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dr Slobodan Vučetić, Full professor, Temple University, College of Science and

Technology
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Dissertation title: Functional norm regularization for margin-based ranking on

temporal data

Abstract: Quantifying the properties of interest is an important problem in

many domains, e.g., assessing the condition of a patient, estimating the risk of an

investment or relevance of the search result. However, the properties of interest are

often latent and hard to assess directly, making it difficult to obtain classification

or regression labels, which are needed to learn a predictive models from observable

features. In such cases, it is typically much easier to obtain relative comparison of

two instances, i.e. to assess which one is more intense (with respect to the property

of interest). One framework able to learn from such kind of supervised information

is ranking SVM, and it will make a basis of our approach.

Applications in bio-medical datasets typically have specific additional challenges.

First, and the major one, is the limited amount of data examples, due to an expen-

sive measuring technology, and/or infrequency of conditions of interest. Such limited

number of examples makes both identification of patterns/models and their valida-

tion less useful and reliable. Repeated samples from the same subject are collected

on multiple occasions over time, which breaks IID sample assumption and introduces

dependency structure that needs to be taken into account more appropriately. Also,

feature vectors are highdimensional, and typically of much higher cardinality than

the number of samples, making models less useful and their learning less efficient.

Hypothesis of this dissertation is that use of the functional norm regulariza-

tion can help alleviating mentioned challenges, by improving generalization abilities

and/or learning efficiency of predictive models, in this case specifically of the ap-

proaches based on the ranking SVM framework.

The temporal nature of data was addressed with loss that fosters temporal

smoothness of functional mapping, thus accounting for assumption that temporally
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proximate samples are more correlated. Large number of feature variables was han-

dled using the sparsity inducing L1 norm, such that most of the features have zero

effect in learned functional mapping. Proposed sparse (temporal) ranking objective

is convex but non-differentiable, therefore smooth dual form is derived, taking the

form of quadratic function with box constraints, which allows efficient optimization.

For the case where there are multiple similar tasks, joint learning approach based

on matrix norm regularization, using trace norm L˚ and sparse row L21 norm was

also proposed. Alternate minimization with proximal optimization algorithm was

developed to solve the mentioned multi-task objective.

Generalization potentials of the proposed high-dimensional and multi-task rank-

ing formulations were assessed in series of evaluations on synthetically generated and

real datasets. The high-dimensional approach was applied to disease severity score

learning from gene expression data in human influenza cases, and compared against

several alternative approaches. Application resulted in scoring function with im-

proved predictive performance, as measured by fraction of correctly ordered testing

pairs, and a set of selected features of high robustness, according to three similarity

measures. The multi-task approach was applied to three human viral infection prob-

lems, and for learning the exam scores in Math and English. Proposed formulation

with mixed matrix norm was overall more accurate than formulations with single

norm regularization.

Key words: SVM ranking, scoring function learning, functional norm

regularization, proximal algorithms for optimization, temporal data

Scientiffic field: Electrical Engineering and Computer Sciences

Scientiffic subfield: Data analysis and machine learning

UDC number: 004.8
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Naslov teze: Primena funkcionalnih normi za reularizaciju rangiranja nad

temporalnim podacima

Sažetak: Kvantifikovanje osobina (karakteristika) od interesa je važan problem

u mnogim domenima, npr. utvrd̄ivanje težine bolesti kod pacijenata, ocena rizika

investicije ili relevantnost vraćenih rezultata pretrage. Med̄utim, osobine od interesa

su često latentne i teško se mogu izmeriti direktno, što otežava dobijanje klasifika-

cionih oznaka (labela) ili ciljeva za regresiju, koji su potrebni za učenje prediktivnih

modela iz merljivih karakteristika. U takvim slučajevima obično je mnogo lakše

pribaviti relativno pored̄enje dva slučaja, tj. proceniti koji od dva je intenzivniji (iz

ugla karakteristike od interesa). Jedna klasa algoritama koji mogu učiti iz ovakvih

informacija je SVM za rangiranje i on će biti osnova ovde predloženog pristupa.

Aplikacije na biomedicinskim skupovima podataka obično imaju dodatne (specifične)

izazove. Prvi, i najvažniji, je ograničena količina primera u podacima. To se najčešće

dešava zbog skupih tehnologija merenja i / ili retkosti stanja od interesa (na primer

oblik raka koji pogad̄a jako mali broj pacijenata). Takav ograničeni broj primera čini

i identifikaciju obrazaca / modela i njihovu validaciju manje korisnim i pouzdanim.

Ponovljeni uzorci (od istog procesa / subjekta) prikupljaju se u vǐse navrata tokom

vremena, što razbija pretpostavku o identičnoj i nezavisnoj rspodeli (IID) uzorka i

uvodi strukturu zavisnosti koju je potrebno uzeti u obzir. Takod̄e, vektori obeležja

su visokodimenzionalni i obično imaju mnogo veću kardinalnost u odnosu na broj

uzoraka, čineći modele manje korisnim a njihovo obučavanje manje efikasnim.

Hipoteza ove disertacije je da korǐscćenje funkcionalnih normi za regularizaciju

može pomoći ublažavanju prethodno pomenutih izazova, pritom pobolǰsavajući gen-

eralizacione sposobnosti i / ili efikasnost učenja prediktivnih modela, u ovom scučaju

konkretno o pristupima zasnovanim na rangiranju pomoću SVM-a.

Vremenski karakter podataka adresiran je korǐsćenjem objektiva koji podstiče
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vremensku glatkost funkcionalnog mapiranja, čime se uzima u obzir pretpostavka da

su vremenski bliski uzorci vǐse korelisani, te trebaju imati sličnije vrednosti mapirane

funkcije. Problem velikog broja promenljivih je adresiran korǐsćenjem L1 norme koja

indukuje prored̄enost, tako da večina varijabli nema efekat na naučeno funkcionalno

mapiranje. Predloženi objektiv za prored̄eno (vremensko) rangiranje je konveksan,

ali ne-diferencijabilan, stoga se izvodi glatka dvojna forma, koja ima oblik kvadratne

funkcije sa konstantnim ograničenjima, što omogućava efikasnu optimizaciju. U

slučajevima gde postoji vǐse sličnih zadataka, predložen je i zajednički pristup učenja

zasnovan na normativnoj regularizaciji matrice, korǐsćenjem “tragovne” norme L˚

i norme za prored̄enost po redovima L21. Pomenuti vǐsestruki objektiv je rešen

predloženim metodom naizmenićne minimizacije upotrebom algoritama proksimalne

optimizacije.

Generalizacioni potencijal predloženih formulacija za rešavanje visokodimenzion-

alnih i vǐsestrukih problema rangiranja procenjen je u nizu evaluacija na sintetički

generisanim i realnim podacima. Visoko-dimenzionalni pristup primenjen je na

učenje funkcije bodovanja težine bolesti iz podataka o ekspresiji gena kod slučajeva

ljudskog gripa i upored̄ivan je sa nekoliko alternativnih pristupa. Aplikacija je rezul-

tirala funkcijom bodovanja sa pobolǰsanim prediktivnim performansama, mereno

udelom ispravno pored̄anih test parova i skupom odabranih obeležja visoke robus-

nosti, prema tri mere sličnosti. Vǐsestruki pristup je primenjen na problemima sa

ispitivanjem tolerancije ljudi na tri virusine respiratorne infekcije, kao i za bodovanje

ispita iz matematike i engleskog jezika. Predložena formulacija sa mešovitom ma-

tričnom normom se ispostavila superiornijom u odnosu na formulacije sa regulacijom

pomoću pojedinačnih normi.

Ključne reči: SVM rangiranje, učenje funkcija za bodovanje, funkcionalna

regularizacija normama, proksimalni algoritmi za optimizaciju, temporalni podaci
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Naučna oblast: Elektrotehnika i Računarske Nauke

Uža naučna oblast: Analiza podataka i mašinsko učenje
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CHAPTER 1

INTRODUCTION

Quantifying properties of interest is integral to many domains, e.g., assessing the

condition of a patient (Vincent et al., 1996), estimating the risk of an investment (An-

derson, 2007), or predicting binding affinity of a ligand (Ashtawy and Mahapatra,

2015) when developing new drugs. For example, diseases and other health conditions

require continuous monitoring and assessment of the subject’s state. The severity

of the condition needs to be quantified, such that it can subsequently be used to

guide medical decisions and allow appropriate and timely interventions. Hence, var-

ious measuring technologies and sensors are devised to quantify such properties of

interest, which are in turn utilized for informing decisions and making appropriate

actions.

However, very often, the properties of interest are not easy to obtain, whether

they are difficult to measure directly or completely unobservable. This is usually

the case when the properties are conceptual, i.e. they are latent constructs, such as

health, satisfaction, or intelligence, and are notoriously difficult to capture physically.

Under these circumstances, other measurable characteristics, considered related and

informative of the true underlying target, are observed and used as surrogate vari-
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ables. For example, in clinical settings, variables like temperature, blood pressure

and various biomarkers measured from tissues are commonly tracked and considered

when determining the health of the patient.

Typically, some heuristic rules are decided to map these surrogate variables into

the desired score. The process of deciding these heuristic rules (or scoring functions)

is usually long and tedious. For example, disease severity scores that are needed in

clinical practices for patient diagnostics require years of effort and consensus of the

medical community before the scoring functions can become part of the protocols.

Fortunately, developments in machine learning and increasing amounts of the col-

lected data allowed for an alternative and complementary way for engineering the

scoring functions by extracting rules automatically from the data, which facilitates

and complements traditional approaches.

Algorithms for learning scoring functions from data were previously proposed,

mainly in the medical domain, with the objective to learn disease severity scores (Yang

et al., 2012; Santolino and Boucher, 2009; Dyagilev and Saria, 2015b,a; Zhou et al.,

2012). Initial approaches posed the problem as traditional supervised learning tasks

of classification (Yang et al., 2012; Santolino and Boucher, 2009) and regression (Zhou

et al., 2012). However, classification and regression approaches require scores to al-

ready be accessible up front, which limits their applicability to problems with a good

surrogate. The approach in (Dyagilev and Saria, 2015a,b) suggests the very appeal-

ing idea that there is a more convenient alternative form of supervised information

to learn the scoring function from. Namely, ranked pairs are much easier to obtain

than direct score estimates, and moreover, learning from pairs of ranked examples

may result in more reliable and robust scoring functions.

First, we extend the suggested ranking-based approach (Dyagilev and Saria,

2015a) for score learning in multi-task settings. These efforts are motivated by

applications in which there are multiple related tasks, with a limited amount of data
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for each task. Related tasks commonly share underlying regularities which could be

learned more accurately by modeling all tasks together. For example, in education,

scores on different subjects (e.g. Math and English) are dependent on the same char-

acteristics of a particular student and a particular school. In the medical domain,

disease severity scores for related illnesses (e.g. various respiratory viral infections)

are expected to share common underlying biological mechanisms. Consequently, we

propose a novel multi-task formulation for learning scoring functions from pairwise

comparisons, by enforcing structural regularities on joint parameter space, using a

matrix norm regularization. In addition, we provide another contribution by devel-

oping an optimization algorithm in the form of an alternate minimization scheme

based on a proximal gradient method.

