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Normal cells bear the seeds of their own destruction in the form of cancer genes. The 

activities of these genes may represent the final common pathway by which many 

carcinogens act. Cancer genes may not be unwanted guests but essential constituents of the 

cell’s genetic apparatus, betraying the cell only when their structure or control is disrupted 

by carcinogens. 

 Bishop, 1982 (Nobel Prize Winner, 1989) 



HER2 AND c-MYC MUTATIONAL STATUS AND INK4a/ARF 

METHYLATION STATUS IN TUMORS, TUMOR MARGINS AND 

UNAFFECTED ORAL MUCOSA OF PATIENTS WITH ORAL 

SQUAMOUS CELL CARCINOMA 

SUMMARY 

Introduction: The development of malignant diseases is due to the accumulation of genetic and 

epigenetic changes. Oral squamous cell carcinoma (OSCC) is an aggressive and very common 

malignancy of the oral cavity. Patho-histological methods lack sensitivity in terms of the 

evaluation of the risk of OSCC recurrence and metastases. This issue can potentially be 

overcome by assessing molecular changes in OSCC and its margins. 

Aims: (a) to determine the presence of oncogene amplification (c-MYC and HER2) and tumor 

suppressor gene methylation (P14 and P16) in tumor, tumor margin and healthy oral mucosa of 

patients with OSCC; (b) establish a potential association between molecular and clinical 

parameters. 

Material and methods: DNA was isolated from tumor, margin and oral mucosa tissue of 40 

patients with OSCC, operated at the Clinic for Maxillofacial Surgery, School of Dental 

Medicine. The presence of C-MYC and HER2 gene amplification was determined by real-time 

PCR, and P14 and P16 methylation by methyl-specific PCR. Statistical analysis with SPSS was 

applied to estimate the association between molecular and clinical findings. 

Results: Tumor tissues showed the highest prevalence of alterations and oral mucosa the lowest. 

Multiple alterations were significantly more frequent in tumors and tumor margins compared to 

unaffected oral mucosa (P<0.001 and P=0.027, respectively). HER2 amplification in margin 

tissue (P < 0.001) and swabs (P = 0.013), as well as the existence of three co-alterations in 

margins and unaffected oral mucosa were correlated with shorter survival (P = 0.035 and 

P=0.027, respectively). 

Conclusion: HER2 amplification, as well as the presence of three co-alterations in margins and 

unaffected oral mucosa proved to be markers of poor outcome in OSCC. 
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MUTACIONI STATUS HER2 I c-MYC GENA  I METILACIONI STATUS 

INK4a/ARF LOKUSA U TUMORU, TUMORSKOJ MARGINI I 

NEIZMENJENOJ ORALNOJ SLUZOKOŽI PACIJENATA OBOLELIH OD 
SKVAMOCELULARNOG KARCINOMA USNE DUPLJE 

SAŽETAK 

Uvod: Razviće malignih oboljenja uslovljeno je akumulacijom genetičkih i epigenetičkih 

promena. Oralni skvamocelularni karcinom (OSCK) je najčešći malignitet usne duplje. 

Patohistološkim metodama evaluacije rizika od pojave recidiva i metastaza nedostaje 

senzitivnost, a taj problem može potencijalno da bude prevaziđen analizom molekularnih 

promena u OSCK-u i njegovim marginama.  

Ciljevi: (a) utvrditi prisustvo amplifikacije onkogena (c-MYC i HER2) i metilacije tumor 

supresorskih gena (P14 i P16) u tumoru, margini i zdravoj oralnoj sluzokoži pacijenata sa 

OSCK; (b) ustanoviti postojanje asocijacije između molekularnih i kliničkih parametara. 

Materijal i metode. DNK je izolovana iz tkiva tumora, margina i oralne sluzokože 40 pacijenata 

sa OSCK-om, operisanih na Klinici za maksilofacijalnu hirurgiju Stomatološkog fakulteta. 

Prisustvo amplifikacije C-MYC i HER2 gena određeno je metodom PCR u realnom vremenu, a 

P14 i P16 metilacije metodom metil-specifičnog PCR-a. Statistička analiza SPSS paketom je 

primenjena za procenu asocijacije između molekularnih i kliničkih nalaza. 

Rezultati: Najveća učestalost promena pokazana je u tumorskom tkivu, a najmanja u zdravoj 

oralnoj sluzokoži. Višestruke promene (ko-alteracije) su bile znatno češće u tumorima i 

tumorskim marginama nego u sluzokoži (P <0.001 odnosno P = 0.027). Amplifikacija HER2 

gena u tkivu margina (P <0.001) i sluzokoži (P = 0.013), kao i postojanje tri ko-alteracije u 

marginama i neizmenjenoj oralnoj sluzokoži korelisane su sa kraćim preživljavanjem (P = 0.035 

odnsono P = 0.027). 

Zaključak: HER2 amplifikacija, kao i prisustvo tri ko-alteracije u marginama i zdravoj oralnoj 

sluzokoži pokazale su se kao prediktori lošeg ishoda u OSCK-u. 
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1. Introduction 

 

1.1. Cancer 

Cancer is one of the leading causes of morbidity and mortality worldwide. The number of new 

cases is rising every year and is expected to increase over 70% in the next two decades [1] 

Cancer is a group of related diseases characterized by abnormal and uncontrolled cell cycle as 

well as inactivation of apoptotic mechanisms, and the acquisition of metastatic properties i.e. the 

capability of spreading to the surrounding tissues and to other organs. This abnormal and 

uncontrolled cell cycle mostly results from the activation of protooncogenes which promote cell 

growth and proliferation, and the inactivation of tumor suppressor genes which inhibit cell 

divisions and control its survival [1-4]. Tumor expansion, invasion of tumor cells into 

neighboring tissues and spreading of tumor cells to other locations can lead to rapid failure of 

one or multiple organs [5]. 

Normally, the human cells divide and grow to form new cells as the body needs them; when the 

cells become damaged or grow old they die and new cells take their place. The cell cycle 

progression and differentiation is a tightly controlled process with complex mechanisms. If this 

orderly process is disturbed, the cells will break free from the homeostatic balance between cell 

proliferation and cell death which lead to cancer development [2, 3,6]. 

Most adult cells survive on average for 4-6 weeks and then have to be replaced, either by 

replication of existing cells or from stem cell precursors. Since every cell gets a substantial 

amount of daily DNA damage and 10¹¹ or more of them will replicate each day it means a lot of 

potential cancer cells. However, cancer is surprisingly rare and this can be explained by the 

existence of some extraordinarily effective barriers to cancer cell development. Cancer may well 

originate in a single transformed cell, but is clinically detectable by direct observation or 

conventional investigations, only when replication has increased the number of cancer cells to 

around one billion. In other words, by the time a cancer is discovered the original cancer cell has 

undergone some thirty or more cell divisions and acquired a lot of new molecular aberrations [7]. 

Many of these molecular alterations which lead to abnormal biological behavior of cancer cells 

are related to cell cycle regulation systems [8]. 
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Cells need to survive in a tissue environment where they are inter-dependent on each other for 

functioning and loss of contact with neighboring cells will lead to cell death. Cell proliferation is 

stimulated by external signals and cell division will end by withdrawing of the stimulating 

signals and/or by stopping signal. Cell contact is a common stopping signal for terminating cell 

proliferation (cell-contact inhibition). A tumor cell is independent of other cells for proliferation 

and even for survival; it can divide without stimulation and this division cannot be stopped by 

cell-contact. Tumor cells in a malignant tumor have additional properties including the 

production of matrix metalloproteinase (MMP), acquired mobility, and anoikis-resistance. With 

the ability to produce MMPs to digest extracellular matrixes (ECMs), the tumor can invade into 

neighboring tissues. With the anoikis-resistance property, a tumor cell can survive without 

anchoring to neighbor cells/ECMs, and it can immigrate passively to other organs via blood or 

actively if it has additionally obtained motility (these differences are illustrated in Table 1). We 

can summarize the differences between normal cells and malignant cells as follows [5]:  

• Normal cells have full differentiation with full efficiency of DNA repair and other 

functions; whereas tumor cells have a low degree of cell differentiation with functional 

deficiency of cell repair mechanisms. 

• A normal stem cell proliferation is strictly controlled, whereas that of tumor cells is out of 

control and unlimited. 

• The tolerance of a normal cell to a dominant DNA mutation is low since an abnormal 

phenotype will lead to cell death or apoptosis. Differently, a malignant tumor cell can be 

tolerant to some DNA mutations because of immaturity on functionality. The surviving 

chance of a tumor cell from a DNA injury though misrepair of DNA is higher than that of 

a normal cell.  

 

Table 1: Differences between normal and malignant tumor cells. 

Malignant tumor cells Normal cells Property 

 Low High Cell differentiation 

Defficient Full DNA repair 

Unlimited Well-controlled Cell proliferation 

High Low Tolerance to DNA mutations 
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The normal cells are specialized and mature into distinct cell types with a specific function, 

while cancer cells are less specialized, have no specific function and continue to divide ignoring 

both cell division stop signals and apoptosis signals [2]. The transformation of a normal cell into 

a tumor cell is a multistage process called carcinogenesis, which is characterized by 

accumulation of genetic and epigenetic alterations in cancer-related genes [7, 9, 10]. 

The cancer evolution is guided by the accumulation of these alterations within a clonal 

population of cells. The genotypic changes can affect hundreds of genes leading to phenotypic 

changes in crucial cellular functions, such as reduction of or resistance to cell death, increased 

proliferation, induction of angiogenesis, and the ability to invade and metastasize. There are 

many mechanisms which underlie these changes that include but are not limited to, genomic 

instability through chromosomal rearrangements, gene amplifications, deletions, methylations 

and point mutations [11]. 

In other words, genetic and epigenetic alterations allow a normal cell to achieve the “hallmark” 

features of cancer summarized as [7]: 

• Capacity to proliferate despite the lack of exogenous mitogens. 

• Refractoriness to growth-inhibitory signals. 

• Resistance to apoptosis. 

• Unrestricted proliferative potential (immortality). 

• Capacity to recruit a vasculature (angiogenesis). 

• Ability to invade surrounding tissue and eventually metastasize. 

The normal cells go through a series of changes to form cancer cells. At first, there is only an 

increase in the number of cells in the organ or tissue (hyperplasia); the cells look normal under 

the microscope and there is no change in the tissue organization. Then in the second stage, the 

cells that increased in number become abnormal under the microscope (dysplasia); they are still 

not cancer cells but the tissue organization is changed. The cells of these two stages may or may 

not become cancer cells. At the last stage, the cells become completely transformed into cancer 

cells and tissue appears abnormal. These sequential histopathological alterations (Figure 1) are 

determined by the accumulation of a series of genetic events. In cellular carcinogenesis, various 

genes interact with each other, leading to multiple alterations that occur in a rather complex way 

and in different phases of disease progression [2, 12]. 
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Figure 1: The changes that normal cell/tissue goes through to become a tumor (sourse: 

https://www.cancer.gov/publications/dictionaries/cancer-terms/def/hyperplasia). 

 

The interactions between various factors which lead to cell transformation are given in Figure 2. 

 

 

Figure 2: The transformation of normal cells into cancer progenitor cells and progression of 

metastatic cancer. a: hexagons with yellow dots represent normal cells; b: faded green, distorted 

hexagons with yellow dots represent cancer progenitor cells; c: progenitor cells are increasing in 

number; d: star-like brown cells represent the metastatic form of cancer cells, a mixed population 



5 

 

of progenitor and adult cells; e: overgrowth of metastatic cells; f: both metastatic and adult 

progenitor cells leave site. Progression: Cancer progenitor cells develop from normal cells (a to 

b); After growth (b to c), they undergo epithelial to mesenchymal transformation-EMT (c to d); 

Differentiation signals decrease and growth signals increase, producing a combination of 

progenitor and adult metastatic cancer cells (d to e); After the outgrowth of metastatic cells, 

translocation to a distant location occurs (e to f) (source: Sarkar S, Horn G, Moulton K, Oza A, 

Byler S, Kokolus S, Longacre M. Cancer development, progression, and therapy: an epigenetic 

overview. International journal of molecular sciences. 2013 Oct 21;14(10):21087-113. ) 

 

1.2. Risk factors 

There is a number of intrinsic (biological) and external factors that influence the development of 

cancers. The intrinsic factors include the age and hormonal status of the individual, familial 

history, and genetic predisposition. The external factors include diet and lifestyle, individual’s 

habits like smoking and alcohol use, exposure to toxic chemicals and radiation, some infections, 

etc. The main risk factors are [1, 2, 12-14]: 

• Tobacco use (smoking and chewing). 

• Alcohol consumption. 

• Environmental and occupational risks. 

• Certain infections as the infections with hepatitis B virus (HBV), hepatitis C virus (HCV), 

human immunodeficiency virus (HIV) and human papillomavirus (HPV). 

• Genetic background 

 

1.3. Carcinogenesis 

Carcinogenesis is a multistep process in which many different molecular events lead to the 

disruption of normal regulatory pathways that control basic cellular functions including cell 

division, differentiation, and cell death; these molecular events include genetic and epigenetic 

changes [7, 9, 12-15]. The three major steps in carcinogenesis are: 
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• Initiation: Neoplasia initiation is essentially an irreversible change in an appropriate 

target somatic cell; it involves one or more stable cellular changes arising spontaneously 

or induced by exposure to a carcinogen. This is considered to be the first step in 

carcinogenesis, where the cellular genome undergoes mutations, creating the potential for 

neoplastic development, which predisposes the affected cell and its progeny to 

subsequent neoplastic transformation. The initiating mutation creates the stable potential 

for pre-neoplastic cellular development in cells with proliferative capacity. The 

transformed cell undergoes continuous division with fidelity to the transformed karyotype 

and, possibly, with further mutations, before a malignant lesion is manifested. 

• Promotion: The initiated cell remains harmless unless it is stimulated to undergo and 

expand by self–proliferation, upsetting the cellular balance, leading to abnormal growth, 

and further mutations. The subsequent changes of an initiated cell leading to neoplastic 

transformation may involve more than one step and require repeated and prolonged 

exposures to promoting stimuli. Expression of the initial mutation will depend on 

interaction with other oncogenic mutations and also on factors that may temporarily 

change the patterns of specific gene expression, such as cytokines, lipid metabolites, and 

certain phorbol esters. This may result in an enhancement of cellular growth potential 

and/or an uncoupling of the intercellular communication processes.  

• Progression: in which successive changes in the neoplasm give rise to increasingly 

malignant sub-populations; the cells also detach from the primary tumor site and invade 

other tissues and organs forming metastatic growths. The process may be accelerated by 

repeated exposures to carcinogenic stimuli or by selection pressures favoring the 

autonomous clonal derivatives. 

