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ITM-Based Dynamic Analysis of Foundations Resting on a

Layered Halfspace

Abstract:

In this dissertation, the solution of the soil-foundation interaction problems is solved

using the substructuring approach. The modeling of the substructures is performed

using transform methods. The governing system of equations of motion is transformed

from the original space-time domain into space-frequency or wavenumber-frequency

domain, where the effects of the input parameters on the results are more visible.

The foundation is modeled using the Spectral Element Method, obtaining the exact

solution of the differential equations of wave propagation in plate in space-frequency

domain. The soil medium is modeled using the Integral Transform Method. The

method is based on the analytical solution of Lamé’s differential equations of motion

in wavenumber-frequency domain. The differential equation of the soil-foundation

system is solved in space-frequency domain using the modal superposition technique.

The proposed method is used for obtaining the approximate analytical solution of

soil-foundation interaction problems involving surface massless foundations. The

solutions of following problems are presented: rigid square foundation on halfspace,

group of rigid square foundations on a layer over the bedrock, flexible strip foundation

on halfspace, and flexible square foundation on halfspace. The results are presented in

terms of compliance functions, displacement fields and stress fields of the foundation.

The main contribution of the proposed method is reflected in solving the soil-

foundation interaction problems involving flexible foundations.

Keywords: Integral Transform Method, Spectral Element Method, Fourier Trans-

formation, Wave Propagation

Scientific field: Civil Engineering

Scientific subfield: Engineering Mechanics and Theory of Structures

UDC: 624.04:624.151(043.3)
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Dinamička analiza temelja na slojevitom poluprostoru primjenom

Metode integralne transformacije

Sažetak:

U ovom radu prikazano je rešenje problema interakcije temelja i tla primjenom

metode podstruktura. Podstrukture su modelirane metodama transformacije. Ove

metode podrazumijevaju transformaciju diferencijalnih jednačina kretanja sistema iz

originalnog domena definisanog u prostoru i vremenu, u domen prostornih koordinata

i frekvencija, ili u domen talasnih brojeva i frekvencija. Prednost ovih metoda je

transparentnost uticaja ulaznih podataka na rezultat analize. Temelj je modeliran

korišćenjem Metode spektralnih elemenata, na osnovu koje je određeno tačno rešenje

diferencijalnih jednačina kretanja talasa u ploči u domenu prostornih koordinata i

frekvencija. Tlo je modelirano korišćenjem Metode integralne transformacije. Metoda

je bazirana na analitičkom rešenju Laméovih diferencijalnih jednačina kretanja u

domenu talasnih brojeva i frekvencija. Diferencijalna jednačina sistema tlo-temelj

riješena je u domenu prostornih koordinata i frekvencija korišćenjem metode modalne

superpozicije. Predstavljeni postupak je iskorišćen za sračunavanje aproksimativnog

analitičkog rešenja problema površinskih temelja bez mase. Sračunati su odgovori

sledećih sistema: kruti kvadratni temelj na poluprostoru, sistem krutih kvadratnih

temelja na sloju iznad krute baze, fleksibilni trakasti temelj na poluprostoru i

fleksibilni kvadratni temelj na poluprostoru. Glavni doprinos predloženog postupka

ogleda se u rešavanju problema interakcije tla i fleksibilnih temelja.

Ključne riječi: Metoda integralne transformacije, Metoda spektralnih elemenata,

Furijeove transformacije, propagacija talasa

Naučna oblast: Građevinarstvo

Uža naučna oblast: Tehnička mehanika i teorija konstrukcija

UDK: 624.04:624.151(043.3)
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1 Introduction

1.1 Motivation

In the dynamic analysis of structures, the effect of Soil Structure Interaction (SSI) is

usually neglected for the sake of the simplicity. It is often assumed that the structure

is rigidly fixed on its base. This assumption is not always justified. Critical and

monumental facilities, as well as facilities equipped with sensitive instruments are

demanding detailed analysis of their interaction with the environment.

The SSI analysis involves the soil and the structure model. The modeling of structures

is usually done using the Finite Element Method (FEM) considering its ability to

handle detailed and complex geometry. On the other hand, the application of the

FEM in the soil modeling is very resource demanding, especially in the field of

dynamics. It requires a special boundary at the sufficient distance from the structure

that is able to let the waves pass through and propagate toward infinity. Therefore,

the soil modeling calls for a different modeling technique. This is the reason the

classical approach of solving SSI problems is based on substructuring techniques.

The domain is decomposed in two subdomains: the unbounded domain - soil, and

the bounded domain - structure. The subdomains are modeled separately. The

interaction is realized through the compatibility of the boundaries that reside in the

1



1. Introduction 1.1. Motivation

interface between the subdomains. The boundaries outside the interface zone assume

free surface boundary conditions.

The SSI analysis could be reduced to the Soil Foundation Interaction (SFI) analysis.

The aim is to find the dynamic stiffness of the foundation-soil system that could be

assembled into the dynamic stiffness of the structure. The SFI problem is commonly

solved by assuming the foundation as a rigid plate. That simplifies the formulation

of the problem, but it reduces the scope of applicability of the solution. In reality,

foundations are always flexible to a certain degree.

The response of the flexible foundation on a halfspace is solved using substructuring

technique. Different methods have been used for subdomains modeling, regarding

their distinct nature. The solution of the problem is usually obtained by using the

Boundary Element Method (BEM) for soil modeling and the FEM for the model of

the foundation.

In this work, analytical methods based on transform techniques are used. The original

problem formulated in the space-time domain is transformed into the space-frequency

or wavenumber-frequency domain. The system of partial differential equations in

space-time domain becomes the system of uncoupled ordinary differential equations

in the transformed domain. The solution of the system is obtained by taking into

account boundary conditions. The new domain is more convenient for the calculation

and the effects of the input parameters on the results are more visible than in the

original domain. That gives a clear insight into the physics of the problem. The

Integral Transform Method (ITM) is used for soil modeling. Using ITM, it is possible

to obtain the analytical solution of the wave propagation in soil medium. The

solution is exact, but applicable on simple geometries and linear elastic materials.

The Spectral Element Method (SEM) is used for the foundation modeling. The

modeling technique is similar to the FEM, but it provides the exact solution of the

wave propagation in plates.

2



1. Introduction 1.2. State of Research

The aim of this dissertation is to develop a coupling approach of the ITM and the

SEM in order to solve the problem of a strip and rectangular flexible foundation on

a halfspace.

1.2 State of Research

According to Kausel [1], the roots of SSI lead to the early part of the 19th century

when Lamé and Clapeyron were studying the fundamental solution of an infinite

or semi infinite elastic body: an analytical expression for the response anywhere in

a body excited by a static or dynamic point source at an arbitrary location. They

have failed to obtain useful results, but they were the first to address the problem.

The first significant contribution in the scope of dynamics was published by Lamb [2]

1904. He presented the fundamental solution for a homogeneous halfspace subjected

to a dynamic load on its surface in terms of integral transforms. Lamb analyzed in

detail only the response at a remote distance from the source (far field).

The theory of dynamic SSI begins in 1936 with Reissner’s publication concerning

the response of cylindrical disk on an elastic halfspace subjected to a time harmonic

vertical load. He was the first to address the radiation damping phenomena: an

energy loss occurring due to the wave propagation from the zone of the structure

towards infinity. Later researches were directed toward the generalization of Reissner’s

model. According to [3], Sung and Quinlan analyzed vertically excited rectangular

foundations. Vertical, horizontal and rocking oscillations of circular foundations were

analyzed by Bycroft [4]. A true mixed boundary problem was not solved. It was

assumed that the contact stress and the displacement field at the interface between

the footing and the soil is uniform or linear - similar to static stress. Therefore, the

solution was only applicable to low frequency problems.

3



1. Introduction 1.2. State of Research

The first mixed boundary problem solutions appear in the third quarter of the XX

century. A specific displacement distribution under the rigid footing and vanishing

stresses over the remaining portion of the surface of the soil are assumed. The

problem is also simplified by assuming that there are no secondary contact stresses.

For example, vertical vibrations are not induced by horizontal stresses. Oscillations

of rigid circular and strip foundations are analyzed by Awojobi [5] using integral

techniques. According to [3], Lysmer obtained the solution for vertical vibrations

discretizing the contact surface into concentric rings of uniform frequency depended

vertical stresses. He also considered the approximation of the soil-foundation system

with a single degree of freedom oscillator, suggesting the frequency dependent stiffness

and damping coefficients. This idea was well accepted among other researches and

extended on the solution for horizontal, rocking and torsional vibrations. The solution

was applicable to low and medium frequency range problems.

Contemporary era starts with Luco and Westmann [6] who analyzed rigid circular

footings on halfspace using Fredholm integral equations. They extended the existing

halfspace solution to the high frequency range, also introducing a viscoelastic material

with linear hysteretic damping. Luco [7] also presented analytical solutions for rigid

strip and rectangular foundations on the surface of layered halfspace or a layered

stratum.

The development of powerful digital computers led to the expansion of numerical

methods. Various FEM formulations with energy absorbing lateral boundaries were

developed, such as viscous [8] and consistent boundary [9]. Consistent boundaries

could be placed in the vicinity of the foundation, saving computational effort and

time, but they could be applied only for plane strain and axisymmetrical problems.

The Thin Layer Method (TLM) was built on the basis of the FEM formulation

and it was used for the analysis of horizontally layered soils. The discretization

of the soil is performed using unbounded thin horizontal layers over the bedrock.

4



1. Introduction 1.2. State of Research

The equations of the system describes the exact solution of wave propagation in

horizontal directions, while a linear variation of the displacements in the vertical

direction is assumed. Lysmer et al. developed a software package SASSI [10] using a

substructure approach where the structure is modeled using the FEM and the soil is

modeled using the TLM. These FEM formulations could not take into account the

infinite soil medium in vertical direction. An infinite halfspace was simulated with a

finite number of deep layers resting on the bedrock.

The modeling of the unbounded domain in the scope of the FEM could be also

performed using infinite elements. They were derived by Peter Bettes and Jacqueline

A. Bettes; first for static problems [11] and then for dynamic problems [12]. They

are applied in elastodynamics in both time [13] and frequency domain [14].

Application of the FEM in 3D dynamic soil modeling is very cumbersome and

therefore rarely used in practice. The main disadvantage is observed in the high

frequency range. Lysmer [10] concluded that in order to be sure that the finite

element transmits wave at a certain frequency, the dimension of the finite element

should be at least eight times smaller than the corresponding wavelength. The

resulting model must contain a fine FE mesh that leads to a large number of elements

and unknowns. Finding a solution of such systems is time consuming, resource

demanding and hard for practical implementation. On the other hand, the scope of

applicability of pure analytical solutions is narrow. For example, analytical solutions

of flexible foundations resting on the soil exist only for circular footings in cylindrical

coordinates [15, 16]. That led to the development of approximate analytical or

semi-analytical methods. These methods are using the fundamental solution of

the governing equations of the problem but they involve discretization of the soil

surface - boundary. Since only the soil surface has to be discretized, in comparison

with the FEM, the dimension of the problem is reduced by one. In order to solve

boundary integral equations, different techniques were developed over time using

5



1. Introduction 1.2. State of Research

different fundamental solutions. Whittaker and Christiano [17] used Lamb’s solution

for a point loaded halfspace. Wong [18] used the solution for a uniformly loaded

rectangle. According to [1] and [3], Dominguez was one of the first to use the BEM

for foundation mechanics problem. Fundamental solution of the BEM is the Green’s

function. The Green’s function represent the solution of dynamic differential equation

with point source defined on a soil domain with specified boundary conditions. The

solution to the arbitrary force can be obtained by integrating the Green’s function

against the forcing term. The Green’s function satisfies the radiation condition

automatically, but it is limited to linear homogeneous medium problems. In general,

its integration is not easy, since it relates to the problem involving a concentrated load

- singularity. Although the BEM results in smaller system matrices than the FEM,

the system matrices are fully populated. Therefore, the computational requirements

grow to the square of the size of the problem, unlike in the FEM where the growth

is linear.

The BEM is the most used soil modeling technique today. Together with the FEM

it creates a coupling method for dynamic SSI analysis that is used by many authors.

This coupling technique is used for the analysis of various problems: a group of rigid

circular [19] and rectangular foundations [19, 20], flexible rectangular [21] and flexible

strip foundations [22, 23] on halfspace. The technique is also applied on problems

involving layered halfspace [24]. The problems could be formulated in time [22] or in

frequency [23] domain.

Another soil modeling technique is ITM. The methodology of ITM is described by

Wolf [25], 1985. The properties and the application of the ITM has been a subject

of several doctoral dissertations at the Technical Univeristy of Munich [26, 27, 28,

29, 30, 31, 32, 33, 34, 35]. The method is based on an analytical solution of the

equations of motion, obtained by transforming the system of equations from the

time-space domain to the frequency-wavenumber domain using Fourier transforms.

6



1. Introduction 1.2. State of Research

The response of the system is transferred in the original domain using inverse Fourier

transforms. The inverse transform procedure is not an easy task. It could be very

time and resource demanding, especially if the response function involves singularities.

Müller [28] expanded the applicability of ITM to problems of dynamic SSI using

mixed boundary conditions for describing the layered halfspace surface. Although

the ITM is limited to regular geometries, Rastandi [36] and Hackenberg [26] showed

that the description of complex geometries is possible trough coupling with the FEM.

Radišić et al. [37] showed that the ITM is applicable on problems of rigid rectangular

foundations resting on halfspace. The application of ITM for the calculation of the

response of the system subjected to a moving load is shown by Grundmann [38] and

Radišić et al. [39].

The analysis of SFI problems involving flexible rectangular foundations is possible

using ITM-SEM coupling. The SEM is proved to be a good alternative to the

FEM in structural dynamics [40]. The method is based on the spectral form of the

displacement field and on the exact solution of the governing differential equations

of motion in the frequency domain. SEM could be applied to a wide spectrum of

structures: beams, bars, plates and cylindrical shells [41]. According to Banerjee

and Williams [42], the roots of the SEM leads to Kolousek, who was the first to

develop the dynamic stiffness matrix of an Euler-Bernoulli beam. In the last couple of

decades, a lot of effort was put into developing a high precision continuous element for

transverse vibration analysis of plates with arbitrary boundary conditions. Kulla [43]

was the first one to do so. The dynamic stiffness matrix of 2D completely free

Kirchhoff plate element is built by Casimir et al. [44] using Gorman’s superposition

method. Boscolo and Banerjee developed the dynamic stiffness matrix of plate using

the first order shear deformation theory [45]. They have also formulated the dynamic

stiffness of the composite Mindlin plate using spectral elements [46, 47]. The dynamic

stiffness matrix of plate undergoing in-plane vibrations and the coupling of 1D and

2D spectral elements has been developed by Nefovska-Danilović [48]. The coupling

7



1. Introduction 1.3. Layout of the Thesis

with the soil could be established using the substructure method. The application of

SEM on 2D frames founded on the halfspace is shown by Petronijević et al. [49].