Second, we propose an approach to the problem of learning disease severity scores

in presence of irrelevant or large number of variables. We build on top of existing

efforts by simultaneously performing feature selections that are most relevant for

severity score learning. In particular, we are introducing the L1 norm in the for-

mulation of ranking SVM (Joachims, 2002) along with the temporal smoothness

loss (Dyagilev and Saria, 2015a). Attractive regularization properties of L1 norm are

already well acknowledged and exploited in a number of statistical learning methods

since its introduction (Tibshirani, 1996; Shaobing and Donoho, 1994). The proposed

formulation of sparse severity score learning forces weights of (most of) the features

to be exactly zero, therefore effectively performing feature selection by learning the

sparse linear scoring function. This novel severity score objective function is convex

and non-smooth and it precludes the direct use of convenient optimization tools like

gradient-based methods. Therefore, we are also providing the reformulation of the

problem into its dual that is smooth and that allows efficient optimization. Other

than learning the severity score from the data, which is an important instrument for

assessing severity, the methodology may also be used to discover the most relevant
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variables/features for the disease severity phenotype. Such findings might be further

used to suggest novel (testable) hypotheses about causal relations leading to disease

manifestation, and also to inspire novel therapeutic approaches.

The reminder of the thesis is structured as follows:

First, a current state of the art in scoring function learning, high-dimensional

and multi-task methods, as well as proximal algorithms is reviewed in Related Work

Chapter.

Next, the proposed methodology is described in two Method Chapters, one for

multi-task method, and another for high-dimensional approach. The two Method

Chapters details the proposed new formulations of multi-task, and of high-dimensional

ranking in temporal conditions, along with the derivation of their solutions. The re-

sults of application and evaluation of the two approaches are also divided in two

Chapters.

In the first Results Chapter we evaluated generalization ability of multi-task

framework. Initially, the evaluation is performed on synthetic data and subsequently

in two real-world applications. The objective of the first application is learning exam

scores of elementary school pupils, while the objective of the second application is

learning the tolerance to respiratory viral infections in humans. The results suggests

increased prediction accuracy of the proposed approach over the alternatives that

are trained on individual tasks.

The following Results section is dedicated to evaluation of high-dimensional rank-

ing model on a set of intuitive synthetic examples, where the advantages of sparse

severity score framework over the non-sparse one are apparent. The results section

continues with the assessment on a real-life applications, a gene expression dataset of

H3N2 viral infection responses in humans, and gene expression data of (frog) tadpole

bacteria infection. Efficacy, as well as the robustness of the proposed method, are

compared favorably against multiple alternative methods. The analysis is followed

4



with gene ontology over-representation analysis of the discovered subset of genes

most relevant for the scoring function.

Finally, contributions and limitations of the work presented in this thesis, are

summarized and discussed in the Conclusion Chapter. Two additional appendices

details used human respiratory virus datasets and part of the results regarding the

feature selection stability analysis. At the end of the dissertation, there are Bibliog-

raphy and author Biography details.
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CHAPTER 2

RELATED WORK

Early efforts to learn scoring functions were dependent on complete supervised in-

formation (e.g. classification and regression tasks). In the classification settings,

where the discrete class labels are provided, the classification methods were used to

estimate the probability of a sample belonging to a certain class; these probabilities

were used as a scoring function. For example, the method in (Yang et al., 2012) uses

sparsity inducing L1 norm in combination with a classical logistic loss function to

learn the disease severity scoring function for assessing the abnormality of the skull

in craniosynostosis cases.

2.1 Ranking Based Methods

The problem with such completely-supervised methods is the necessity of providing

direct values of scores for training purposes, which render the approaches as less pow-

erful in settings where characteristics of interest are latent and not directly accessible.

However, rather than giving direct estimates of the score, an easier task seems to be

comparing two samples and asserting whether one has a higher score than the other.

Ranking SVM (Joachims, 2002) was the first approach that recognized the benefits of
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learning desired functional mappings from ordered pairs of examples. This method

was applied to learn an improved relevance function for documents retrieval from

click-through data. Main insight was that clicked links are certainly more relevant

for the search, as compared to non-clicked ones. And such kind of data is much more

abundant than the user provided rankings. Sparse versions were proposed afterwards

like (Bi et al., 2003; Lai et al., 2013). Recently, the ranking SVM-based method was

adopted for Sepsis severity score learning (Dyagilev and Saria, 2015a) and extended

for temporal applications by introducing a term that ensures gradual score change

over consecutive time points. Another ranking method with addition of fused lasso

regularization was proposed, which simultaneously performs supervised binning to

discretize the continuous features and aid in model interpretability (Sokolovska et al.,

2017).

2.2 Multi-task Learning

Multi-task learning is based on the idea that generalization (predictive performance)

can be increased by accounting for the intrinsic relationships among multiple tasks.

Multi-task approach is perceived particularly effective when the number of samples

for each particular task is small.

One of the approaches is structured regression, which seeks to discover and exploit

the relatedness structure among the tasks. Common class of modeling approaches to

structured regression are undirected Probabilistic Graphical Models named Markov

Networks, or Markov Random Fields (MRF). Discriminative models are often pre-

ferred, over the generative ones, as more accurate due to relaxations of indepen-

dence assumptions (Sutton and McCallum, 2006). That is why Conditional Random

Fields (Lafferty et al., 2001) are extensively applied in various domains, including

Computer Vision (Peng and McCallum, 2006), Natural Language Processing prob-

lems (Kumar and Hebert, 2004) and Bioinformatics (Sato and Sakakibara, 2005), and
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various formulations of CRF models named Gaussian Conditional Random Fields

(GCRF) were proposed (Tappen et al., 2007; Radosavljevic et al., 2010; Stojanovic

et al., 2015, 2016; Gligorijevic et al., 2015, 2016; Vujicic et al., 2017).

Other multi-task regression methods exist that learn the structure among the

tasks using norm regularization (Wytock and Kolter, 2013; Zhou et al., 2011), or

methods that utilize fixed relatedness structure (Stojkovic et al., 2016a) obtained

from domain knowledge (Stojkovic and Obradovic, 2017a) or learned from a sta-

tistical correlation (Stojkovic et al., 2017a). However, since they are not directly

proposed for ranking-based learning of the scoring functions, we will not consider

them, nor will compare with them in this work.

To the best of our knowledge, there are no published multi-task formulations

for ranking-based scoring functions, that is, for methods that learn from pairwise

comparisons. And especially the ones that handle temporal data. Hence, we propose

such formulation and provided solution for its training. The closest approaches are

the multi-task regression-based models for Alzheimer’s disease progression (Zhou

et al., 2012) and search results ranking (Bai et al., 2009).

2.3 Functional Norm Regularization

The main problem in multi-task learning is finding the most appropriate assumption

on how the tasks are related and incorporating such assumption into the model.

Typically, in linear models, such structural assumptions are imposed on the joint

parameter matrix, where rows correspond to features and columns correspond to dif-

ferent tasks. Kernel methods assume that all tasks are related and similar (Evgeniou

et al., 2005), but some methods enforce tasks to be grouped into clusters (Jacob et al.,

2009). For example, “Dirty method” (Jalali et al., 2010) encourages block-structured

row-sparsity in the joint parameter matrix by }.}1,1 norm, and element-wise sparsity

with }.}1,8. The robust approach (Gong et al., 2012) selects sparse rows of features
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for related tasks with }.}2,1 and dense columns for outlier tasks with }.}1,2, in order to

discern between related and unrelated tasks. Other approaches assume some shared

common set of features (Argyriou et al., 2008) or shared common subspace (Ando

and Zhang, 2005; Chen et al., 2009). The approach proposed in (Chen et al., 2011)

attempts to learn such relatedness subspace with trace (nuclear) norm }.}˚ by en-

couraging the parameter matrix to have low rank, and finding outlier tasks with

additional sparse group norm }.}1,2. While, the approach in (Ghalwash et al., 2016)

combines }.}1 and }.}8 to perform structured feature selection.

2.4 Proximal Algorithms

Proximal algorithms are a general class of algorithms for solving nonsmooth, con-

strained and/or high dimensional cases of convex optimization problems (Parikh and

Boyd, 2014). Elementary operation in such algorithms is evaluation of the proximal

operator of a function, which boils down to solving another (usually simpler) convex

optimization problem, that often can be solved very efficiently (for example having

a closed form solution). There are number of optimization algorithms that belong

to this class, like proximal minimization algorithm (Bertsekas and Tseng, 1994), al-

ternating direction method of multipliers (Boyd, 2011) and proximal gradient meth-

ods (Schmidt et al., 2011). Such algorithms have been applied in number of problems

with norm induced regularization, like sparse inverse covariance selection (Scheinberg

et al., 2010), sparse linear models (Bach et al., 2012) and nuclear-norm regularized

models (Toh and Yun, 2010). The optimization approach we propose for multi-

task ranking framework is an instance of the projected gradient method, although

augmented with the alternating minimization scheme in the outer loop. And even

the method of Lagrangian multipliers proposed for solving the dual formulation of

high-dimensional ranking framework can be interpreted as special case of alternating

direction method of multipliers (Parikh and Boyd, 2014).
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2.5 Scoring Function Learning

As mentioned in the Introduction section, some of the first proposed severity score

learning methods are supervised approaches that solve classification or regression

tasks, and whose solution provides a way to calculate a severity score.

For example, in (Zhou et al., 2012) the Alzheimer’s Disease severity, as measured

by cognitive scores, was modeled as (temporal) multi-task regression using the fused

sparse group lasso approach. The approach was more concerned with the progression

of the disease, hence the multi-task formulation. However, as we are mostly interested

in severity score mapping from a single time-point set of measurements, here we are

presenting its more influential ancestor, the LASSO model (Tibshirani, 1996):

argmin
w

LASSOpwq “
1

2
}Y ´Xw}22 ` λ}w}1 (2.1)

Here, Y is column vector of n given numeric scores, associated with d dimensional

measurement matrix Xnˆd, while w denotes the solution in form of a d-dimensional

column weight vector. We will use this model as one of the baselines for comparison

as it is one of the main workhorses of biomarker selection (Ghosh and Chinnaiyan,

2005) and even statistical learning in general.

Another approach used sparsity-inducing L1 norm in combination with classical

loss function for learning disease severity scoring function (Yang et al., 2012). They

proposed using L1 regularized Logistic regression model (among others), to model

the severity scores for the abnormality of the skull in craniosynostosis cases:

argmin
w

L1LogRegpwq “
n
ÿ

i“1

logp1` expp´YipXiwqqq ` λ}w}1 (2.2)

This Sparse Logistic Regression formulation is another related model, as it also

results in a sparse vector of feature weights w that essentially regress the decision
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boundary between the severity classes and might be used as a mapping function for

severity scores. In eq. 2.2, Yi P t´1, 1u is a binary label for i-th row of data matrix

X.