Multistep process of carcinogenesis from the genetic perspective is shown in Figure 3. 
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Figure 3: The development of a malignant tumor begins with a mutation in a long-lived cell, 

probably a stem cell. That mutation gives the cell a growth advantage lead to successive rounds 

of mutation and clonal expansion until the malignant genotype is acquired. In many cases, one of 

the first mutations is likely to be in a ‘caretaker’ gene that maintains genome integrity. The 

malignant phenotype is likely to be a manifestation of disturbances in the control of cell 

proliferation, cell death and cell adhesion. CAM=cell adhesion molecule; TERT= telomerase 

reverse transcriptase. (source: Weinberg R. A. "The Biology of Cancer" 2nd ed. New York, 

Garland Science, Taylor & Francis group (2014): 34-45, 58-68, 231.) 

The causal factors of carcinogenesis, both external and internal, may act together or in sequence, 

can initiate and promote this multi-step process [15, 16]. 

 

1.4. Cancer classification 

Tumors are classified into [14, 15, 17, 18]:   

Benign tumors: slow-growing expansive masses that compress rather than invade surrounding 

tissue; they generally do not pose threat, except when growing in a limited space like the skull. 

They usually can be readily surgically excised. 
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Malignant tumors or cancers: usually rapidly growing, invading surrounding tissue and, most 

significantly, colonizing distant organs.  

Cancers are classified by their histologic or tissue type into six major categories [17, 18]: 

• Carcinomas: the most common type, originating from different epithelial cells. Since the 

epithelium covers the skin, lines the respiratory and alimentary tracts and metabolizes 

absorbed carcinogens, i.e. because of its exposure to carcinogens, about 90% of cancers 

occur in epithelia. Adenocarcinoma and squamous cell carcinoma are the main types and 

characterized by rapid spreading. 

• Sarcomas: originate in connective and supportive tissues (soft tissues) including muscles, 

bones, cartilage, and fat. 

• Leukemia: blood cancers that affect the bone marrow and lead to the production of 

excessive immature white blood cells. 

• Lymphoma: cancer of lymphatic system which may affect lymph nodes at specific sites 

like stomach, brain, etc. 

• Myeloma: this type of cancer originates in the bone marrow affecting plasma cells. 

• Mixed types: which have two or more cancer components like the mixed mesodermal 

tumor, carcinosarcoma, adenosquamous carcinoma, and teratocarcinoma. 

Classification by grade: Cancers may be classified also according to grade. The abnormality of 

the cells with respect to surrounding normal tissues determines the grade of cancer. Increasing 

abnormality increases the grade, from 1–4. Cells that are well differentiated closely similar to 

normal specialized cells belong to low-grade tumors. Cells that are undifferentiated are highly 

abnormal regarding to surrounding tissues are high-grade tumors [18]: 

• Grade 1 – well-differentiated cells with slight abnormality. 

• Grade 2 – cells are moderately differentiated and slightly more abnormal. 

• Grade 3 – cells are poorly differentiated and very abnormal. 

• Grade 4 – cells are immature and primitive and undifferentiated. 

Classification by stage: Cancers are also classified individually according to their stage. There 

are several types of staging methods. The most commonly used method uses classification in 
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terms of tumor size (T), the degree of regional spread or node involvement (N), and distant 

metastasis (M). This is called the TNM staging system (more details in staging of OSCC) [18]. 

 

1.5. Oral squamous cell carcinoma 

Oral squamous cell carcinoma (OSCC) is one of the most common malignant tumors; it holds 

the eighth position in the cancer incidence ranking worldwide, though with considerable 

epidemiologic variation between different geographic regions due to cultural and behavioral 

differences (diet, exposure to specific risk factors, etc.) [19-23]. 

OSCC accounts for more than 90% of all cancers of the oral cavity and causes significant 

mortality and morbidity worldwide. It arises from the squamous epithelium of oral mucosa [20, 

24, 25]. It occurs in equal to slightly higher ratio in males versus females (vary between 1:1 to 

1.5:1) and in older people (between 40-65 years), although it has been reported in people 

younger than 40 and older than 65 years of age [19, 20, 24]. 

OSCC is a heterogeneous and a multifactorial, but largely preventable disease, with complex 

molecular abnormalities involving different oncogenes, tumor suppressor genes, and their 

respective pathways [9, 26-29]. 

As in other cancers, there are several etiological risk factors of OSCC, but smoking and alcohol 

consumption remain the main factors. Smoking harmful effect on oral tissues is due to the fact 

that tobacco smoke contains ~300 carcinogenic compounds that are converted into reactive 

metabolites. Reactive metabolites are capable of interacting with DNA by the action of oxidative 

enzymes and the tumor-inducing action of tobacco resulting from the genotoxic effects of 

carcinogens (nitrosamine, polycyclic hydrocarbons) in tobacco smoke. In addition to the action 

of carcinogenic substances, continuous exposure to the heat resulting from the tobacco 

combustion further aggravates the aggression to the oral mucosa. The mechanisms by which 

alcohol induces carcinogenesis is still unknown, but might be via the genotoxic effect of ethanol 

metabolite acetaldehyde, the production of reactive oxygen- and nitrogen species, changes in 

folate metabolism, generation of DNA adducts and inhibition of DNA repair. Also, alcohol could 

exert its damaging effect directly, either acting as a solvent of carcinogens from tobacco smoke 

or damaging the oral mucosa, which would enhance the penetration of carcinogens from tobacco 
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smoke. Acetaldehyde can form adducts with DNA, interfering with DNA synthesis and repair 

[25, 26, 30-33].The etiological factors of oral cancer are summarized in Table 2 [25]. These 

predisposing factors may influence the development of cancer, and act individually, in 

combination with another carcinogen (co-carcinogen), or in combination with other non-

carcinogens agents (promoters), that help the carcinogens to mutate or depress cells [24]. 

 

Table 2: Etiologic factors of oral cancer. 

Factor Example 

Tobacco smoking Pipes, cigars, cigarettes, bidis, reverse smoking 

Smokeless tobacco snuff dipping, tobacco sachets, tobacco chewing 

Chewing habit Betel chewing, betel quid (pan), areca nut 

Alcohol spirits, wines and beers, alcohol and tobacco synergism 

Diet and nutrition Iron deficiency, vitamin A, E and C deficiencies, 

nutritional deficiencies and alcoholism 

Dental factors Poor oral hygiene, faulty restorations, sharp edges of 

teeth, ill-fitting dentures. 

Viruses Herpes simplex virus (HSV), human papillomavirus 

(HPV), human immunodeficiency virus (HIV). 

Chronic infection Candidiasis, syphilis. 

Radiation Ultraviolet light. 

Other as Occupational Textile workers. 

 

The probability of developing OSCC increases with the period of exposure to risk factors and 

increasing age adds the further dimension of age-related mutagenic and epigenetic changes [34]. 

As mentioned, the majority of OSCC cases worldwide being linked to consumption of alcohol 

and tobacco, public health efforts aimed at stopping and discouraging initial use of these 

addictive substances will have the greatest impact in decreasing the burden of this disease. If 

trends that have been seen in the United States continue worldwide with public health 

campaigns, the makeup of OSCC will be intensely different. Namely, additional research efforts 

into the treatment and prevention of HPV associated oral squamous cell carcinoma will be 
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necessary, as it will be the prevalent OSCC risk factor [20]. Indeed, the number of oral and 

oropharyngeal cancers related to HPV has increased dramatically over the past few decades. 

Even worse, these cancers are becoming more common in younger people with no history of 

alcohol or tobacco use. The reason for the rising rate of HPV-linked cancers is largely unclear. 

Prevention is always the best treatment for oral tumors, and knowledge of etiological factors is a 

prerequisite for any preventive measure. The patient’s lifestyle and education are extremely 

important for preventing this neoplasm. Early detection of the disease is also considered as the 

most effective prevention of morbidity and mortality [30, 34]. 

Early stages of the disease are associated with minimal symptoms and because of this or either 

due to ignorance or inaccessibility of medical care, OSCC in most cases gets detected in the later 

stages. Thus, there is a need for improvement in early detection of OSCC, because in the initial 

or early stages, treatment is more effective and the morbidity is minimal. Advanced stages 

respond poorly to current cancer therapies and have a high incidence of local and regional 

relapse [31]. 

Radiotherapy, chemotherapy, and surgery are the cornerstones in the treatment of head and neck 

cancers. Single modality or multimodality (combined) therapy is used according to the stage of 

disease [35]. Surgery is the preferred first-line treatment of small, accessible oral SCCs, whereas, 

advanced-stage oral SCC is usually treated by a combined treatment program of surgery, 

chemotherapy, and radiotherapy. Despite recent advances in surgical procedures and the 

significant progress in chemotherapy, radiotherapy, and targeted therapy in the last decades, 

OSCC long-term survival and prognosis remain poor [34, 36]. A significant percentage of 

advanced OSCC patients, with histologic documentation of adequate resection margins, still 

have a poor prognosis, with a high percentage of loco-regional and distant recurrences [37-39]. 

The prognosis following OSCC recurrence is one of the poorest among recurrent head and neck 

cancers [40]. The development of loco-regional recurrence at the primary site is correlated with 

the T-stage and the histopathologic assessment of the margins, and it is the main reason for 

treatment failure in OSCC. The remaining tumor cells in tumor margins are associated with 

recurrences. Surgical margins are considered negative based on histologic assessment of the 

pathological specimen. In spite of the apparently high accuracy of histologic examination, up to 

47% of patients with OSCC develop local recurrence, second primary tumors, and regional or 

distant metastases. Local and loco-regional lymph node recurrence is the most common cause of 
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treatment failure and accounts for about 60% of all the treatment failure, even when the surgical 

resection margin is diagnosed as histologically normal mucosa and tumor free. A high risk of 

local recurrence and new mucosal malignancies of the upper aerodigestive tract is seen in 

patients treated for oral cancer. The elevated rate of treatment failure in patients with 

histologically negative margins raises concern about the sensitivity of this method. Obviously it 

lacks sensitivity to identify cells that already started malignant transformation but have not yet 

developed a pathologic phenotype. Therefore, the intraoperative diagnosis of histologically 

negative margins does not eliminate the possibility of the presence of tumor cells contributing to 

local relapse [38, 41, 42].  

The main locations of OSCC are the tongue and the floor of the mouth (worldwide), due to the 

highest exposure of these areas to carcinogens, while buccal mucosa tumors exceeds the number 

of tongue tumors in those countries where use of smokeless tobacco is a cultural habit [26, 29]. 

OSCC is usually painless unless it is secondarily infected. Large lesions may interfere with 

normal speech, mastication or swallowing. SCC of the tongue, of the floor of the mouth and of 

the mandibular gingiva often metastasize to regional lymph nodes and are more aggressive with 

a less favourable prognosis, unlike SCCs of the lip, hard palate and maxillary gingiva which 

infrequently metastasize to regional lymph nodes, usually run a relatively slow course that causes 

slightly or no pain and have a relatively favourable prognosis. In general, SCCs of the posterior 

part of the oral cavity are much more probable to metastasize to regional lymph nodes than are 

comparable SCCs of the anterior part of the oral cavity [36]. 
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1.5.1. OSCC staging and histological grading 

Oral cancer staging is important for establishing proper treatment and determining prognosis. 

Tumors are staged using TNM system; it provides a reliable basis for patient prognosis and 

therapeutic planning. T represents the size of the primary tumor; the tumor size (thickness) could 

influence the prognosis of early oral cancer. In general, median tumor thickness varies between 

1.5 and 8 mm for T1 and T2 cancers. Tumor size greater than 4 mm imparts a worse prognosis. 

Tumor thickness might be the only independent predictor of neck surgery failure. N indicates the 

status of the regional lymph nodes, and M indicates the presence or absence of distant metastasis. 

The presence of nodal metastasis is the most important prognostic factor for oral cancers. An 

approximately 50% reduction in 5-year survival rate is seen with the development of lymph node 

metastasis in patients with squamous cell carcinoma of the oral cavity. M indicates the presence 

or absence of distant metastases. Survival of oral and oropharyngeal cancer patients is strongly 

related to the stage of the disease at diagnosis. The five-year relative survival rate for patients 

with localized disease is about 80%, the survival rate drops to about 45% for patients with 

regional spread and to about 20% for those with distant metastasis. The TNM staging system is 

outlined in Table 3 [17, 44-46]. 
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Table 3. The different TNM system stages of cancer 

TNM Staging of Oral Cancer 

Primary Tumor (T) 

TX Primary tumor cannot be assessed 
T0 No evidence of primary tumor  
Tis Carcinoma in situ 
T1 Tumor 2 cm or less in greatest dimension 
T2 Tumor more than 2 cm but not more than 4 cm in greatest dimension 
T3 Tumor more than 4 cm in greatest dimension 
T4 Tumor invades adjacent structures (e.g., through cortical bone, into maxillary 

sinus, skin, pterygoid muscle, deep muscle of tongue) 
Nodal Involvement (N) 

NX Regional lymph nodes cannot be assessed 
N0 No regional lymph node metastasis 
N1 Metastasis in a single ipsilateral lymph node, 3 cm or less in greatest dimension 
N2 Metastasis in a single ipsilateral lymph node, more than 3 cm but not more than 6 

cm in greatest dimension; or in multiple ipsilateral lymph nodes, none more than 6 
cm in greatest dimension; or in bilateral or contralateral lymph nodes, none more 
than 6 cm in greatest dimension 

N2a Metastasis in a single ipsilateral lymph node, more than 3 cm but not more than 6 
cm in greatest dimension. 

N2b Metastasis in multiple ipsilateral lymph nodes, none more than 6 cm in greatest 
dimension. 

N2c Metastasis in bilateral or contralateral lymph nodes, none more than 6 cm in 
greatest dimension. 

N3 Metastasis in a lymph node more than 6 cm in greatest dimension. 

Distant Metastasis (M) 

MX Distant metastasis cannot be assessed. 
M0 No distant metastasis. 
M1 Distant metastasis. 

Stage Grouping 

Stage 0 Tis N0 M0 
Stage I T1 N0 M0 
Stage II T2 N0 M0 
Stage III T3 N0 M0; T1 or T2 or T3 N1 M0 
Stage IV Any T4 lesion, or Any N2 or N3 lesions, or Any M1 lesion 
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The TNM staging system is not sufficient for optimal prognostic evaluation of OSCC and that is 

why it must be used with other reliable methods, such as histologic grading. There is consistent 

evidence of the value of tumor grade in determining prognosis where higher grades equate to a 

poorer prognosis [45, 47]. The histologic grading follows the descriptions in the World Health 

Organization classification and is based on the degree of resemblance of the invading carcinoma 

to the normal epithelium and its ability to form keratinizing islands [48]. 