1.3 Layout of the Thesis

This thesis presents the derivation of a coupled ITM-SEM approach for analyzing

the behavior of rigid and flexible foundations resting on the soil. The stiffness matrix

of the soil-foundation system is obtained using the substructure technique. The ITM

is used for obtaining the fundamental solution of wave propagation in soil. The SEM

is used for obtaining the fundamental solution of wave propagation in the foundation.

The coupling of the obtained fundamental solutions is performed using the modal

superposition technique.

Chapter 2 presents the formulation of the ITM. The method is based on solving

Lamé’s differential equation by decoupling it using the Helmholtz decomposition and

transforming it from partial to ordinary differential equation using a threefold Fourier

Transform. The ordinary differential equation is solved by taking into account the

boundary conditions of the system. The solutions of the homogeneous halfspace and

the horizontally layered halfspace are presented. Since the solution in rectangular

coordinates is semi-analytical, the numerical example is provided, explaining the

influence of the discretization of the problem on the accuracy of the results. A brief

presentation on obtaining the fundamental solution of the halfspace due to a moving

load with the numerical example is given at the end of the chapter.

Chapter 3 deals with obtaining the dynamic stiffness and dynamic flexibility matrices

of the foundation. First, the dynamic stiffness matrix of the rigid, surface and

massless foundation is derived using the fundamental solution of the halfspace and

the kinematic transform. It is shown that a similar procedure could be used to obtain

8
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the response of the group of rigid foundations resting on the soil. The presented

numerical examples analyze the compliance functions of the square rigid foundation

resting on the halfspace and the foundation-soil-foundation interaction of the group

of two rigid foundations resting on the layer over the bedrock.

The main contribution of this thesis, the formulation of a coupled ITM-SEM approach,

is given in this chapter. First, the dynamic stiffness matrix of the foundation is

obtained using SEM. The natural frequencies and the mode shapes of the foundation

are calculated using its dynamic stiffness matrix. The differential equation of the

soil-foundation system is transformed to the system of algebraic equations using the

modal superposition method. The soil-foundation coupling is realized through the

modal stiffness matrix of the soil obtained using the ITM. The ITM-SEM approach

is applied on the flexible strip foundation and the flexible square foundation resting

on the halfspace. The results of the analyses in terms of foundation compliance

functions, displacement fields and contact stress fields are compared with the results

from literature.

Chapter 4 gives the summary of the dissertation and the ideas for the future research.

9



2 Wave Propagation in Halfspace by
ITM

This chapter describes the formulation of the wave propagation in the soil. The

problem is formulated in 3D space, where an arbitrarily chosen point is defined by

three Cartesian coordinates x, y and z. The soil is considered as a halfspace, bounded

with the plane xy0 as surface of the soil. The halfspace is considered isotropic,

homogeneous and elastic. The material properties of the halfspace may vary with

depth, forming layers, but the properties within the layer must remain constant.

2.1 Wave Propagation in Continuum

For the following formulation it is convenient to use a tensor notation. Scalars are

denoted with light italic symbols (u, σ), vectors and second order tensors with bold

symbols (u,σ), matrices with upright bold letters (u,σ,A). A tensor notation is

explained in details in Appendix A.1.

The coordinate axes are denoted by xj, where j = 1, 2, 3. The displacement vector

at a point x and time t is u(x, t).

The stress and the deformation state of a continuum body of elemental volume is

described by Cauchy stress tensor σ and small strain tensor (linearized strain tensor)

10



2. Wave Propagation in Halfspace by ITM 2.1. Wave Propagation in Continuum

ε. The components of the small strain tensor ε are defined by

εij = 1
2
(
ui,j + uj,i

)
(2.1)

where ui,j is the first derivative of displacement component ui with respect to xj,

∂ui/∂xj, and uj,i is the first derivative of displacement component uj with respect

to xi, ∂uj/∂xi.

The components of the rotation tensor ω are given by

ωij = 1
2
(
ui,j − uj,i

)
(2.2)

The Cauchy’s first law of motion could be obtained from the balance of linear

momentum. In the absence of body forces, it is described as following

σkl,k = ρül (2.3)

where σkl are the components of the Cauchy stress tensor σ and ρ is the material

density, and ül is the second derivative of displacement component ul with respect

to time t, ∂2ul/∂t
2. . Since the material is homogeneous, elastic and isotropic, the

stress strain relation is given by

σij = λεkkδij + 2µεij (2.4)

where λ and µ are Lamé’s material constants, and δij is Kronecker delta (A.4).

Lamé’s constants can be expressed in terms of Young’s modulus of elasticity E and

Poisson’s ration ν:

λ = Eν

(1 + ν)(1− 2ν)

µ = G = E

2(1 + ν)

(2.5)
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2. Wave Propagation in Halfspace by ITM 2.1. Wave Propagation in Continuum

A complete system of equations of motion of homogeneous, isotropic and linear elastic

bodies is formed by equations (2.1), (2.3) and (2.4). If we substitute Equation (2.1)

in Equation (2.4) we obtain

σij = λuk,kδij + µui,j + µuj,i (2.6)

Then

σij,j = (λuk,kδij),j + µui,jj + µuj,ij

= λuj,ij + µui,jj + µuj,ij

= µui,jj + (λ+ µ)uj,ij

Substituting Equation (2.7) into Cauchy’s law of motion (2.3) we obtain Navier’s

equations of motion:

µui,jj + (λ+ µ)uj,ij = ρüi (2.7)

These equations represent the system of partial differential equations. The system

is transformed into the system of uncoupled differential equations using Helmholtz

decomposition. Helmholtz decomposition states that any sufficiently smooth, rapidly

decaying vector field in three dimensions can be resolved into the sum of an irrotational

(curl-free) vector field (ϕi) and a solenoidal (divergence-free) vector field (eijkψk,j):

ui = ϕi + eijkψk,j (2.8)

were ϕ and ψ are Helmholtz potentials and eijk is permutation symbol (A.5).

Equations (2.7) and (2.8) could be written in vector form as follows:

µ∇2u + (λ+ µ)∇∇ · u = ρü (2.9)

12
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u = ∇ϕ+∇× ψ (2.10)

Substituting equation (2.10) into equation (2.9) we obtain

µ∇2 [∇ϕ+∇× ψ] + (λ+ µ)∇∇ · [∇ϕ+∇× ψ] = ρ
∂2

∂t2
[∇ϕ+∇× ψ] (2.11)

Using identities ∇ · ∇ϕ = ∇2ϕ and ∇ · ∇ × ψ = 0 equation (2.11) could be written

as following

∇
[
(λ+ µ)∇2ϕ− ρϕ̈

]
+∇×

[
µ∇2

ψ − ρψ̈

]
= 0 (2.12)

From equation (2.12) follows:

∇2ϕ = 1
c2
p

ϕ̈ (2.13)

and

∇2
ψ = 1

c2
s

ψ̈ (2.14)

where cp and cs are velocities of the waves propagating trough continuum:

c2
p = λ+ 2µ

ρ
(2.15)

c2
s = µ

ρ
(2.16)

The velocity cp is called the velocity of compressional, longitudinal or P-waves, since

it has influence on the irrotational vector field only. The velocity cs is called the

velocity of shear, transverse or S-waves, since it has influence on the solenoidal vector

field only.
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2. Wave Propagation in Halfspace by ITM 2.2. Wave Equations in Elastic Halfspace

2.2 Wave Equations in Elastic Halfspace

x

z

y

Soil

p(x, y, t)

Figure 2.1: Halfspace model excited by a load acting on the surface

The system of the halfspace excited by a load acting on the surface is depicted in

Figure 2.1. The solution is obtained in Cartesian coordinate system.

The four potentials ϕ, ψx, ψy and ψz from equation (2.8) are not uniquely determined

with the three displacement vector components ux, uy and uz. However, choosing

ψz = 0 does not affect the accuracy of the solution [50].

Considering ψz = 0, equations (2.13) and (2.14) become

 ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 −
1
c2
p

∂2

∂t2

ϕ(x, y, z, t) = 0

(
∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 −
1
c2
s

∂2

∂t2

)
ψx(x, y, z, t) = 0

(
∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 −
1
c2
s

∂2

∂t2

)
ψy(x, y, z, t) = 0

(2.17)
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2. Wave Propagation in Halfspace by ITM 2.2. Wave Equations in Elastic Halfspace

Also, Equation (2.8) in expanded form reads

ux = ϕx − ψy,z

uy = ϕy + ψx,z

uz = ϕz − ψx,y + ψy,x

(2.18)

The solution of the system (2.17) is obtained using ITM. The system is trans-

formed into the system of ordinary differential equations using a threefold Fourier

transformation given as

f̂(kx, ky, z, ω) =
∞∫

x=−∞

∞∫
y=−∞

∞∫
t=−∞

f(x, y, z, t) e−ikxxe−ikyye−iωt dx dy dω (2.19)

where f̂(kx, ky, z, ω) is a Fourier transform of an arbitrary function f(x, y, z, t).

The transformation is applied to the spatial coordinates x d tkx, y d tky and

time t d tω, while the spatial coordinate z remains untransformed. After the

transformation the system (2.17) becomes:

(
−k2

x − k2
y + k2

p + ∂2

∂z2

)
ϕ̂(kx, ky, z, ω) = 0

(
−k2

x − k2
y + k2

s + ∂2

∂z2

)
ψ̂x(kx, ky, z, ω) = 0

(
−k2

x − k2
y + k2

s + ∂2

∂z2

)
ψ̂y(kx, ky, z, ω) = 0

(2.20)

where kp and ks are wavenumbers of P- and S-waves for a given frequency ω

kp = ω

cp

ks = ω

cs

(2.21)

while the symbol ˆ denotes quantities in the transformed domain (kx, ky, z, ω).
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2. Wave Propagation in Halfspace by ITM 2.3. Boundary Conditions

The solution of differential equations (2.20) is given in exponential form

ϕ̂ = A1e
λ1z + A2e

−λ1z

ψ̂i = Bi1e
λ2z +Bi2e

−λ2z

(2.22)

where λ1 and λ2 represents the roots of the characteristic equation

λ1 =
√
k2
x + k2

y − k2
p

λ2 =
√
k2
x + k2

y − k2
s

(2.23)

while i = x, y. The unknown coefficients A1, A2, Bi1 and Bi2 are obtained using the

boundary conditions of the system.

2.3 Boundary Conditions

The physical interpretation of the solution depends on the sign of λ1 and λ2. If

λ1 takes imaginary values (k2
x + k2

y < k2
p), the solution represents the spatially

propagating P-waves. Depending on the sign of λ1 the waves are propagating in

positive (λ1 < 0) or negative (λ1 > 0) z direction. If λ1 takes real values (k2
x+k2

y > k2
p),

the solution consists of surface waves. Depending on the sign of λ1 the waves are

exponentially increasing or decaying with depth. Analogously, depending on the λ2

the solution represents the spatially propagating S-waves (k2
x + k2

y < k2
s) or surface

waves (k2
x + k2

y > k2
s).

According to the Sommerfeld radiation condition [51] “the energy which is radiated

from the sources must scatter to infinity; no energy may be radiated from infinity

into the prescribed singularities of the field”. Since the load is applied only on the

surface of the halfspace, some of the coefficients A1, A2, Bi1, Bi2 could be set to zero.

In the case of ω > 0, for spatially propagating waves, coefficients A2 and Bi2 could
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2. Wave Propagation in Halfspace by ITM 2.3. Boundary Conditions

be set to zero, as well as coefficients A1 and Bi1 for surface waves. They are either

describing the waves propagating from infinity toward the surface of the halfspace

(A2 and Bi2), or surface waves with amplitudes exponentially increasing with the

depth (A1 and Bi1). Müller [28] showed that for ω < 0, coefficients that describe the

waves that are impossible to occur are A1 and Bi1 for both spatially propagating

and surface waves. Thus, using negative frequencies is more convenient.

The three remaining constants A2, Bx2 and By2 are obtained from the boundary

conditions on the surface of the halfspace

σ̂zz = −p̂z

τ̂zy = −p̂y

τ̂zx = −p̂x

(2.24)

where p̂(p̂x, p̂y, p̂z) is the active load vector. The relation between stress components

and unknown coefficients is derived using material law (2.4), kinematic relations (2.1)

and Helmholtz decomposition (2.10). The equations (2.4), (2.1) and (2.10) must be

transformed into (kx, ky, z, ω) domain:

(2.4) d t



σ̂xx

σ̂yy

σ̂zz

τ̂xy

τ̂yz

τ̂zx



=



λ+ 2µ λ λ 0 0 0

λ λ+ 2µ λ 0 0 0

λ λ λ+ 2µ 0 0 0

0 0 0 2µ 0 0

0 0 0 0 2µ 0

0 0 0 0 0 2µ





ε̂xx

ε̂yy

ε̂zz

γ̂xy

γ̂yz

γ̂zx



(2.25)
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2. Wave Propagation in Halfspace by ITM 2.3. Boundary Conditions

(2.1) d t



ε̂xx

ε̂yy

ε̂zz

γ̂xy

γ̂yz

γ̂zx



=



ikx 0 0

0 iky 0

0 0 ∂
∂z

1
2iky

1
2ikx 0

0 1
2
∂
∂z

1
2iky

1
2
∂
∂z

0 1
2ikx




ûx

ûy

ûz


(2.26)

(2.10) d t

ûx

ûy

ûz


=


ikx 0 − ∂

∂z

iky
∂
∂z

0
∂
∂z
−iky ikx




ϕ̂

ψ̂x

ψ̂y


(2.27)

Equation (2.22) could be written in matrix form


ϕ̂

ψ̂x

ψ̂y


=


eλ1z e−λ1z 0 0 0 0

0 0 eλ2z e−λ2z 0 0

0 0 0 0 eλ2z e−λ2z





A1

A2

Bx1

Bx2

By1

By2



(2.28)
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2. Wave Propagation in Halfspace by ITM 2.3. Boundary Conditions

Substituting equation (2.28) into equation (2.27) gives the relation between the

displacement components and the unknown coefficients


ûx

ûy

ûz


=


ikx ikx 0 0 −λ2 λ2

iky iky λ2 −λ2 0 0

λ1 −λ1 −iky −iky ikx ikx


︸ ︷︷ ︸

K̂u



A1e
λ1z

A2e
−λ1z

Bx1e
λ2z

Bx2e
−λ2z

By1e
λ2z

By2e
−λ2z



(2.29)

The relationship between the stress components and the unknown coefficients is

obtained substituting equation (2.29) into equation (2.26) and then further into

equation (2.25)



σ̂xx

σ̂yy

σ̂zz

τ̂xy

τ̂yz

τ̂zx



= µ


−2k2

x−λµk
2
p −2k2

x−λµk
2
p 0 0 −2ikxλ2 2ikxλ2

−2k2
y−λµk

2
p −2k2

y−λµk
2
p 2ikyλ2 −2ikyλ2 0 0

2k2
r−ks2 2k2

r−ks2 −2ikyλ2 2ikyλ2 2ikxλ2 −2ikxλ2
−2kxky −2kxky ikxλ2 −ikxλ22 −ikyλ2 ikyλ2
2ikyλ1 −2ikyλ1 λ2

2+k2
y λ2

2+k2
y −kxky −kxky

2ikxλ1 −2ikxλ1 kxky kxky −λ2
2−k

2
x −λ2

2−k
2
x





A1e
λ1z

A2e
−λ1z

Bx1e
λ2z

Bx2e
−λ2z

By1e
λ2z

By2e
−λ2z



(2.30)

where

kr =
√
k2
x + k2

y (2.31)
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Considering equation (2.30), the boundary conditions (2.24) at the surface of the

halfspace (z = 0) can be expressed in terms of unknown coefficients


σ̂zz

τ̂zy

τ̂zx


= µ


2k2

r − ks2 2ikyλ2 −2ikxλ2

−2ikyλ1 λ2
2 + k2

y −kxky

−2ikxλ1 kxky −λ2
2 − k2

x


︸ ︷︷ ︸

K̂σ


A2

Bx2

By2


=


−p̂z

−p̂y

−p̂x


(2.32)

The system of equations (2.32) gives a unique solution {A2, Bx2, By2}. The displace-

ment components could be derived using Eq. (2.29) and transformed into original

domain (x, y, z, t) using a threefold inverse Fourier transformation defined as

f(x, y, z, t) =
∞∫

kx=−∞

∞∫
ky=−∞

∞∫
ω=−∞

f̂(kx, ky, z, ω) eikxxeikyyeiωt dx dy dω (2.33)

where f(x, y, z, t) is an inverse Fourier transform of an arbitrary function f̂(kx, ky, z, ω).

