovic, Z. (2016), “Uncertainty Propagation
in Long-term Structured Regression on Evolving Networks,” in Thirtieth AAAI
Conference on Artificial Intelligence (AAAI-16).

Gong, P., Ye, J., and Zhang, C. (2012), “Robust multi-task feature learning,” in
Proceedings of the 18th ACM SIGKDD international conference on Knowledge
discovery and data mining, pp. 895-903, ACM.

Haynes, W. (2013), Encyclopedia of Systems Biology, chap. Bonferroni Correction,
pp. 154-154, Springer New York, New York, NY.

Hower, V., Mendes, P., Torti, F. M., Laubenbacher, R., Akman, S., Shulaev, V.,
and Torti, S. V. (2009), “A general map of iron metabolism and tissue-specific
subnetworks,” Molecular bioSystems, 5, 422—443.

Jackson, G. G., Dowling, H. F.; Spiesman, I. G., and Boand, A. V. (1958), “Transmis-
sion of the common cold to volunteers under controlled conditions: I. The common
cold as a clinical entity,” AMA archives of internal medicine, 101, 267-278.

Jacob, L., Vert, J.-p., and Bach, F. R. (2009), “Clustered multi-task learning: A
convex formulation,” in Advances in neural information processing systems, pp.
745-752.

Jalali, A., Sanghavi, S., Ruan, C., and Ravikumar, P. K. (2010), “A dirty model for
multi-task learning,” in Advances in Neural Information Processing Systems, pp.

964-972.

60



Joachims, T. (2002), “Optimizing search engines using clickthrough data,” in Pro-
ceedings of the eighth ACM SIGKDD international conference on Knowledge dis-
covery and data mining, pp. 133-142, ACM.

Kalousis, A., Prados, J., and Hilario, M. (2007), “Stability of feature selection algo-
rithms: a study on high-dimensional spaces,” Knowledge and information systems,
12, 95-116.

Kumar, S. and Hebert, M. (2004), “Discriminative Fields for Modeling Spatial De-
pendencies in Natural Images,” in Advances in Neural Information Processing
Systems, pp. 1531-1538.

Lafferty, J., McCallum, A., and Pereira, F. C. (2001), “Conditional random fields:
Probabilistic models for segmenting and labeling sequence data,” ICML, pp. 282—
289.

Lai, H., Pan, Y., Liu, C., Lin, L., and Wu, J. (2013), “Sparse learning-to-rank via an
efficient primal-dual algorithm,” IEEE Transactions on Computers, 62, 1221-1233.

Lawrence, N. D., Rattray, M., and Titsias, M. K. (2009), “Efficient sampling for
Gaussian process inference using control variables,” in Advances in Neural Infor-
mation Processing Systems, pp. 1681-1688.

Maglott, D., Ostell, J., Pruitt, K. D.; and Tatusova, T. (2005), “Entrez Gene: gene-
centered information at NCBI,” Nucleic acids research, 33, D54-D58.

Mi, H., Poudel, S., Muruganujan, A., Casagrande, J. T., and Thomas, P. D. (2016),
“PANTHER version 10: expanded protein families and functions, and analysis
tools,” Nucleic acids research, 44, D336-D342.

Miloradovié, B., Popié¢, S., and Stojkovié, 1. (2013), “Development of Intelligent
Behaviour Using Decision Making Methods Based on ANN,” in Proceedings of the
12th INFOTECH-Jahorina, pp. 1060-1065.

Mortimore, P., Sammons, P., Stoll, L., Lewis, D., and Ecob, R. (1988), School mat-
ters: The junior years, Open Books.

Ng, A. Y. (2004), “Feature selection, L. 1 vs. L 2 regularization, and rotational
invariance,” in Proceedings of the twenty-first international conference on Machine
learning, p. 78, ACM.

Parikh, N. and Boyd, S. (2014), “Proximal Algorithms.” Foundations and Trends in
optimization, 1, 127-239.

Pavlovski, M., Zhou, F., Stojkovic, 1., Kocarev, L., and Obradovic, Z. (2017), “Adap-
tive Skip-Train Structured Regression for Temporal Networks,” in Proceedings of
the ECML/PKDD 17.