The basic biology of initiation and progression of OSCC is still obscure. Screening for 

potentially malignant changes is typically confounded by difficulty in differentiating between 

reactive/inflammatory lesions vs. those lesions that are premalignant in nature. Moreover, the 

histologic diagnosis of dysplasia can be subjective and is thus prone to a considerable range of 

interpretations. Similarly, no definitive, validated criteria exist for predicting which dysplastic 

lesions are most likely to develop cancer over time. At present, dysplasia can only be used to 

indicate that an oral lesion may have an increased risk of malignant transformation. Molecular 

biomarkers capable of identifying the subset of lesions likely to progress to cancer are required 

to eliminate clinical diagnostic dilemmas [49]. The study of the carcinogenic process, including 

continued analysis of new genetic alterations, along with their sequential appearance during 

initiation, promotion, and progression, will confer great opportunity to identify diagnostic and 

prognostic markers, which will eventually provide a basis for the application of more rational 

and efficient treatments [31]. 
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1.6. Molecular alterations and cancer 

It is known that the development of cancer is driven by the accumulation of genetic and 

epigenetic changes within a clonal population of cells; these genotypic changes can affect 

numerous genes, leading to phenotypic changes in critical cellular functions such as resistance to 

cell death, increased proliferation, induction of angiogenesis, and the ability to invade and 

metastasize. There are three types of genes which are mainly altered, thus leading to cancer 

development: proto-oncogenes (oncogenes), tumor suppressor genes (anti-oncogenes) and 

caretaker genes such as DNA repair genes. The combination of alterations in these classes of 

genes produces tumors [2, 7, 49]. 

 

1.6.1. Genetic alterations 

Genetic alterations may occur in germ cells, resulting in inherited cancer predisposition, or more 

commonly, they occur in somatic cells, giving rise to sporadic tumors. The first somatic genetic 

alteration in any of oncogenes or tumor suppressor genes that enables clonal expansion and may 

be regarded as the initiating insult is not known in the vast majority of human cancers. The 

tumors progress through the acquisition of further somatic alterations, allowing further rounds of 

clonal expansion [7]. The main and simplified thought of the genetic basis behind cancer is 

overexpression of oncogenes and /or the silencing of tumor suppressor genes [50]. 

The different mechanisms of genetic alterations include large-scale mutations where gain or loss 

of parts of chromosomes can be the result of an abnormal chromosomal division during cell 

mitosis, genomic amplification, virus-integration, or chromosome translocation. Small-scale 

mutations such as point mutations and deletions or insertions of one or two base-pairs may occur 

in any part of a DNA molecule. In a normal somatic cell large-scale mutations, may lead to cell 

death. On the contrary, point mutations can survive in a cell and they can accumulate in offspring 

cells, contributing finally to cell transformation [5]. These frequent genetic alterations resulting 

in inactivation of multiple tumor suppressor genes and activation of proto-oncogenes in head and 

neck cancer are summarized in Table 4 [32]. 
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Table 4. Frequent genetic abnormalities in head and neck cancer. 

Genetic changes Locus / gene Cancer type Frequency 

 

 

 

 

LOH 

9p21-22/ P16INK4a/P14ARF 
HNSCC 

OSCC 

70–80% 

3p/ RASSF1A, FHIT, RARB2 
HNSCC 

OSCC 

30–70% 

17p13/p53 HNSCC 76% 

11q OSCC 20-33% 

13q14/Rb HNSCC 68% 

8p OSCC 53-83% 

 

Mutation 

9p21-22/ P16 OSCC 70% 

5q21-22/APC OSCC 50% 

17p13/p53 HNSCC 40-79% 

11p15/H-Ras OSCC 35-55% 

 

Amplification 

11q13/(PRAD-1/Cyclin D1/hst-1/int-2) HNSCC 30–50% 

7p12/EGFR OSCC 30% 

 

1.6.2. Epigenetic alterations 

Some changes occurring during carcinogenesis are not associated with a DNA sequence 

modification and are designated epigenetic changes [51]. These alterations affect and regulate 

gene expression. The epigenetic changes include functionally relevant modifications to the 

genome that act together regulating the genome function by altering the chromatin local 

structural dynamics. The main epigenetic changes are DNA methylation, histone modifications, 

and nucleosome remodeling. In general, we can say that epigenetics include all changes in gene 

expression patterns that do not alter DNA sequence [52-54]. These epigenetic alterations and 

their biological consequences are illustrated in Table 5 [53]. 
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Table 5. The most common epigenetic alterations. 

Epigenetic change Putative mechanism Biological consequence 

DNA hypomethylation Activation of cellular 

oncogenes Activation of 

transposable element 

Increased proliferation, 

growth advantage, genomic 

instability, transcriptional 

noise 

DNA hypermethylation De novo hypermethylation of 

CpG islands within gene 

promoters leading to silencing 

of tumor suppressors and 

cancer-associated genes 

Genomic and chromosomal 

instability, increased 

proliferation, growth 

advantage 

Loss of imprinting (LOI) Reactivation of silent alleles, 

biallelic expression of imprinted 

genes 

Expansion of precursor cell 

population 

Relaxation of X-chromosome 

inactivation 

Mechanisms is unknown but it 

appears to be age-related 

Altered gene dosage, growth 

advantage 

Histone acetylation Gain-of-function 

 Loss-of-function 

Activation of tumor 

promoting genes, defects in 

DNA repair and checkpoints 

Histone deacetylation Silencing of tumor suppressor 

genes 

Genomic instability, increased 

proliferation 

Histone methylation Loss of heritable patterns of 

gene expression (“cellular 

memory”) 

Genomic instability, growth 

advantage 

MicroRNAs (miRNAs) 

amplification in cancer 

Function as oncogenes Neoplastic transformation 

MicroRNAs (miRNAs) 

deletion in cancer 

Function as tumor suppressors. Neoplastic transformation 
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The epigenetics describes the transmission of the heritable status of gene expression that does not 

involve sequence change in DNA. Basic epigenetic mechanisms are essential for the 

development and maintenance of normal states of differentiation and tissue-specific patterns of 

gene expression within different cell types [55]. The distinct epigenetic mechanisms such as 

DNA methylation, nucleosome remodeling, histone post-translational modifications, 

incorporation of histone variants, and non-coding RNA, modulate the chromatin structure at 

several levels and regulate it [56]. Normally, epigenetic modifications play an important role in 

the control of gene activity and nuclear architecture [57]. DNA methylation, histone 

modifications, in addition to posttranscriptional gene regulation by noncoding RNA commonly 

referred as microRNAs, are the fundamental processes responsible for epigenetic regulation. 

These mechanisms are critical components in the normal development and growth of cells [54]. 

Disruption of any of these three distinct and mutually reinforcing epigenetic mechanisms leads to 

inappropriate gene expression and may initiate genetic instability, resulting in the acquisition of 

genetic mutations in tumor-suppressor genes and activating genetic mutations in oncogenes [53, 

54]. The epigenetic changes, such as promoter hypermethylation of tumor suppressor genes 

which in many cases are associated with the loss of gene expression and appear to lead to the 

occurrence of multiple genetic events that are necessary to drive tumor progression, have been 

observed in many tumor types [58]. 

The epigenetic changes associated with cancer including oral cancer occur more frequently than 

gene mutations and may persist for the whole cell life and even for many generations. The 

hypermethylation and consequent silencing of several tumor suppressor genes have been found 

to play a role in oral carcinogenesis and to contribute to various phases of neoplastic 

development and to chemotherapy resistance [53, 58]. Investigations have shown that the 

number of cancer-related genes that are inactivated by epigenetic modifications equals or even 

exceeds the number of genes inactivated by mutations [32]. 

Many key genes may be silenced by epigenetic changes during successive cell differentiation 

stages during development, and two epigenetic events in particular associated with 

transcriptional silencing in cancer cells include methylation of CpG islands in gene promoter 

regions and changes in chromatin conformation involving histone acetylation. More than half of 

tumor suppressor genes are known to be epigenetically silenced in cancers.  Also, the silencing 
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of DNA mismatch repair genes can cause genetic instability, thus linking epigenetic and genetic 

factors [7].  

Since the epigenetic alterations are heritable but reversible modifications (unlike the genetic 

which are irreversible alterations) the study of these epigenetic alterations, offers a great 

potential for the identification of biomarkers that can be used in the diagnosis of the first stages 

of cancer development and for a more accurate evaluation of the individual risk of developing 

the disease. In addition to their use for early diagnosis, epigenetic alterations may represent novel 

prognostic markers as well as potential therapeutic targets in oral cancer. The chance to 

counteract epigenetically-driven alterations in cancer cells opens an exciting scenario for its 

possible future fall-out on OSCC patients’ care. Namely the use of epigenetic inhibitors in 

association with traditional anticancer therapeutic agents looks very promising as a tool to 

improve the chemosensitivity of non-responsive cancers [53, 59, 60]. Therefore, identification of 

epigenetic biomarkers which are associated with OSCC pathophysiology is urgently needed for 

early diagnosis, prediction of progression, and application of molecular-targeted therapies with 

the aim of improving the treatment outcomes [61].  

 

1.7. Oncogenes 

In normal, non-transformed cell, oncogenes are known as proto-oncogenes. They are important 

cellular genes that positively act in normal growth regulatory pathways; they perform 

physiological functions that are necessary for cellular homeostasis and regulate the processes of 

growth and proliferation by governing cells signal transduction pathways [9, 12, 62]. Oncogenes 

acquire the potential to cause neoplastic transformation when they are activated or overexpressed 

at high levels through point mutations, translocations, deletions, amplification or other genetic 

mechanisms [63-65]. The discovery of oncogenes has provided more knowledge about the 

regulation of normal cell proliferation, differentiation, and apoptosis; also it represented an 

important progress in our understanding of the molecular and genetic basis of cancer [66]. 

The encoded products of the oncogenes can be classified into six broad groups: transcription 

factors, chromatin remodelers, growth factors, growth factor receptors, signal transducers and 

apoptosis regulators. The activation of oncogenes by chromosomal rearrangements, mutations 
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and gene amplification gives a growth advantage or increased survival to cells carrying such 

alterations. All of these three mechanisms cause either an alteration in the oncogene structure or 

an increase in or deregulation of its expression [63, 66]. 

The oncogene activation mechanisms are diverse and result in upregulated expression of a 

normal gene product, expression of a mutant protein with enhanced stability, or altered 

functionality, altered recruitment, altered subcellular localization of a normal gene product 

through interaction with an aberrantly expressed or mutant binding partner, etc. The oncogenes 

show diversity in their pro-neoplastic effects and in the regulatory fail-safes that protect against 

transformation. Some oncogenes possess a near-complete repertoire of pro-neoplastic properties, 

requiring less assistance from cooperative mutations. Other oncogenes have a narrow spectrum 

of biological activity or simultaneously trigger cell proliferation and cell death/senescence and 

therefore cannot transform a cell without cooperating lesions that decrease or inhibit the intrinsic 

tumor suppressor mechanisms [62]. Because neoplasia is a multistep process, more than one of 

these mechanisms usually contributes to the genesis of human cancers by altering a number of 

cancer-associated genes. In the case of amplification, the gene can be amplified as much as 100-

fold, resulting in an excess of normal protein. A similar situation occurs following chromosome 

rearrangements such as translocations when the transcription of the gene is now regulated by 

novel regulatory sequences belonging to another gene. In addition, various types of mutations, 

such as base substitutions, deletions, and insertions are capable of activating proto-oncogenes, 

base substitutions being the most characteristic oncogene mutations [66]. 

In summary, the genetic alterations of proto-oncogenes are gain-of-function alterations that 

stimulate cells to increase their number when they should not; Figure 4 depicts the main 

mechanisms by which proto-oncogenes are converted into oncogenes. 
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Figure 4: Different mechanisms of oncogene activation (source: Alberts B., Johnson A, Lewis J, 

Raff M., Roberts K. and Walter P. ‟Molecular Biology of the Cell” 4th edition New York: 

Garland Science ‟Cancer as Microevolutionary Process” (2002): 3398, 3400, 3405, 3423.). 

 

 

1.7.1. Gene amplification 

Gene amplification represents a selective genetic material increase, resulting in its 

overexpression and conferring a growth advantage to the cell. It is an adaptive mechanism 

thought to be important for aberrant oncogene expression and contributing to tumorigenesis [64, 

68]. It leads to the gain of additional copies of a chromosomal region in the cell. When 

excessive, amplification may produce karyotype abnormalities called double minutes (DMs) 

homogeneously staining regions (HRs). DM is an extrachromosomal DNA structure, without 

centromeres and telomeres, it does not bind the mitotic spindle and replicates autonomously. 

DMs segregate at random and are not distributed evenly between the daughter cells. The 

homogeneously staining regions are intrachromosomal segments forming large genomic regions. 

These repetitions, cytologically visible, follow the same destiny as the rest of chromosomal 

regions during mitosis. The amplified genomic DNA in DMs and HSRs contains hundreds of 

copies of one or more genes [69-71]. Both of these abnormalities are seen more frequently in 

established cell lines than in primary tumors and homogeneously staining regions more 

frequently in advanced stages of tumors [69]. Such alterations significantly contribute to 

tumorigenesis and tumor progression [72-75]. In normal cells, replication and recombination are 

tightly regulated and are less likely to initiate gene amplification, while cancer cells lack control 
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mechanisms. In addition to that, cellular surveillance systems (checkpoints) that ensure genome 

integrity at several stages of the cell cycle are impaired in cancer cells and could fail to eliminate 

cells with extra copies. The growth advantage derived from gene amplification has long been 

recognized as an important problem for cancer patients. Increased copy numbers of proto-

oncogenes, such as Myc, and HER2, leads to the overexpression of oncogene products that drive 

abnormal cell proliferation which results in cancer progression and poor patient survival. In 

addition, the gene amplification is an underlying mechanism for acquired therapy resistance [68]. 

The etiology of gene amplification is not yet completely understood, but it is considered to be the 

result of genetic instability. Several studies have shown that many oncogenes, which are 

amplified in a significant number of human tumors, rarely become amplified alone but present as 

large amplicons with multiple copies of several genes [69]. The amplified region is called 

‘amplicon’; it can span several megabases of DNA, and numerous genes are typically included in 

one amplicon. Co-amplified genes may also contribute to tumorigenesis in concert with 

oncogenes [71, 72].   