2.3.1 Layered Halfspace

The solution of layered halfspace is based on the solution of homogeneous halfspace.

Since layers are of finite depth the Sommerfeld condition does not apply and all six

coefficients contribute to the solution (2.22). The coefficients are obtained using

boundary conditions at the top and at the bottom of the layer.

A simple example of a layered halfspace is shown in Figure 2.2. The system is

consisted of one layer on top of the halfspace. The unknowns related to the halfspace

are A2,l2 , Bx2,l2 , By2,l2 , according to Section 2.3. The unknowns related to the layer

are A1,l1 , A2,l1 , Bx1,l1 , Bx2,l1 , By1,l1 , By2,l1 . The unknown coefficients are obtained by
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2. Wave Propagation in Halfspace by ITM 2.3. Boundary Conditions

p(x, y, t)

x
z1

y

h1

Layer (l1)

Halfspace (l2) x
z2

y

Figure 2.2: Layered halfspace

taking into account boundary conditions at the surface of the soil (z1 = 0)

σ̂zz,l1(kx, ky, z1 = 0, ω) = −p̂z(kx, ky, ω)

σ̂zy,l1(kx, ky, z1 = 0, ω) = −p̂y(kx, ky, ω)

σ̂zx,l1(kx, ky, z1 = 0, ω) = −p̂x(kx, ky, ω)

(2.34)
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2. Wave Propagation in Halfspace by ITM 2.3. Boundary Conditions

and transition conditions at the contact between the layer and the halfspace (z1 =

h1, z2 = 0)

σ̂zz,l1(kx, ky, z1 = h1, ω) = σ̂zz,l2(kx, ky, z2 = 0, ω)

σ̂zy,l1(kx, ky, z1 = h1, ω) = σ̂zy,l2(kx, ky, z2 = 0, ω)

σ̂zx,l1(kx, ky, z1 = h1, ω) = σ̂zx,l2(kx, ky, z2 = 0, ω)

ûx,l1(kx, ky, z1 = h1, ω) = ûx,l2(kx, ky, z2 = 0, ω)

ûy,l1(kx, ky, z1 = h1, ω) = ûy,l2(kx, ky, z2 = 0, ω)

ûz,l1(kx, ky, z1 = h1, ω) = ûz,l2(kx, ky, z2 = 0, ω)

(2.35)

In order to avoid numerical issues occurring for exponential functions with great

arguments [36], the unknowns A1,l1 , Bx1,l1 and By1,l1 should be replaced by Ā1,l1 , B̄x1,l1

and B̄y1,l1

A1e
λ1z = A1e

λ1h1e−λ1h1eλ1z = Āeλ1(z−h1)

Bi1e
λ2z = Bi1e

λ2h1e−λ2h1eλ2z = B̄i1e
λ2(z−h1), i = x, y

(2.36)

The relationship between unknown coefficients and stress components (2.30) and the

relationship between unknown coefficients and displacement components (2.29) for

one layer can be written as follows


σ̂zz

τ̂yz

τ̂zx


= µ

 2k2
r−ks2 2k2

r−ks2 −2ikyλ2 2ikyλ2 2ikxλ2 −2ikxλ2
2ikyλ1 −2ikyλ1 λ2

2+k2
y λ2

2+k2
y −kxky −kxky

2ikxλ1 −2ikxλ1 kxky kxky −λ2
2−k

2
x −λ2

2−k
2
x





Ā1,l1e
λ1z

A2,l1e
−λ1z

B̄x1e
λ2(z−h1)

Bx2,l1e
−λ2z

B̄y1,l1e
λ2(z−h1)

By2,l1e
−λ2z



(2.37)
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2. Wave Propagation in Halfspace by ITM 2.4. Static load


ûx

ûy

ûz


=


ikx ikx 0 0 −λ2 λ2

iky iky λ2 −λ2 0 0

λ1 −λ1 −iky −iky ikx ikx





Ā1,l1e
λ1(z−h1)

A2,l1e
−λ1(z−h1)

B̄x1,l1e
λ2(z−h1)

Bx2,l1e
−λ2(z−h1)

B̄y1,l1e
λ2(z−h1)

By21e
−λ2(z−h1)



(2.38)

In the case of a system with more than one layer, the number of unknowns is increased

by six per layer, along with the number of boundary and transition conditions giving

the system of equations with unique solution.

2.4 Static load

In the case of a static load (ω = 0) the solution of the system (2.30) is not possible

since the determinant of the system becomes zero. In order to obtain the solution, a

different approach is used [26] giving the relationship between the stresses and the

unknowns


σ̂xx

σ̂yy

σ̂zz

τ̂xy

τ̂yz

τ̂zx



= µ



−2k2
xz−2 λkr

λ+µ −2k2
xz+2 λkr

λ+µ 0 0 −2ikxkr 2ikxkr
−2k2

y−2 λkr
λ+µ −2k2

y+2 λkr
λ+µ 2ikykr −2ikykr 0 0

2k2
rz−2 (λ+2µ)kr

λ+µ 2k2
rz+2 (λ+2µ)kr

λ+µ −2ikykr 2ikykr 2ikxkr −2ikxkr
−2kxkyz −2kxkyz ikxkr −ikxkr −ikykr ikykr

2iky
(
krz− µ

λ+µ

)
−2iky

(
krz+ µ

λ+µ

)
k2
r+k2

y k2
r+k2

y −kxky −kxky

2ikx
(
krz− µ

λ+µ

)
−2ikx

(
krz+ µ

λ+µ

)
kxky kxky −k2

r−k2
x −k2

r−k2
x





A01e
λ1z

A02e
−λ1z

B0x1e
λ2z

B0x2e
−λ2z

B0y1e
λ2z

B0y2e
−λ2z


(2.39)

23



2. Wave Propagation in Halfspace by ITM 2.5. Plane Strain

2.5 Plane Strain

The analysis of strip foundations is performed using plane strain analysis (see

Section 2.5). The plane strain analysis is considered a special case of 3D analysis. If

the plane of interest is xz plane, the relationship between displacement components,

stress components and unknown coefficients is derived from equations (2.29), (2.30)

and (2.39), by taking out the components containing index y and let ky = 0.

Accordingly, coefficients Bx1, Bx2, B0x1 and B0x2 vanish.


ûx

ûy

ûz


=

ikx ikx −λ2 λ2

λ1 −λ1 ikx ikx





A1e
λ1z

A2e
−λ1z

By1e
λ2z

By2e
−λ2z


(2.40)


σ̂xx

σ̂zz

τ̂zx


= µ


−2k2

x − λ
µ
k2
p −2k2

x − λ
µ
k2
p −2ikxλ2 2ikxλ2

2k2
r − ks2 2k2

r − ks2 2ikxλ2 −2ikxλ2

2ikxλ1 −2ikxλ1 −λ2
2 − k2

x −λ2
2 − k2

x





A1e
λ1z

A2e
−λ1z

By1e
λ2z

By2e
−λ2z


(2.41)


σ̂xx

σ̂zz

τ̂zx


= µ


−2k2

xz − 2 λkx
λ+µ −2k2

xz + 2 λkx
λ+µ −2ik2

x 2ik2
x

2k2
xz − 2 (λ+2µ)kx

λ+µ 2k2
xz + 2 (λ+2µ)kx

λ+µ 2ik2
x −2ik2

x

2ikx
(
kxz − µ

λ+µ

)
−2ikx

(
kxz + µ

λ+µ

)
−2k2

x −2k2
x





A01e
λ1z

A02e
−λ1z

B0y1e
λ2z

B0y2e
−λ2z


(2.42)
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2. Wave Propagation in Halfspace by ITM 2.6. Damping

In the case of halfspace, coefficients A1 and B1y also vanishes (see Section 2.3).


ûx

ûy

ûz


=

 ikx λ2

−λ1 ikx


︸ ︷︷ ︸

K̂u


A2e

−λ1z

By2e
−λ2z

 (2.43)


σ̂xx

σ̂zz

τ̂zx


= µ


−2k2

x − λ
µ
k2
p 2ikxλ2

2k2
r − ks2 −2ikxλ2

−2ikxλ1 −λ2
2 − k2

x


︸ ︷︷ ︸

K̂σ


A2e

−λ1z

By2e
−λ2z

 (2.44)


σ̂xx

σ̂zz

τ̂zx


= µ


−2k2

xz + 2 λkx
λ+µ 2ik2

x

2k2
xz + 2 (λ+2µ)kx

λ+µ −2ik2
x

−2ikx
(
kxz + µ

λ+µ

)
−2k2

x


︸ ︷︷ ︸

K̂σ


A02e

−λ1z

B0y2e
−λ2z

 (2.45)

In this dissertation, 2D analysis is referred to plane strain analysis.

2.6 Damping

The specific energy of the system decreases as the wave travels through the material.

This behaviour is influenced by two different mechanisms: radiation damping and

material damping. It is already mentioned that the radiation damping is successfully

modeled using the ITM. Since the analysis is performed in the frequency domain,

the material damping can be incorporated into the soil model by using a complex

Young’s modulus:

Ē = E (1 + 2iζ) (2.46)

where ζ is the damping ratio.

25



2. Wave Propagation in Halfspace by ITM 2.7. Surface Displacements

This formulation refers to the usage of hysteretic material damping. It is derived

by assuming that the material acts as Kelvin-Voigt solid that describes viscoelastic

wave propagation successfully [52].

2.7 Surface Displacements

The calculation of the displacement field of the surface of the halfspace is important

step in obtaining the dynamic stiffness of the foundation. It completely relies on

ITM. However, the solution of the system of ordinary differential equations could

not be obtained analytically in rectangular coordinates. A numerical procedure is

performed, requiring the usage of Discrete Fourier Transform (DFT). The surface

is discretized and the solution is obtained at every point of discretization. The

discretization is performed to satisfy the requirements imposed by DFT. In order to

demonstrate those requirements and the procedure itself, two numerical examples

with the most common load patterns are presented. The load patterns are

• uniformly distributed load and

• unit force

For the sake of simplicity, the examples assumes 2D analysis and load acting in

z direction. The calculation is performed using a script written in MathWorks

MATLAB [53].
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2. Wave Propagation in Halfspace by ITM 2.7. Surface Displacements

2.7.1 Numerical Examples

2.7.1.1 Displacements of the surface of the halfspace due to a uniformly

distributed load

In this example, plane strain analysis of the halfspace loaded with a uniformly

distributed harmonic load is performed. The load is acting on the width of 1 m

with the excitation frequency of 30 Hz. The amplitude of the load is such that the

resultant of the load is 1 kN/m. The halfspace is modeled with the elasticity modulus

E = 5× 107 N/m2, damping coefficient ζ = 2 %, Poisson’s coefficient ν = 0.3 and

density ρ = 2× 103 kg/m3. The disposition of the problem is given in Figure 2.3

x

z

Soil

p(x, y)

1 m

Bx

Figure 2.3: Halfspace excited by a uniformly distributed load

According to Equation (2.44), boundary conditions on the surface of the halfspace

could be written as

−p̂

0

 = µ

2k2
r − ks2 −2ikxλ2

−2ikxλ1 −λ2
2 − k2

x


︸ ︷︷ ︸

BCK̂σ


A2e

−λ1z

By2e
−λ2z

 (2.47)
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The displacements of the surface of the halfspace are obtained using equations (2.43)

and (2.47)

û = K̂
u (

BCK̂
σ)−1

︸ ︷︷ ︸
T̂F


−p̂

0

 (2.48)

where T̂F is the transfer function matrix, that gives the relation between displace-

ments components û and the load vector p̂.

Although the halfspace should exist for x ∈ (−∞,∞), it has to be truncated to fit

the requirements of the numerical simulation. The truncation length is denoted with

Bx. Therefore, the domain of the halfspace is x ∈
[
−Bx/2, Bx/2

]
, z ∈ [0,∞). The

discretization is performed with discretization unit ∆x. The number of discretization

points is Nx

Nx = Bx

∆x (2.49)

That leads to the discretization in kx domain with discretization unit ∆kx

∆kx = 2π
Bx

= 2π
Nx∆x

for kx ∈
[
−Nx

2 ∆kx,
Nx

2 ∆kx
]

(2.50)

Since the truncation length is a repetition length of Fourier Transformation (FT),

the choice of Bx must ensure that the aliasing effect does not occur. Therefore, the

choice of Bx is related to the nature of the external load and to the characteristics of

the soil, such as material damping and Rayleigh wavelength.

The truncation length for the given example is Bx = 128 m. The variable x takes

discrete values between −64 m and 64 m equally spaced by ∆x = 0.1 m. The

variable kx takes discrete values between −31.42 m and 31.42 m equally spaced by

dkx = 0.0491 m.
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Figure 2.4 shows the procedure of calculating vertical displacements. Only real values

of the functions are presented. First, the load pattern p̄ (Figure 2.4a) is transformed

into wavenumber-frequency domain p̂ (Figure 2.4b) using Fast Fourier Transform

(FFT). The transfer function of the halfspace T̂F is calculated for the given input

parameters using equations (2.43), (2.47) and (2.48). The element (2, 1) of the transfer

function T̂F, T̂F21, required for the calculation of the vertical displacements is shown

in Figure 2.4c. The multiplication of p̂ and T̂F21 gives the vertical displacements

function in transformed domain û (Figure 2.4d). The transformation of û into original

domain ū is performed with inverse FFT (Figure 2.4e).