61



Peng, F. and McCallum, A. (2006), “Information extraction from research papers
using conditional random fields,” Information processing €& management, 42, 963—
979.

Radosavljevic, V., Vucetic, S., and Obradovic, Z. (2010), “Continuous Conditional
Random Fields for Regression in Remote Sensing.” in Proceedings of the 19th
European Conference on Artificial Intelligence (ECAI 2010) Lisbon, Portugal.

Rasmussen, C. E. and Williams, C. K. (2006), Gaussian processes for machine learn-
ing, vol. 1, MIT press Cambridge.

Rodi¢, A. and Stojkovié, 1. (2012a), “Integrated Control of Quadrotor Flight Dynam-
ics with Complementary Compensator of System Uncertainties,” in International
Micro Air Vehicle Conference and Flight Competition IMAV 2012, pp. 1-8.

Rodié, A. and Stojkovié, I. (2013), “Building of Open-Structure Wheel-Based Mobile
Robotic Platform,” Interdisciplinary Mechatronics, pp. 385—421.

Rodi¢, A., Mester, G., and Stojkovié, I. (2012), “Navigation and Control of Indoor
Mobile Robot in Unknown Environments,” in Proceedings of the 56th ETRAN
Conference, Society for Electronics, Telecommunications, Computers, Automatic
Control and Nuclear Engineering, pp. 1-4.

Rodié, A., Mester, G., and Stojkovié, I. (2013), “Qualitative evaluation of flight con-
troller performances for autonomous quadrotors,” in Intelligent Systems: Models
and Applications, pp. 115-134, Springer.

Rodié¢, A. D. and Stojkovi¢, I. R. (2012b), “Dynamic Inversion Control of quadro-
tor with complementary Fuzzy logic compensator,” in 11th Symposium on Neural
Network Applications in Electrical Engineering (NEUREL), pp. 53-58, IEEE.

Saeys, Y., Inza, 1., and Larranaga, P. (2007), “A review of feature selection techniques
in bioinformatics,” bioinformatics, 23, 2507-2517.

Santolino, M. and Boucher, J.-P. (2009), “Modelling the disability severity score
in motor insurance claims: an application to the Spanish case,” IREA-Working
Papers, 2009, IR09/002.

Sato, K. and Sakakibara, Y. (2005), “RNA secondary structural alignment with
conditional random fields,” Bioinformatics, 21, ii237—-i242.

Scheinberg, K., Ma, S., and Goldfarb, D. (2010), “Sparse inverse covariance selec-
tion via alternating linearization methods,” in Advances in neural information
processing systems, pp. 2101-2109.

62



Schmidt, M., Roux, N. L., and Bach, F. R. (2011), “Convergence rates of inexact
proximal-gradient methods for convex optimization,” in Advances in neural infor-
mation processing systems, pp. 1458-1466.

Schélkopf, B., Burges, C. J., and Smola, A. J. (1999), Advances in kernel methods:
support vector learning, MIT press.

Shaobing, C. and Donoho, D. (1994), “Basis pursuit,” in 28th Asilomar conf. Signals,
Systems Computers.

Sima, C. and Dougherty, E. R. (2006), “What should be expected from feature
selection in small-sample settings,” Bioinformatics, 22, 2430-2436.

Simms, E. L. (2000), “Defining tolerance as a norm of reaction,” Evolutionary Ecol-
ogqy, 14, 563-570.

Sokolovska, N.; Chevaleyre, Y., Clément, K., and Zucker, J.-D. (2017), “The fused
lasso penalty for learning interpretable medical scoring systems,” in Neural Net-
works (IJCNN), 2017 International Joint Conference on, pp. 4504-4511, IEEE.

Spasojevi¢, S., Ili¢, T. V., Stojkovi¢, 1., Potkonjak, V., Rodi¢, A., and Santos-Victor,
J. (2017), “Quantitative assessment of the arm/hand Movements in Parkinsons
Disease Using a Wireless armband Device,” Frontiers in Neurology, 8, 1-15.

Stojanovic, J., Jovanovic, M., Gligorijevic, D., and Obradovic, Z. (2015), “Semi-
supervised learning for structured regression on partially observed attributed
graphs,” in Proceedings of the 2015 SIAM International Conference on Data Min-
ing (SDM 2015) Vancouver, Canada, STAM.