Gene amplification is a phenomenon characteristic of many human cancers and has a key role in 

the mechanism by which a cancer cell activates molecules that confer a selective advantage [76-

79]. Oncogenes amplification plays a critical role in several human cancers including OSCC; it is 

associated with and suggests an aggressive behavior and poor prognosis of the tumor, 

metastases, resistance to chemotherapy and a decrease in the period during which the patient 

stays free of the disease, it may be a useful indicator of progression and prognosis in various 

human cancers [64, 69, 80].The existence of specific regions of the genome that are hotspots for 

amplification in cancers originating from the same cell suggests that they contain genes relevant 

for tumor formation and progression [81, 82].  

Oncogenes such as Myc and Her-2 have been identified as amplification targets associated with 

development, progression, or metastasis of cancer [76-79]. 
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1.7.2. c-MYC gene 

c-MYC is a protooncogene located on the long arm of chromosome 8 (8q24); it is a member of 

Myc gene family, coding for nuclear c-MYC proteins that bind to DNA, facilitating transcription 

and regulating the activity of other genes involved in cell division [83, 84]. The MYC 

protooncogene family (comprising c-MYC, n-MYC, and l-MYC) ranks among the most 

exhaustively studied group of genes. The encoded proteins act as master gene regulators; they 

stimulate virtually all nuclear processes leading to enhanced cell growth and may cancel cell 

cycle arrest induced by growth-inhibitory pathways [84-86]. c-MYC is expressed at low 

constitutive level in growing cells and is down-regulated in quiescent and differentiating cells 

[87, 88].  

The c-MYC protein is a transcription factor that both activates and represses target genes, using 

several mechanisms including recruitment of histone acetylases, chromatin modulating proteins, 

basic transcription factors, DNA methyltransferases, etc. [86, 89]. C-MYC influences the 

expression of a wide variety of gene families which contribute to the abnormal growth abilities 

of transformed cells when the c-MYC expression is altered. Its pleiotropic effects occur at the 

molecular and cellular level and have impact on almost every activity of the cell [90-92]. These 

effects are summarized in Figure 5. 

 

Figure 5: Pleiotropic effects of c-MYC expression (source: Miller D. M., Thomas D. S., Islam 

A., Muench D. and Sedoris K. ‟c-Myc and Cancer Metabolism” Clin Cancer Res.(2012)18(20): 

5546–5553.) 
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c-MYC is also implicated in the control of apoptotic phenomena, possibly leading to tumor 

regression depending on cell types, cell interactions, extracellular matrix, and neighboring cells 

[83]. The effects induced by c-MYC can be either primary (when c-MYC is activated by 

amplification or translocation), or as a downstream effect of other activated oncogenes. In either 

case, it appears that c-MYC plays an important role in sustaining the changes which occur with 

transformation [90]. Figure 6 summarizes the connections of c-MYC with its target genes and 

their interactions. 

 

Figure 6: Connections between c-MYC, putative target genes, cellular functions and cell growth 

(source: Dang C. V. ‟ MINIREVIEW: c-Myc Target Genes Involved in Cell Growth, Apoptosis, 

and Metabolism” MOL. CELL. BIOL. (1999) 19 (1): 1-11.). 

 

It is amplified and found to be overexpressed in various human cancers and contribute to at least 

40% of tumors [84, 90, 92]. It is also found amplified in 20-40% of oral cancers [93]. In several 

types of cancer, c-MYC amplification is frequently associated with more aggressive tumors [69, 

94]. c-MYC overexpression to some extent correlates with gene amplification but not in all 

tumors; some tumors with c-MYC amplification display increased level of the oncoprotein and 

some other tumors reveal oncoprotein overexpression without gene amplification. It is usually 

associated with poorly differentiated oral carcinomas. c-MYC is considered as an important 
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marker in oral dysplasia and OSCC and its presence is correlated with the stepwise progression 

of dysplasia changes and tumor grade [95, 96].  

 

1.7.3. ERbB2 gene 

ErbB2 or HER2 is a proto-oncogene located on the long arm of chromosome 17 (17q12). It 

codes for a transmembrane tyrosine kinase receptor HER2, it is a member of the epidermal 

growth factor receptor (EGFR) family along with 3 other receptors (ErbB1, ErbB3, and ErbB4) 

[97, 98]. These receptors are considered as potent mediators of cell growth and development. 

The ErbB protein is composed of three domains: an extracellular domain that can bind different 

growth factors and act as an input layer of membrane receptors and their ligands to trigger the 

signal coming from outside the cell, a single hydrophobic transmembrane segment which is a 

core system processing layer of protein kinases transmitting the signal to the nucleus, and finally, 

an intracellular domain which has a protein kinase domain and represents an output layer of 

transcription factors regulating genes that affect various cellular functions. The intracellular 

protein kinase activity is activated by the binding of extracellular ligands or dimerization of the 

receptor with another ErbB family member [99-101]. ErbB2 biological effects are mediated by 

kinase activity resulting in phosphorylation of tyrosine residues in the cytoplasmic portion of the 

receptor molecule, leading to activation of downstream growth-promoting pathways [102]. The 

ErbB2 physiological role is to serve as a co-receptor in the context of ErbB ligand signaling. It 

appears to be the preferred partner of other ligand bound ErbBs [103]. 

ErbB2 is involved in many cell activities, including growth, development, and differentiation. It 

is a key signal transduction molecule that is overexpressed in a variety of human cancers [104, 

105]. ErbB2 has no known direct activating ligand and may be in an activated state constitutively 

or become active upon heterodimerization with other family members such as HER1 and HER3. 

Homo or heterodimerization results in the autophosphorylation of tyrosine residues within the 

cytoplasmic domain of the receptors and initiates a variety of signaling pathways, principally the 

mitogen-activated protein kinase (MAPK), phosphatidylinositol-4,5-bisphosphate 3-kinase 

(PI3K), and protein kinase C (PKC) resulting in cell proliferation, survival, differentiation, 

angiogenesis, and invasion [97, 105, 106]. 

https://en.wikipedia.org/wiki/Cellular_differentiation
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In normal cells, ErbB2 signaling is controlled by the EGF-related ligands through the obligate 

formation of heterodimers with other ErbBs [103]. The activation of ErbB2 and the other ErbBs 

can enhance the malignant potential of the cells, and the overexpression of these receptors 

correlates with poor prognosis [28]. The ErbB2 is frequently upregulated in human cancers 

where it plays an important role. It can promote tumorigenesis and tumor progression [107, 108].   

ErbB2 amplification and overexpression of its protein have been reported in several human 

malignant neoplasms; it is frequent in squamous cell carcinomas including OSCC [69, 108, 110]. 

The ErbB2 high expression level, frequently associated with gene amplification, has been 

correlated with increased tumor invasion, progression, metastasis, resistance to chemo-

radiotherapy, suggesting that this gene may represent an important indicator of poor prognosis 

[108, 111].  

The detrimental consequences of ErbB2 overexpression are summarized in Figure 7.  

 

Figure 7: The detrimental outcome of ErbB2 overexpression in cancer cells (source: Yu D. and 

Hung M-C. ‟Overexpression of ErbB2 in cancer and ErbB2-targeting strategies” Oncogene 

(2000) 19: 6115 – 6121.). 
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Although in some studies ErbB2 overexpression has been found to correlate with poor survival 

of patients with OSCC, generally speaking the results are still controversial and so remains the 

role of ErbB2 in OSCC [112-115]. 

 

1.8. Tumor suppressor genes 

Tumor suppressor genes (TSGs) are normal cellular genes that slow down cell divisions, repair 

DNA damages and control apoptosis [116]. These genes encode proteins that either have a 

damping or repressive effect on the regulation of the cell cycle or promote apoptosis and 

sometimes do both. Tumor suppressor genes regulate cellular activities including cell cycle 

checkpoint responses, mitogenic signaling, detection of DNA damage and repair, protein 

degradation and ubiquitination, cell specification, differentiation and migration, carcinogen 

detoxification, senescence and tumor angiogenesis [59, 117]. We can classify tumor suppressor 

genes functions into the following categories [117]: 

• Repression of genes which are essential for continuing the cell cycle. 

• Coupling the cell cycle to DNA damage, stopping cell division if there is DNA damage 

for repair.  

• Initiation of apoptosis to remove the threat it poses, when the DNA damage cannot be 

repaired. 

• Blocking loss of contact inhibition,  

• Involvement in cell adhesion to prevent tumor cells from dispersing, and inhibition of 

metastasis [118, 119]. 

• DNA damage repair (DNA repair proteins are usually classified as tumor suppressors) 

[117, 120]. 

Alterations in these genes cause reduction or loss in their function and the cells can progress to 

cancer, usually in combination with other alterations. The inactivation of these genes cripples 

growth-inhibitory pathways and may be more important than the activation of oncogenes for the 

development and formation of cancer cells [15, 121]. The loss-of-function alterations of TSG 

relieve cells of inhibitions that normally help to hold their numbers in check [67]. The tumor 

suppressor genes are inactivated mainly by mutations, loss of heterozygosity or DNA 
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methylation [24, 122]. Deletions, mutations and hypermethylation of TSG are the major 

molecular determinants of most common human cancers [59, 123]. Inherited abnormalities of 

tumor suppressor genes have been found in some family cancer syndromes. They cause certain 

types of cancer to be hereditary. However, most tumor suppressor gene abnormalities are 

acquired [116].  

TSG cancer-preventive effects usually require the presence of only one functional allele, i.e. 

TSG mutations have a recessive character and consequently for TSGs to be inactivated 

alterations of both alleles are necessary [67, 117]. 

Both genetic and epigenetic alterations play an important role in the initiation and progression of 

OSCC.  

Different molecular alterations involved in oral carcinogenesis are illustrated in Figure 8. 

 

Figure 8: Genetic and epigenetic mechanisms in carcinogenesis of human oral cancer (source: 

Bhatia V., Goel M. M. and Makker A. ‟ DNA Methylation: An Epigenetic mechanism in oral 

squamous cell carcinoma” South Asian J Exp Biol. (2014) 4 (2): 33-41.) 

 

As previously mentioned DNA hypermethylation may be an alternative mechanism to mutations 

or deletions in disrupting tumor suppressor gene function [57]. 
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1.8.1. Tumor suppressor gene methylation 

DNA methylation is the process by which the DNA molecules are chemically altered through an 

addition (reversible addition) of methyl groups to specific nucleotide (cytosine) on the chain of 

the millions of base pairs of nucleotides that compose DNA [125-127]. DNA methylation is the 

main epigenetic factor influencing gene activities; it is a potent mechanism for silencing gene 

expression and maintaining genome stability in the face of a vast quantity of repetitive DNA, 

which can otherwise mediate illegitimate recombination events and cause transcriptional 

deregulation of nearby genes [128, 129]. The DNA methylation affects the binding of proteins to 

their cognate DNA sequences, and prevents the binding of basal transcriptional machinery and 

ubiquitous transcription factors; it contributes to epigenetic inheritance, allele-specific 

expression, inactivation of the X chromosome, genomic stability and embryonic development. 

Through these pathways; progressive DNA methylation is thought to be an agent both of normal 

development and aging, as well as of neoplastic transformation [56, 130]. 

DNA methylation involves direct chemical modification to the DNA by the transfer of a methyl 

group onto the C5 position of the cytosine base to form 5-methylcytosine (5mc). DNA 

methylation is catalyzed by a family of DNA methyltransferases (DNMTs) that transfer a methyl 

group from S-adenyl methionine (SAM) to the fifth carbon of a cytosine residue to form 5mc. 

Three main DNMTs have been identified. DNMT1 maintains the existing methylation patterns 

following DNA replication, whereas DNMT3A and DNMT3B are responsible for de novo 

methylation patterns. The overexpression of these DNMTs that leads to CpG island 

hypermethylation of TSGs, has been observed in cancers and is associated with TSG expression 

silencing.  

Approximately 45% of the mammalian genome consists of transposable and viral elements that 

are silenced by bulk methylation. The vast majority of these elements are inactivated by DNA 

methylation or by mutations acquired over time as the result of the deamination of 5-

methylcytosine (5mC). If expressed, these elements are potentially harmful as their replication 

and insertion can lead to gene disruption [129]. In mammalian cells, DNA methylation is a 

relatively stable modification that occurs in the context of CpG dinucleotides, the presence of 

these CpG dinucleotide sites being irregular, with some regions containing a high frequency of 

CpG dinucleotides known as (CpG islands), in contrast to areas where these dinucleotides are 
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underrepresented. CpG rich regions are often situated in promoters that are proximal to the 

transcription start sites of many genes while the remainder of the genome is relatively CpG poor.  

Two mechanisms are proposed through which DNA methylation leads to tumor suppressor genes 

silencing: (1) DNA methylation may directly block the specific binding sites of transcription 

factors, (2) methyl-CpG-binding proteins (MBDPs) which are regarded as important 

“translators” between DNA methylation and transcriptional silencing recognize m5CpG 

sequencies and silence transcription [59]. So DNA methylation represses transcription directly 

by inhibiting the binding of specific transcription factors and indirectly by recruiting methyl-

CpG-binding proteins and their associated repressive chromatin remodeling activities. The 

significance of DNA methylation is emphasized by the growing number of human diseases that 

are known to occur when this epigenetic mechanism is altered, and there is increasing interest in 

developing ways of pharmacologically reversing such epigenetic abnormalities [128]. 

Abnormal DNA methylation could stand for less (hypomethylation) or more (hypermethylation) 

than in normal or typical DNA [52, 127, 134].  

DNA methylation is an important factor in the development of cancer; it may represent an early 

and fundamental step in the pathway by which normal tissue undergoes neoplastic 

transformation. The disruption of normal DNA methylation patterns is one of the most common 

features of transformed cells and it is an early event in the tumorigenesis process. In tumor cells, 

the normal regulation of the DNA methylation machinery is severely disrupted, such that the 

regional specificity of methylation patterns begins to be reversed, resulting in de novo 

methylation of CpG islands and hypomethylation of repetitive DNA. The assessment of the 

methylation profiles within the neoplastic tissue may provide key information for enhancing the 

diagnosis, predicting the clinical behavior, and designing specific treatment plans for individual 

patients. In addition to the inhibition of genes expression, DNA methylation can also increase the 

probability that affected genes undergo a mutational event. Abnormal methylation patterns can 

also indirectly affect gene activity with the disruption of the transcription-translation process by 

increasing the probability for a mutational event to take place and reducing overall chromosomal 

stability. Methylated cytosine has a greater propensity to undergo spontaneous deamination and 

the formation of thymine. If this does occur on a tumor suppressor gene, then a point mutation 

develops and loss of control of cell proliferation can occur [10, 137- 139]. 