The discretization parameters ∆x and ∆kx must be chosen to describe the functions

p̂ and T̂F21 well with minimal computational effort. That is a challenging task. It

depends on many parameters and cannot be generalized. The domain of kx must be

wide enough to include the area of highest amplitudes of p̂ and T̂F and ∆kx must

be small enough to describe the peaks at ±ω/cs and ±ω/cp.
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(a) Loading function p̄
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(c) Transfer function matrix element (2, 1)
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Figure 2.4: Halfspace excited by a uniformly distributed load
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2.7.1.2 Displacements of the surface of the halfspace due to a unit force

−4 −2 0 2 4
0

0.5

1

x

p̄

−4 −2 0 2 4
0

0.5

1

kx
p̂

Figure 2.5: Unit force FT pair

Figure 2.5 shows the FT pair p d tp̂ for the unit force loading pattern. The load

function p̂ is a constant for kx ∈ (−∞,∞). The truncation of such a function is not

feasible without introducing a significant numerical error into the response of the

system. The transfer function of the halfspace T̂F is the same as in the previous

example since the input parameters of the halfspace are the same. According to

Equation (2.48), the multiplication of p̂ and T̂F21 gives û. Concerning the distribution

of p̂, the displacement field û is proportional to the transfer function T̂F21. The

inverse FT of û gives the displacement field in the original domain ū. Since û is not

a periodic function, the stability of the inverse FFT of û, ū, is higher if û approaches

zero at the limits of the kx domain [54]. For kx → ±∞ the displacement field û

approaches zero faster in the case of the distributed load. Therefore, the usage of

unit force is not advisable and it should be replaced by a uniformly distributed load.

The area of the distributed load should be the smallest area possible that meets the

requirements imposed by FFT and provides an optimal computational effort for the

calculation of the response. Unfortunately, these requirements are dependent on the

type of the analysis and cannot be generalized as a fixed rule.
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2. Wave Propagation in Halfspace by ITM 2.7. Surface Displacements

Figure 2.6 shows the comparison of the displacement fields of the surface of the

halfspace excited by a unit force P = 1 kN/m and a distributed load p = 2.5 kN/m2

over the length of 0.4 m for different values of ∆x. The magnitude of the resultant

force of the distributed load p is equal to the magnitude of the unit force P . The

truncation parameter Bx is fixed at 128 m. Figures 2.6a and 2.6b show the response

of the same systems, but Figure 2.6b gives a detailed view of the nearfield zone.

The change of ∆x affects the observed wavenumber spectrum since it is inverse

proportional to ∆kx, Equation (2.50): the lower the ∆x, the wider the kx spectrum.

Concerning the observations mentioned in the previous paragraph, the change of

∆x must affect the response of the system. Figure 2.6b shows that the differences

are more pronounced in the case of the unit force, especially at the point of the

excitation. In the case of the equivalent distributed load, the distribution of the

displacement field is changed only in the nearfield zone. Also, the response of the

system is not dependent on ∆x as much as in the case of the unit force.

The displacement field ū is very important for the calculation of the flexibility/stiffness

matrix of the rigid foundation (see Section 3.2). The accuracy of ū should not be

significantly affected by the discretization input parameters ∆x and ∆kx. This is the

reason the unit force load is not used in the numerical models made for the purposes

of this dissertation. However, the term unit force is used, as it is meaningful from

the theoretical point of view, but it refers to a uniformly distributed load over a

small area.
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Figure 2.6: Displacements of the surface of the halfspace due to a unit force and a
distributed load for different ∆x
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2.8 Moving load

A moving load can be incorporated into ITM without changing its algorithm. This

is accomplished with a help of the shifting theorem which is a property of the

Fourier transform [54]. This procedure is described by many authors including

Grundmann [55, 38], Müller [56], Auersch [57] and Yang and Hung [58].

Let pz be a vertical load that moves in x-direction along the surface of a half-space

with a constant speed v

pz(x, y, t) = p0(x− vt, y)f(t) (2.51)

Applying a threefold Fourier transform on (2.51) gives

p̂z(kx, ky, ω) = p̂0(kx, ky)f̂(ω + vkx) (2.52)

Spatial movement in the original domain leads to a frequency shift in the transformed

domain. Therefore, in the transformed domain, the moving load function could be

calculated as a corresponding stationary load function p̂s

p̂s(kx, ky, ω̄) = p̂0(kx, ky)f̂(ω̄) (2.53)

where ω̄ is a wavenumber dependent frequency

ω̄ = ω + vkx (2.54)

Particularly

p̂(kx, ky, ω) = p̂s(kx, ky, ω + vkx) (2.55)
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The relation between the displacement field of the halfspace û and the loading vector

p̂ is established with the transfer function of the soil, T̂F:

û(kx, ky, ω) = T̂F(kx, ky, ω) p̂(kx, ky, ω) (2.56)

Considering (2.55) and (2.54), (2.56) could be written as

û(kx, ky, ω̄ − vkx) = T̂F(kx, ky, ω̄ − vkx) p̂s(kx, ky, ω̄) (2.57)

This means that the displacement field of the halfspace, û(kx, ky, ω), excited by a

moving load p̂(kx, ky, ω) could be calculated like the displacement field of the halfspace

in the moving frame of reference û(kx, ky, ω̄ − vkx) excited by a corresponding

stationary load p̂s(kx, ky, ω̄). The transfer function of the soil, T̂F, is calculated for

shifted frequencies ω = ω̄ − vkx.

2.8.1 Numerical example

For the purposes of verification of the presented technique a numerical model is

developed using MATLAB [53]. The results are compared with the results from the

literature [59].

The halfspace is modeled so that the shear waves velocity is cs = 120 m/s, the

longitudinal waves velocity is cp = 240 m/s, the density is ρ = 2000 kg/m3 and

the damping coefficient is ζ = 5 %. The force is a half-cosine load that moves in

x-direction with a constant speed v, starting from the point xk = 0, Figure 2.7.

The loading function is defined as

Pzi(x, y, t) = Pi cos πx̄
li
δ(x− vit)δ(y) (2.58)
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Figure 2.7: Half-cosine moving load on the surface of the halfspace. Disposition of
the problem

where Pi = Ptπ/li is the amplitude, Pt is the load resultant force and li is the length

of half-cosine, Figure 2.8. The duration of the load is 0.025 s. The displacement

fields of the surface of the halfspace are obtained for velocities vi = 200, 300, 400

and 500 km/h.
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Figure 2.8: Spatial distribution of the load function Pz for different velocities v

Figure 2.9 shows the displacements in x, y and z directions at the location of the

receivers placed along the line x = 18.75 m at y = 0, 3.5 and 7 m. The higher the

source speed the quicker the response occurs. The displacements decrease with

increasing distances from the load path. While vertical displacement amplitudes
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decrease with an increase of the source speed, horizontal displacement amplitudes

increase.
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Figure 2.9: Influence of the moving force velocity on the displacements of the
halfspace surface at x = 18.75 m
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3 Dynamic Stiffness and Flexibility of
Surface Foundations

This chapter presents the formulation of the method for solving the response of rigid

and flexible foundations resting on halfspace. The results obtained by the proposed

method in terms of displacement distributions, stress distributions, and impedance

functions of the foundations, are compared with the results from the literature.

3.1 Introduction

Dynamic stiffness of the foundation is a product of the SFI analysis. It is used in

the SSI analysis where it is assembled into the dynamic stiffness of the structure.

Performing the SFI analysis is not a simple task. However, the response of the SFI

systems could be generalized to a certain level, facilitating the implementation of

SFI analysis in engineering practice.

According to Gazetas [3], Lysmer was the first to introduce the idea to represent

the SFI behavior by a single degree of freedom system with lumped parameters:

stiffness and damping as coefficients independent of frequency. This idea is used in

the current methods of SFI analysis, where the results are presented in the form of

two frequency dependent complex valued functions: impedance functions.
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Impedance functions

Impedance can be any kind of resistance to wave oscillation. For example, electrical

impedance can be calculated as the ratio between voltage and current, acoustic

impedance as the ratio between sound pressure and particle velocity, etc.

In the field of SSI, the impedance is defined as the ratio between the dynamic force

and the resulting displacement of the foundation [60]

K(t) = p(t)
u(t) (3.1)

According to the Fourier analysis [54], any transient response can be presented as a

summation of harmonic responses. Therefore, it is natural to formulate the impedance

as a function of harmonic force p̄(ω) = p0 exp(iωt) and harmonic displacement

ū(ω) = u0 exp(iωt)

K̄(ω) = p̄(ω)
ū(ω) (3.2)

Since the dynamic force and displacement are generally out of phase, it is useful to

present them in complex notation. Thus, the impedance function is also a complex

valued function

K̄(ω) = K̄r(ω) + iK̄i(ω) (3.3)

The real part refers to the stiffness and inertia of the soil. The imaginary part

refers to the radiation and material damping of the system. This is in complete

accordance with the impedance of the single degree of freedom system. However, the

SFI impedances depends on the geometry, stiffness and embedment of the foundation,

and on the properties and profile of the soil medium. Therefore, they are usually

presented as functions of dimensionless frequency [3]

a0 =
ωB

2
cs

(3.4)
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where B is the width of the foundation, and cs is the velocity of shear waves in the

soil.

In order to present the impedance functions in dimensionless form, they are scaled

by the value of the static stiffness of the system, K̄(ω = 0), or by the coefficient C

that depends on the shape of the foundation and on the observed direction of the

response.
1
C
K̄(a0) = 1

C
K̄r(a0) + i

1
C
K̄i(a0) (3.5)

For example, in the case of square surface foundations, vertical and horizontal

impedances are scaled by C = G(B/2), while the scaling coefficient of rocking

impedances is C = G(B/2)3. The parameter G is the shear modulus of the soil.

Since the impedance functions reflects the dynamic stiffness of the system, they are

also called dynamic stiffness functions.

Compliance functions

The compliance functions, also known as dynamic flexibility functions, are defined

as the ratios between the dynamic displacements and the reactive forces at the base

of the foundation. They are expressed in the same manner as impedance functions

F̄ (ω) = F̄r(ω) + iF̄i(ω) (3.6)

or in dimensionless form

CF̄ (a0) = CF̄r(a0) + iCF̄i(a0) (3.7)

In the case of axisymmetrical foundations the vertical and torsional compliances are

inverse of the vertical and torsional impedances, respectively. Rocking and horizontal
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motions are coupled. Therefore, the rocking and horizontal compliances are obtained

by inverting the matrix of the system of linear equations that describes the relation

between the rocking and horizontal impedances.

Usage of impedance and compliance functions

All the methods for obtaining the response of SFI systems mentioned in the Section 1.2

could be used for the calculation of impedance and compliance functions. The

selection of the method depends on various parameters including the shape of the

foundation, the type of the soil medium, the embedment of the foundation and the

foundation stiffness/flexibility. Once the harmonic response of the foundations is

obtained in terms of impedance or compliance functions, it is possible to evaluate

the steady state response of any structure supported by the foundations.

A brief history of impedances with the summary of researches regarding impedances

and compliances is greatly covered in the Handbook of Impedance Functions by

Sieffert and Cevaer [60]. A detailed historical overview with theoretical basis and the

discussion of the results of other researches in terms of impedance and compliance

functions is published by Gazetas [3]. These publications cover the impedances and

compliances of rigid foundations. The degrees of freedom of rigid foundation are

defined in its centroid. The displacement profile is a constant or linear function of

spatial coordinates. The impedance functions are calculated by using the displace-

ments at the centroid of the base of the foundation and they are called the impedance

functions of the foundation.

In the case of a flexible foundation every point has its own degrees of freedom.

Therefore, the impedance functions are attributed to a certain point of the foundation

rather than to the whole foundation. Considering the publications of Whittaker and

Christiano [17] and Maravas et al. [61, 62], this dissertation analyses the compliances
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of three characteristic points of flexible surface rectangular foundations: center,

midway along an edge, and corner.

Numerical examples

The results of the numerical examples in this chapter are obtained using a program

written in MATLAB [53]. They are presented without applying a postprocessing

algorithms such as smoothing techniques or similar.

3.2 Rigid Foundation

The term rigid foundation refers to a rigid, massless and rectangular foundation

resting on the surface of the soil. The dynamic stiffness and flexibility of the

foundation is obtained using the fundamental solution of the soil calculated using

the ITM and the kinematic transform [63].

x

y z

ux

uy uz

ϕx

ϕy

ϕz

Soil surface

Foundation

Centroid

B

L

Figure 3.1: Rigid foundation resting on the surface of the soil

The disposition of the problem is shown in Figure 3.1. Symbols B and L denote the

dimensions of the foundation in x and y direction, respectively. Since the foundation

is surface, massless and rigid, it could be considered as the area of the surface of
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the soil that acts as a rigid body. It has six degrees of freedom: three translations,

ūrx, ūry and ūrz, and three rotations of the centroid, ϕ̄rx, ϕ̄ry and ϕ̄rz, 3.1.

The foundation is rectangular, therefore the problem is formulated in the Cartesian,

three dimensional coordinate system. The procedure of obtaining the flexibility

matrix of the surface of the soil is based on the fundamental solution of the halfspace

using ITM. The steps of the procedure are the following:

• Apply unit force P̄ = 1 kN in the direction of degree of freedom j.

• Obtain the displacement field of the surface of the soil, ūs (see Section 2.7).

• The corresponding elements of displacement field ūs represent the elements of

column j of the dynamic flexibility matrix, F̄s.

Section 2.7 explains that the calculation of the displacement field of the halfspace in

rectangular coordinates implies the discretization of the soil in xy plane. At every

point of discretization, the displacement field of the surface of the soil ūs is described

with three degrees of freedom

ūᵀs =
{
ūsx ūsy ūsz

}
(3.8)

where ūsx, ūsy and ūsz are translations in x, y and z direction. If the area of the

foundation is divided into n discretization points, the number of degrees of freedom

of the soil surface under the foundation is 3n. Therefore, the size of the dynamic

flexibility matrix of the surface of the soil, F̄s, is 3n× 3n.

Since the displacement field has to be calculated for n different positions of unit forces

in x, y and z direction, the procedure requires the ITM algorithm to be repeated 3n

times. Section 2.7.1.2 shows that the calculation of the displacements of the surface

of the soil excited by a unit force could be time consuming and resource demanding.
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Fortunately, the process of obtaining the dynamic flexibility matrix, F̄s, could be

optimized.

The area of the surface of the soil is generally larger than the area of the foundation.

Instead of moving the unit force from one discretization point to another, the

foundation area is shifted proportionally to the discretization steps in x and y

direction. In other words, the unit force excitation point is used as the frame of

reference. Therefore, the ITM algorithm is performed only three times, once for

every degree of freedom in only one excitation point. Figure 3.2 shows the three load

cases used for the calculation of the dynamic flexibility matrix, F̄s. Additionally,

xy z

P̄x

(a) Unit force in
x direction

xy z

P̄y

(b) Unit force in
y direction

xy z

P̄z

(c) Unit force in
z direction

Figure 3.2: Unit force load cases for the calculation of F̄s

the number of ITM algorithm repetitions can be brought down to two repetitions,

since the displacement field ūs due to P̄y = 1 kN, Figure 3.2b, could be obtained by

performing the 90 degrees rotation of the displacement field ūs due to P̄x = 1 kN,

Figure 3.2a, along the z axis.