Stojanovic, J., Gligorijevic, D., and Obradovic, Z. (2016), “Modeling Customer En-
gagement from Partial Observations,” in 25th ACM International Conference on
Information and Knowledge Management (CIKM 2016).

Stojkovi¢, I. and Kati¢, D. (2017), “Formation Control of Robotized Aerial Vehicles
Based on Consensus-Based Algorithms,” FMFE Transactions, 45, 559-564.

Stojkovic, 1. and Obradovic, Z. (2017a), “Predicting Sepsis Biomarker Progression
under Therapy,” in Proceedings of the 30th IEEE International Symposium on
Computer-Based Medical Systems IEEE CBMS-17, pp. 19-24.

Stojkovic, 1. and Obradovic, Z. (2017b), “Sparse Learning of the Disease Severity
Score for High-Dimensional Data,” Complexity, 2017, 1-11.

Stojkovi¢, 1., Rodi¢, A., and Stevanovié¢, I. (2012), “Comparison of different flight
control techniques for autonomous quadrotors,” in Proceedings of the 56th ETRAN
Conference, Society for Electronics, Telecommunications, Computers, Automatic
Control and Nuclear Engineering, pp. 1-4.

63



Stojkovic, 1., Jelisavcic, V., Milutinovic, V., and Obradovic, Z. (2016a), “Distance
Based Modeling of Interactions in Structured Regression,” in Proceedings of the
25th International Joint Conference on Artificial Intelligence IJCAI-16, pp. 2032—
2038.

Stojkovic, 1., Ghalwash, M. F., Cao, X. H., and Obradovic, Z. (2016b), “Effective-
ness of Multiple Blood-Cleansing Interventions in Sepsis, Characterized in Rats,”
Scientific Reports, 6, 1-11.

Stojkovic, 1., Jelisavcic, V., Milutinovic, V., and Obradovic, Z. (2017a), “Fast sparse
Gaussian Markov Random Fields learning based on Cholesky factorization,” in

Proceedings of the 26th International Joint Conference on Artificial Intelligence
IJCAI-17, pp. 2758-2764.

Stojkovic, 1., Ghalwash, M., and Obradovic, Z. (2017b), “Ranking based multitask
learning of scoring functions,” in Proceedings of the Furopean Conference on Ma-
chine Learning and Principles and Practice of Knowledge Discovery in Databases,
pp. 1-12.

Sutton, C. and McCallum, A. (2006), “An introduction to conditional random fields
for relational learning,” Introduction to statistical relational learning, pp. 93—128.

Tappen, M. F., Liu, C., Adelson, E. H., and Freeman, W. T. (2007), “Learning
gaussian conditional random fields for low-level vision,” in IEEE Conference on
Computer Vision and Pattern Recognition, (CVPR’07), pp. 1-8, IEEE.

Tibshirani, R. (1996), “Regression shrinkage and selection via the lasso,” Journal of
the Royal Statistical Society. Series B (Methodological), pp. 267—-288.

Toh, K.-C. and Yun, S. (2010), “An accelerated proximal gradient algorithm for
nuclear norm regularized linear least squares problems,” Pacific Journal of Opti-
mazation, 6, 15.

Vincent, J.-L., Moreno, R., Takala, J., Willatts, S., De Mendoncga, A., Bruining, H.,
Reinhart, C., Suter, P., and Thijs, L. (1996), “The SOFA (Sepsis-related Organ
Failure Assessment) score to describe organ dysfunction/failure,” Intensive care
medicine, 22, 7T07-710.

Vujicic, T., Glass, J., Zhou, F., and Obradovic, Z. (2017), “Gaussian conditional
random fields extended for directed graphs,” Machine Learning, 106, 1271-1288.

Wang, L., Zhu, J., and Zou, H. (2006), “The doubly regularized support vector
machine,” Statistica Sinica, pp. 589-615.

Woods, C. W., McClain, M. T., Chen, M., Zaas, A. K., Nicholson, B. P., Varkey, J.,
Veldman, T., Kingsmore, S. F., Huang, Y., Lambkin-Williams, R., et al. (2013), “A

64



host transcriptional signature for presymptomatic detection of infection in humans
exposed to influenza HIN1 or H3N2,” PLoS One, 8, €52198.