32 

 

During the process of carcinogenesis contradictory changes in DNA methylation patterns occurs, 

with simultaneous global hypomethylation and regional hypermethylation changes. Global DNA 

hypomethylation was the first epigenetic alteration found in human cancer. Gain of DNA 

methylation ‟hypermethylation” in normally unmethylated promoter regions is the most widely 

studied epigenetic abnormality in carcinogenesis and regarded as the major epigenetic alteration 

that leads to transcriptional silencing of tumor suppressor genes [10, 32, 59]. 

Many tumor suppressor genes are susceptible to promoter hypermethylation; these genes are 

distributed in all cellular pathways connected to tumor development [59, 122]. Both abnormal 

DNA methylation patterns, hypermethylation and hypomethylation, have been associated with a 

large number of human malignancies. Figure 9 illustrates the different DNA methylation pattern 

alterations in tumorigenesis. 

 

 

Figure 9: Altered DNA-methylation patterns in tumorigenesis (source: Esteller M. ‟Cancer 

epigenomics: DNA methylation and histone-modification maps” Nature Reviews Genetics 

(2007) 8 (4): 286-298.). 
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The relative timing of global and repeat sequence hypomethylation and hypermethylation of 

individual CpG islands varies in different cancers [54]. Figure 10 shows a summary of DNA 

methylation patterns changes during cancer and aging, and the different molecular activities and 

cellular functions of DNA methyltransferases (DNMTs). 

 

Figure 10: DNA methylation patterns changes during cancer and aging, and molecular activities 

and cellular functions of DNMTs (source: Gonzalo S. "Epigenetic alterations in aging" Journal 

of Applied Physiology(2010) 109 (2):586–597.). 

 

 

The hypermethylation of tumor suppressor genes has been detected in OSCC and is a hallmark 

of many other cancers; it is mediated by the enzyme DNA methyltransferase and results in stable 

transcriptional silencing of tumor suppressor activity of these genes [49, 127]. 

DNA methylation plays a significant role in the development and progression of OSCC. More 

frequent and higher levels of promoter DNA methylation of several genes have been observed in 

OSCC tissues and precancerous oral lesions in comparison to corresponding normal tissues [58, 

124]. In the last decade, aberrant promoter hypermethylation of many genes has been observed in 

oral and oropharyngeal cancer tissue as well as in premalignant oral lesions and histologically 
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healthy mucosa surrounding the tumor. Thus, methylation could be considered as an early 

marker of malignant progression. Hypermethylation of many tumor suppressor genes including 

P14 and P16 has been seen in dysplasias and in histologically normal-appearing margins of 

OSCC resections [10, 52, 53]. Table 6 shows a summary of sixteen genes with substantial 

evidence for hypermethylated promoter region in OSCC and their reported clinicopathological 

associations [52]. 

 

Table 6. Candidate genes frequently silenced by promoter hypermethylation in OSCC tumor 

tissue. 

Mechanism Gene Gene function Clinicopathological association* 

  CYCA1 Cell cycle Lower histological grade 

  CHFR Early G2/M checkpoint Higher T status 

Cell cycle 
regulation 

P14ARF Proapoptosis LNM**, T status (T2-3), advanced 
stage, reduced recurrence rate, 
favourable prognosis 

  p15 Cyclin-dependent kinase 
inhibitor 2B 

Anatomic site (tongue SCC), alcohol 
and tobacco use 

  P16INK4A Regulates cell cycle G1 
progression 

Larger tumor size, LNM, advanced 
stage 

      Younger age, increased recurrence 
rate, poor prognosis 

  hMSH1/hMSH2 DNA mismatch repair — 

DNA repair MGMT Guanine alkylation 
repair 

Reduced overall  and disease-free 
survival 

  EDNRB Endothelin receptor type 
B 

Alcohol and tobacco use  

Signal 
transduction 

RUNX3 Wnt pathway antagonist LNM, advanced stage, poor 
differentiation 

  SFRP1 Wnt pathway antagonist Male gender 

Tissue 
invasion/ 
metastasis 

ECAD Calcium-dependent cell-
cell adhesion 
glycoprotein 

LNM, increased metastatic potential, 
reduced disease-free survival 

  HIN1 Inhibitor Ras pathway Reduced disease-free survival 

  DAPK1 Proapoptosis LNM 

Tumor 
suppression 

DCC Proapoptosis Invasion of bone and deep tongue, 
reduced survival 

  RASSF1A/RASSF2 Negative RAS 
effector,proapoptotic, 
microtubule stabilization 

Decreased disease-free survival, 
radioresistance 

Other KIF1A Cell division and 
microtubule-dependent 
intracellular organelle 
transport 

Malignant histology 

*Reported significant associations and trends. 

**Lymph node metastasis 
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1.8.1.1. P14ARF gene 

 

P14ARF gene belongs to the INK4b-ARF-INK4a locus on the short arm of chromosome 9 (9p21). 

It codes for the P14ARF protein which is a nuclear protein that exhibits tumor suppressive 

functions (tumor suppressor). P14 has many biological functions. Its chief function is to suppress 

aberrant cell growth by inducing the p53 pathway but also displays p53 independent activities. 

The suppression of aberrant cell growth in response to oncogene activation by activating the 

transcription factor p53 that initiates the expression of many apoptosis inducers and cell cycle 

inhibitory genes is one of the most well-defined functions of P14. P14 is thought to stabilize and 

stimulate p53 activity by neutralizing the inhibitory effect of two ubiquitin ligases; murine 

double minute 2 (MDM2), and ARF-binding protein1/Mcl1-ubiquitin ligase E3 (ARF-

BP1/Mule). Both proteins are specific ubiquitin ligases for p53 and can inhibit its tumor 

suppressor function [52, 123, 145]. As a result of MDM2 function inhibition and stabilization of 

p53 by P14, the stabilized p53 can induce temporary and permanent growth arrest, DNA repair, 

terminal differentiation or apoptosis in response to oncogenic signals and DNA damage [145, 

146]. Elevated expression of ARF counteracts the negative control of MDM2 on p53, leading to 

stabilization of p53 and activation of a p53-dependent transcriptional program that potentiates 

apoptosis or induces cell cycle arrest according to tissue type and activating signals. ARF also 

functions independently of p53 to inhibit cell growth, notably by attenuating the transactivating 

activity of growth-promoting genes such as E2F1 and c-MYC. DNA damage caused by various 

cellular stresses stimulates the p53 pathway through activation of the ataxia–telangiectasia 

mutated (ATM) and/or ataxia–telangiectasia and Rad3–related (ATR) kinases depending on the 

nature of the inducing signal. These enzymes increase the transcriptional activity of p53 by 

promoting its phosphorylation by C-terminal Src kinase-homologous kinase (CHK) kinases. The 

ability of ARF to inhibit MDM2 can modify the p53-dependent DNA damage response. Some 

forms of DNA damage such as UV and cytotoxic drugs can directly stimulate the expression of 

ARF which impinges on ATM and/or ATR signaling by mechanisms that do not involve the p53 

pathways but modify the activity of the ATM/ATR enzymes either directly or indirectly. 

Besides, there is also some evidence that ARF contributes to some DNA repair pathways and to 

chromosomal stability independently of p53; The pathways stimulated by ARF that are 
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significant in maintaining genomic integrity and play a role in genome stability are represented 

in Figure 11. 

 

Figure 11: A model for the role of ARF in tumor suppression (source: Ozenne P., Eymin B., 
Brambilla E. and Gazzeri S. ‟The ARF tumor suppressor: structure, functions and status in 

cancer” Int. J. Cancer (2010) 127: 2239–2247.). 

 

In addition, P14 attenuates ribosomal RNA synthesis and processing by binding to 

nucleophosmin (NPM) [145, 147, 148]. NPM is a nucleolar phosphoprotein, and its 

overexpression level correlates directly with the proliferative state of a cell. It is involved in 

diverse cellular processes including ribosome biogenesis. P14 induces the SUMOylation of its 

partner binding proteins like Mdm2 and NPM. The effects of this SUMOylation are diverse and 

can control protein trafficking and stability, ubiquitination, transcription factors activities, DNA 

repair and centromeric cohesion. P14 also promotes autophagy. The major functions of P14 are 

summarized in Table 7 [145, 148]. 
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Table 7. Major cellular functions of P14ARF
 

Mechanisms Cellular functions 

 

Activation of p53 leading to cell cycle arrest or 

apoptosis  

p53-independent cell cycle arrest or apoptosis 

Decreased rRNA transcription and processing 

Activation of p53 pathways  

Activation of ATM/ATR/CHK pathways  

Activation of DNA repair pathways  

Maintenance of chromosomal stability 

Tumor suppression: 

Cell growth control 

 

Ribosome biogenesis 

DNA damage response 

 

Alteration of the mitochondrial membrane 

potential 

Association with UBC9 (E2). Biological impact 

unknown  

Other functions: 

Autophagy 

Sumoylation 

 

Alterations of INK-4bARF-INK4a locus which lead to the inactivation of P14 are frequently 

identified in human cancers [149, 150]. These alterations can be homozygous deletions, 

frameshift microdeletions/insertions, and nucleotide substitution, as well as promoter CpG 

islands hypermethylation- the main epigenetic alteration and a significant mean of P14 

transcriptional silencing in a variety of tumor types. The frequency of P14 promoter 

hypermethylation varies in different tumor types. Previous studies have reported that epigenetic 

alterations of the P14 gene are important events in head and neck carcinogenesis and in the 

development of benign tumors [153]. 

P14 hypermethylation results in loss of p53 function and deactivation of p21-induced cell 

proliferation. Studies of P14 hypermethylation in oral cancers are somewhat conflicting. It has 

been associated with increased tumor size and tumor stage and nodal metastasis [141], but it has 

also been shown that P14ARF hypermethylation in late-stage tumors, including oral cancer, is 
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associated with a lower recurrence rate and a better clinical outcome compared with patients with 

tumors that were not P14ARF-hypermethylated. Its expression is an independent predictor of both 

relapse and survival in squamous cell carcinomas of the anterior tongue [141, 145]. In addition, it 

has been found that in patients who are under radiotherapy, P14 hypermethylation might render 

tumor cells more sensitive to radiation, improving the prognosis [154].  

 

1.8.1.2. P16INK4a gene 

P16INK4agene also belongs to the INK4b-ARF-INK4a locus on the short arm of chromosome 9 

(9p21), known with different names (P16, CDKN2A, pl6INK4, CDK4I and MTS1)[155, 156]. It  

encodes another tumor suppressor - p16 protein which acts as cell cycle inhibitor that blocks 

abnormal cell growth and proliferation by binding to cyclin-dependent kinases (CDK) 4 and 6, 

and cyclin D [52, 155]. 

P16 function is primarily related to cell cycle as a negative regulator of retinoblastoma tumor 

suppressor protein-E2F transcription factor pathway (pRb-E2F pathway) [157, 158]. At G1-to-S 

transition, p16 specifically inhibits cyclin-dependent -CDK4 and 6-mediated phosphorylation of 

pRb that prevents the release of transcription factors. Sequestering E2F factors as a component 

of pRb-E2F complexes will consequently block cell cycle progression. Altered or inactivated 

P16 is unable to form these complexes and therefore cannot inhibit cell progression through 

abnormal mitotic division [52, 145, 158-160]. P16 also contributes to cell cycle progression 

through alternate and independent regulatory pathways as phosphorylation of the carboxyl-

terminal domain (CTD) of the large subunit of RNA polymerase II, which is an essential 

regulatory event in transcription [158, 161-163]. P16 is involved in cellular senescence and 

aging; its expression level increases remarkably with aging in both healthy and disease states. 

The elevated P16 level induces cellular senescence and aging in various progenitor cells and 

premalignant tumor cells [158, 164, 165].  

The P16 tumor suppressor functions through protein-protein interactions with diverse target 

proteins. Any proteins that are able to influence these interactions between P16 and its targets 

could contribute to the regulation of P16, either positively or negatively. They modulate P16-
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CDK4 association as well as subsequent CDK4-mediated phosphorylation of pRb, most of which 

are related to human cancers [158]. 

P16 is one of the main factors to avert tumor formation and its alterations are among the most 

frequent alterations in human cancers. Its inactivation is observed in close to 50% of all human 

cancers [158, 166]. The estimated frequencies of P16 inactivation vary between different types 

of tumors and ranges from 20% in breast cancer, 30% in bladder cancer to 60% in head and neck 

squamous cell carcinoma and 50-70% in melanoma [158]. 

Four types of alterations inactivate P16 gene: homozygous deletion, loss of heterozygosity 

(LOH), point mutations and hypermethylation. Homozygous deletion and promoter 

hypermethylation usually constitute the majority of P16 alterations. While homologous deletions 

and aberrant methylation-mediated silencing usually lead to complete loss of P16 function in the 

cell, point mutations may only impair the structure and function of P16. An elevated level of P16 

induced by oncogenes, DNA damage response, or aging can trigger and accelerate cellular 

senescence. While the overexpression of P16 is associated with poor prognosis for many cancers 

including oral cancers and is used as a diagnostic tool, its overexpression has also been 

implicated in apoptosis, cell invasion, and angiogenesis. The downregulation of P16 contributes 

to cancer progression by promoting aberrant cell proliferation, and the loss of its expression 

leads to cell immortalization [156, 158, 167]. The altered expression of this gene has previously 

been observed in head and neck squamous cell carcinomas (HNSCC) as one of the genetic 

alterations in the histologically- free resection margins that are adjacent to the primary tumor site 

and may indicate an early malignant change [42]. Figure 12 shows the interactions of P16INK4A 

and P14ARF in the cell cycle. 
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Figure 12: The interactions of P16INK4a and P14ARF in cell cycle arrest, The P16INK4a 

protein inhibits the CDK4/6-cyclin D1 complexes, keeping the retinoblastoma (Rb) proteins in a 

dephosphorylated state, and enables binding and inactivating the E2F transcription factors. Free 

E2F ensures the transcription of various proteins, most of them are necessary for progression to S 

phase. P16INK4a is also upregulated by E2F. In contrast, P14ARF stabilizes and thus activates 

the tumor suppressor gene p53 by inhibiting MDM2, which inactivates p53 by ubiquitin-

mediated degradation. Active p53 induces the expression of p21, a negative cell cycle regulator 

which is an inhibitor of the CDK1-cyclin A/B complexes, thereby preventing the progression 

from G2 phase to metaphase. The human papilloma virus oncoproteins E6 and E7 interfere in the 

Rb pathway and in the p53 pathway, in order to bypass the cell cycle checkpoints. The E7 

oncoprotein promotes the progression to S phase. It binds the Rb proteins and thereby releases 

the E2F transcription factors. The E6 protein targets p53 and induces loss of function by 

degradation (source: Alkaabi A., vanBockel L. W., Pothen A. J., and Willems S. M. ‟p16INK4A 

and p14ARF Gene Promoter Hypermethylation as Prognostic Biomarker in Oral and 

Oropharyngeal Squamous Cell Carcinoma: A Review”. Disease Markers Volume 2014 (Article 

ID 260549).). 
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2. Rationale of the study 

 

A significant percentage of OSCC patients have a poor prognosis. The disease is also 

characterized by a relatively high percentage of recurrences and loco-regional and distant 

metastases. Histological assessment of the patient’s tumor and tumor resection margins is 

currently the main diagnostic and prognostic tool and is still considered as the gold standard for 

tumor behavior prediction. However, it appears that histological status does not always predict 

tumor progression and recurrences. This is especially the case when the tumor margins are 

described as “histologically negative”, i.e. tumor-free. Obviously histology lacks sensitivity for 

the identification of cells that have already undergone some molecular changes but have not yet 

developed a pathologic phenotype, either within the zone of the primary tumor, or even in other 

part of the oral cavity of OSCC patients, seemingly unaffected. Therefore, the study of the 

molecular changes in the tumor, free surgical margins and normal buccal mucosa of the OSCC 

patients may assist in the identification of genetic/epigenetic alteration potentially useful as 

predictors of tumor behavior.  