As outlined previously, these forms of supervision where estimates of severity

score functions (or severity classes) are needed, might be hard to obtain in order

to be utilized for training the severity score automatically. On the other hand,

obtaining the pairs of comparisons is an easier task. Seminal work of learning the

scoring functions from the comparison labels is proposed in (Joachims, 2002). In that

work, the ranking SVM formulation (eq. 2.3) is developed to learn better document

retrieval from click-through data. This great insight came from noticing that the

clicked links automatically have greater ranks compared to the ones not clicked.

And such kind of data is much more abundant than the user provided rankings.

argmin
w

rankingSVMpwq “
1

2
}w}22 ` c

ÿ

tp,quPO

maxp0, 1´ pXp ´Xqqwq (2.3)

Set O is composed of comparison of ordered pairs tp, qu, where p has a higher

rank than q and which corresponds to rows of measurement matrix Xp and Xq,

respectively. More recently the approach was adopted for learning the Sepsis Disease

Severity Score (Dyagilev and Saria, 2015b). In it (eq. 2.4), the constraint that scoring

function should gradually evolve over the time was introduced and hence a temporal

smoothness term is added. In addition, nonsmooth Hinge loss (maxp0, 1 ´Xwq) is

replaced with its smooth approximation, Huber loss (Lh), to obtain the formulation

of (linear) Disease Severity Score Learning (DSSL) framework:

11



argmin
w

DSSLpwq “
1

2
}w}22 ` c

ÿ

tp,quPO

Lhp1´ pXp ´Xqqwq

`b
ÿ

ti,i`1usPS

˜

pXs
i`1 ´X

s
i qw

ptsi`1 ´ t
s
i q

¸2
(2.4)

Temporal smoothness term in eq. 2.4 penalizes high rates of change in severity

in consecutive time steps ti and ti`1 of a single subject s. Set of all consecutive pairs

in all subjects is denoted S and constants c and b are hyperparameters determining

the cost of respective loss terms.

Nonlinear version of DSSL framework, and its solution in form of gradient boosted

regression trees, was also proposed in (Dyagilev and Saria, 2015a). Nevertheless,

mentioned DSSL approaches are dense in a sense that they operate on all variables

(in case of a linear version all coefficients are typically nonzero). The utility of the

approaches in (Dyagilev and Saria, 2015a) was presented on an application with a

moderately small number of different clinical information, vitals and laboratory anal-

ysis variables and it is not clear how the approach would perform in situations with

high-dimensional data common in high-throughput techniques like genetic, genomic,

epigenetic, proteomic, etc.

Yet, high-throughput data is also a very rich source of useful biomarkers that

could be used for diagnostic and prognostic purposes, as well as for obtaining insight

into causal relations (Colburn et al., 2001). Therefore we are proposing an approach

that is able to learn a (temporally smooth) scoring function from comparison data

while simultaneously performing the selection of most relevant (important) variables.
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CHAPTER 3

METHODOLOGY: MULTI-TASK
FORMULATION

This chapter is based on the work presented in (Stojkovic et al., 2017b), and here

we are going to outline the methodology behind the proposed multi-task framework

for learning the maximum-margin ranking functions from several distinct but related

tasks. We start by formulating the problem.

Let us assume that we have N samples (examples), where each sample i is rep-

resented as Xi P Rd, and where Xij is the value of the feature j “ t1, 2, . . . , du for

the sample i “ t1, 2, . . . , Nu. Let us assume that yi P R represents the property of

interest (outcome variable) for the sample i. Scoring function score : Rd Ñ R is then

a mapping Xi ÞÑ y1i that provides a close estimate y1i of the true score yi.

However, in many cases the values of the true scoring function are difficult to

obtain. In such situations, it is easier to assess the ranking between the scores of two

samples p and q, i.e. to assert that one has perceived higher score than the other:

scorepXpq ą scorepXqq. Therefore, a set of multiple such ordered pairs can be used

to find a projection in the space of measured features, that will preserve the orders

in the best possible way, and that might be used as a scoring function.
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Moreover, measurements collected on multiple occasions over time might belong

to the same subject; In this case, the measurements at each time step will be consid-

ered as a sample. We assume that the outcome variable changes gradually (smoothly)

over time for the same subject, e.g. the disease severity score changes smoothly over

consecutive time points for the same patient. This assumption will lead to improving

the quality of the scoring function. We assume that Xp represents the feature vector

for the sample p (which could be one particular subject at one particular time point).

3.1 Model

In this work, we constrain such functional mapping score to the linear case, where

the score estimate is computed as a weighted sum of the measured characteristics:

scorepXq “ wTX. Therefore, the problem of learning the scoring function becomes

finding the appropriate weight (or parameter) vector w P Rd.

3.1.1 Single task model formulation

Maximizing the number of correctly ordered training pairs can be performed using

the soft max-margin framework expressed in a Hinge loss form (3.1), as suggested

in (Joachims, 2002).

maxp0, 1´ pXp ´Xqqwq (3.1)

If sample p should have higher score compared to sample q, the formulation (3.1)

will favor the weighted difference pXp ´ Xqqw that is positive and greater than 1,

thus even achieving some margin in the score difference.

The L2 norm on the weight vector ||w||2, is introduced to regularize the magnitude

of the weights, and to turn the problem into simultaneous maximization of correct

ordering and maximization of normalized margin.
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Gradual (smooth) change of the scoring function over time can be obtained by

penalizing high changes of the score (e.g. for two samples Xs
i`1, X

s
i of the same

subject s), over short time intervals. In (Dyagilev and Saria, 2015b) such effect is

achieved by using the temporal smoothness term:

˜

pXs
i`1 ´X

s
i qw

ptsi`1 ´ t
s
i q

¸2

(3.2)

, which essentially ensures that squared magnitude in difference, normalized with the

time interval length, is kept low.

Therefore, for single task formulation of ranking-based scoring function learning,

we adopted the Linear Disease Severity Score Learning formulation (Dyagilev and

Saria, 2015a) which combines attractive properties of ranking SVM (Joachims, 2002),

with temporal smoothness term (3.2) that enforces the gradual change of the scoring

function over time:

ŵ “ argmin
w

1

2
}w}22 ` c

ÿ

tp,quPO

maxp0, 1´ pXp ´Xqqwq

`b
ÿ

ti,i`1usPS

˜

pXs
i`1 ´X

s
i qw

ptsi`1 ´ t
s
i q

¸2
(3.3)

Every measurement (row) vector Xi, i “ t1, 2, . . . , Nu has associated time-stamp

t, while ŵ P Rd denotes the solution of the objective 3.3.

Set O is composed of ordered pairs tp, qu, where p has a higher rank than q (p is

perceived to have a higher score than q), and which corresponds to the measurement

vectors Xp and Xq, respectively. Sum of the Hinge loss terms over all pairs from the

O set, serves to reduce the extent of incorrectly ordered pairs.

Set of all consecutive pairs in all subjects is denoted S and the sum of the Tem-

poral smoothness terms in eq. (3.3) penalizes high rates of change in score values in
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consecutive time steps ti and ti`1 for all subjects s P S. Scalar constants c and b are

hyperparameters that determine the cost of the respective loss terms, the Hinge loss

and the Temporal loss.

We aggregate the differences of measurements in the Hinge loss term into a single

data matrix Dkˆd, where k is the number of pairs in the comparison set O. Similarly,

measurement and temporal difference ratios in the Temporal loss term we write as

matrix Rlˆd, where l is a number of pairs in the consecutive measurements set S.

We aggregate the L2 norm and temporal smoothness terms (they are essentially

weighting the square of optimization parameters) into a single weighted quadratic

term 1
2
wTQw, where Q is constant square matrix defined in eq. (3.4):

Q “ I ` 2bRTR (3.4)

, I being the d-dimensional identity matrix.

The formulation (3.3) can now be rewritten more concisely as (3.5):

ŵ “ argmin
w

1

2
wTQw ` c

ÿ

i

maxp0, 1´Diwq (3.5)

3.1.2 Multi-task model formulation

As mentioned before, in case of a limited amount of data for training the scoring

function for a single task (3.5), it is beneficial to exploit the relatedness among the

multiple similar tasks, by learning them together, as illustrated in Figure 3.1.

For m different tasks, individual parameter vectors wi are aligned into a ma-

trix Wdˆm, and a joint objective is obtained as a superposition of individual losses

(eq. (3.5)) over the multiple tasks i P t1, 2, ...,mu:
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Figure 3.1: Illustration of joint training of multiple ranking based score learning
tasks. Three distinct task are depicted, where measured data in combination with
supervision in form of ordered pairs, are jointly optimized to obtain the scoring
function parameters, represented as parameter matrix. Parameter matrix is typically
regularized to encode the structural assumptions regarding the task relatedness.

argmin
W

m
ÿ

i“1

˜

1

2
W T
i QiWi ` c

ÿ

j

maxp0, 1´Dj
iWiq

¸

(3.6)

Instead of the non-smooth Hinge loss Lpaq “ maxp0, aq in eq. (3.6), we work with

the twice differentiable approximation in the form of Huber loss (Dyagilev and Saria,

2015a):

Lhpaq “

$

’

&

’

%

0 , if a ă ´h
pa`hq2

4h
, if |a| ď h

a , if a ą h.

(3.7)

, where the approximation threshold h can be chosen arbitrarily small.

Further, we regularize the objective in eq. (3.6) with a joint norm on parameter

matrix }W }p,q “ p
ř

ipp
ř

jpW
q
ijq

1
q qpq

1
p . For p “ 2 and q “ 1, this approach is known

as a group Lasso penalty on the row groups (of W ), which forces sparsity in the

parameter weights corresponding to certain features (Argyriou et al., 2008). Addi-
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tionally, we introduce the trace norm L˚ in order to get the low rank component,

or in other words, the parameter weight pattern common among all the tasks. To

accommodate such a setup, which will be further clarified in the Optimization sec-

tion, the parameter matrix W was split into two distinct matrices A and B, where

W “ A`B.

Multitask Ranking Based Scoring Function Learning (MultiRBSFL) objective is

now given in eq. (3.8), and it takes as an input two matrices (per task i) obtained from

the data: Qi
dˆd and Di

kˆd; hyperparameters b, c, λ1 and λ2 weighting the influence

of Temporal loss, Huber loss, trace norm and sparse group norm, respectively.

argmin
W“A`B

L1 ` λ1}A}˚ ` λ2}B}2,1 (3.8)

where

L1 “
1

m

m
ÿ

i“1

˜

1

2
pAi `Bi

q
TQi

pAi `Bi
q ` c

k
ÿ

j“1

Lhp1´D
i
jpA

i
`Bi

qq

¸

(3.9)

Ai and Bi are column vectors Rdˆ1, and Di
j is R1ˆk row-vector.

3.2 Optimization

The optimization (3.8) is composed of smooth and non-smooth terms. However,

although the regularization terms are separable in A and B, the loss term L1 is not

separable. Therefore, we solve the problem by using the alternating minimization

scheme, where, in each iteration, we fix A and minimize (3.8) with respect to B,

and then fix B and minimize (3.8) w.r.t A. In this case, each subproblem can be

decomposed into two different optimizations. This will be explained in the next

section.