Wytock, M. and Kolter, Z. (2013), “Sparse Gaussian conditional random fields:
Algorithms, theory, and application to energy forecasting,” in Proceedings of the
30th International Conference on Machine Learning (ICML-13), pp. 1265-1273.

Yang, S., Shapiro, L., Cunningham, M., Speltz, M., Birgfeld, C., Atmosukarto, I.,
and Lee, S.-I. (2012), “Skull retrieval for craniosynostosis using sparse logistic
regression models,” in Medical Content-Based Retrieval for Clinical Decision Sup-
port, pp. 33—44, Springer.

Zaas, A. K., Chen, M., Varkey, J., Veldman, T., Hero, A. O., Lucas, J., Huang, Y.,
Turner, R., Gilbert, A., Lambkin-Williams, R., et al. (2009), “Gene expression
signatures diagnose influenza and other symptomatic respiratory viral infections
in humans,” Cell host & microbe, 6, 207-217.

Zhou, J., Chen, J., and Ye, J. (2011), “Malsar: Multi-task learning via structural
regularization,” Arizona State University, 21.

Zhou, J., Liu, J., Narayan, V. A., and Ye, J. (2012), “Modeling disease progression via
fused sparse group lasso,” in Proceedings of the 18th ACM SIGKDD international
conference on Knowledge discovery and data mining, pp. 1095-1103, ACM.

Zivanovi¢, M. and Stojkovié, I. (2013), “Self-Organization in motion of a set of living
individuals,” Self-Organiztion: Theories and Methods, pp. 171-194.

Zou, H. and Hastie, T. (2005), “Regularization and variable selection via the elastic
net,” Journal of the Royal Statistical Society: Series B (Statistical Methodology),
67, 301-320.

65



Appendix A
RESPIRATORY VIRAL INFECTION DATA

Used data is obtained from study (Zaas et al., 2009), and is publicly available on
Gene Expression Omnibus repository under number GSE17156. For all subjects in
each of the three datasets, symptoms were recorded twice a day and quantified by the
modified Jackson Score (Jackson et al., 1958). Thereafter, subjects were classified
based on the modified Jackson Score values into “symptomatic” and “asymptomatic”
groups. In addition, viral load temporal measurements are available for 28 “symp-
tomatic” subjects, given in Table 5.3. Gene expression measurements (for 12,023
genes) were collected temporally, starting at a baseline (24 hours prior to inocu-
lation with virus) and measured at certain time points following the experimental
procedure described in detail in (Zaas et al., 2009), making a total of 16, 14 and
21 time-point measurements for H3N2, HRV and RSV datasets, respectively. Sub-
sequent Figures A.1-A.6 shows the viral shedding and symptom scores for subjects
who developed clinically relevant symptoms from H3N2, HRV and RSV datasets,

and are recreated using the info from supplementary material of (Zaas et al., 2009).
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A.1 Human Influenza Virus - H3N2

Viral Shedding [pfu/ml]
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F1GURE A.1: H3N2 patients’ viral load over the course of infection.
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FIGURE A.2: H3N2 patients’ symptoms severity over the course of infection.
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A.2 Human Rhino Virus - HRV
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FicURE A.3: HRV patients’ viral load over the course of infection.
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F1GURE A.4: HRV patients’ symptoms severity over the course of infection.
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A.3 Respiratory Syncytial Virus - RSV
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FIGURE A.5: RSV patients’ viral load over the course of infection.
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FIGURE A.6: RSV patients’ symptoms severity over the course of infection.
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Appendix B

FEATURE SELECTION STABILITY

Feature selection stability, or in other words robustness, is a metric that quantifies
how sensitive are the selection algorithms to different training sets. That is, how
likely it is, that they will select similar feature sets, among different training samples’
sets. We performed training of four competitive algorithms (SLDSS, DSSL, LASSO
and L, Log Reg) for scoring function learning in a 10-fold crossvalidation procedure,
which resulted in 40 sets of selected features.

Robustness of such selected features is characterized in three ways: using Pear-
son correlation which measures how well are feature magnitudes preserved (Fig B.1);
Spearman rank to track how the order of features’ magnitudes are preserved (Fig B.2);
and Jaccard Index to see how well the sets are overlapping (Fig B.3).