In other words, considering that genetic alterations come before phenotypic changes of the 

epithelium, molecular assessment of tumor, but mostly surgical margins and healthy oral cavity 

mucosa, could constitute a more sensitive approach to detect the signs of early malignant 

transformation.  
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3. Aims 

 

The aims of the present study were to: 

1. Determine the frequency and level of amplification of oncogenes HER2 and c-MYC in 

tumor tissue, histologically negative margins and healthy buccal mucosa of patients with 

oral squamous cell carcinoma; 

 

2. Determine the frequency of methylation of the CDKN2A locus (P16INK4a and P14ARF) in 

tumor tissue, histologically negative margins and healthy buccal mucosa of patients with 

oral squamous cell carcinoma; 

 

3. Analyze the association between molecular alterations in oral squamous cellular 

carcinoma and histological and clinical parameters (stage/grade, recurrences and 

survival); 

 

4. Analyze the association between molecular alterations in OSCC and epidemiological 

factors; 

 

5. Determine the copy number variation (CNV) in tumor tissue and histologically 

negative margins, compared to reference DNA on a small number of selected OSCC 

patients.  
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4. Material and Methods 

 

4.1. Material 

 

4.1.1. Patients and sampling 

 

A group of 40 OSCC diagnosed patients (38% female and 62% male, aged 65.31±10.50 years; 

56% of them were smokers, and 45% were alcohol consumers), who underwent surgery at the 

Clinic of Maxillofacial Surgery, School of Dental Medicine, University of Belgrade, during the 

period from March 2014 to May 2016, were included in this study. Tumor tissues, tumor free 

(histologically negative) margins tissues, and normal buccal mucosa swabs were collected from 

each participant and frozen at -20°C pending further analyses. 

The histopathological diagnosis of OSCC was established in accordance with the World Health 

Organization (WHO) guidelines, and the tumor staging was performed using the TNM 

classification. All tumors were reviewed by a pathologist and were primary tumors with an 

infiltrative pattern of invasion. The locations of tumors were as follows: lip (n = 11), mandibular 

mucosa (n = 3), buccal mucosa (n = 1), floor of the mouth (n = 16), anterior tongue (n = 1), and 

oropharynx (n = 8). Three samples were taken from each patient: tumor, tumor margin, and 

swab. Margin samples were taken at least 5 mm from the edges of the surgical defects after 

primary tumor excision, and the absence of neoplastic cells was afterwards histologically 

confirmed. Buccal swab samples, considered as an acceptable source for OSCC biomarker 

detection, were taken contra-laterally of the tumor localization from the healthy buccal mucosa 2 

days after tumor resection and after careful mouth disinfection. 

The study was performed according to the ethical principles governing medical research and 

human subjects as laid down in the Helsinki Declaration (2013 version), and with the approval of 

the Ethics Committee of the study institution in Belgrade (no 36/12). All study participants were 

informed of the procedures and signed a written consent form. 
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4.1.2. DNA extraction 

DNA from frozen tumor and margin tissue was extracted according to the standard 

phenol/chloroform extraction procedure described by Sambrook and colleagues after proteinase 

K digestion, (see supplementary1.1). Commercial kit (Invitrogen, Carlsbad, CA) was used for 

DNA extraction from swabs. All manufacturers’ recommendations were followed for reaction 

mixes and profiles (see supplementary 1.2, 1.2.1 and 1.2.2). 

The concentrations of the extracted DNA were assessed spectrophotometrically. Absorbance was 

measured on wave length of 260nm (A260) and 280nm (A280) and the A260/A280 ratio was 

between 1.8 and 2.0. The isolated DNA was stored at -20 °C until further analyses. 

 

4.2. Methodology 

Methylation status of P14 and P16 gene promoters was assessed using methylation-specific PCR 

(MSP). A quantitative real-time polymerase chain reaction (qPCR) and comparative cycle 

threshold (Ct) (∆∆Ct) method of quantitation of HER2 and c-MYC was performed. 

 

4.2.1. Polymerase chain reaction 

Polymerase chain reaction (PCR) is a widely used technique by which a single or a few copies of 

a DNA segment are amplified to produce thousands to millions of copies of a particular DNA 

sequence. It is a very quick, relatively inexpensive, reliable and simple technique. By this 

technique, specific DNA fragments from minute quantities of biological material may be 

amplified, even when DNA source is of relatively poor quality. The basic PCR principle is a 

chain reaction in which one DNA molecule is used to produce two copies, then four, then eight 

and so forth. This reaction is accomplished by polymerases, which are thermostable enzymes 

that string DNA building blocks, so a supply source (dNTPs) of these blocks (four 

deoxyribonucleotides) is needed together with two short single strand fragments of DNA 

(oligonucleotides) that initiate DNA synthesis and serve as primers in new strands synthesis 

[169-171].  
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The main components for the reaction are water, PCR buffer, MgCl2, dNTPs, forward primer, 

reverse primer, target DNA, and the enzyme Taq polymerase. These requirements and steps of 

amplification cycles (denaturation, annealing, and extension) in a polymerase chain reaction are 

illustrated in Figure 13. 

 
Figure 13: The requirements and steps of amplification cycles (denaturation, annealing and 

extension) in a polymerase chain reaction (PCR) (source: Hernandez-Rodriguez P. and Arlen 
Gomez Ramirez A. G.  "Polymerase Chain Reaction: Types, Utilities and Limitations" 

Polymerase Chain Reaction, Dr Patricia Hernandez-Rodriguez (Ed.), InTech (2012), DOI: 
10.5772/37450.) 

 

The PCR technique involves three major steps: the first step is denaturation in which the DNA is 

denatured at high temperatures (between 90-97°C). The second step is annealing where the 

primers anneal to the DNA template strands to initiate the extension, this occurs at a lower 

temperature (50-60°C). The third step is extension in which primer elongation occurs at 

approximately 72°C to create a complementary copy strand of DNA [169, 170, 172].There are 

many types of PCR-based laboratory techniques such as real-time PCR, also called quantitative 

real time polymerase chain reaction (qPCR) which is used to amplify and simultaneously 

quantify a targeted DNA molecule; inverse PCR is a variant of the PCR that is used to amplify 

DNA with only one known sequence; nested PCR is a type of PCR designated to reduce the 

product contamination due to the amplification of unexpected primer binding sites; multiplex 

PCR which simultaneously amplifies several DNA sequences; semiquantitative PCR which 

allows an approximation to the relative amount of nucleic acids present in a sample; reverse 

transcriptase PCR (RT-PCR) which generates cDNA (DNA complementary to RNA) that is then 
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amplified by PCR, and Touchdown PCR is one these PCR types by which primers will avoid 

amplification of nonspecific sequences [169, 170]. There is also methylation-specific PCR which 

is used to determine the DNA methylation status [173]. Nowadays, PCR is widely used in the 

investigations and diagnosis of an increasing number of diseases; it became the standard method 

for research on nucleic acids, and it has been considered as an essential tool in molecular biology 

that allows amplification of nucleic acid sequences (DNA and RNA) through repetitive cycles. In 

microbiology and molecular biology, it is used as research procedure for DNA cloning, Southern 

blotting, DNA sequencing, and recombinant DNA technology. It is used for the diagnosis of 

microbial infections and epidemiological studies, it is used in the identification and 

characterization of viral, bacterial, parasitic and fungal agents. PCR is also used in forensic 

laboratories and for diagnostic tests including those for genetic diseases, cancers [169-172]. 
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4.2.2. Bisulfite modification of DNA and methylation-specific PCR 

To study DNA methylation status, the extracted genomic DNA has to be modified by bisulfite 

treatment, the so-called bisulfite conversion that involves the conversion of cytosine to uracil 

while leaving 5-methylcytosine (5-mC) intact. Unmethylated cytosine residues are deaminated to 

uracil and methylated cytosine (5-mC) residues remain unaffected, enabling PCR amplification 

to recognize uracils as thymines and 5-mC or 5-hmC as cytosines. This allows discrimination 

between methylated and unmethylated cytosine residues, offering single-nucleotide resolution 

information about the methylated areas of DNA [174, 175]. Figure 14 illustrates the DNA 

modification. Beside DNA samples from tissues specimens, controls for totally methylated and 

totally unmethylated human DNAs were always included in the MSP [174]. Our samples were 

converted using EZ DNA Methylation™ Kit (see supplementary 2). 

 

 

 

 

 

 

Figure 14: The bisulfite modification of DNA (source: https://www.epigentek.com/catalog/dna-

bisulfite-conversion-c-75_21_47.html) 

 

Several methods have been developed to study and analyze DNA methylation, but MSP is one 

of the most commonly used. The important advantage of MSP over other methods is its 

simplicity. MSP requires a much lower amount of DNA, isotope use is usually unnecessary, and 

any CpGs, regardless of the sequence around, can be evaluated. Also, interpretation of the 

results is quite simple, which is ideal for a large number of clinical samples analysis. Indeed it 

has been widely used to detect aberrant hypermethylation and inactivation of tumor suppressor 

genes in cell lines and tumor samples, to evaluate methylation status of any DNA sequences, 

such as viral genes, and imprinted X-linked and autosomal genes [173, 176]. MSP is a 

qualitative technique used to detect the presence of methylation in bisulfite-converted DNA; it is 

a rapid and cost-effective, sensitive, and specific method for determining the methylation status 

https://www.epigentek.com/catalog/dna-methylation-c-75_21.html
https://www.epigentek.com/catalog/dna-bisulfite-conversion-c-75_21_47.html
https://www.epigentek.com/catalog/dna-bisulfite-conversion-c-75_21_47.html
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of virtually any CpG rich region. It facilitates the detection of low numbers of methylated alleles 

and the study of DNA from small samples [177, 178]. 

An adaptation of the MSP protocol suggested by Herman et al in 1996 was implemented [179]: 

two separate PCR reactions were performed for each gene, a set of four primers per each gene 

was used: one pair for the detection of methylated CpG-cytosine and the other two for the 

identification of unmethylated CpG-cytosine. The primer sequences and annealing temperatures 

are listed in Table 8. 

Table 8. Primer sequences, amplicon lengths and annealing temperatures for the primers used.  

Gene Primer sequence (5’ - 3’) Amplicon 

length (bp) 

Annealing 

temperature 

(°C) 

ErbB2 Fwd 
ErbB2 Rev 

CCTCTGACGTCCATCCT 
ATCTTCTGCTGCCGTCGTT 

98 55 

c-MYC Fwd 
c-MYC Rev 

GCTCCAAGACGTTGTGTGTTCG 
GGAAGGACTATCCTGCTGCCAA 

158 55 

D2R Fwd 
D2R Rev 

CCACTGAATCTGTCCTGGTATG 
GTGTGGCATAGTAGTTGTAGTGG 

112 55 

P14 UI 
P14 U2 

TTTTTGGTGTTAAAGGGTGGTGTAGT 
CACAAAAACCCTCACTCACAACAA 

132 53 

P14 M1 
P14 M2 

GTGTTAAAGGGCGGCGTAGC 
AAAACCCTCACTCGCGACGA 

122 53 

P16 U1 
P16 U2 

TTATTAGAGGGTGGGGTGGATTGT 
CAACCCCAAACCACAACCATAA 

151 60 

P16 M1 
P16 M2 

TTATTAGAGGGTGGGGCGGATCGC 
GACCCCGAACCGCGACCGTAA 

150 65 

HPV 16 Fwd 
HPV 16 Rev 

TCAAAAGCCACTGTGTCCTG 
CGTGTTCTTGATGATCTGCA 

120 53 

Fwd - forward primer; Rev – reverse primer; U1 – unmethylated forward primer; U2 – 
unmethylated reverse primer; M1 – methylated forward primer; M2 – methylated reverse primer 
 
 
The modified genomic DNA samples were PCR amplified in a total volume of 50 μl, and the 

reaction mix contained 1 × PCR Buffer (10 mM Tris-HCl, 50 mM KCl, 0.1% Triton X-100), 8 

mM MgCl2, 1.25 mM dNTPs, 0.6 μM primers (Invitrogen, Life Technologies, Carlsbad, CA, 

USA), 0.4 μg/μl BSA, 5% DMSO, 1.5U Dream Taq Green DNA Polymerase (Thermo Fisher 

Scientific) and 3 μl of bisulfite treated DNA template. Reactions were carried out in Gene AmpR 

PCR System PeqStar 96 Universal thermal cycler (PEQLAB Biotechnologie GmbH, Erlangen, 

Germany) (Figure 15) and performed under the following conditions: initial denaturation at 95°C 
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for 5 minutes, followed by 40 cycles of 95°C denaturation for 30 seconds and annealing for 30 

seconds, then 72°C extensions for 30 seconds, and final extension at 72°C for 4 min. Moreover, 

to detect the presence of human papillomavirus type 16 (HPV16) in the tumor samples, we use 

the primers for the E6 gene (shown in Table 8) and Dream Taq Green DNA Polymerase. The 

reaction performed following the manufacturer’s recommendations as follows: denaturation at 

95°C for 2 minutes, followed by 35 cycles of denaturation at 95°C for 30 seconds, annealing at 

53°C for 30 seconds, and extension at 72°C for 1 minute, with final extension at 72°C for 7 

minutes. 

 

Figure 15: PeqStar 96 Universal thermal cycler. 

 

The PCR products were loaded on 8% polyacrylamide gels (PAA) for electrophoresis, then 

stained with ethidium bromide and visualized under UV light; the PEQlab electrophoretic unit is 

shown in Figure 16. 