Fix A

argmin
B

L1 ` λ2 ‖B‖2,1 (3.10)
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Fix B

argmin
A

L1 ` λ1 ‖A‖˚ (3.11)

In general, problem (3.10) and (3.11) can be written as:

argmin
Θ

L1 ` γ ‖Θ‖p (3.12)

, where Θ “ tA,Bu and p “ t˚, t2, 1uu.

The optimization (3.12) is convex. The expression L1 is smooth and the regular-

iation term (either group lasso or trace norm) is non-smooth. Therefore, we solve

(3.12) using the proximal methods.

3.2.1 Proximal Algorithm

We solve (3.12) using the proximal gradient method (Parikh and Boyd, 2014).

Θk`1 :“ proxλ‖Θ‖ppΘ
k
´ λ∇L1pΘ

k
qq

“ argmin
Θ

ˆ

‖Θ‖p `
1

2λ

∥∥Θ´ pΘk
´ λ∇L1pΘ

k
qq
∥∥2

2

˙

(3.13)

, where proxλ‖Θ‖p is the proximal operator of the scaled function ‖Θ‖p, and λ P

p0, 1{Ls is a constant step size, and L is a Lipschitz constant of ∇L1. Problem (3.12)

can be solved analytically, where the proximal operator associated with the norm

can be obtained as in (Bach et al., 2011).

Trace norm. Let us assume that M “ UΣV is the singular value decompoistion

of M , where Σ is a diagonal matrix and its entries σi are the singluar values of the

matrix M . The proximal operator of the trace norm is defined as (Cai et al., 2010):

proxλ‖.‖˚pMq “ Udiagpproxλ‖.‖1pσpMqqqV

i.e., the proximal operator of ‖.‖
˚

can be calculated by carrying out a singular value

decomposition of Z and evaluating the proximal operator of the corresponding ab-

solutely symmetric function at the singular values σpMq. Therefore,

proxλ‖.‖˚pMq “ Udiagpσ1, σ2, . . . , σnqV (3.14)
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, where:

σi “

$

’

&

’

%

σi ´ λ σi ě λ

0 ´λ ď σi ď λ

σi ` λ σi ď ´λ

Equation (3.14) is sometimes called the singular value thresholding operator.

Group lasso norm. The proximal operator associated with the group lasso

norm is defined as:

”

proxλ‖.‖1,2puq
ı

g
“

#

p1´ λ
‖ug‖2

qug ‖ug‖2 ą λ

0 otherwise

3.2.2 Step size

In order to find an adaptive step size λk in each iteration k, we employ the back-

tracking line search algorithm (Beck and Teboulle, 2009), which requires computing

an upper bound for L1. Since L1 is convex and smooth, and ∇L1 is L-Lipschitz

continuous, it follows that:

L1pΘq ď L1pΘ
k
q `∇L1pΘ

k
q
T
pΘ´Θk

q `
L

2

∥∥Θ´Θk
∥∥2

2
looooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooon

xL1 1
L
pΘ,Θkq

(3.15)

By utilizing (3.15), it can be shown that the optimization (3.13) is equivalent

to (Parikh and Boyd, 2014):

Θk`1 :“ argmin
Θ

xL1λkpΘ,Θk
q ` ‖Θ‖p (3.16)

where λk “ 1
L

. So at each iteration, the function L1 is linearized around the current

point and the problem (3.16) is solved. The final fast proximal gradient method with

backtracking is shown in Algorithm 1. The final alternate minimization algorithm is

shown in Algorithm (2).
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Algorithm 1 Fast Gradient Proximal Method with Backtracking Step Size

1: Input: Θ0 (random), η (usually 1{2), L ą 0
2: λ “ 1

L
, z1 “ Θ0, t1 “ 1, k “ 0

3: repeat
4: k ÐÝ k ` 1
5: while true do
6: z ÐÝSolve (3.12) Ź use λ and zk

7: if L1pzq ď xL1pz, z
kq then

8: break
9: end if
10: λÐÝ ηλ
11: end while
12: Θk ÐÝ z

13: tk`1 “
1`
?

1`4t2k
2

14: zk`1 “ Θk ` p
tk´1
tk`1

qpΘk ´Θk´1q

15: until Convergence

Algorithm 2 Alternate Minimization

1: Input: A0, B0 (random)
2: repeat
3: Fix A, solve (3.10) using Algorithm (1).
4: Fix B, solve (3.11) using Algorithm (1).
5: until Convergence
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CHAPTER 4

METHODOLOGY:HIGH-DIMENSIONAL
FORMULATION

This chapter is based on the material presented in (Stojkovic and Obradovic, 2017b),

and here we present the methodological ground behind the proposed high-dimensional

framework for maximum-margin ranking on temporal data, dubbed Sparse Learning

of Disease Severity Score formulation (SLDSS).

4.1 Model

In SLDSS we combine attractive properties (and terms) of previously mentioned

approaches, ranking SVM (eq. 2.3) (Joachims, 2002), temporal smoothness constraint

(eq. 2.4) (Dyagilev and Saria, 2015a) and L1 norm from sparse methods (eqs. 2.1

and 2.2) (Tibshirani, 1996; Yang et al., 2012):
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min
w
SLDSSpwq “

1

2
}w}22 ` c

ÿ

tp,quPO

maxp0, 1´ pXp ´Xqqwq

`b
ÿ

ti,i`1usPS

˜

pXs
i`1 ´X

s
i qw

ptsi`1 ´ t
s
i q

¸2

`λ}w}1

(4.1)

In fact, since the model imposes both L1 and L2 norms on the feature vector

w, it resembles the elastic net regularization (Zou and Hastie, 2005), which has an

advantage of achieving higher stability with respect to random sampling (De Mol

et al., 2009). Similar model was previously proposed in (Wang et al., 2006), just

without the temporal component.

The solution w˚ of the optimization objective defined in eq. 4.1 serves as a sparse

linear function fpXq “ Xw˚ that may be applied on measurements from the new

patient, to obtain a scalar value of severity that might be compared to previously

assessed cases and inform further actions. The sparse vector w˚ may also serve as

an indicator of which features are the most influential for pairwise comparison. The

formulation contains two nonsmooth terms, L1 and Hinge loss, and therefore it is not

directly solvable using off-the-shelf gradient methods. In DSSL formulation (Dyagilev

and Saria, 2015a) the (non-differentiable) Hinge loss is approximated with twice

differentiable Huber loss, thus making the optimization criterion solvable using the

second order gradient methods (eg. Newton, Quasi-Newton). In order to provide

an efficient solution for the proposed nonsmooth objective, we will solve the smooth

dual problem instead of relying on smooth approximation or nonsmooth optimization

tools.

First we rewrite eq. 4.1 into a more suitable form for which we will later provide

the smooth dual problem. We aggregate the differences of measurements into single
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data matrix Dkˆd, where k is a number of pairs in the comparison set O. Similarly,

we express measurement and temporal difference ratios as matrix Rlˆd, where rows

are Ri “
pXs

i`1´X
s
i q

ptsi`1´t
s
i q

and l is a number of pairs in the consecutive measurements set

S. We aggregate the L2 norm and temporal smoothness terms (they are essentially

weighting the square of optimization parameters) into a single weighted quadratic

term 1
2
wTQw, where Q “ I ` 2bRTR, I being d-dimensional identity matrix. The

first two terms, weighted quadratic norm and Hinge loss, resemble the well-known

SVM criterion function that we will rewrite in its “soft” form with additional slack

variables zi and their associated constraints. Additional set of “dummy variables”

y is introduced in L1 term, with trivial constraints w “ y. The equation of the

rewritten SLDSS now reads:

min
w
SLDSSpw, z, yq “

1

2
wTQw ` c

k
ÿ

i“1

zi ` λ}y}1

s.t. Diw ą“ 1´ zi, zi ą“ 0, @i P t1, ..., ku, w “ y

(4.2)

Now we turn this constrained problem with inequalities and equalities into its

Lagrangian dual. Constraints are moved to the criterion function as penal terms

weighted by Lagrangian multipliers α, β and γ. The equation of the SLDSS dual

problem is:

min
w,y,zě0

max
αě0,βě0

Dualpw, y, z, α, β, γq “

1

2
wTQw ` c1T z ` αT p1´ z ´Dwq ´ βT z ` λ}y}1 ` γ

T
pw ´ yq

(4.3)

Given that optimization criterion is convex and feasible (Slater’s condition holds

(Boyd and Vandenberghe, 2004)), strong duality allows switching the order of max-

imization and minimization in eq. 4.3, and minimization in primal variables can be
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safely performed first. Now we analyze the expression according to primal variables

w, y and z and find the minimizing conditions for each of them.

The dual formulation is the quadratic function of parameters w and we can find

its optimal form as a function of new free parameters introduced in dual (by equating

its gradient with zero):

min
w
DUALpwq “ min

w

1

2
pwTQ´ αTD ` γT qw

∇wDUALpwq “ wTQ´ αTD ` γT “ 0

ñ w˚ “ Q´1pαTD ´ γT q

(4.4)

Similarly, the expression for slack variables z is a linear combination of dual

variables and it is minimal when the directional gradient is equated to zero vector,

giving the optimality condition in a form of an equality constraint:

min
z
DUALpzq “ min

z

1

2
pc1T ´ αT ´ βT qz

∇zDUALpzq “ c1T ´ αT ´ βT “ 0

ñ β “ c1´ α

(4.5)

Resulting equality constraint β “ c1´α in combination with inequality β ě 0 can

be reduced to just one constraint α ď c1, which removes β from further consideration.

For minimization over dummy variables y we use the convex (Fenchel) conjugate

function of the expression (Boyd and Vandenberghe, 2004), and obtain optimality

condition as inequality constraint over the infinity norm of the dual variable:

min
y
DUALpyq “ min

y
λ}y}1 ´ γ

Ty “ ´max
y
γTy ´ λ}y}1

“ 0 if }γ}8 ď λ , or “ ´8 otherwise

ñ }γ}8 ď λ

(4.6)
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When optimal (minimizing) conditions (eqs. 4.4, 4.5 and 4.6) are replaced in dual

formulation eq. 4.3, it becomes:

max
αě0,αďc1,}γ}8ďλ

DUALpα, γq “
1

2
pDTα ´ γqTQ´1QQ´1pDTα ´ γq

´αTDQ´1pDTα ´ γq ` γTQ´1pDTα ´ γq ` 1Tα

(4.7)

After negating the equation 4.7 to turn it into minimization problem and after

simplification of the expression, final problem formulation is:

min
1

2
pDTα ´ γqTQ´1pDTα ´ γq ´ 1Tα

s.t. 0 ď α ď c1, ´λ1 ď γ ď λ1

(4.8)

The original nonsmooth problem is turned into the smooth dual problem, which

can be solved for its two sets of parameters α and γ. Since the strong duality holds,

a solution to the dual is a solution to the original problem, and optimal weight

vector w˚ can be retrieved after plugging in the solution of dual, α˚ and γ˚, into

equation 4.4.

Similar dual formulation, just without the dummy variables y and associated

multipliers γ, might be used for DSSL with the exact Hinge loss, instead of the

originally proposed DSSL which uses Hubber loss approximation (Dyagilev and Saria,

2015a).