Figure 3.3 depicts two steps of the shifting procedure for calculating the soil dis-

placements at the surface of the soil under the foundation due to unit force in z

direction. The displacement field components in z and x direction, ūsz and ūsx, due

to a unit force state P̄z = 1 kN are shown in Figures 3.3a and 3.3b. The first step is

when the first node of the foundation area 1 is the point of excitation, Figures 3.3c

and 3.3d. The displacements in x, y and z direction, inside the foundation area, due
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to Pz = 1 kN, represent (j, 3) elements of F̄s, F̄ j,3
s . The last shifting step is when the

last node of the foundation area n is the point of excitation, Figures 3.3e and 3.3f.

The displacements in x, y and z directions inside the foundation area represent (j, 3n)

elements of dynamic stiffness matrix F̄s, F̄ j,3n
s . If m is an excitation point loaded

with unit force Pz, the displacements in x, y and z direction, inside the foundation

area, represent (j, 3m) elements of F̄s, As mentioned before, number j takes values

from 1 to 3n. To calculate all elements of dynamic stiffness matrix F̄s the analogous

procedure should be performed for the case of a unit force P̄x = 1 kN and P̄y = 1 kN.

In calculating the elements of the dynamic flexibility matrix certain numerical prob-

lems arise. The usage of a distributed load instead of a unit force (see Section 2.7.1.2)

combined with a small step in numerical analysis leads to an ill-conditioning of the

dynamic stiffness matrix F̄s making its inversion non accurate. The excitation load

distributed over a small area occupies several discretization nodes. The shifting of

the load by one discretization node is not big enough to make a significant change

of the displacement field ūs under the foundation area. Since each column of ma-

trix F̄s is obtained using the shifting procedure, the nearby columns of matrix F̄s

becomes similar enough to cause its ill condition. This is solved by introducing a

new, coarser discretization grid for the purpose of calculating matrix F̄s. Figure 3.4

shows the displacement fields ūsz in x0z plane of two adjacent shifting steps, before

and after introducing a new discretization grid. Figure 3.5 shows the overlay of the

areas occupied by the unit load in all shifting steps before and after introducing a

new discretization grid. Furthermore, instead of a single point value at the node

location, the elements of the flexibility matrix are calculated as a mean value of the

displacement ūs over the chosen area A

F̄ i,j
s =

∫
A
ūs(x, y)dA∫
A
dA

(3.9)
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Figure 3.3: The procedure of populating the flexibility matrix of the soil by shifting
the area of the foundation
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Figure 3.4: The displacement fields ūsz in x0z plane of two adjacent shifting steps
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Figure 3.5: Overlay of the areas occupied by the unit load in all shifting steps
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The dynamic stiffness matrix of the soil K̄s is obtained by inverting the flexibility

matrix F̄s:

K̄s = F̄−1
s (3.10)

It establishes the connection between the displacements and the forces that cor-

responds to 3n degrees of freedom of the soil surface under the foundation. This

matrix is used for obtaining the dynamic stiffness matrix of the rigid foundation, K̄r.

Matrix K̄r establishes the connection between the displacements and the forces that

corresponds to six degrees of freedom of the rigid foundation, shown in Figure 3.6.
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Figure 3.6: Displacements and forces of the rigid foundation

According to Figure 3.6 the displacement vector, ūr, and the force vector of centroid

of the rigid foundation, P̄ r, are defined as

ūᵀ
r =

{
ūx ūy ūz ϕ̄x ϕ̄y ϕ̄z

}
(3.11)

P̄
ᵀ
r =

{
P̄x P̄y P̄z M̄x M̄y M̄z

}
(3.12)

The relation between matrices K̄s and K̄r is obtained using the energy principle

that equates the deformation energy of the foundation area of the soil and the rigid

foundation in the following form

P̄
ᵀ
sūs = P̄

ᵀ
rūr (3.13)

48



3. Dyn. Stiffness and Flexibility of Surface Foundations 3.2. Rigid Foundation

The vectors of the nodal displacements of the soil ūs and the foundation ūr are

related with kinematic matrix a:

ūs = aūr (3.14)

where

aᵀ = {a1 a2 · · · ai · · · an×n} (3.15)

The submatrices ai are obtained by the kinematic consideration

ai =


1 0 0 0 0 −yi

0 1 0 0 0 xi

0 0 1 yi −xi 0

 (3.16)

where xi and yi are coordinates of the node Ai and O is the centroid of the foundation,

as shown in Figure 3.7. The size of matrix a is (3n, 6). The relation between the

x

y

z

O

Ai
xi

yi

θ

Figure 3.7: Kinematic transformation

nodal displacements and the corresponding force vectors for the flexible and rigid

foundation is given by equations

P̄ s = K̄s · ūs (3.17)
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P̄ r = K̄r · ūr (3.18)

Taking into account equations (3.13) and (3.14) the dynamic stiffness matrix of the

rigid foundation, K̄r, can be obtained as

K̄r = aᵀK̄sa (3.19)

Regarding previously adopted assumptions, the sizes of the matrices K̄s and K̄r are

(3n, 3n) and (6, 6), respectively. The stiffness matrix of the rigid foundation, K̄r,

has a form of a diagonal matrix with non-diagonal elements regarding additional

rotational stiffnesses, K̄mx and K̄my, to the horizontal translational stiffnesses, K̄xx

and K̄yy, and vice versa.

K̄r =



K̄xx 0 0 0 K̄x,my 0

0 K̄yy 0 K̄y,mx 0 0

0 0 K̄zz 0 0 0

0 K̄mx,y 0 K̄mx 0 0

K̄my,x 0 0 0 K̄my 0

0 0 0 0 0 K̄mz



(3.20)

Analogous, the flexibility matrix of the rigid foundation is the following

F̄r =



F̄xx 0 0 0 F̄x,my 0

0 F̄yy 0 F̄y,mx 0 0

0 0 F̄zz 0 0 0

0 F̄mx,y 0 F̄mx 0 0

F̄my,x 0 0 0 F̄my 0

0 0 0 0 0 F̄mz



(3.21)

50



3. Dyn. Stiffness and Flexibility of Surface Foundations 3.2. Rigid Foundation

3.2.1 Numerical example: Square foundation on a homogeneous

halfspace

This example analyses a square rigid surface massless foundation resting on a

homogeneous halfspace, Figure 3.8. The results are compared with the results

obtained by Wong [60]. The assumed Poisson’s coefficient of the soil is ν = 1/3. The

damping coefficient of the soil is ξ = 2 %. The problem is axisymmetrical which

means that dynamic stiffnesses in x and y directions are equal, i.e. Kxx = Kyy and

Kmx = Kmy.

ν = 1/3
ξ = 2%

B

B

x
y
z

Figure 3.8: Square foundation resting on a homogeneous halfspace

Figures 3.9-3.10 show the real and imaginary part of the vertical, horizontal and

rocking compliance functions of the square rigid foundation resting on a homogeneous

halfspace obtained using the proposed method together with the results from the

literature, Wong [60]. The discrepancies between the results are negligible, except for

the real part of the rocking compliance. That might be due to the fact that Wong did

not introduce damping in his model, while the proposed method requires damping in

order to avoid aliasing phenomena. Since the adopted damping coefficient is ξ = 2 %,

the proposed method gives the lower amplitudes of the compliance functions in

general.
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Figure 3.9: Vertical compliance of a square foundation on a homogeneous halfspace
in comparison with Wong [60]
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Figure 3.10: Horizontal compliance of a square foundation on a homogeneous
halfspace in comparison with Wong [60]
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Figure 3.11: Rocking compliance of a square foundation on a homogeneous halfspace
in comparison with Wong [60]
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3.2.2 Group of rigid foundations

The problem of obtaining the dynamic stiffness matrix of the group of foundations is

analogous to the problem that involves a single foundation. The disposition of the

problem that involves a group of two foundations is shown in Figure 3.12.

x

y z

ux1

uy1 uz1

ϕx1

ϕy1

ϕz1

ux2

uy2 uz2

ϕx2

ϕy2

ϕz2

Soil surface

Foundation 1

Foundation 2

Foundations area

Figure 3.12: A group of two rigid foundations resting on the surface of the soil

Once again, the solution of the problem is based on the fundamental solution of the

soil by ITM and the kinematic transformation [63]. The steps of the procedure are

following:

• Calculate the dynamic flexibility matrix of the soil area covered by the founda-

tions, F̄s, using ITM.

• Obtain the dynamic stiffness matrix K̄s by inverting dynamic flexibility matrix

F̄s.

• Calculate the dynamic stiffness matrix of the system of foundations using the

kinematic transform.

Let M be the number of the foundation and 3n the number of degrees of freedom of

the soil surface occupied by the foundation area of each foundation. Matrix F̄s is

obtained using the shifting method (see Section 3.2, Figure 3.3). In this case, the

foundations area is the union of the foundation areas of all foundations, Figure 3.12.

The size of K̄s is (M × 3n,M × 3n). The dynamic stiffness matrix of the group of
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rigid foundations is calculated using the same kinematic principle as in Section 3.2

K̄r = AᵀK̄sA (3.22)

where A is a diagonal block matrix

A =



a1 0 · · · 0

0 a2 · · · 0
... ... . . . 0

0 0 0 aM


(3.23)

that consists of the kinematic matrices ai four each foundation i. Matrices ai are

defined in equations (3.15) and (3.16). The size of the matrix A is (M × 3n,M × 6).

Regarding equation (3.22), the size of the stiffness matrix of the system of rigid

foundations is (M × 6,M × 6).

3.2.3 Numerical example: Group of foundations on a layer over

bedrock

This example presents the analysis of two square B ×B foundations resting on the

layer of depth H over the bedrock, Figure 3.13. The distance between the centroids

of the foundations is denoted with X. The soil damping coefficient is ξ = 5 %, the

Poisson’s coefficient ν = 1/3.

The compliances are calculated for various layer depths, H = B, 2B, 4B, ∞. The

results are given in terms of absolute values of the compliance functions. The

compliances in the vertical direction are presented against the results obtained

by Karabalis and Mohammadi (K&M) [19], Figure 3.14. Figures 3.15-3.18 shows

horizontal and rocking compliance functions obtained using the proposed method.
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H
ν = 1/3
ξ = 5%

1

B

B 2

B

B

X

x
y
z

Figure 3.13: FSFI - layer over bedrock

The notation of the compliance functions of the system of the foundations is a bit

different than the notation of the compliance function of the single foundation. F ij
kl

represents the compliance function of foundation i in direction k due to the force

acting on foundation j in direction l. The presented compliances are calculated for

the case of the load acting on the foundation 1.

The effect of the natural frequency of the layer on the compliance functions of

the foundations is manifested through the resonant peaks which occurre at non

dimensional frequencies a0n = (πB(1 + 2n))/(2H) [52]. In the comparison with

K&M, the proposed method gives significantly higher amplification of the compliance

function at the first resonant frequency (n = 0) of the layer, but lower at the

other resonant frequencies. The resonant peaks of the layer are more pronounced

in the case of horizontal compliances Fxx and Fyy shown in Figures 3.15 and 3.16

respectively. The amplitudes of the adjacent foundation are more pronounced when

the force is acting in x direction, Figure 3.15 (e)-(h), than in y direction, Figure 3.16

(e)-(h). This behavior is expected, since the foundations are placed along the x axis.

The rocking movement of the loaded foundation around x axis, Figure 3.17 (a)-(d),

excites the adjacent foundation to rock around x axis significantly, Figure 3.17 (e)-(h).

The rocking of the adjacent foundation along y axis, Figure 3.18 (e)-(h), when the
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foundation 1 is subjected to a rocking movement along y axis, Figure 3.18 (a)-(d),

is almost neglectable. In contrast with the vertical and horizontal compliances, the

rocking compliances became independent of the layer depth, for H ≥ 4B. In general,

the influence of the loaded foundation on the adjacent one is more pronounced than

the influence of the adjacent foundation on the loaded one.

The influence of the distance between the foundations on the compliance func-

tions is shown in Figures 3.19-3.23. The compliance functions are calculated for

X/B = 1.2, 2.0 and 4.0 and for H = B and ∞. The influence of the loaded foun-

dation on the adjacent ones decays with the increase of the distance between the

foundations. The decay factor is the lowest for horizontal compliances Fxx and Fyy

and rocking compliance Frx,rx. If close enough, the adjacent foundation could reduce

the amplification of the compliance of the loaded foundation around the first resonant

frequency of the soil. This is more pronounced in the case of horizontal compliances,

Figures 3.20(a,c) and 3.21(a,c), and rocking compliances, Figures 3.22(a,c) and

3.23(a,c), than in the case of vertical compliance, Figure 3.19(a,c).
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Figure 3.14: Vertical compliance Fzz of the foundations
for varying depths of the layer 57
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Figure 3.15: Horizontal compliance Fxx of the foundations
for varying depths of the layer
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Figure 3.16: Horizontal compliance Fyy of the foundations
for varying depths of the layer
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Figure 3.17: Rocking compliance Frx,rx of the foundations
for varying depths of the layer
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Figure 3.18: Rocking compliance Fry,ry of the foundations
for varying depths of the layer
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Figure 3.19: Vertical compliance Fzz of the foundations
for varying X/B ratio and layer depth H
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Figure 3.20: Horizontal compliance Fxx of the foundations
for varying X/B ratio and layer depth H
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Figure 3.21: Horizontal compliance Fyy of the foundations
for varying X/B ratio and layer depth H
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Figure 3.22: Rocking compliance Frx,rx of the foundations
for varying X/B ratio and layer depth H
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Figure 3.23: Rocking compliance Fry,ry of the foundations
for varying X/B ratio and layer depth H

66



3. Dyn. Stiffness and Flexibility of Surface Foundations 3.3. Flexible Foundation

3.3 Flexible Foundation

The process of determining the compliances of flexible foundation is more complex

than in the case of rigid ones, since the flexibility of the foundation must be taken

into account and the foundation should be treated as a plate of limited rigidity. The

analysis of the response of such a plate resting on the soil is convenient for the usage

of substructuring method, considering the different nature of the substructures, the

plate and the soil. Each substructure is modeled separately, using different methods

suitable for obtaining the solution of the differential equation of the substructure.

The coupling of the system of differential equations is challenging. The most common

approach of solving this problem in the literature considers BEM-FEM coupling,

where the soil is modeled using BEM and the foundation is modeled using FEM,

[22, 21, 20, 19]. This coupling is well developed and widely used, but it is based on a

weak formulation, and it inherits all the deficiencies of FEM in the field of dynamic

analysis. The literature offers an analytical solution of the response of the flexible

foundation on the halfspace [16], but it is limited to problems described in polar

coordinates only.

This chapter presents the main contribution of the dissertation: formulation of

a semi-analytical approach for the solution of the rectangular flexible foundation

resting on the homogeneous halfspace. The approach is formulated in the Cartesian

coordinate system. It is based on ITM used for obtaining the fundamental solution

of the soil and SEM used for obtaining the fundamental solution of the foundation.

The differential equation of the system is solved by using the modal approach [16].

The connection between the foundation model and the soil model is established using

the modal impedance matrix of the soil.