50 

 

 

Figure 16: Gel loading and the electrophoretic unit 

 

 

4.2.3. Gel electrophoresis 

The term electrophoresis refers to the migration of charged molecules in an electrical field in 

stabilized media such as gels; molecule migration velocity depends on the field strength, on the 

net charge, size and shape of the molecules, and also on the ionic strength, viscosity, and 

temperature of the medium in which they are moving. The electrophoresis as a general term 

covers all applications regardless of the material being studied and the medium being used [180-

183]. The nucleic acid DNA has a net negative charge and when subjected to an electrical field it 

will migrate toward the positive pole in a predictable and reproducible mode that can be 

accounted as a negative exponential function of length; shorter molecules will migrate faster and 

longer molecules will migrate slower [181, 182]. There are various types of gel electrophoresis 

that include differences in gel type, i.e. in size, shape, and porousness. The three common media 

used for gel electrophoresis are starch, polyacrylamide, and agarose. The typical method used for 

separation, identification, and purification of nucleic acids is the electrophoresis through an 

agarose or polyacrylamide gels. Even very small molecules of nucleic acids (i.e., 

oligonucleotides) are easily separated in an electrical field by one or the other medium (through 

an agarose or polyacrylamide gels). The fundamental principles for choosing polyacrylamide or 

agarose gel electrophoresis are the length and whether or not the nucleic acid is single-stranded 
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or double-stranded. Short, single-stranded DNAs like oligonucleotides require polyacrylamide 

gels whereas long, double stranded DNAs are best resolved on agarose gels [181-184]. Agarose 

gels are popularly used for the separation of medium and large-sized nucleic acids and have a 

wide separation range, but a relatively low separating power. The main advantages of using 

agarose gels are: they are non-toxic, good for separating large DNA molecules, quick and easy to 

cast, can recover samples by melting the gel, and digesting with an enzyme or treating with 

chaotropic salts [184]. In contrast to these advantages, there are some disadvantages of using 

agarose gels including the high cost of agarose, fuzzy bands and poor separation of low 

molecular weight samples [184]. Polyacrylamide gels are formed by the polymerization of 

acrylamide with a cross-linking agent commonly N,N,N’,N’-tetramethylethylenediamine 

(TEMED) as the catalyst. They have much more resolving power than agarose, can 

accommodate larger quantities of DNA without significant loss in resolution and polyacrylamide 

gels recovered DNA is extremely pure. In addition, the pore sizes in polyacrylamide gels are 

easily altered by changing the concentrations of the two monomers. The main advantages of 

using polyacrylamide gel are: a stable chemically cross-linked gel, sharp bands, and good for 

separation of low molecular weight fragments, while the main disadvantage of using 

polyacrylamide gels is the toxicity of monomers [184]. 

The exact position of DNA bands within the gel can be determined by staining with low 

concentrations of the intercalating fluorescent ethidium bromide dye and visualization under 

ultraviolet light [185].  

 

4.2.4. Real Time Quantitative PCR 

Real-time polymerase chain reaction (qPCR) is a modification of PCR, introduced by Higuchi 

and coworkers in 1992. Real-time PCR enables exact quantification of specific nucleic acids in a 

complex mixture even if the starting amount of material is at a very low concentration. It has 

become widely used for the quantification of specific sequences in complex mixtures, for 

instance in genotyping analyses, the quantification of viral load in patients, and the estimation of 

gene copy number in cancer tissue. However, this technology is most commonly used to study 

gene expression levels by coupling it with the reverse transcription-PCR (RT-PCR) [186-188]. 

The fundamental purpose of real-time PCR is to precisely differentiate and measure specific 
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nucleic acid sequences in a sample. Real-time PCR amplifies the specific target sequence and 

monitors the amplification reaction progress using fluorescent technology. The qPCR reaction 

basic principle is that short DNA sequences are copied and the amount of DNA in the reaction 

should double at each cycle, resulting in an exponential amplification of the initial target DNA 

during the early cycles when the PCR components are largely available compared to the target 

sequence. But, as product accumulates, the substrates are reduced, resulting in the inhibition of 

the reaction [186, 187, 189]. The PCR reaction can be broken into three distinct phases: 

exponential, linear, and plateau. The first phase of the reaction is the exponential phase, where 

the reaction is progressing with 100% efficiency and with product doubling at each cycle. 

Sometimes attaining 100% efficiency is not possible and careful optimization of PCR conditions 

must be conducted to ensure that reactions are proceeding as efficiently as possible [186, 189]. 

While the amplicon continuously accumulates, the PCR ingredients are consumed, the primer 

starts competing with amplicon reannealing to itself, and the reaction capability decreases. Over 

time, the reaction slows down and enters the second phase, linear phase or the non-exponential 

phase where there is no longer near doubling of the amplicon. Because of substrates reduction 

and product inhibition, the reaction will slow down and stop, and enter the plateau phase. 

Compounded variation during the linear phase can lead to large differences in the final amount 

of product and each replicate reaction can plateau at different points due to different reaction 

kinetics unique to each sample. Figure 17 represents the three real-time PCR reaction phases and 

the variations of these phases for each sample. 
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Figure 17: PCR reaction phases, the x-axis: cycle number, y-axis: amount of DNA (source: 
Fraga D., Tea Meulia T., and Fenster S. ‟Real-Time PCR” Curr. Protoc. Essential Lab. Tech. 

(2008)10.3.1-10.3.34. ). 

Real-time PCR measures the amount of amplicon produced during each amplification cycle 

using fluorescence-based technology and can quantify amplicon production at the exponential 

phase of the PCR reaction in contrast to measuring the amount of product at the end-point of the 

reaction. The amplicon is monitored by labeling the accumulating product with a fluorescently 

tagged substrate during the amplification procedure. In real-time PCR reaction, a fluorescent 

reporter molecule such as a double-stranded DNA- binding dye is used to monitor the progress 

of the amplification reaction. With each amplification cycle, the increase in fluorescence 

intensity is proportional to the increase in amplicon concentration; with the qPCR instrument 

system, the data for each sample during each PCR cycle will be collected. The resulting plots of 

fluorescence vs. cycle number for all the samples are then set with their background fluorescence 

at a common starting point (a process known as baseline correction). Then, a threshold level of 

fluorescence is set above the background but still within the linear phase of amplification for all 

the plots. The cycle number where the amplification plot crosses this threshold, the fluorescence 
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level is called the “Ct” or threshold cycle. This Ct value can be directly related to the starting 

target concentration of the sample. The greater initial DNA template amount in the sample, the 

earlier Ct value for that sample [186, 189, 190]. DNA binding dyes, like SYBR Green I and 

EvaGreen® dyes, these dyes are cost-effective and easy to use. When such dyes are free in 

solution, they display comparatively low fluorescence, but when bound to double-stranded DNA, 

their fluorescence increases by over 1000- fold. As the double-stranded DNA increases, the dye 

binding sites will increase. This dye property provides the mechanism that allows it to be used to 

track the PCR product accumulation. As the target DNA is amplified, it’s increasing 

concentration in the solution directly proportion to the fluorescence, it can be directly measured 

by the increase in fluorescence signal; SYBR® Green I is 1000-fold more fluorescent in the 

bound state than in the unbound state. As PCR amplification increases the amount of dsDNA 

present, the fluorescence signal increases proportionately. Figure 18 represents bounded and 

unbounded SYBR Green I detection mechanism. 

 

Figure 18: SYBR Green I detection mechanism (source: Agilent Technologies ‟Introduction to 
Quantitative PCR: Methods and Applications Guide” (2016).) 

 

The results are calculated as “relative quantity to the calibrator”, where the calibrator sample is 

assigned an arbitrary quantity of “1” and all the other samples are expressed in terms of their fold 

difference to this sample. The earliest approximation method of comparative quantitation ∆∆Ct 

is used for this purpose; it utilizes the equation [189, 191]: 

Relative quantity to the calibrator = 2-ΔΔCt 

Where ∆∆Ct = (CtGOI – Ctnorm) unknown – (CtGOI – Ctnorm) calibrator 

GOI refers to the gene of interest (tested gene), norm refers to the reference gene  
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The ∆Ct values calculation is illustrated in Figure 19. 

 

 

Figure 19: The Calculation of ∆Ct using ∆∆Ct method, where ∆Ct is determined by calculating 
the difference between the Ct of the normalizer and Ct of the GOI for each sample (source: 
Agilent Technologies ‟Introduction to Quantitative PCR: Methods and Applications Guide” 
(2016).).  

 

A quantitative real time polymerase chain reaction and comparative cycle threshold (Ct) method 

was performed for ErbB2 and c-MYC quantitation [192]. Maxima SYBER Green qPCR Master 

Mix (Thermo-Fisher Scientific, Waltham, MA, USA) was used following the manufacturer’s 

instructions and 20ng of DNA was added as a template in each reaction. All qPCR experiments 

were performed in duplicate. The primer sequences, amplicon lengths and annealing 

temperatures are listed in Table 8. To confirm the specificity of the amplified products, a melting 

curve analysis was performed in each case and the Ct value was calculated for each sample and 

the amplification levels were calculated as 2–∆∆Ct. A single copy gene encoding the dopamine D2 
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receptor (D2R) was used as a reference gene, to normalize the amplification levels of ErbB2 and 

c-MYC. In order to avoid any false positives, a gene dose greater than 3.5 was considered as 

amplification.   

 

4.2.5. Array comparative genomic hybridization analysis 

In the present study, array comparative genomic hybridization (CGH) analysis was performed 

commercially in the Institute of Medical Genetics, Academic Hospital of Udine, Italy. In brief, 

CGH is a molecular cytogenetic method for analysing copy number variations (CNVs) in the 

DNA of a test sample compared to a reference sample. This is achieved through the use of 

competitive fluorescence in situ hybridization and involves the isolation of DNA from the two 

sources to be compared, and a reference source. Each DNA sample is labeled with fuorescent 

molecules of different colours, usually red and green, followed by the denaturation of the DNA, 

and the hybridization of the two resultant samples in a 1:1 ratio to a normal metaphase spread of 

chromosomes, to which the labeled DNA samples will bind. Using fluorescence microscope and 

computer software, the differentially coloured fluorescent signals are then compared along the 

length of each chromosome for identification of chromosomal differences between the two 

sources. A higher intensity of the test sample colour in a specific region of a chromosome 

indicates the gain of material of that region in the corresponding source sample, while a higher 

intensity of the reference sample colour indicates the loss of material in the test sample in that 

specific region. A neutral colour (yellow if the fluorophores are red and green) indicates no 

difference between the two samples in that location.  

In array CGH, a sensitive, fast and highthroughput technique, the metaphase chromosomes are 

replaced by cloned DNA fragments (+100–200 kb) of which the exact chromosomal location is 

known, thus allowing the detection of CNV in more detail and making possible the detection of 

copy number changes of 5-10 kb. It has been successfully applied in the identification of new 

and recurrent microdeletions and duplications in birth defects, but also in cancer. 

Array CGH is based on the same principle as conventional CGH. DNA from a control sample 

and DNA from a patient sample are differentially labelled with two different fluorophores (Cy3 
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and Cy5, usually) and equal quantities of the two DNA samples are cohybridized competitively 

onto oligonucleotide targets. This is followed by digital capturing and quantification of the 

relative fluorescence intensities of each of the hybridized fluorophores. If there is an altered 

Cy3:Cy5 ratio this indicates a loss or a gain of the patient DNA at that specific genomic region 

(Figure 20). 

 

Figure 20: Array CGH analysis; hybridization of differentially labeled test (patient) and 

reference (normal control) DNA. (source: http://www.utoronto.ca/cancyto). 

 

CGH analysis was performed on 5 patients only. Two samples from each patient were used for 

DNA extraction - a tumor and a margin sample. Genomic DNA from a healthy donor was used 

as reference.  
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4.3. Statistical analysis 

Statistical Package for Social Science (SPSS software package, version 17.0; SPSS Inc., 

Chicago, IL, USA) was used for all statistical analyses. Pearson's chi-squared test (χ2) and 

Fisher’s exact test were performed for association studies. Kaplan–Meier analysis was used for 

survival estimation. Survival curves were compared by log-rank test. All statistical tests were 

two-sided and P values of <0.05 were considered statistically significant. 

 

 

https://en.wikipedia.org/wiki/Chi_(letter)
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5. Results 

 

5.1. Distribution of genetic and epigenetic alterations in tumors, tumor 

margins and healthy mucosa 

Our results show a statistically significant difference in gene alteration distribution between 

tumors, tumor margins, and swabs for all markers analyzed, with tumors showing the highest 

prevalence of alterations and swabs the lowest. All the main data are summarized in Table 9. 

 

Table 9.  Frequency of alterations in tumors, margins and swabs 

 N HER2 

amplification 

P c-MYC 

amplification 

P P14 

methylation 

P P16 

methylation 

P 

T
um

or
 40   10 

0.034 

  9 

0.023 

 36 

0.004 

 31 

<0.001 

M
ar

gi
n 

40    4  4  32  28 

S
w

ab
 40   3 2 25 14 

 

When considering all the three types of samples together, the most frequent alteration was P14 

methylation. P14 was methylated in 36 samples (90%) of tumors, in 32 samples (80%) of 

margins, and in 25 samples (62.5%) of healthy mucosa. The average incidence of P14 

methylation was 77.5%. There was a significant difference in P14 methylation frequency 

between tumors and healthy oral mucosa (Figure 21). 

P16 methylation was the following most frequent molecular event. P16 was methylated in 31 

samples (77.5%) of tumor tissues, in 28 samples (70%) of margin tissues, and in 14 samples 

(35%) of healthy mucosa swabs. The average frequency of P16 methylation was 61.7%. There 
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was a statistically significant difference in P16 methylation percentage between tumor and 

margins, and tumors and healthy mucosa (Figure 21). 

HER2 amplification was found in 10 samples (25%) of tumors, in 4 samples (10%) of margins, 

and in 3 samples (7.5%) of healthy mucosa; its average frequency was 14.16%. There was a 

statistically significant difference between HER2 amplification in tumors and mucosa swabs 

(Figure 21). 

Finally, the least frequent molecular alteration was c-MYC amplification. c-MYC was amplified 

in 9 samples (22.5%) of tumors, in 4 samples (10%) of marginal tissue, and in 2 samples (5%) of 

normal mucosa, the average frequency of amplification being 12.5%. The difference in 

percentage of c-MYC amplification between tumors and mucosa samples was statistically 

significant (Figure 21). 

 

Figure 21: Distribution of genetic/epigenetic alterations in tumor, margin and swab samples. 