From Figures B.1-B.3, it can be observed that features are most similar within
the 10 folds selected by the same algorithm (yellowish squares on the diagonal), and

that SLDSS has the brightest square, which suggest largest correlation.
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Pearson correlation
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{07
DSSL
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SLDSS DSSL LASSO L1LogReg

FiGURE B.1: Pearson similarity matrix between weight vectors learned over all 10
folds of data and all four methods. Warmer colors correspond to higher similarity
(stability), and cooler tones to lower similarity. SLDSS (upper left square) has the
highest similarities among all methods.
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Spearman rank

1
SLDSS 102
{08
=40.7
DSSL

LASSO

L1LogReg

SLDSS DSSL LASSO L1LogReg

FIGURE B.2: Spearman similarity matrix between weight vectors learned over all
10 folds of data and all four methods. Warmer colors correspond to higher similarity
(stability), and cooler tones to lower similarity. SLDSS (upper left square) has the
highest similarities among all methods.
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Jaccard index
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DSSL

LASSO

L1LogReg

SLDSS DSSL LASSO L1LogReg

F1GURE B.3: Jaccard similarity matrix between weight vectors learned over all 10
folds of data and all four methods. Warmer colors correspond to higher similarity
(stability), and cooler tones to lower similarity. SLDSS (upper left square) has the

highest similarities among all methods.
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M3jasa o ayTopcTBY
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Aa je Aokropcka AucepTaupja Nof HaCNoBoM
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r@u\wxam\sau_ujw POHCUP AL HQLL TeMnoPON UM Mo Lo UM Qe

o pesynTaT COMCTBEHOr UCTPAXUBAYKON Pasa,

e fAa NpeanoxeHa Aucepraumja y UemmHi HY Y AenoBuMa Huje Guna npegnoxeHa
3a pobujate GuNo Koje Aunnome npema CTyAWjCKUM nporpamuma Apyrix
BWCOKOLLKONCKUX YCTaHOBA,

e [la cy pes3ynTaTu KOPeKTHO HaBedeHu

o’ Ja HWcaMm KpLuMo/na ayTopcka npasa W KOPUCTUO MHTEneKTyarHy CBOjUHY
ApYrvx nuua.
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Mpunor 2.

N3jaBa 0 MCTOBETHOCTHM LWITaMMNaHe U eylieKTPOHCKe
Bep3uje JOKTOpPCKOr paja

Wme v npesume ayTopa ‘/[ BIH CTO} Lob Vl—t\
L
Bpojyca __ 056 /A1
Cryanicxn nporpam -~ NS K TPOTEX HULD U PQ YYHIAPCT BO .
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n3jaBrbyjeM Aa je wramnaHa Bepauja Mor [OKTOPCKOr paja UCTOBETHA eneKTPOHCKO|
Bepauju kojy cam npefao/na 3a o6jaereMBake Ha noptany [LururasHor
peno3uTopuyMma YHusepsuterta y Beorpaay.

[HossorbaBam ga ce objase Moju NUYHM NOJaUM BesaHu 3a Aobujare akagemckor
3Bara JoKTOopa Hayka, Kao LITO CY MME 1 NpesuMe, roguHa U MecTo pofjersa u Aatym
oabpaHe paga.

Osu nuuHM nopauM Mory ce objaBnTi Ha MpEXHUM CTpaHuLama [uruTanHe
BubnuoTexe, y eneKkTPOHCKOM KaTanory v y nybnukaunjama Yuusepauteta y beorpaay.
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Mpunor 3.

WU3jaBa o kopuwhery

Osnatwhyjem YHusepauretcky 6ubnuortexy ,Csetosap Mapkosuh* aa y Ourutaniu
penoautopnjym YHuBepauteTa y beorpagy yHece Mojy LoKTopcky guceprauuly nog
Hacnosom;
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kaja je Moje ayTopcko gero.

[uceprauujy ca cBum npunosMMa npegao/na cam y enekTpoHckoM hopMarTy norogHom
3a TpajHo apxuBMpatbe,

Mojy AokTopcky AucepTauujy noxpareHy Yy QurnranHu penoautopujym YHuBepauTera
y Beorpaay mory fia kopucTe CBY KOju NowTYjy ogpeade cappxaHe y ogabpaHoM Tuny
nuuerue KpeatsHe sajeqruue (Creative Commons) 3a Kojy cam ce ogryuno/na.