Based on the presented formulation, a computer code for calculating the response of

a strip and rectangular foundations on halfspace has been developed using MAT-
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LAB [53]. The results obtained using the proposed approach are verified against the

results obtained using SASSI [10], a commercial software package for SSI analysis

based on FEM, and the results from the literature. The proposed method deals

with vertical vibrations only, although its formulation could be generalized to all

directions, which will be the subject of further research. The coupling assumes

relaxed boundary conditions [64]: the coupling of shear stresses along the interface

zone is neglected.

3.3.1 Flexible strip foundation

L

x
z

y

Foundation

Soil

p(x)

Figure 3.24: Flexible y-wise infinite strip foundation resting on a homogeneous
halfspace

The following formulation describes a flexible y-wise infinite strip foundation resting

on a homogeneous and isotropic halfspace. The problem is formulated in the Cartesian

coordinate xyz system. The load, the geometry of the foundation and the boundary

conditions are not y dependent. The cross section of the foundation lays in the

xz plane, as shown in Figure 3.25. The foundation behaves as an Euler-Bernoulli
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beam of length L and height H in xz direction. Accordingly, the formulation of the

problem considers a plane strain analysis.

The steady state response analysis of the beam is performed in the frequency domain,

(x, y, z, ω). The response of the soil medium is obtained in the wavenumber-frequency

domain (kx, ky, z, ω) using ITM. It is considered that all functions are ω dependent,

therefore, the ω variable is omitted in the notation of the functions. For example,

f(x, ω) is f(x).

x

z
L

p(x)

L

p(x)

q(x)

Bx

Figure 3.25: Flexible y-wise infinite strip foundation resting on a homogeneous
halfspace

The differential equation of the problem of the strip foundation resting on the surface

of the soil in (x, ω) domain is given by

EfIf
d4w(x)
dx4 − ω2mfw(x) = p(x)− q(x) (3.24)

where Ef , If and mf are the Young’s modulus, the moment of inertia and the mass

per unit area of the foundation, respectively. w(x), p(x) and q(x) are the transverse

deflection of the foundation, the vertical load and the soil reaction, respectively.
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They can be expanded in a series of free vibration modes as follows:

w(x) =
N∑
n=0

Ynφn(x)

p(x) =
N∑
n=0

Pnφn(x)

q(x) =
N∑
n=0

Qnφn(x)

(3.25)

where φn(x) represents the orthonormalized mode shape of the foundation for the

nth mode and Yn, Pn and Qn are modal coefficients.

Yn =
∫ L

0
w(x)φn(x) dx

Pn =
∫ L

0
p(x)φn(x) dx

Qn =
∫ L

0
q(x)φn(x) dx

(3.26)

The mode shapes of the foundation are obtained by analyzing free vibrations of a

free-free beam element. The differential equation of motion of the beam element is

given by

EfIf
d4w(x)
dx4 − ω2mfw(x) = 0 (3.27)

The exact solution of the equation (3.27) leads to [48]

w(x) = C1 sin(kx) + C2 cos(kx) + C3 sinh(kx) + C4 cosh(kx) (3.28)

where k is a pure bending wavenumber of a beam element

k =
√
ω

(
mf

EfIf

)1/4

(3.29)
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The boundary conditions of a free-free beam are following

d2w

dx2 (0) = 0, d3w

dx3 (0) = 0, d2w

dx2 (L) = 0, d3w

dx3 (L) = 0 (3.30)

Substituting (3.28) into (3.30) gives



0 −1 0 1

−1 0 1 0

− sin(kL) − cos(kL) sinh(kL) cosh(kL)

− cos(kL) sin(kL) cosh(kL) sinh(kL)





C1

C2

C3

C4


=



0

0

0

0


(3.31)

The system of equations (3.31) could be transformed to

sinh(kL)− sin(kL) cosh(kL)− cos(kL)

cosh(kL)− cos(kL) sin(kL) + sinh(kL)



C1

C2

 =


0

0

 (3.32)

A non trivial solution of the system of equations (3.32) gives

cosh(kL) cos(kL) = 1 (3.33)

The transcendental equation (3.33) has infinite solutions kn, n = 0, 1, 2, . . .∞ and it

is solved numerically. Every solution kn gives one mode shape

φ∗n(x) = (sinh(knx) + sin(knx)) + sin(knL)− sinh(knL)
cosh(knL)− cos(knL)(cosh(knx) + cos(knx))

(3.34)

The mode shapes φ∗n are orthonormalized as follows

φn = φ∗n∫ L
0 |φ∗n|

2 dx
so that

∫ L

0
φn(x)φm(x) dx =


1, m = n

0, m 6= n

(3.35)
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Figure 3.26 shows the first three mode shapes of a free-free beam. The first mode is

a translational mode (k1 = 0).
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Figure 3.26: Free vibrations mode shapes of a strip foundation for n = 1, 2, 3

Substituting (3.25) into (3.24) gives

N∑
n=0

(EfIfk4
n −mfω

2)φn(x)Yn =
N∑
n=0

φn(x)Pn −
N∑
n=0

φn(x)Qn (3.36)

Since modes φn(x) are orthonormal, equation (3.36) can be decoupled into N equa-

tions by multiplying with mode shape φm(x) and integrating over the length of the

beam, L. That gives the system of N equations:

(EfIfk4
m −mfω

2)Ym = Pm −Qm, m = 0, 1, 2, . . . N (3.37)

Equation (3.37) can be expressed in matrix form as follows

(
EfIf

[
k4
]
−mfω

2 [I] {Y}
)

= {P} − {Q} (3.38)
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where {Y}, {P} and {Q} are coefficient vectors of modal displacement, load and soil

reaction, respectively, [I] is identity matrix and
[
k4
]
is the pure bending wavenumber

matrix of the beam

[
k4
]

=



0 0 · · · 0

0 k4
1

...
... . . . 0

0 · · · 0 k4
N


(3.39)

Relation between displacements and soil reaction coefficient vectors can be defined

as follows

[Ks]{Y} = {Q} (3.40)

where [Ks] is the modal impedance matrix of the soil.Substituting (3.40) into (3.38)

the equation of motion becomes

{
EfIf

[
k4
]
−mfω

2 [I] + [KS]
}
{Y} = {P} (3.41)

The element of the modal impedance matrix Ks,ij can be defined as the required

modal load in the ith modal component that produces a unit soil displacement profile

within the jth mode shape. It is not possible to solve this problem directly by using

the ITM. However, it is possible to obtain the modal impedance matrix as an inverse

modal compliance matrix [Fs]. The element of the modal compliance matrix Fs,ij is

the soil displacement in the ith modal component induced by a unit modal load of

the jth shape. The steps for obtaining the modal soil compliance are the following:

1. Applying a unit modal load of the nth mode on the soil, qn(x), that leads

Qn = 1

2. Transforming the modal load into wavenumber domain q̃n(kx)
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3. Solving the soil displacement field in wavenumber domain w̃n(kx) with the help

of ITM, where the accuracy of the results depends on the discretization in the

kx domain

4. Transforming the soil displacement field into the spatial domain wn(x)

5. Obtaining elements of the modal soil compliance matrix Fs,mn as follows

Fs,mn =
∫ L

0
wn(x)φm(x)dx (3.42)

Once the modal compliance matrix of the soil is formed, the displacement coeffi-

cient vector {Y } is obtained by solving the system of equations (3.41) and finally

the displacement field w(x) is obtained by using equation (3.25). To obtain the

displacement field spectrum, one should repeat the procedure for every frequency in

a desired frequency range.

3.3.1.1 Numerical examples

The solution procedure for the proposed method is coded in MATLAB [53]. The

results are compared with the numerical solution obtained by using a commercial

software package for SSI analysis based on FEM, SASSI2000 [10].

In order to verify the proposed method, two limit states are considered: (1) the soft,

Ef = 0 and (2) the rigid strip foundation, Ef = 3e15 N/m2. The properties of the

elastic halfspace are: elastic modulus Es = 5e8 N/m2, damping coefficient ξ = 0.05,

Poisson’s coefficient ν = 0.3 and density ρ = 2000 kg/m3. The properties of the strip

foundation are: width L = 1 m, thickness H = 0.1 m, damping coefficient ξ = 0.05,

Poisson’s coefficient ν = 0.3 and density ρ = 2000 kg/m3. The foundation is loaded

with the uniformly distributed load acting in z direction q(x) = 10 N/m2, as shown
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in Figure 3.25. The results of the steady state plane strain analysis are given for the

radial frequency ω = 50 rad/s. The number of modes used for the analysis is three.

Figures 3.27 and 3.28 shows the real and the imaginary part of the displacement

field of the surface of the soil medium for soft and rigid foundation, respectively. In

SASSI2000 the soil medium model uses the FEM and the substructure subtraction

method, solving the system of more than 1000 equations for the particular problem.

The halfspace is simulated using the thin layer method with the variable depth

method and the viscous boundary at the base [10]. Discrepancies in the results

exist in both cases. ITM gives higher amplitudes of the displacement at the point

of excitation, especially for higher values of Ef . Even though both approaches are

using the same damping model, its impact is higher in the proposed method. It is

manifested through the lower values of the real part of the displacement field, and

the higher values of the imaginary part of the displacement field with the increase of

the distance from the point of excitation.
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Figure 3.27: Displacement field of the surface of the soil medium, Ef = 0
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Figure 3.28: Displacement field of the surface of the soil medium,
Ef = 3× 1015 kN/m2
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3.3.2 Flexible square foundation

B

L By

By

x
zy

Foundation

Soil

p(x, y)

p(x, y)

q(x, y)

q(x, y)

Figure 3.29: Flexible square foundation resting on halfspace

The procedure of obtaining the solution of the square flexible foundation resting on

the halfspace is similar to the 2D analysis but more complex since the differential

equation of the rectangular foundation is a partial differential equation.

The differential equation of the problem is solved by using the modal superposition

method [16] after obtaining mode shape functions of a completely free spectral

plate element [48]. The foundation is considered a Kirchhoff plate. The analysis is

performed as a steady state analysis. This chapter deals with vertical vibrations

of the foundation excited by an axisymmetrical loading function. The possibilities

of extending the formulation to problems of horizontal vibrations and arbitrary

functions of excitation is a subject of future research.

3.3.2.1 Mode shapes of the foundation

Mode shape functions of the foundations are obtained by analyzing free vibrations

of a completely free plate using SEM. First, the general solution of the differential
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Figure 3.30: Spectral plate element

equation of the problem is generated. That leads to the development of the dynamic

stiffness matrix of the plate. The natural frequencies of the plate are obtained using

the dynamic stiffness matrix and respecting the boundary conditions of the plate.

For every natural frequency, one mode shape is generated.

The differential equation of free vibrations of the plate is the following

D

(
∂4w(x, y)
∂x4 + 2 ∂

4w(x, y)
∂x2∂y2 + ∂4w(x, y)

∂y4

)
− ρhω2w(x, y) = 0 (3.43)

where D denotes the bending stiffness, w(x, y) is the displacement field, ρ is the

material density and h is the thickness of the plate. The bending stiffness of the

Kirchhoff plate is defined as

D = Eh3

12(1− ν2) (3.44)

where E is Young’s modulus and ν is Poisson’s coefficient of the plate.

The general solution of the differential equation is of the form

w(x, y) = ekxxekyy (3.45)

where kx and ky are wavenumbers. Substituting (3.45) into (3.43) gives the charac-

teristic equation of the differential equation

k2
x + k2

y = ±ω
√
ρh

D
(3.46)
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Kulla [43] concluded that it is possible to generate an infinite series of base solution

in (k2
x, k

2
y) plane. The solutions are generated by introducing k2

x and k2
y series

k2
xm = −

(
iπ

a

)2

, m = 0, 1, 2, . . . (3.47)

k2
ym = −

(
iπ

b

)2

, m = 0, 1, 2, . . . (3.48)

where a and b are half-length and half-width of the plate, respectively, Figure 3.30.

The square root of (3.47) and (3.48) gives

kxm = ±i
(
iπ

a

)
(3.49)

kym = ±i
(
iπ

b

)
(3.50)

where i =
√
−1. Inserting (3.49) and (3.50) into (3.45) leads to a conclusion that

every term k2
xm represents a pair of functions in x direction, one symmetric and one

antisymmetric [43]. Analogous conclusion is made for every k2
ym term concerning y

direction. Therefore, every (k2
xm, k

2
ym) pair represents four solutions of the differential

equation (3.43). Every solution represents one of the following four symmetry cases:

• symmetric - symmetric (SS),

• antisymmetric - antisymmetric (AA),

• symmetric - antisymmetric (SA) and

• antisymmetric - symmetric (AS).

The deflection of the plate can be written as a superposition of the four symmetry

cases:

w(x, y) = wSS(x, y) + wAA(x, y) + wSA(x, y) + wAS(x, y) (3.51)

The letters in the subscript of the displacement field w in (3.51) denote the type of

symmetry along y and x axis, respectively.
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The detailed algorithm of derivation of the displacement field w(x, y) is presented by

Nefovska-Danilović [48]. This section analyses only double symmetry contribution,

SS, since the loading function is axisymmetrical. The displacement field of the plate

for the double symmetry case is given by

wSS(x, y) =
M∑
m=0

1WSS,m(y) cos mπx
a

+
M∑
m=0

2WSS,m(x) cos mπy
b

(3.52)

where 1WSS,m(y) and 2WSS,m(x) are even functions obtained by substituting Eq. (3.52)

into Eq. (3.43) omitting the odd contributions of the solution

1WSS,m(y) = Cm cosh β1my +Dm cos β2my (3.53)

2WSS,m(x) = Am coshα1mx+Bm cosα2mx (3.54)

Coefficients Am, Bm, Cm and Dm represents integration constants, while βim and αim

are

β2
1m = ω

√
ρh

D
+ k2

xm, β2
2m = ω

√
ρh

D
− k2

xm, kxm = mπ

a
(3.55)

α2
1m = ω

√
ρh

D
+ k2

ym, α2
2m = ω

√
ρh

D
− k2

ym, kym = mπ

b
(3.56)

Substituting Eqs (3.53) and (3.54) into Eq (3.52) gives

wSS(x, y) =
M∑
m=0

(
Amf1m(x, y) +Bmf2m(x, y)

)
+

M∑
m=0

(
Cmf3m(x, y) +Dmf4m(x, y)

)
(3.57)
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where

f1m(x, y) = cosh (α1mx) cos
(
mπy

b

)
(3.58)

f2m(x, y) = cos (α2mx) cos
(
mπy

b

)
(3.59)

f3m(x, y) = cosh (β1my) cos
(
mπx

a

)
(3.60)

f4m(x, y) = cos (α2my) cos
(
mπx

a

)
(3.61)

Equation (3.52) could be written in matrix form as

u(x, y) = Φ(x, y) C (3.62)

where u(x, y) is a vector of the displacement field of the plate, Φ(x, y) is matrix of

functions fm(x, y) and C is the vector of integration constants [48]. According to

the Kirchhoff’s plate theory, the force vector f(x, y) is a function of derivatives of

the displacement field u(x, y) and can be expressed as

f(x, y) = G(x, y) C (3.63)

where G(x, y) is a matrix of the derivatives of the components of matrix Φ(x, y) [48].