4.2 Optimization algorithm

The differentiable dual from eq. 4.8 is, in fact, a quadratic optimization problem with

box constraints:

min
x

1

2
xTHx` fTx s.t. lb ď x ď ub (4.9)
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x “

„

α
γ



, f “

„

1kˆ1
0dˆ1



, lb “

„

0kˆ1
´λ1dˆ1



, ub “

„

c1kˆ1
λ1dˆ1



H “

„

D 0kˆd
0dˆd ´I

 „

Q´1 Q´1

Q´1 Q´1

 „

DT 0dˆd
0dˆk ´I



There are ready to use tools for solving the problem in eq. 4.9, and we utilized

the built-in Matlab “quadprog” solver, which is implemented as a projection method

with the active set.

27



CHAPTER 5

RESULTS: MULTI-TASK FRAMEWORK

This chapter is based on the work presented in (Stojkovic et al., 2017b), and here

we are going to present empirical evaluation of the proposed multi-task framework

for learning the maximum-margin ranking functions from several distinct but related

tasks, dubbed MultiRBSFL.

The proposed approach for multitask learning of ranking-based scoring functions

is tested on one synthetic and two real-world datasets. We compared our MultiRB-

SFL approach against the following baseline approaches:

1. L2 - independently learning (L2 regularized) scoring functions for each task

(objective (3.3));

2. L1 - independently learning sparse (L1 regularized) scoring functions for each

task;

3. L˚ - learning multiple scoring functions by imposing low rank regularization

on their joint parameter matrix (L˚ regularized objective (3.6));

4. L2,1 - joint objective (3.6), regularized by mixed }.}2,1 norm.
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Our MultiRBSFL approach, which uses composite low rank and mixed norm

regularized joint objective (3.8), we will denote as L˚`L2,1 for consistency in naming

the alternative approaches.

We measured the predictive performance in terms of accuracy, which is the num-

ber of correctly ordered test pairs. As the pairwise ranking relation is antisymmetric,

it is sufficient to use only the positive training instances (i.e. where the first sample

in a pair has the larger score). Test pairs are exclusively generated from examples

not contained in the training set. Accuracy values that we report in this study are

obtained by doing 5-fold cross-validation experiments.

5.1 Experiments on Synthetic Data

In this settings, a Gaussian processes model (Rasmussen and Williams, 2006) with

an exponential kernel was used to generate the temporal data (as visualized in Fig-

ure 5.1). We compiled 250 such processes to mimic d “ 250 measured variables

(features) per subject. Each single process was used to generate a time series with

10 time points (10 samples). We followed the same principle to generate 10 different

multivariate time series (subjects) for training and 10 subjects for test, resulting in

100 samples X train
100ˆ250 for training, and 100 samples X test

100ˆ250 for test.

Four different tasks were created by randomly generating the weight matrix

W250ˆ4, with only 5 nonzero rows, which corresponds to the L2,1 assumption (row-

sparsity). This row-wise sparse matrix was then superimposed with a dense rank-1

matrix, generated by multiplication of two random vectors, which suits the L˚ trace

norm part of the objective. True underlying scores on four tasks, for each of the 250-

dimensional samples (one time point of one patient), are calculated as the weighted

sum of the feature values X ˚W . Zero mean random vector was subsequently su-

perimposed to input X data, before using it to fit the scoring function, in order to

simulate the measurement noise.
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Figure 5.1: Example of 5 temporal features obtained from Gaussian Processes, of
one fictitious subject, with enforced assumption that temporally close points have
similar intensities.

A training set is then obtained by making pairs out of samples whose scores are

sufficiently different (in our case we set the threshold to 1). Pairs of examples were

generated independently for each task based on their scores, totaling 14,187 pairs for

all four tasks jointly. Test set pairs were generated in the same fashion, but with a

smaller threshold and consisted out of 19,390 pairs. Training pairs were used to learn

the weight matrix Ŵ , which was used to estimate the testing scores from the test

samples. The obtained estimates were used to infer the relative order of the testing

pairs. The accuracy (percentage of correct guesses) is reported in the Table 5.1. It

is no surprise that the proposed L˚`L1,2 approach achieves the highest accuracy on

all four tasks, as the underlying assumptions are explicitly built into synthetic data.
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Table 5.1: Comparison of accuracy indicators (fraction of correctly ordered pairs)
for alternative score learning methods on the synthetic data of four related tasks.

Task L2 L1 L˚ L1,2 L˚ ` L1,2

TASK1 0.538 0.745 0.680 0.744 0.757
TASK2 0.556 0.707 0.763 0.782 0.795
TASK3 0.592 0.765 0.744 0.821 0.837
TASK4 0.466 0.864 0.700 0.874 0.885

AVG 0.538 0.770 0.722 0.805 0.818

5.2 School Exam Score

Intelligence as well as the capacity for understanding and using mathematics or

languages are all examples of properties that are latent - yet important and often

evaluated (estimated). We have tested the multitask score learning framework on

data from an elementary school study (Mortimore et al., 1988), which contains lon-

gitudinal data on performance in Math and English language for pupils in 50 inner

London schools 1. In total there are scores for 3,236 exams (Math and English each),

taken by 1,402 students over three consecutive school years. The goal is to rank the

students’ performances on Math and English test based on known score from Ravens

ability test and additional information like demographics, social status, gender, class

and school type. Distributions of scores for two tasks are given in the Figure 5.2 and

Figure 5.3, respectively.

According to results depicted in Table 5.2, our L˚ ` L1,2 approach achieved the

best predictive performance in both tasks.

5.3 Tolerance to Infections Score

Tolerance is the host’s behavior that arises from interactions with a pathogen, which

describes the ability of the host to preserve fitness despite the presence of a large

amount of pathogen. Therefore, it is defined as changes in host fitness (health)

1 http://www.bristol.ac.uk/cmm/media/migrated/jsp.zip
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Table 5.2: Comparison of accuracy indicators (fraction of correctly ordered pairs) for
alternative score learning methods on the task of learning the performance on Math
and English tests.

task L2 L1 L˚ L1,2 L˚ ` L1,2

MATH 0.780 0.794 0.725 0.789 0.812
ENGLISH 0.820 0.863 0.717 0.857 0.870

AVG 0.800 0.828 0.721 0.823 0.841
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Figure 5.2: Distribution of test scores for Math exam.

with respect to changes in pathogen load (Simms, 2000). However, tolerance is a

very understudied topic, where there is no established scoring function, despite the

necessity.

We analyzed three publicly available datasets 2 that allows characterization of

the tolerance behavior in humans. The data comes from the human viral challenge

studies (Zaas et al., 2009) where human volunteers were infected with H3N2 influenza,

rhinovirus (HRV) and respiratory syncytial virus (RSV), respectively, and which is

2 http://people.ee.duke.edu/ lcarin/reproduce.html
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Figure 5.3: Distribution of test scores for English exam.

detailed in Appendix A. Table 5.3 shows the viral shedding and symptom scores

for subjects who developed clinically relevant symptoms from H3N2, HRV and RSV

datasets.

Temporal measurements about symptoms (proxy for fitness) and viral (pathogen)

load for each subject were used to derive tolerance scores according to the defini-

tion given in (Simms, 2000). In particular, the tolerance score for each subject was

calculated by dividing the maximum viral load with the maximum severity of symp-

toms (Jackson et al., 1958) observed for that subject (Table 5.3). Gene expression

measurements were used as an explanatory variables in our ranking task.

Biological rationale behind the task relatedness is that the three infections are

viruses that cause similar respiratory symptoms (runny nose, fever, sore throat,

cough) and are quantified by the same Jackson score (Jackson et al., 1958), sug-

gesting that some shared genetic mechanisms might be responsible for the disease
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Table 5.3: Tolerance scores (R) derived by dividing maximum viral load (V) with
maximum severity score (S).

H3N2 HRV RSV
Sub ID S V R Sub ID S V R Sub ID S V R
FLU05 12.00 5.45 0.45 HRV06 8.00 2.72 0.34 RSV01 11.00 0.00 0.00
FLU08 10.00 4.70 0.47 HRV19 2.00 0.95 0.47 RSV20 6.00 0.00 0.00
FLU01 9.00 4.25 0.47 HRV04 8.00 3.94 0.49 RSV07 20.00 4.46 0.22
FLU07 12.00 6.25 0.52 HRV15 7.00 3.45 0.49 RSV02 20.00 5.10 0.26
FLU06 7.00 5.00 0.71 HRV07 7.00 4.44 0.63 RSV12 4.00 2.50 0.62
FLU10 5.00 3.75 0.75 HRV20 6.00 4.44 0.74 RSV06 9.00 5.65 0.63
FLU12 4.00 5.00 1.25 HRV16 6.00 4.69 0.78 RSV14 6.00 4.54 0.76
FLU15 2.00 4.50 2.27 HRV09 3.00 2.46 0.82 RSV11 5.00 3.85 0.77
FLU13 2.00 5.45 2.70 HRV11 3.00 2.47 0.83 RSV03 6.00 4.70 0.78

HRV03 4.00 3.45 0.86

manifestations. Consequently, we sought to learn the tolerance scoring functions

jointly.

The tolerance scores were used to compile a set of ranked pairs, and the objective

was to learn the scoring functions for tolerance to H3N2, HRV and RSV viruses (3

tasks), from high-dimensional gene expression data. Since 12,023 dimensions is very

computationally expensive to optimize, we reduced the dimensionality of the data to

the 100 most informative genes according to the correlation with the target. Prior

to the model fitting, data was normalized using the method proposed in (Cao et al.,

2016). The results of learning the scoring functions with different approaches are

summarized in the Table 5.4.

Table 5.4: Comparison of accuracy indicators (fraction of correctly ordered pairs)
for alternative score learning methods on learning the tolerance to three human
respiratory viral infections.

task L2 L1 L˚ L1,2 L˚ ` L1,2

FLU 0.766 0.980 0.809 0.988 0.996
HRV 0.344 0.122 0.389 0.500 0.400
RSV 0.806 0.972 0.861 0.306 0.861

AVG 0.638 0.692 0.686 0.598 0.752

The results from the Table 5.4 show that the HRV task is the most difficult one
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in the described formulation. Although some alternative approaches achieved better

accuracy in two of the tasks, the proposed approach achieved the best generalization

trade-off as can be concluded from the highest average (overall) accuracy.
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CHAPTER 6

RESULTS: HIGH-DIMENSIONAL
FRAMEWORK

This chapter is based on the material presented in (Stojkovic and Obradovic, 2017b),

and here we present the empirical evaluation of the proposed high-dimensional frame-

work for maximum-margin ranking on temporal data, dubbed Sparse Learning of

Disease Severity Score formulation (SLDSS). The high-dimensional framework is

evaluated in number of synthetic and two real applications.

6.1 Severity score characterization on synthetic data

For the initial assessment of the proposed SLDSS framework, we have generated a

synthetic example with properties that motivated the approach. If a large number

of variables is measured, many are expected to be irrelevant for the assessment of

severity.