1. AytopcTeo

2. AyTOpCTBO - HEeKoMepyujanHo

2 Ay Pumjankio - Gea npepags

—
4. AyTopcTBO — HEKOMepUWjanHo — AeNWTY NOA UCTUM YCnoBUMa

5. AyTtopctso— Oes npepape
6. AyTopcTBO — JENUTV NOA UCTUM YCnoBuMa

(Monumo fa 3aokpyuTe camo jegHy of LWeCT NoHyReHUX SMLEHUM, Kpatak onne
nuUeHLU aaT je Ha nonefuHu nucra).
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1. Ayropcreo - [oaporbasare yMHOXaBatke, avcTpubyLuly ¥ jJasHo caonuitaBatbe
Aena, W rpepafie, ako Ce HaBefe UMEe ayTopa Ha HauuH Oppeflen ofl CTpaHe ayTopa
W 4EBaoLa MUeHUe, Yak v y komepuujante capxe. OBO je HajcnoboaHuja of caux
nviLeHun,

2. AyTOPCTBO — HekoMepLyjanHo. [lo3Borbapare yMHOKABAKE, AueTpubyumnjy W jaBHo
caonwTaBare Aena, v npepage, ako ce HaBeAe uMe aytopa Ha HauuH oapeheH o4
cTpaHe ayTopa wnw Aasaoua nauedue. OBa fuueHua He 403B0SbaRa Komepumjanty
ynoTpely nena.

3. AytopcTeo - HekomepuujanHo — Oes npepage. [lodsorhabate YyMHOKABARE,
AUCTPUBYLIMY 1 jaBHO caonwTasake gena, Ges npomena, npeoBnukosar-a W
yriotpebe nerna y CBOM AeNy, ko Ce Hasepae UMe ayTopa Ha HauW oppeheH of
cTpaHe ayTopa vnu fasaocua nuueHue. OBa nuueHUa He A0380rbaBa Komepuujandy
ynotpeBy fena. Y OfHOCY Ha CBE OCTane nuuetue, 0BOM MULICHLIOM Ce orpaHuiasa
Hajsehn obum npasa kopuihetba Aena.

4. AYTOPCTBO - HEKOMEPUMjaIHO — AENUTU noj WCTUM yCrnosuma. [oasorbapare
yMHOXaBake, AUCTPUGYLIM)Y 1 jasHo caoriuTasare fena, N npepaae, ako ce HaBeae
uMe ayTopa Ha HauuH ogpeheH of CTpaHe ayTopa Wnu [aBaoua nvueHue U ako ce
npepafa auctpubympa NOA MCTOM vAW CAMMHOM uueHuom. Osa nuueHua He
[10380IbaBa KoMepuujandy ynotpefy fgena v npepaga.

5. AyTopcTeo — Bes npepagde. [j0380rbaBaTe yMHOXABAME, ANCTPUOYLMY U jasHo
caonwTasatee fena, 6e3 npomena, npeobnukosama unu ynotpebe Aena y caom Aeny,
aKo ce Hamede WMe aytopa Ha Hayud oapehex of cTpade aytopa wan jasaoua
nuueHue. OBa NUeHLa [o3BOrbaBa koMepLnjandy ynotpedy gena.

6. AYTOpCTBO - [enuTM nog WCTUM  ycroeuma. [lo3sorbaBate yMHOXasakbe,
ANCTPUBYLM)Y 1 jaBHO CaonLUTaBare fena, ¥ Npepaje, ako ce HaseAe ume ayTopa Ha
HauH oapeRled oa CTpaHe ayTopa WK AaBaoua JfiMUeHUe M ako ce npepana
ovicTpuByrpa noa MCTOM WNKM GIvdHOM nuuedijom. OBa nuueHua [03BOrbasa
KomepumnjanHy ynoTpeBy Aena v npepaga. CnudHa je coTBEpCKMM nuLeHuama,
0JHOCHO NULeHLIamMa 0TBOPEHOr KoAaa.
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