Let s be a spatial coordinate and B(s) a function that defines the boundary of a

plate. In the case of the rectangular plate shown in Figure 3.30, B(s) is defined as

following:

B(s) =


y|y ∈ [−b, b] for x = a and x = −a

x|x ∈ [−a, a] for y = b and y = −b
(3.64)

The dynamic stiffness matrix of the plate is derived as a relation between the

displacements along the boundary q(s) and the forces along the boundary Q(s).
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The relations between boundary displacement q(s) force vectors Q(s) and vector of

integration constants C are derived in the following form:

q(s) = Φb(s) C (3.65)

Q(s) = Gb(s) C (3.66)

Matrices Φb(s) and Gb(s) could not be found directly since q(s) and Q(s) are

continuous functions of the spatial coordinate s. This problem is solved by using

the Projection method [65]. Elements qn(s) and Qn(s) of vectors q(s) and Q(s) are

projected on the boundary using a set of projection functions h(s) [48]

qn(s) =
M∑
m=1

 ∫
B(s)

qn(s)hm(s)ds

hm(s), n = 1, 2, . . . N (3.67)

Qn(s) =
M∑
m=1

 ∫
B(s)

Qn(s)hm(s)ds

hm(s), n = 1, 2, . . . N (3.68)

If h(s) are trigonometric functions, the projection is equivalent to the Fourier series.

The projections are collected into two (1×NM) vectors

¯̄q =

 ∫
B(s)

qn(s)hm(s)ds

 , n = 1, 2, . . . N, m = 1, 2, . . .M (3.69)

¯̄Q =

 ∫
B(s)

Qn(s)hm(s)ds

 , n = 1, 2, . . . N, m = 1, 2, . . .M (3.70)

The elements of vectors ¯̄q and ¯̄Q represent the coefficients of the Fourier series of

q(s) and Q(s). Using (3.69), (3.70), (3.65) and (3.66) one can obtain the relation

between the projections ¯̄q and ¯̄Q and the integration constants C. The relation
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matrices are denoted with ¯̄D and ¯̄F

¯̄q = ¯̄DC (3.71)

¯̄Q = ¯̄FC (3.72)

The relation between ¯̄q and ¯̄Q is derived from Eq. (3.71) and Eq. (3.72), eliminating

C
¯̄Q = ¯̄F ¯̄D−1¯̄q = KD¯̄q (3.73)

where KD is the dynamic stiffness matrix of the plate

KD = ¯̄F ¯̄D−1 (3.74)

A detailed analysis of obtaining matrix KD is given in the literature [48].

Natural frequencies of the plate are calculated using the condition that

det KD = 0 (3.75)

Equation (3.75) cannot be solved analytically. It is solved using Wittrick-Williams

algorithm [46]. The algorithm counts the number of natural frequencies from zero

frequency up to the chosen one. If the increase of the chosen frequency by a small

amount increases the number of natural frequencies by one, the chosen frequency is

declared as the natural frequency.

For every natural frequency a family of displacement fields can be obtained. By

proclaiming one of the displacement along the boundary a unit displacement, the

family of displacement fields is reduced to a single displacement field - mode shape.

This can lead to error, the displacement that should be zero is adopted for unit
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displacement. This problem can be overcome using Wittrick-Williams algorithm.

The detailed explanation of the solution could be find in the literature [46].

3.3.2.2 Dynamic stiffness matrix of the system

If we assume that the foundation is Kirchhoff plate, the differential equation of the

steady state problem (ω is omitted) is the following

D

(
∂4w(x, y)
∂x4 + 2 ∂

4w(x, y)
∂x2∂y2 + ∂4w(x, y)

∂y4

)
− ρhω2w(x, y) = p(x, y)− q(x, y) (3.76)

where p(x, y) is the active and q(x, y) is the reactive plate load function.

Analogous to the 2D problem, we assume that the displacement field, the active load

and the reactive load can be expanded in a series of free vibration modes as follows

w(x, y) =
N∑
n=0

Ynφn(x, y)

p(x, y) =
N∑
n=0

Pnφn(x, y)

q(x, y) =
N∑
n=0

Qnφn(x, y)

(3.77)

where φn(x, y) represents the orthonormalized mode shape of the foundation for the

nth mode and Yn, Pn and Qn are modal coefficients

Yn =
∫ B

x=0

∫ L

y=0
w(x, y)φn(x, y) dxdy

Pn =
∫ B

x=0

∫ L

y=0
p(x, y)φn(x, y) dxdy

Qn =
∫ B

x=0

∫ L

y=0
q(x, y)φn(x, y) dxdy

(3.78)
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The mode shapes ϕ∗n are orthonormalized as follows

φn = φ∗n∫ B
x=0

∫ L
y=0 |φ∗n|

2 dx
so that

∫ B

x=0

∫ L

y=0
φn(x, y)φm(x, y) dx =


1, m = n

0, m 6= n

(3.79)

Substituting (3.77) into (3.76) gives

N∑
n=0

(D(k4
x+2k2

xky2+k4
y)−ρhω2)φn(x, y)Yn =

N∑
n=0

φn(x, y)Pn−
N∑
n=0

φn(x, y)Qn (3.80)

Multiplying Eq. (3.80) with each of N mode shapes and integrating over the domain

x ∈ [0, B] and y ∈ [0, L], the system of N algebraic equations is obtained. The

system could be written in matrix form as follows

D
[
k4
]
− ρhω2 [I] {Y} = {P} − {Q} (3.81)

where {Y}, {P} and {Q} are coefficient vectors of modal displacement, load and soil

reaction, respectively, [I] is identity matrix and
[
k4
]
is the pure bending wavemode

wavenumber matrix of the plate

[
k4
]

=



0 0 · · · 0

0 ρhω2
f1

...
... . . . 0

0 · · · 0 ρhω2
fN


(3.82)

In Eq. (3.82) ωf1, ωf2, . . . , ωfN are natural frequencies of the foundation.

Relation between displacements and soil reaction coefficient vectors can be defined

as follows

[Ks]{Y} = {Q} (3.83)
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where [Ks] is the modal impedance matrix of the soil.

Using Eq. (3.83), Eq. (3.81) could be written as

{
D
[
k4
]
−mfω

2 [I] + [KS]
}
{Y} = {P} (3.84)

The modal impedance matrix of the soil [KS] is obtained as inverse matrix of the

modal compliance matrix of the soil [FS]. The steps for obtaining the modal soil

compliance matrix elements are the following:

1. Applying a unit modal load of the nth mode on the soil, qn(x, y), that leads

Qn = 1

2. Transforming the modal load into wavenumber domain q̃n(kx, ky) using two-

dimensional FT.

3. Solving the soil displacement field in wavenumber domain w̃n(kx, ky) with the

help of ITM, where the accuracy of the results depends on the discretization

in the (kx, ky) domain

4. Transforming the soil displacement field into the spatial domain wn(x, y)

5. Obtaining elements of the modal soil compliance matrix Fs,mn as follows

Fs,mn =
∫ B

x=0

∫ L

y=0
wn(x, y)φm(x, y)dxdy (3.85)

Computer program based on this formulation are developed in MATLAB [53]. The

code is consisted of subroutines for

• obtaining the solution of the halfspace using ITM,

• obtaining the natural frequencies and the mode shapes of the foundation using

SEM and
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• obtaining the solution of the coupled system soil-foundation using the proposed

modal superposition method.

The results of the analysis will be presented in terms of compliance, in order to verify

the response of the system with the results from the literature.

3.3.3 Numerical examples

B

L By

Bx

x
z

y
Foundation

Soil

p(x, y)

Figure 3.31: Square massless surface foundation excited by a uniformly distributed
load

This section presents vertical displacements and contact stresses of a square massless

surface foundation excited by a uniformly distributed load, presented in Figure 3.31.

The numerical model considers the foundation of size B×L = 2 m× 2 m and the soil

of size Bx × By = 40 m× 40 m. The domain is discretized using the discretization

units dx = 0.1 m and dy = 0.1 m. The damping mechanism is introduced by using a

complex modulus with the damping coefficient ξ = 1 %. The analysis is performed

taking into account eight shape modes of the foundation shown in Figure 3.32. Since

the problem is axisymmetrical, only axisymmetrical mode shapes are used.
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Figure 3.32: Shape modes
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3.3.3.1 Compliance functions

The vertical displacements fields of the foundation obtained using the proposed

method are compared with the results obtained by Whittaker and Christiano

(W&C) [17]. They have modeled the foundation using thin plate finite elements. The

boundary value problem of the subgrade is solved using the Green’s function. They

observed a uniformly loaded plate displacements in three points: center (1), edge

midway (2) and corner (3), Figure 3.33. The results are presented in a dimensionless

x

y

z

center
edge

corner

Figure 3.33: Characteristic points of the flexible square foundation resting on the soil

form, ∆i(a0), where ∆i is the dimensionless vertical displacement at the point i

∆i = wGsB

(1− νs)
∑
Fext

(3.86)

and a0 is the dimensionless frequency

a0 = ωB

cs
(3.87)

In Eq (3.86) w is the displacement, Gs is the shear modulus of the soil, νs is Poisson’s

coefficient of the soil and ∑Fext is the resultant of the external force in z direction.
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The results are obtained for different stiffness ratios K introduced by Whittaker and

Christiano

K = Eh3(1− ν2
s )

12(1− ν2)GsB3 , (3.88)

where E is Young’s modulus of the plate and ν is Poisson’s coefficient of the plate.

Spatial distribution of vertical load over the foundation surface affects the re-

sponses at the observed points. This is analyzed in detail by Riggs and Waas [66],

Spyrakos and Beskos [22] and Chen and Hou [16]. Two different types of load

distribution are considered:

• a uniformly distributed load, p(x, y) = p = 1/(BL) and

• a modified uniformly distributed load, p∗(x, y).

The load types are presented in Figure 3.34. The active load p∗(x, y) differs from

the active load p(x, y) along the edges of the foundation where the amplitude of

p∗(x, y) is p/2 and at the corners of the foundation where the amplitude of p∗(x, y)

is p/4. The idea behind the definition of p∗(x, y) comes from the formulation of the

problem written by Whittaker and Christiano [17], where the subgrade compliances

and impedances are concentrated in discrete points of the domain with the amplitude

calculated considering the associated area of each point. That means that inner

nodes have the largest amplitude p, the edge nodes p/2 and the corner nodes p/4.

Figure 3.35 shows the real and imaginary part of the compliance functions for the

stiffness ratio K = 0 obtained for different types of active load together with the

results from the literature [17]. The results obtained using the active load p∗(x, y)

show better agreement with the results from the literature, especially regarding the

corner point.

Maravas et al. [62] made a comparison with the results obtained by Whittaker and

Christiano [17]. In their paper, the foundation-soil stiffness ratio K is defined by
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Figure 3.34: Active load type cases
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Figure 3.35: Compliance functions for different load types, K = 0
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using the half-width of the foundation, B/2

K∗ = Eh3(1− ν2
s )

12(1− ν2)Gs

(
B
2

)3 . (3.89)

The relation between K and K∗ could be interpreted as following: the stiffness of

the foundation of the SFI model for which K = 0.004 is eight times greater than the

stiffness of the foundation of the SFI model for which K∗ = 0.004.

Using the proposed method, the analysis is performed for K = 0, 0.004, 0.06, 3.3

and for K∗ = 0, 0.004, 0.06, and 3.3 The results of the analyses involving the ratio

K are presented in Figures 3.36-3.39. The results of the analyses involving the ratio

K∗ are presented in Figures 3.40-3.43.

The foundation stiffness has no influence on the results of the analysis in the case

of K = 0 and K∗ = 0. In other words, if K = 0 or K∗ = 0 the results represent

the response of the halfspace surface subjected to the load p∗. For K∗ = 3.3, the

foundation is already acting like a rigid plate. Therefore, the results are the same as

if the foundation is eight times stiffer, K = 3.3. However, by comparing the response

of the soil-foundation system in the case of K = 0.004, 0.06 and K∗ = 0.004, 0.06, it

is noticeable that the results obtained for K∗ corresponds to the W&C results better.

Therefore, the results obtained for K∗ and presented in Figures 3.40-3.43 are used

for the further analysis.

Although the results obtained by the proposed method are in a good agreement with

the results obtained by W&C, there are few differences that should be mentioned.

In the following discussion, the comparisons of the results are expressed in terms

of the compliance amplitudes obtained using the proposed method with regard to

the compliance amplitudes obtained by W&C. In the frequency range 0 < a0 < 4,

for K∗ = 0, the proposed method gives lower amplitudes of the compliance for the

center point of the foundation. For K∗ > 0, the compliance amplitudes of the center
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point of the foundation tend to be higher, as opposed to the compliance amplitudes

of the edge and corner point of the foundation. The differences between the results

increase with the increase of K∗ and a0. In the frequency range a0 > 4, the highest

discrepancies are observed at the corner of the foundation. This is the point of

significant stress concentration that is very difficult to model properly and it should

be analyzed in detail in future research. W&C did not provide the compliance

amplitude of the edge point for K∗ = 0.06. However, it is interesting to notice that

for K∗ = 0.06 the center of the foundation modeled by W&C behaves like the edge

of the foundation modeled using the proposed method.

In general, with an increase of the relative stiffness K∗, the displacements of the

foundation become less spatially dependent.
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Figure 3.36: W&C - ITM-SEM comparison of the displacements of the foundation
at the characteristic points, K = 0
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Figure 3.37: W&C - ITM-SEM comparison of the displacements of the foundation
at the characteristic points, K = 0.004
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Figure 3.38: W&C - ITM-SEM comparison of the displacements of the foundation
at the characteristic points, K = 0.06
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Figure 3.39: W&C - ITM-SEM comparison of the displacements of the foundation
at the characteristic points, K = 3.3
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Figure 3.40: W&C - ITM-SEM comparison of the displacements of the characteristic
points of the foundation, K∗ = 0
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Figure 3.41: W&C - ITM-SEM comparison of the displacements of the foundation
at the characteristic points, K∗ = 0.004
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Figure 3.42: W&C - ITM-SEM comparison of the displacements of the characteristic
points of the foundation, K∗ = 0.06
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Figure 3.43: W&C - ITM-SEM comparison of the displacements of the characteristic
points of the foundation, K∗ = 3.3
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For further verification, the amplitudes of the compliance function calculated by

Whittaker & Christiano [17], and obtained using the proposed method for the

case of K∗ = 3.3, are compared with the amplitudes of the compliance function

of rigid foundation obtained by Wong [60]. Wong obtained the response of the

soil-foundation system by solving the boundary integral problem using the Green’s

function. Figure 3.44 shows the comparison. The trend of all the lines is similar.

However, the compliance amplitudes in the case of W&C analysis are the lowest

over the whole observed frequency range. The compliance amplitudes obtained using

the proposed method match up to the displacements obtained by Wong, except for

a0 < 3 where they become significantly higher.
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Figure 3.44: W&C - Wong - ITM-SEM comparison, K∗ = 3.3
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3.3.3.2 Displacement field

In this chapter, the displacement field of the square flexible foundation is presented

for different values of a0 and K∗. Since the displacement field is axisymmetrical

the results are presented for one quarter of the foundation along the line between

the edge point and the center point. The response of the system is obtained for

a0 = 2.5, 5, 10 and for different stiffness ratios K∗ = 0, 0.004, 0.06, 3.3. The results

are compared with the results presented by W&C [17]. The real and the imaginary

part of the displacement field are shown on Figures 3.45-3.47. The dashed lines

denote the results obtained using the proposed method, while the results from the

literature are denoted by the solid lines.