We defined the severity score as a linear combination of intensities of the first

10 features after initiating a set of 100. In addition, we set the coefficients to have

different magnitudes, as it is expected that contribution of different variables are of

various levels (top panel in Fig. 6.1). The remaining ninety features do not affect
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Figure 6.1: Comparison of learned weight vectors (normalized) of sparse SLDSS
method and dense DSSL method with the ground truth.

severity score at all, they are irrelevant and only introduce uncertainty into the

problem. For training purposes, values of all features are randomly sampled from a

uniform distribution for 10 fictitious subjects with 10 different measurements each.

Severity scores are associated based on a linear function with weights depicted in

Fig. 6.1. Comparison labels (pairs) were generated as all possible pairs in which the

first element (sample) have substantially higher severity score as compared to the

second element. This requirement of substantial gap in severity between pairs serves

to mimic the case where a doctor could claim, with high confidence, that one patient

is in more severe condition than another. Such generated training data was utilized

to fit Sparse LDSS, (dense) DSSL, and DSSL model trained on the exact 10 features

that are relevant, which we named Ideal DSSL in Table 6.1.

All models were tested on comparison pairs from an additional 50 test subjects

with 10 measurements each. Testing data was generated by the same protocol as
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Table 6.1: Performance on synthetic data as measured by correctly ordered pairs -
Accuracy, and by aggregated error (magnitude of difference in wrongly ordered pairs)
- Hinge loss

approach SLDSS DSSL IDEAL DSSL

Accuracy 0.9397 0.8373 0.9558
Hinge loss 176.06 3110.20 180.65

explained for training, except the threshold for the required difference of scores was

set several times lower, in order to see how learned functions generalize to more

subtle differences between the cases.

Accuracy “
# Correctly Ranked

# Total Examples
“ 1´

# Incorrectly Ranked

# Total Examples
(6.1)

The predictive performance was measured as “Accuracy” eq. 6.1, i.e. the fraction

of the total examples that are correctly ordered, meaning that a linear function

assigned a higher score to the first component of a pair. The results presented in

Table 6.1 show that learning a dense weight vector impairs the predictive accuracy

of the model, while learning a sparse vector approaches the ideal accuracy obtained

by learning a disease severity score from in advance known relevant features. Fig. 6.1

shows the weights of learned severity functions, and it might be seen that reason for

the reduced testing accuracy of the dense DSSL method (bottom panel) is because

it assigned nonzero weights to (by design) completely irrelevant features.

6.1.1 Feature size analysis

We have explored how the number of irrelevant features affects the model perfor-

mance. This time we sampled 100 subjects (with 10 timestep samples each), with

10, 000 features, where only the first 10 contribute to the true score. We varied the

number of features from 10 (all features informative), up to 10, 000 in exponentially

progressive increments r10; 30; 100; 300; 1, 000; 3, 000; 10, 000s. Results presented in
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Figure 6.2: Influence of the problem dimensionality (number of features) on the
accuracy of ranking methods.

Fig. 6.2 suggest that when all available features are informative (10 out of 10) DSSL

is slightly better than SLDSS. However, as soon as the irrelevant features are added,

the SLDSS approach becomes substantially more accurate than DSSL. As more ir-

relevant dimensions are added both approaches’ performance decreases, but SLDSS

at a slower pace.

6.1.2 Sample size analysis

We also investigated how the number of training samples affects the predictive per-

formance of the ranking approaches. We generated another synthetic set of 100

subjects (10 samples each). All samples had 100 features, where the first 10 were

relevant for the ground truth score. From such generated examples, we constructed
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357, 355 comparison pairs for training. We varied the number of sample pairs, by

randomly sampling from 10, up to 300, 000 in exponentially progressive increments

r10; 30; 100; 300; 1, 000; 3, 000; 10, 000; 30, 000; 100, 000; 300, 000s. From the results on

holdout testing set, presented in Fig. 6.3, it can be seen that accuracy increases

with the number of training pairs, and that SLDSS is always more accurate than

DSSL. The IDEAL DSSL, which is always trained only on the 10 relevant features,

is consistently the most accurate.
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Figure 6.3: Influence of the sample size (number of sample pairs) on the accuracy
of ranking methods.

6.2 Severity score for Influenza A virus

To further assess the proposed approach, we applied it to learning the severity of

H3N2 influenza symptoms.
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The utilized dataset contains temporally collected gene expression measurements

of human subjects infected with H3N2 virus (Zaas et al., 2009). The samples were

collected on multiple occasions (approximately every eight hours) during the period

of one week after the virus was inoculated in subjects. Concurrently, the severity

of their symptoms was tracked (approximately twice a day) and clinically assessed

using the modified Jackson score (Jackson et al., 1958).

When measurement time points were not perfectly aligned with severity score

estimates, we associated the temporally nearest estimate with the gene expression

vector. Having high dimensionality of the measurements (12, 032 genes), temporally

collected samples and associated severity score estimates, this dataset was suited

for testing the proposed severity score learning framework. In addition to direct

assessments of severity scores, which could be used for regression, the data samples

are also accompanied with class labels “symptomatic” and “asymptomatic” (Woods

et al., 2013), based on the values of modified Jackson scores.

Our comparison pairs generation process follows the guidelines proposed in (Dyag-

ilev and Saria, 2015a). Ideally, an expert would be presented with example pairs and

would assess which one appears more intense (w.r.t. a property of interest), based

on visual inspection, clinical report or arbitrary convenient source. The alternative

is to use an existing scoring system to generate comparison pairs, and for this appli-

cation we utilized the Jackson score. We generated a third label type by extracting

all possible pairs of samples where the first component is associated with a score

that is substantially larger than the second. In our experiments, the “substantial”

is defined by setting a threshold to 5 for training and 1 for testing.

On the described dataset consisting of 267 samples (17 subjects with about 16

temporal samples each) we have compared the predictive performance of the following

four methods:
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Table 6.2: Performance on H3N2 influenza gene expression dataset as measured by
the fraction of correctly ordered pairs (accuracy)

approach SLDSS DSSL LASSO L1 Logistic Regression

Accuracy 0.8097 0.7689 0.9490 0.7815

1. Sparse Learning of Disease Severity Score (SLDSS) from comparison pairs

2. “Dense” Disease Severity Score Learning (DSSL) from comparison pairs

3. LASSO regression on direct values of severity scores

4. L1-regularized Logistic Regression fitted on binary classification labels of symp-

tom severity

All enumerated methods result in a vector of feature weights that can be multi-

plied with the vector of measured features, and summed up to obtain the estimated

value of a scoring function. Except for the DSSL which results in a dense vector of

weights, all other approaches typically only have a small number of nonzero weights,

while all others are exactly equal to zero.

We compared the mentioned methods in a 10-fold cross-validation procedure

(where all samples belonging to one subject are either all in training, or all in testing

folds) and the results are shown in Table 6.2.

In conducted experiments, the non-sparse method (DSSL) has the lowest accu-

racy, which provides evidence that sparse approaches were beneficial. LASSO was the

most accurate, due to its direct access to the ground truth values (of the underlying

scores), while other methods only had access to partial information. The Logistic

Regression only had information if the score was larger than a certain threshold,

while the DSSL and SLDSS only knew, for a list of pairs, which element in a given

pair had a higher score. This, on the other hand, limits the application of LASSO to

cases where scoring function already exists, thus reducing the necessity for learning
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it from the data. Among the approaches which learn from indirect information about

underlying values of scores (comparison pairs and severity classes) our SLDSS is the

most accurate.

6.2.1 Robustness of selected features

We are also interested in prospective use of the SLDSS approach for feature selection,

that is for discovering the most relevant variables for the condition. Therefore, we

have performed additional analysis regarding the robustness (stability) of the selected

features.

Robustness of selected features is a very important aspect of the feature selec-

tion algorithms that was relatively neglected up until recently (Saeys et al., 2007).

Various fields aim at finding the right subset of variables that would allow reliable

prediction, and the more there are candidates to search from, the harder it is to find

the right subset. Feature selection methods play a crucial role there, but when the

dimensionality of data is much higher than the number of samples, the expectation

of consistently finding high-quality solution decreases (Sima and Dougherty, 2006).

On the other side, L1 regularized models have far fewer requirement for sample size

as compared to rotation invariant models (L2 regularized models, Support Vector

Machines, Artificial Neural Networks and DSSL, whose sample complexity grows at

least linearly in the number of irrelevant features), as their sample size requirement

grows logarithmically in the dimension of (irrelevant) features (Ng, 2004), so they

are an attractive tool for such tasks.

Robustness is a metric that quantifies how different training sets affect the affinity

of the algorithm towards the particular features and there are different measures

proposed (Kalousis et al., 2007). Essentially, any similarity metric, which has higher

value when the two compared vectors are more similar, might be used for assessing

the feature selection stability. Here we used the common three:
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1. Pearson coefficient (eq. 6.2), which measures the correlation between the weight

vectors w and w1 learned on different data (sub)sets, and tells magnitude sta-

bility of the weights. In the case when the weight vector is used as a linear

function, it also tells how stable the learned function is.

CP pw,w
1
q “

ř

ipwi ´ µwqpw
1
i ´ µw1q

a

ř

ipwi ´ µwq
2
ř

ipw
1
i ´ µw1q

2
(6.2)

2. Spearman rho metric (eq. 6.3), which measures how well the orders (ranks) r

and r1 of weights’ w and w1 magnitudes are preserved between different training

sets. It is important, for example, in the dense methods where features are

selected as some top number of features according to the magnitude of weights.

CSpr, r
1
q “

ř

ipri ´ µrqpr
1
i ´ µr1q

a

ř

ipri ´ µrq
2
ř

ipr
1
i ´ µr1q

2
(6.3)

3. Jaccard index (eq. 6.4), which measures the overlap between two discrete sets

s and s1 of nonzero features in w and w1, normalized with their union (|.|

is cardinality operator). Jaccard index is the most relevant measure (out of

the three mentioned) regarding the stability of selected features, as studied

frameworks select features in the form of a discrete set of nonzero features.

CJps, s
1
q “

|sX s1|

|sY s1|
“

|sX s1|

|s| ` |s1| ´ |sX s1|
(6.4)

All four severity score learning methods are assessed for consistency/robustness

based on each of the three stability measures (eqs. 6.2-6.4), through a 10-fold cross-

validation procedure on H3N2 data. The sparsity level was tuned with free param-

eters (for sparse methods) such as to produce the average number (over ten folds)
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Table 6.3: Stability of selected feature subsets summarized as an average pairwise
similarity over ten training folds

Measure SLDSS DSSL LASSO L1 Logistic Regression

Pearson coefficient 0.8656 0.7402 0.7362 0.5562
Spearman rank 0.8163 0.7204 0.5162 0.3988
Jaccard index 0.6916 0.2946 0.3595 0.2474

of nonzero features of about 100 out of 12, 032 possible (SLDSS 97.1˘ 16.7; LASSO

99.9˘ 8.8; L1LogReg 101.7˘ 22.7), with results presented in Appendix B and sum-

marized in Table 6.3. The dense method, DSSL, was compared to others, according

to Jaccard index, by taking only the top 100 features according to the largest mag-

nitudes in each of the folds separately. The results show that here proposed SLDSS

method is the most stable one according to each of the three measures. This means

that it learns the most stable severity score function (according to Pearson correla-

tion), as well as the most stable set of nonzero features (according to Jaccard index).

This evidence is suggesting that SLDSS is finding the most reliable signal in the

data, out of all the tested approaches. Nevertheless, there are no guarantees that the

selected set of features is free of false positives, as previously it was theoretically con-

cluded that LASSO-like approaches select a super-set of the true features (Bühlmann

and Van De Geer, 2011).

6.2.2 Gene ontology over-representation analysis

To further check the appropriateness of SLDSS method as a biomarker discovery tool,

we performed Gene Ontology Over-Representation Analysis to assess the relevance

of a set of features extracted from the influenza dataset. In the robustness analysis

section, we found that more than two thirds (0.6916) of the nonzero features are, on

average, shared between the different folds of data. In fact, 50 genes were nonzero in

all of the folds, so we took that set of genes and submitted it for over-representation

analysis in the PANTHER (Mi et al., 2016) online tool.
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Table 6.4: Genes selected by the Sparse Disease Severity Score Learning method,
listed in alphabetical order

Gene Symbols

AIM2 CXCL10 IFIH1 MS4A4A S100A12
ALDH1A1 EIF2AK2 IFIT1 MX1 SERPING1

ATF3 EPB41L3 IFIT2 MYOF SIGLEC1
BLVRA ETV7 IFIT3 OAS1 STAT1
C3AR1 GBP1 IL18RAP OAS2 TFEC
CASP5 HERC5 ISG15 OAS3 TLR7
CASP7 IFI35 LAMP3 OASL TNFSF10
CCL2 IFI44 LAP3 RIN2 TYMP
CCL8 IFI44L LILRA5 RSAD2 XAF1

CDKN1C IFI6 MAFB RTP4 ZBP1

We analyzed the list of 50 selected genes given in Table 6.4, against all the 12, 032

genes in the dataset. Some of the 12, 032 genes were duplicates, and some symbols

were not recognized by the database (Annotation Version and Release Date: GO

Ontology database, Released 2016-03-25) resulting in the comparison of the 50 se-

lected genes against the reference list of 10, 792 genes using the PANTHER Overrep-

resentation Test (release 20160321) with Bonferroni correction. Bonferroni correc-

tion (Haynes, 2013) is a simple and common method for multiple testing correction

of significance value indicators. It is well acknowledged that it might be substantially

conservative, especially when multiple tests are not independent. In multiple gene

ontology process testing, it might be extremely conservative because descendants of

a process are completely dependent on their parents. Nevertheless, even after overly

conservative adjustments, a number of processes are found statistically significantly

overrepresented with the cutoff value of 0.05 for p-value. Significantly overrepre-

sented GO biological processes (listed in a Table 6.5) are related almost exclusively

to immune response and a reaction of the host body to the virus. This is consistent

with the fact that the dataset is about the response to viral infection, suggesting

that the discovered set of features is indeed relevant for the studied process.
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Table 6.5: PANTHER overrepresentation analysis results.
no. - number of associated genes;
exp. - expected number of genes by chance;
fold - number of times enriched

GO biological process GOID no. exp. fold P-value

defense response
to virus

(GO:0051607) 18 .62 29.21 4.00E-18

response to virus (GO:0009615) 20 .96 20.75 1.01E-17
type I interferon

signaling pathway
(GO:0060337) 14 .28 49.54 1.97E-16

cellular response to
type I interferon

(GO:0071357) 14 .28 49.54 1.97E-16

response to
type I interferon

(GO:0034340) 14 .29 47.96 3.08E-16

immune response (GO:0006955) 32 5.42 5.91 2.37E-15
immune system process (GO:0002376) 35 8.20 4.27 4.07E-13
innate immune response (GO:0045087) 26 3.79 6.87 1.07E-12

defense response (GO:0006952) 31 6.12 5.07 1.07E-12
defense response to

other organism
(GO:0098542) 19 1.73 10.97 1.46E-11

immune effector process (GO:0002252) 19 1.75 10.85 1.76E-11
cytokine-mediated
signaling pathway

(GO:0019221) 20 2.13 9.40 3.84E-11

cellular response to
cytokine stimulus

(GO:0071345) 21 2.72 7.72 3.01E-10

response to cytokine (GO:0034097) 22 3.16 6.96 4.80E-10
response to

other organism
(GO:0051707) 22 3.23 6.81 7.44E-10

response to external
biotic stimulus

(GO:0043207) 22 3.23 6.81 7.44E-10

response to
biotic stimulus

(GO:0009607) 22 3.31 6.65 1.21E-09

negative regulation of
viral genome replication

(GO:0045071) 8 .19 41.11 1.83E-07

negative regulation
of viral process

(GO:0048525) 9 .36 24.90 7.74E-07

regulation of viral
genome replication

(GO:0045069) 8 .30 26.56 5.56E-06
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Table 6.6: PANTHER overrepresentation analysis results CONTINUED.
no. - number of associated genes;
exp. - expected number of genes by chance;
fold - number of times enriched

GO biological process GOID no. exp. fold P-value

negative regulation of
viral life cycle

(GO:1903901) 8 .35 23.02 1.69E-05

response to stress (GO:0006950) 34 14.20 2.40 5.49E-05
negative regulation of

multi-organism process
(GO:0043901) 9 .60 15.06 6.01E-05

response to
external stimulus

(GO:0009605) 26 8.48 3.06 1.19E-04

cellular response to
interferon-gamma

(GO:0071346) 8 .50 16.14 2.59E-04

regulation of
viral process

(GO:0050792) 9 .79 11.43 6.26E-04

response to
interferon-gamma

(GO:0034341) 8 .57 13.93 7.95E-04

regulation of symbiosis (GO:0043903) 9 .88 10.17 1.66E-03
regulation of viral

life cycle
(GO:1903900) 8 .74 10.86 5.14E-03

interferon-gamma-mediated
signaling pathway

(GO:0060333) 6 .31 19.33 5.39E-03

response to stimulus (GO:0050896) 43 26.53 1.62 6.68E-03
regulation of

defense response
(GO:0031347) 14 3.03 4.61 8.01E-03

regulation of
cytokine production

(GO:0001817) 12 2.19 5.48 9.59E-03

cellular response to
organic substance

(GO:0071310) 23 8.36 2.75 1.01E-02

regulation of
multi-organism process

(GO:0043900) 11 1.81 6.07 1.07E-02

response to
interferon-alpha

(GO:0035455) 4 .09 45.44 1.55E-02

cellular response to
chemical stimulus

(GO:0070887) 25 10.06 2.49 1.75E-02

cell surface receptor
signaling pathway

(GO:0007166) 23 9.04 2.54 4.07E-02

multi-organism process (GO:0051704) 22 8.40 2.62 4.59E-02
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6.3 Tolerance to pathogens in frogs

We applied the SLDSS feature selection approach on the frog tadpole gene expres-

sion datasets to identify genes that best explain tolerance behavior, based on labels

reported in Table 6.7. Each of the listed pathogen has six samples, that is three

tadpoles specimens with two temporally collected samples, which makes a total of

48 samples. Gene expression measurements consists of 8, 726 probes corresponding

to genes in frogs.

Briefly, tolerant behavior is deemed as one where an organism preserves its fit-

ness, despite being infected with high level of pathogens. It should be differentiated

from the resistant phenotype, which achieves high fitness by actively reducing the

levels of pathogen, by acting with his immune system defense mechanisms. Sensitive

(or susceptible) phenotype is the case where organism’s fitness is deteriorating, that

is it cannot withstand pathogen infection, nether through tolerance nor resistance

mechanisms. Pairs of ranked examples for learning were compiled by letting samples

with the “Tolerant” label be paired with samples with the “Sensitive” label, where

“Tolerant” samples were always ranked higher than the “Sensitive” ones. The Tol-

erant group was represented by A. baumannii and K. pneumonia (12 samples), and

sensitive group consists of A. hidrophyla and P. aeruginosa (12 samples). Under this

setup, we applied the SLDSS approach on the gene expression dataset with only EN-

TREZ Maglott et al. (2005) annotated probes and on the complete set of probes, to

find the tolerance-related genes. Analysis with only annotated probes is conducted

since it allows utilization of prior knowledge, and analysis of a complete set of probes

because it provides new insight into previously poorly explored markers.

A set of 35 genes obtained from the ENTREZ annotated subset of the dataset

are listed in Table 6.8, along with the annotation details. One of the interesting

selected features is trnsferrin, which plays important role in iron metabolism on a
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Table 6.7: Phenotypes labeled according to reaction of frog tadpoles to different
pathogens.

Sensitive Resistant Tolerant

P. Aeruginosa S. pneumoniae A. baumannii
K. pneumonia

A. hydrophila LPS - 5000 ug/mL E. coli F11
S. aureus

cellular level (Hower et al., 2009), which is known to be important factor in infec-

tions (Drakesmith and Prentice, 2008).

In the obtained computational models, the higher the magnitude of the coefficient,

the larger the effect it has in discriminating two groups, and it can be regarded as

gene’s higher importance for the tolerance phenotype. It should also be noted that

this is not just the top 35 probes obtained by truncating the features with lower

coefficients. In fact, all features coefficients, other than for selected 35, are equal

to zero. The number of non-zero features is tuned by a penalization parameter,

and we have empirically chosen the one that gives a few dozen features, as that is

expected number of features with good importance-generalization trade-off. Allowing

all features to have nonzero contribution would lead to the problem of overfitting, and

the other extreme would assess the correlation of only one biomarker with the target

pattern. As tolerance is likely arising from the interaction between many genes,

choosing a handful of features (35 in this case) allowed us to investigate complex

behavior, while avoiding the pitfall of statistical over-fit by using too many features.

In order to test the predictive performance of learned scoring functions, we evaluated

the approach on unused samples. The unused samples consist of two groups, Tolerant

being the E. coli and S. aureus (12 samples), and Resistant being the S. pneumoniae

and LPS (12 samples). Although the originally trained problem was a bit different,

Tolerance vs Sensitivity, and not Tolerance vs Resistance, it still makes sense to test

in this setup, as Tolerant samples are expected to still have higher tolerance scores
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Table 6.8: List of 35 genes with ENTEZ ID selected by the SLDSS approach from
the frog data.