The values of the real and the imaginary part of the displacement field obtained

by using the proposed method are generally lower than the amplitudes obtained

by W&C except in the case of the rigid foundation K∗ = 3.3 for the frequency

a0 ≥ 5. The difference between the displacements fields obtained for two stiffness

ratios K∗ = 0 and K∗ = 0.004 are more pronounced in the results obtained by W&C

then in the solution obtained using the ITM-SEM coupling. The real parts of the

displacement field shows that the distribution along the center-edge line is almost

independent of the stiffness ratio K∗ for high frequencies, a0 ≥ 5. The imaginary

part reaches the maxima at the center of the foundation for K∗ ≤ 0.06, regardless of

the frequency.
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Figure 3.45: Displacement profile, a0 = 2.5
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Figure 3.46: Displacement profile, a0 = 5
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Figure 3.47: Displacement profile, a0 = 10 102
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3.3.3.3 Contact stress

The numerical model introduced in Section 3.3.3.2 is used for the analysis of the

contact stress field between the foundation and the soil. The obtained results are

presented in form of dimensionless stress

σ̄ = σBL∑
Fext

(3.90)

The contact stress fields are obtained for dimensionless frequency a0 = 2.5, and 5

and foundation-soil stiffness ratio K∗ = 0.0007, 0.004, 0.06 and 3.3. The real and the

imaginary parts of the contact stress field are presented in Figures 3.48-3.51 together

with the results obtained by Whittaker & Christiano [17]. The dashed lines denote

the results obtained using the proposed method, while the results from the literature

are denoted by the solid lines.

Even a small plate stiffness leads to a concentration of the contact stress at the edges.

The concentration zone is considerably narrow for the coarse discretization used in the

proposed numerical model. However, a finer discretization would require a significant

computational effort and more powerful hardware. Mohammadi and Karabalis [64]

have tried to solve this problem by introducing the adaptive discretization scheme

to their numerical model consisted of boundary elements. The scheme considers a

non-uniform element discretization. It gives very good results for low frequencies,

but it is incapable of producing good results at high frequencies. Implementation of

the adaptive discretization scheme in the proposed method would require usage of

Non-Uniform Discrete Fourier Transformation. It is a task that is out of the scope

of this dissertation, but it will be investigated in future research.

The discrepancies between the obtained contact stresses and the results from the

literature are more pronounced for higher frequencies and for stiffer plate, indicating
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a great influence of the plate stiffness on the response. It might seem that in the case

of considerably small values of K∗, there is a decrease of the contact stress σ̄ along

the edges of the foundation obtained using the proposed method (σ̄ < 1). However,

the dimensionless contact stress along the edges should be compared to σ̄ = 0.5,

concerning the active load pattern p∗ that assumes the reduction of the loading force

along the edges by half, Figure 3.34.
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Figure 3.48: Contact stress, real part, a0 = 2.5
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Figure 3.49: Contact stress, imaginary part, a0 = 2.5
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Figure 3.50: Contact stress, real part, a0 = 5
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Figure 3.51: Contact stress, imaginary part, a0 = 5
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4 Summary

In this dissertation, the solution of Soil Foundation Interaction (SFI) problems is

obtained using the substructuring approach. The modeling of the substructures is

performed using transform methods. The governing system of equations of motion

is transformed from the original space-time domain into the space-frequency or

wavenumber-frequency domain, where the effects of the input parameters on the

results are more visible.

The foundation is modeled using the Spectral Element Method (SEM). The method

is based on the exact solution of the governing differential equations of motion in

the space-frequency domain. This results in the exact frequency dependent shape

functions of a dynamic stiffness element. The dynamic stiffness matrices of elements

are also frequency dependent and developed explicitly for one-dimensional beam

elements and Levy-type plates. Only one element is sufficient to represent the

dynamic behavior at any frequency. In the case of plate with arbitrary boundary

conditions, plate displacements are presented in infinite series form, and the boundary

problem is solved using the Projection method.

The soil medium is modeled using the Integral Transform Method (ITM). The

method is based on the analytical solution of Lamé’s differential equations of motion

in wavenumber-frequency domain. It is able to describe the dynamic behavior of the

infinite medium completely, but under certain assumptions. The material has to be
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homogeneous, linear and elastic within the layer, and the layers have to be parallel

to the surface.

The differential equation of the soil-foundation system is solved in space-frequency

domain using the modal superposition method.

Regarding the type of the analysis required for obtaining the response of the system,

the foundations are divided in two groups: rigid and flexible.

Rigid foundations are considered massless. This analysis does not require the explicit

modeling of the foundation. Hence, the system is consisted of the soil model only.

The foundation is considered an area of the surface of the soil that is forced to act

rigidly using kinematic transforms. The dynamic stiffness matrix of the foundation

is obtained using the ITM. The soil is subjected to the dynamic unit force acting

on the surface. This requires the discretization of the surface. In order to avoid ill

conditioning of the flexibility matrix two different meshes are introduced: a fine one,

for the calculation of the displacement field of the surface of the soil, and a coarse

one, for the calculation of the displacement field of the foundation. The unit force is

approximated with the distributed load in order to avoid numerical errors caused by

the truncation of the spectrum of functions used for the calculation of the response.

The functions must be sampled in a way that would ensure that the areas around

the local minima and maxima are described well.

Two numerical examples regarding rigid foundations are presented:

• square rigid foundation on the halfspace and

• a group of two square rigid foundations on a layer over the bedrock.

The obtained vertical, horizontal and rocking compliances of a single square founda-

tion are compared with results from literature, showing good matching. The values
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of the compliances obtained by the proposed method are lower in general, since a

small damping coefficient has been introduced in the ITM in order to avoid aliasing.

The foundation-soil-foundation interaction analysis is analyzed using a group of two

square rigid foundations resting on a layer over the bedrock. The results obtained for

various layer depth and various distance between the foundations are compared with

results from literature. It is shown that the influence of the loaded foundation on the

adjacent one is higher than the influence of the adjacent foundation on the loaded

one. The interaction between the foundations decays with an increase of the distance

between them. The adjacent foundation can reduce the amplification of the loaded

foundation around the first resonant frequency of the layer, if it is positioned close

enough to the loaded foundation. The translational compliances are more sensitive

to the layer depth change than the rocking compliances. The ITM approach gives

higher amplification of the response for the first natural frequency, but not for the

other natural frequencies of the layer.

The problem of a flexible foundation resting on the halfspace is solved using the

ITM-SEM coupling. The response of the flexible strip foundation loaded with a

uniformly distributed load and resting on the surface of the halfspace is calculated.

The analysis is performed as a steady state plane strain analysis taking into account

only vertical vibrations. The foundation is treated as an Euler-Bernoulli spectral

beam. The natural shapes of the beam are obtained using the SEM. The first

three modes of the beam are used for the analysis. The results of the analysis are

compared with the results obtained using a software package SASSI. The proposed

approach results in higher displacements of the soil under the foundation and lower

displacements of the soil outside the soil-foundation interface zone.

The analysis of the flexible square massless foundation is performed using the

proposed method. Naturally, this analysis is more complex than the one concerning

strip foundation. The most complex part is obtaining the mode shapes of the
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foundation. The proposed algorithm for the mode shape calculation is used together

with Wittrick-Williams algorithm in order to be sure that the obtained results are

not misinterpreted. The obtained results in terms of compliance functions of the

center, edge and corner point of the foundation, displacement field and contact stress

field are compared with the results from the literature. The results are calculated

for various foundation stiffness-soil stiffness ratio, K. It is shown that the response

of the system is highly sensitive to the active load distribution. With an increase

of the relative stiffness K the displacements of the foundation become less spatially

dependent, regardless of the frequency. This dependence is also low in the case of low

values of the stiffness ratio in the high frequency zone. Even a small plate stiffness

leads to a concentration of the contact stress along the edges. The concentration

zone is considerably narrow and it requires a very fine discretization in order to be

presented properly. This operation is very costly and it is not optimal to use with

uniform discretization.

The results presented in this dissertation shows that the proposed method built by

coupling ITM and SEM has capabilities to deal with the problems of rectangular

foundations resting on the elastic halfspace. The major advantage of the method

is that it is based on the analytical solution of wave propagation in the plate so it

gives a clear insight in the physics of the problem. However, the method relies on

the Discrete Fourier Transform (DFT). It requires many input parameters that have

to be in accordance with the rules of DFT in order to avoid numerical errors. It can

be a very demanding method in terms of computational resources.

It can be concluded that the proposed method is very useful for understanding the

problem of the dynamic Soil Structure Interaction (SSI). This dissertation shows one

part of the field where the method could be used. The future research should involve

• a generalization of the method - considering all vibration directions,

110



4. Summary

• a more detailed parametric analysis investigating the effect of the material and

geometry parameters on the response of the system,

• an analysis of flexible foundation on a layered halfspace,

• a Foundation Soil Foundation Interaction (FSFI) analysis concerning flexible

foundations,

• a further improvement of the numerical techniques that would lower the

computational efforts.
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A Appendix

A.1 Tensor Notation

In tensor notation coordinate axes are denoted with xj, and corresponding basis

vectors with ij . The index j takes values 1, 2 and 3 since we are using a 3D Cartesian

coordinate system.

If the components of the vector u are denoted with uj then

u = u1i1 + u2i2 + u3i3 (A.1)

According to summation convention, repeated index implies a summation. Therefore,

equation (A.1) could be written as

u = ujij (A.2)

An exemplar of summation convention is scalar product of two vectors:

u · v = ujvj = u1v1 + u2v2 + u3v3 (A.3)
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A. Appendix A.1. Tensor Notation

Index j in equations (A.2) and (A.3) is called dummy index and it always takes all

three values 1, 2 and 3.

Quantities containing two indices represents second order tensors. Kronecker delta

symbol is a second order tensor which components have the following property

δij =


1 if i = j

0 if i 6= j

(A.4)

Quantities containing three indices represents third order tensors. Permutation

symbol, or Levi-Civita tensor, is a third order tensor defined as

eijk =



+1 if(i, j, k) is an even permutation of (1, 2, 3)

−1 if(i, j, k) is an odd permutation of (1, 2, 3)

0 if any index is repeated

(A.5)

Using permutation symbol and summation convention, components of any cross

product h = u× v could be written as

hi = eijkujvk (A.6)

or in expanded form

h1 = u2v3 − u3v2

h2 = u3v1 − u1v3

h3 = u1v2 − u2v1

(A.7)
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A. Appendix A.1. Tensor Notation

Vector differential operator ∇ is defined as

∇ = i1
∂

∂x1
+ i2

∂

∂x2
+ i3

∂

∂x3
(A.8)

If f(x1, x2, x3) is a scalar field, a vector field ∇f is gradient of scalar field f

gradf = ∇f = i1
∂f

∂x1
+ i2

∂f

∂x2
+ i3

∂f

∂x3
(A.9)

Partial derivatives are denoted with comma symbol (,) in index. Equation (A.9)

could be written using partial derivative symbol

gradf = ∇f = ipf,p (A.10)

Components of the vector field u(x) are functions of spatial coordinates ui(x1, x2, x3).

If we assume that the components of the vector field u(x) are differentiable, nine

partial derivatives ∂uj(x1, x2, x3)/∂xj could be written in tensor notation as ui,j.

These partial derivatives represent the components of a second order tensor.

If u(x) is a vector field, scalar field ∇ · u is a divergence of a vector field u(x):

divu = ∇ · u = ui,i (A.11)

If u(x) is a vector field, vector field ∇× u is a curl of a vector field u(x):

qi = eijkuk,j (A.12)
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A. Appendix A.2. Fourier transformation

Laplace operator or Laplacian ∇2 represents a divergence of a gradient. Laplacian of

a twice differentiable scalar field is a scalar field:

div gradf = ∇ · ∇f = f,ii (A.13)

Laplacian of a vector field is a vector field:

∇2u = ∇ · ∇u = up,jjip (A.14)

A.2 Fourier transformation

A.2.1 Continuous Fourier transformation

The Fourier transformation of the function f(t) is defined as

f̄(ω) =
∞∫
−∞

f(t) e−iωt dt (A.15)

The inverse Fourier transform is defined as

f(t) = 1
2π

∞∫
−∞

f̄(ω) eiωt dω (A.16)

In Section 2.1 a threefold Fourier transform is applied on the potentials Φ and Ψi.

The transform is carried out from spatial-time into wavenumber-frequency domain

(x, y, z, t) d t(kx, ky, z, ω). It is defined as

f̂(kx, ky, z, ω) =
∞∫

x=−∞

∞∫
y=−∞

∞∫
t=−∞

f(x, y, z, t) e−ikxxe−ikyye−iωt dx dy dω (A.17)
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A. Appendix A.2. Fourier transformation

The inverse threefold Fourier transform is defined as

f(x, y, z, t) =
∞∫

kx=−∞

∞∫
ky=−∞

∞∫
ω=−∞

f̂(kx, ky, z, ω) eikxxeikyyeiωt dx dy dω (A.18)

The properties and the application of the continuous Fourier transform is explained

in details in the literature [54].

A.2.2 Discrete Fourier transformation

The discrete Fourier transform is developed from the continuous Fourier transform

for the needs of machine computation. Let g(t) be a function defined at N equally

distributed samples of a period T . The Fourier transform of a function g(t) is defined

as

ḡ(/fracnNT ) =
N−1∑
k=0

g(kT ) exp
(
−i2πnk

N

)
(A.19)

The resulting function ḡ(ω) is defined at N equally distributed samples at intervals

of ω = 1/(NT ).

The inverse discrete Fourier transform is defined as

g(kT ) = 1
N

N−1∑
n=0

ḡ( n

NT
) exp

(
i
2πnk
N

)
(A.20)

The properties and the application of the discrete Fourier transform is explained in

details in the literature [54].
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лиценцом.  Ова  лиценца  не  дозвољава  комерцијалну  употребу  дела  и
прерада.

5. Ауторство – без прерада. Дозвољавате умножавање, дистрибуцију и јавно
саопштавање дела, без промена, преобликовања или употребе дела у свом
делу,  ако  се  наведе  име  аутора  на  начин  одређен  од  стране  аутора  или
даваоца лиценце. Ова лиценца дозвољава комерцијалну употребу дела.

6.  Ауторство –  делити под истим условима.  Дозвољавате  умножавање,
дистрибуцију и јавно саопштавање дела, и прераде, ако се наведе име аутора
на начин одређен од стране аутора или даваоца лиценце и ако се прерада
дистрибуира  под  истом  или  сличном  лиценцом.  Ова  лиценца  дозвољава
комерцијалну употребу дела и прерада. Слична је софтверским лиценцама,
односно лиценцама отвореног кода.
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