Coefficient ENTREZ GENE ID GeneSymbol Description

-0.262989006 399287 ’Prkcl’
’protein kinase
C lambda/iota’

0.097428008 446405 ’MGC83803’
’MGC83803
protein’

0.096942664 446710 ’MGC83955’
’MGC83955
protein’

0.091749873 444230 ’MGC80788’
’MGC80788
protein’

-0.088071452 378665 ’sox7-A’
’SRY
protein’

-0.060269613 443754 ’MGC81060’
’MGC81060
protein’

0.058430007 443843 ’MGC83146’
’MGC83146
protein’

0.046096018 399249 ’Copz1’
’coatomer protein
complex zeta 1’

-0.045700082 447241 ’MGC84754’
’MGC84754
protein’

-0.043493382 1E+08 ’rps6ka4’
’ribosomal protein
S6 kinase

-0.036352345 446777 ’MGC80410’
’MGC80410
protein’

0.023231029 379523 ’shsia-3’ ’shisa-3’

0.019199372 447309 ’MGC81740’
’MGC81740
protein’

0.01854616 447271 ’MGC86386’
’MGC86386
protein’

0.014342954 444095 ’MGC83624’
’MGC83624
protein’

0.011724236 431901 ’MGC83731’
’UPF0566
protein’

-0.009496875 380498 ’pdcd2’
’programmed
cell death 2’

-0.007811129 447201 ’MGC80305’
’MGC80305
protein’

-0.000383502 444105 ’MGC80424’
’MGC80424
protein’
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Table 6.9: List of 35 genes with ENTEZ ID selected by the SLDSS approach from
the frog data CONTINUED.

Coefficient ENTREZ GENE ID GeneSymbol Description

9.61E-05 443641 ’cdc5l’
’cell division
cycle 5-like’

-9.58E-05 378638 ’hoxa13-A’
’homeo
box A13’

9.44E-05 444094 ’MGC83623’
’MGC83623
protein’

-7.55E-05 444120 ’MGC80493’
’MGC80493
protein’

-6.80E-05 779435 ’b4galt6’
’galactosyl-
-transferase 6’

6.51E-05 446532 ’MGC80279’
’MGC80279
protein’

4.77E-05 1E+08 ’pi4k2a’
’Phosphatidylinositol
4-kinase

-4.65E-05 779259 ’MGC154458’ ’sideroflexin 1’
4.44E-05 379502 ’MGC64251’ ’transferrin’
4.00E-05 733312 ’des’ ’desmin’

-3.71E-05 734196 ’fancd2’
’Fanconi
anemia group D2’

-3.49E-05 446239 ’CHML’
’CHML
protein’

-3.30E-05 414681 ’cbr4’
’Carbonyl
reductase 4’

3.05E-05 379859 ’odc1’
’ornithine
decarboxylase 1’

-1.17E-05 779277 ’rcn1’ ’reticulocalbin 1’

-4.93E-06 399108 ’Coro1c’
’coronin
homolog’

in comparison with the Resistant ones. The model learned on all probes is applied

to test samples and estimates of their tolerance scores were obtained. Estimates

of the tolerance scores are presented in Figure 6.4. Scores are given on the y-axes,

and represent dimensionless numeric, while the x-axis just gives the sample ID and

does not had to have any particular order. Even though it looks like the predicted

scores are mixed, statistical tests show that there are significant differences in the
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Figure 6.4: Predicted values of tolerance scores for testing samples consisting of
tolerant (E. coli and S. aureus) and resistant phenotypes (S. pneumoniae and LPS).

mean values of the scores for the two phenotypic groups on the population level. We

performed a two-sided (unpaired) t-test and results suggest that the null hypothesis

that two groups are no different can be rejected on the significance level of 0.05

(p-value = 0.032). Although not perfectly discriminative, this result shows that the

approach learned some patterns in which tolerance samples differs from the other

phenotypes (sensitive and resistant).
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CHAPTER 7

CONCLUSION

Quantifying a properties of interest is important task in many domains, as that

is necessary for informing decisions and making appropriate actions. For example,

whether to treat the patient with some drug, or whether to hire the candidate for

some job position. Unfortunately, it is not an easy task, as often those very properties

are latent and difficult to assess. However, even when direct assessment is not an

option, many times it is feasible to obtain relative assessment of two examples. Like

noticing that some patient is in more severe condition than the other one, or that

some patient today appears more healthy than he was yesterday.

There exist methods that can effectively use such “pairwise comparison” infor-

mation to build predictive models, which can subsequently be used for assessing the

property of interest from other observable features. We adopted one such framework

named ranking SVM and extended it for use in some special cases. Applications in

bio-medical datasets typically have some specific challenges. First, and the major

one, is the limited amount of data examples, due to an expensive measuring technol-

ogy, and/or infrequency of conditions of interest. Such limited number of examples

makes both identification of patterns/models and their validation less useful and re-
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liable. Repeated samples from the same subject are collected on multiple occasions

over time, which breaks IID sample assumption and introduces dependency structure

that can be exploited, but needs to be taken into account more appropriately. Also,

feature vectors are highdimensional, and typically of much higher cardinality than

the number of samples, making models less useful and their learning less efficient.

We proposed a method that jointly learns multiple scoring functions from a set

of ranked examples. These efforts are motivated by applications in which there are

multiple related tasks, with a limited amount of data for each task. Related tasks

commonly share underlying regularities which could be learned more accurately by

modeling all tasks together. The multitask approach utilizes composite regularization

consisting of the trace norm and row-wise grouped Lasso penalty, to impose structural

regularity among the model parameters of different tasks. We also proposed an

optimization algorithm, based on the alternate minimization and proximal gradient

techniques, for solving such convex multitask ranking based scoring functions learning

objective. We also presented an approach to the problem of learning scoring functions

in presence of irrelevant or high dimensional measurements. We build on top of

existing efforts by simultaneously performing feature selections that are most relevant

for the score learning. Both developed frameworks were thoroughly evaluated on

synthetic and real examples, in order to assess their characteristics.

Multitask framework empirical evaluations in one synthetic and two real-world

datasets suggest the benefits of utilizing the multitask approach for learning related

ranking based scoring functions. According to the results, the model with only L˚

performs worse than L1,2, because sparsity in features seems to be the more dom-

inant pattern in the data relative to the low-rank component. However, utilizing

both L˚ and L1,2 in the same model turned out to be most beneficial for studied

applications. We also assessed multiple approaches to learning the severity scores in

high-dimensional applications. Our results point to the utility and maybe even neces-
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sity of reducing the dimensionality of the problem through sparse learning techniques,

with the use of L1 norm regularization. Combination of the advantages of existing

solutions turned out to be beneficial for the predictive performance, as measured

by accuracy. The robustness of the learned scoring function, on human influenza

virus application, as well as features selected by our approach compares very favor-

ably against the alternatives. Conducted gene ontology over-representation analysis

supports the relevance of the genes identified by the SLDSS approach. Additional

studies are possible to further characterize selected genes and the processes they are

involved in, in order to provide further insight into causal relations underlining the

influenza infection. For example, “transferrin” gene selected in the frog tolerance to

pathogens application, and its role in iron metabolism during the pathogen infection,

will be focus of the further studies, with aim to gain some knowledge on how tolerant

behavior arises. These are all mounting evidence that proposed approach could be

used as a discovery tool for both scoring functions and related informative variables,

which could further motivate novel hypotheses.

Also, there are some limitations and drawbacks to the proposed models and

algorithms. First the models are linear function of the observed features, and there-

fore cannot capture well the nonlinear effects that might affect relations between

the features and target. The remedy for that might be extension of the proposed

frameworks to use the kernel trick to allow for more richer representational abil-

ity (Schölkopf et al., 1999). Second, the proposed proximal gradient algorithm with

alternating minimization for optimization of the multitask objective proved valuable

for applications with low to moderate dimensionality of the feature space. However,

as the contemporary applications have ever increasing number of measured variables,

more efficient optimization approaches with better scalability are required. One po-

tential way to accelerate the proximal gradient algorithm is to adopt the approach

proposed in (Toh and Yun, 2010). The high-dimensional method on the other side
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is appropriate for learning scoring functions from high dimensional cases. However,

it would probably have problem in applications where the number of cases is also

large, since in such applications a quadratic number of comparisons in the number

of samples can be a challenge. That difficulty might be alleviated with appropri-

ate sampling of the training samples, similar to techniques proposed for Gaussian

Processes (Lawrence et al., 2009).
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Appendix A

RESPIRATORY VIRAL INFECTION DATA

Used data is obtained from study (Zaas et al., 2009), and is publicly available on

Gene Expression Omnibus repository under number GSE17156. For all subjects in

each of the three datasets, symptoms were recorded twice a day and quantified by the

modified Jackson Score (Jackson et al., 1958). Thereafter, subjects were classified

based on the modified Jackson Score values into “symptomatic” and “asymptomatic”

groups. In addition, viral load temporal measurements are available for 28 “symp-

tomatic” subjects, given in Table 5.3. Gene expression measurements (for 12,023

genes) were collected temporally, starting at a baseline (24 hours prior to inocu-

lation with virus) and measured at certain time points following the experimental

procedure described in detail in (Zaas et al., 2009), making a total of 16, 14 and

21 time-point measurements for H3N2, HRV and RSV datasets, respectively. Sub-

sequent Figures A.1-A.6 shows the viral shedding and symptom scores for subjects

who developed clinically relevant symptoms from H3N2, HRV and RSV datasets,

and are recreated using the info from supplementary material of (Zaas et al., 2009).
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A.1 Human Influenza Virus - H3N2

Figure A.1: H3N2 patients’ viral load over the course of infection.

Figure A.2: H3N2 patients’ symptoms severity over the course of infection.
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A.2 Human Rhino Virus - HRV

Figure A.3: HRV patients’ viral load over the course of infection.

Figure A.4: HRV patients’ symptoms severity over the course of infection.
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A.3 Respiratory Syncytial Virus - RSV

Figure A.5: RSV patients’ viral load over the course of infection.

Figure A.6: RSV patients’ symptoms severity over the course of infection.
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Appendix B

FEATURE SELECTION STABILITY

Feature selection stability, or in other words robustness, is a metric that quantifies

how sensitive are the selection algorithms to different training sets. That is, how

likely it is, that they will select similar feature sets, among different training samples’

sets. We performed training of four competitive algorithms (SLDSS, DSSL, LASSO

and L1 Log Reg) for scoring function learning in a 10-fold crossvalidation procedure,

which resulted in 40 sets of selected features.

Robustness of such selected features is characterized in three ways: using Pear-

son correlation which measures how well are feature magnitudes preserved (Fig B.1);

Spearman rank to track how the order of features’ magnitudes are preserved (Fig B.2);

and Jaccard Index to see how well the sets are overlapping (Fig B.3).

From Figures B.1-B.3, it can be observed that features are most similar within

the 10 folds selected by the same algorithm (yellowish squares on the diagonal), and

that SLDSS has the brightest square, which suggest largest correlation.
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Pearson correlation
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Figure B.1: Pearson similarity matrix between weight vectors learned over all 10
folds of data and all four methods. Warmer colors correspond to higher similarity
(stability), and cooler tones to lower similarity. SLDSS (upper left square) has the
highest similarities among all methods.
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Spearman rank
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Figure B.2: Spearman similarity matrix between weight vectors learned over all
10 folds of data and all four methods. Warmer colors correspond to higher similarity
(stability), and cooler tones to lower similarity. SLDSS (upper left square) has the
highest similarities among all methods.
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Jaccard index
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Figure B.3: Jaccard similarity matrix between weight vectors learned over all 10
folds of data and all four methods. Warmer colors correspond to higher similarity
(stability), and cooler tones to lower similarity. SLDSS (upper left square) has the
highest similarities among all methods.
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