 

5.2. Co-alterations in tumors, tumor margins, and swab samples 

Molecular co-alterations in tumor, margin and mucosa swab samples were observed. The 

average co-alterations number in tumors was 2.15 per sample; 10 samples (25%) were with no or 

one alteration while 30 samples (75%) were with two or more alterations. The average co-
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alterations number in margins was 1.70 per sample; 17 samples (42%) were with no or one 

alteration while 23 samples (58%) were with two or more alterations. Finally, in normal mucosa 

swab samples the average co-alterations number was 1.13 per sample; 30 samples (75%) were 

with no or one alteration, while 10 samples (25%) were with two or more alterations. The 

differences between tumors and margins, as well as between tumors and swabs were statistically 

significant (P<0.001 and P=0.027, respectively). The co-alterations in the three tissue types are 

illustrated in Figure 22. Five patients had all four alterations in their tumor samples, while none 

of the swabs harbored all of these genetic/epigenetic alterations. 

 

     Figure 22: Co-alterations in tumor, margin and swab samples. 

 

When considering the alterations simultaneously in tumor, tumor margin and healthy mucosa 

samples, P14 methylation was found most frequently; methylation was found in the three tissues 

(tumors, margins, and mucosa) of 25 patients (62.5%); methylation in tumors and margins was 

found in 7 patients (17.5) and methylation only in the tumor tissues was found in 4 patients 

(10%). Four patients (10%) had no P14 methylation in any of the tissues.  

P16 methylation was found in the three tissues (tumors, margins and mucosa) of 14 patients 

(35%); methylation in the tumor and margin tissues was found in 14 patients (35%), and in the 
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tumor tissue only in 3 patients (7.5%). In 9 patients (22.5%) no methylation in any of the tissues 

could be detected.  

HER2 amplification was found in all three tissues of 3 patients only (7.5%). HER2 was amplified 

in the tumor tissue of 6 patients (15%), in the tumor and margin tissues of one patient (2.5%). 

There was no HER2 amplification in the tissues of 30 patients (75%).  

c-MYC amplification was found in the three tissues of 2 patients (5%), in the tumor and margin 

tissues of 2 patients (5%) and only in the tumor tissues of 5 patients (12.5%). Thirty one patients 

(77.5%) had no c-MYC amplification in any of the tissues. The distribution of these alterations in 

the three tissue types is given in Figure 23. 

 
 

               Figure 23: The distribution of the gene alterations in the three tissue types. 
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5.3. Molecular alterations and clinical and histopathological data 

According to our results, a clear trend of an increasing number of alterations with increasing 

clinical stage and histological grade was observed for all the studied markers except P14, and in 

all three types of patient specimens, but without reaching statistical significance (Table 10). 

Interestingly, the only exception was the association between P14 methylation and lower 

histological grades and clinical stages. P14 methylation of mucosa samples of OSCC shows an 

association with lower clinical stages (p=0.033).  

 

Table 10. The association between the presence of gene amplification (HER2, c-MYC) and 

methylation (P14 and P16) and the clinical stage and histological grade  

  Low stage 

(%) 

High stage 

(%) 
P value 

Low grade 

(%) 

High grade 

(%) 
P value 

T
U

M
O

R
 

HER2 22.7 27.8 0.497 16.7 28.6 0.355 

c-MYC 13.6 33.3 0.135 16.7 25 0.447 

P14 90.9 88.9 0.617 100 85.7 0.224 

P16 68.2 88.9 0.118 66.7 82.1 0.249 

M
A

R
G

IN
 

HER2 4.5 16.7 0.230 8.3 10.7 0.654 

c-MYC 9.1 11.1 0.617 8.3 10.7 0.654 

P14 90.9 66.7 0.065 91.7 75 0.225 

P16 68.2 72.2 0.529 66.7 75 0.521 

S
W

A
B

 

HER2 4.5 11.1 0.423 8.3 7.1 0.668 

c-MYC 0 11.1 0.196 0 7.1 0.485 

P14 77.3 44.4 0.035* 66.7 60.7 0.505 

P16 31.8 38.9 0.446 16.7 42.8 0.108 

Low stage - stage I and II; high stage – III and IV, low grade – grade I; high grade – grade II and III 
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5.4. The association of molecular alterations and overall survival  

The evaluation of 3-year survival rates with Kaplan – Meier analysis and log-rank test, showed a 

statistically significant association between multiple alterations in swabs and patient’s survival. It 

was shown that patients with 3 alterations in swab samples had a significantly shorter survival 

(P=0.027). The Kaplan-Meier survival curves for patients with multiple alterations are shown in 

Figure 24. 

 

 

Figure 24. The association between multiple alterations in swab samples and survival. 

 

 

There was no association between survival and multiple alterations in tumors and margins 

(P=0.635 and P=0.158, respectively). The association of survival with multiple alterations in 

tumors and margins is shown in Figure 25a and Figure 25b. 
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Figure 25a: The association between multiple alterations in tumor samples and survival. 

 

 
Figure 25b: The association between multiple alterations in margin samples and survival. 
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The same analysis was used to evaluate the association between survival and the alterations of 

the studied markers in the three tissue types. Taken altogether, there was no significant 

association between survival and the alterations of c-MYC, HER2, P14 and P16. P values were 

0.235, 0.078, 0.341, and 0.238 respectively. The association between survival and the alterations 

of the c-MYC, HER2, P14, and P16 in all the tissue samples are given respectively in Figure 26a, 

Figure 26b, Figure 26c and Figure 26d. 

  

 

Figure 26a: The association between survival and the alterations of c-MYC in the tissue samples. 
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Figure 26b The association between survival and the alterations of HER2 in the tissue samples. 

 

 

Figure 26c the association between survival and the methylation of P14 in the tissue samples. 
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Figure 26d: The association between survival and the methylation of P16 in the tissue samples. 

 

 

However, when considering separately different genes and different types of tissues, a significant 

association between the amplification of HER2 in margin samples and decreased survival was 

observed (P = 0.035) (Figure 27). 
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Figure 27: The association between HER2 amplification in margin samples and decreased 
survival 

 

There was no association between survival and HER2 amplification in tumor and swab samples 

(P=0.478, and P=0.187, respectively). 

Also, there was no significant association between survival and c-MYC amplification in tumor, 

margin and swab samples (P=0.841, P=0.223, and P=0.436, respectively)  

There was no significant association between survival and P14 methylation in tumor, margin, 

and swab samples (P=0.219, P=0.811, and P=0.708, respectively). Similarly, no association of 

P16 methylation in the tumor, margin, and swab samples with survival could be established 

neither (P=0.220, P=0.652, and P=0.163, respectively).  
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5.5. Molecular alterations and disease specific survival 

Using Kaplan-Meier analysis with long-rank test, the 3-year disease-specific survival rates were 

also calculated and a highly significant association between shorter survival and HER2 

amplification in margin samples (P<0.001) and swabs (P=0.013) was found.  

Simultaneous HER2 amplification in all three patients’ samples was also correlated with poor 

survival (P < 0.001), as showed in Figure 28a, Figure 28b and Figure 28c. 

 

Figure 28a: The association of disease specific survival with HER2 amplification in tumor 

margin samples.  
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Figure 28b: The association of disease specific survival with HER2 amplification in healthy 

mucosa samples.  

 

Figure 28c: The association of disease specific survival with the simultaneous HER2 

amplification in all three samples. 
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No significant disease-specific survival decrease was observed in association with c-MYC 

amplification, P14 or P16 methylation.  

However, there was a significant association between decreased survival and the presence of 

more than two alterations in margin (P=0.001) and swab samples (P<0.001). These findings are 

given in Figure 29a and Figure 29b. 

 

Figure 29a: The relation of disease-specific survival with the presence of more than two 

alterations in tumor margin. 
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Figure 29b: The relation of disease-specific survival with the presence of more than two 

alterations in swab samples. 
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5.6. Molecular alterations and epidemiological and etiological factors 

Interestingly, we were not able to establish a significant association between various 

epidemiological factors (age, sex, smoking and drinking status) and molecular findings. The lack 

of a strong relationship between these parameters and molecular changes is probably due to a 

relatively small number of patients, but also potential inaccuracy of the data obtained during 

patients interviewing and charting (denial of smoking or alcohol drinking, for instance). 

As one of recently uncovered risk factors, with relatively high impact on OSCC development in 

the younger population human papilloma virus type 16 was also tested. Out of 40 samples, 

HPV16 was detected in eight samples (20%). Four of them were lip tumors and four were 

oropharyngeal tumors. In these eight samples, HER2 amplification was found in two cases, and 

c-MYC amplification was found in one case only. P14 and P16 were hypermethylated in the 

majority of HPV-positive cases. Six out of eight HPV positive patients showed P14 and P16 

hypermethylation at the same time. There was no statistically significant association between 

HPV infection and any of the molecular alterations (P>0.05). 

 

5.7. Array CGH analysis 

Deletions and duplications were found in all the analyzed samples. A high heterogeneity was also 

observed. Namely, most aberrations were present in single patients. Though significant 

differences between tumor and margin were present, several variants seemed to be characteristic 

for both the tumor and the corresponding margin. The differences between the genomes 

originating from tumor and from margin are illustrated in Figure 30a, Figure 30b and Figure 31. 

 

 

 

 



75 

 

 

Figure 30a: Comparative representations of deletions and duplications in margin tissues versus a 

normal reference DNA.  
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Figure 30b: Comparative representations of deletions and duplications in tumor tissues versus a 

normal reference DNA. 
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Figure 31: Comparison of anomalies in tumor and margin tissues in three patients. Red colour 

indicates the duplications and the green colours shows deletions. Only anomalies common 

between tumor and margin and anomalies common in tumors of at least tow different patients are 

presented. 
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In nine regions in total, margin and tumor tissues showed significant similarities in terms of 

detected anomalies. The regions and the genes of potential interest within those regions are given 

in Table 11. 

 

Table 11. Nine common regions between tumors and margins and the genes within the regions 

Chromosomes  Genes  

Chr1q32.1 TIMM17A; ERT  

Chr2q24.3 
GRB14; COBLL1; SLC38A11; SCN3A; SCN2A; 
CSRNP3; GALNT3; TTC21B; SCN1A; SCN9A; 
SCN7A; XIRP2; B3GALT1; STK39;  

Chr3q13.13 unknown  
Chr9p13.3 UBE2R2; UBAP2; DCAF12;  
Chr9q22.32 unknown  

Chr11q13.3-q13.4 

FGF4; FGF3; ANO1; FADD; PPFIA1; CTTN; 
SHANK2; DHCR7; NADSYN1; KRTAP5-9; 
KRTAP5-10; RNF121; IL18BP; NUMA1; 
LRTOMT; FOLR3; FOLR2; INPPL1; PHOX2A; 
CLPB; PDE2A; ARAP1; STARD10; ATG16L2; 
FCHSD2; P2RY2; P2RY6; ARHGEF17; RELT; 
FAM168A  

Chr12q15 unknown  
Chr17q12 cDNA: FLJ21341 fis, clone COL02653  

Chr17q21.32 
HOXB2; HOXB3; HOXB4; HOXB7; HOXB8; 
HOXB9  
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6. Discussion  

For decades, scientists have put enormous effort in the study of the origins of human cancer 

including oral cancer, and the relative roles of genetic versus epigenetic abnormalities have been 

extensively discussed. An explosion of data showing the importance of both genetic and 

epigenetic processes has led to the understanding that genetics and epigenetics cooperate at all 

stages of cancer development [193].   

Genetic and epigenetic biomarkers are useful in diagnosis, estimation of the risk of developing 

cancer, prediction of the treatment efficacy and clinical outcome of different human 

malignancies. Moreover, some of these markers are expressed during early stages of the tumor 

development and as a result, provide an opportunity to develop timely intervention and treatment 

strategies. Attempts are being made to validate cancer biomarkers in histologically tumor-free 

samples. Once validated, these markers could be used both in clinical settings, and in screenings 

with the aim of identifying at risk populations. Currently, there are no accurate markers that 

could be used to recognize with absolute certainty which patients are likely to be at high risk for 

aggressive tumors. Discovery of such biomarkers is important for better management of patients 

and their stratification for treatment purposes. 

The oral cavity is a very fertile soil for tumor development. The increased opportunity for tumor 

development at this site is mainly due to its exposure to various environmental mutagens 

(carcinogens). Mutagens create fields with genetically/epigenetically altered cells that are at 

increased risk of undergoing malignant transformation. Indeed, oral cancer appears to be an 

anaplastic predisposition of numerous cells, resulting in multifocal development of neoplasia, 

rather than a process locally affecting a restrained number of cells [194].   

Our understanding and knowledge of the molecular biology of oral squamous cell carcinoma 

have progressed significantly over the past decade and yet this profound increase in basic science 

knowledge has not affected the ability to control OSCC or provide new tools to improve 

patients’ outcome. The main challenges providing comprehensive management for patients with 

oral cancer which include difficulty in predicting the capricious clinical behavior of oral cancer, 

recurrence at the primary site after resection, cervical and distant metastasis, and the 

development of second primary oral cancers have remained the same. These clinical challenges 

and solutions to them have a molecular basis. Furthermore, molecular approaches are clearly 
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going to be used to predict clinical behavior, determine prognosis, guide surgical treatment, and 

assist with tumor surveillance. 

Tumor recurrence and second primary tumors, even when surgical margins are 

histopathologically normal (tumor-free), support the concept of field cancerization, i.e. the 

formation of multiple patches of premalignant disease. Both local recurrences and second 

primary tumors are considered to be a poor prognostic sign. Local recurrences occur in 10-30%, 

while the incidence rate of second primary tumors is 10-35% of patients with surgical margins 

diagnosed as histopathologically tumor-free, depending on both the localization of the first 

primary tumor and the age of patients with oral squamous cell carcinoma [195].  

The debate on surgical margins in oral cancer patients in terms of their importance for the 

recurrence risk assessment is never-ending, yet it appears that their histological status may not 

always be a reliable predictor of patient’s fate. Histopathology lacks sensitivity in identifying 

cells that have already started the process of malignant transformation but have not yet 

developed a fully neoplastic phenotype. Therefore, the analysis of molecular changes in the 

tumor tissue, tumor margins tissue and normal oral mucosa of the OSCC patients might assist in 

identification of biological markers predictors of recurrences. It would also help to better classify 

patients according to the level of risk of loco-regional recurrence and development of a second 

primary tumors. 

The present study analyzed a particular group of genes (c-MYC and HER2 oncogenes, and P14 

and P16 tumor suppressors) involved in the regulation of the cell cycle, simultaneously in 

tumors, tumor margins and unaffected oral mucosa of patients with OSCC. The results suggest 

that neither “negative” margins nor “normal” mucosa could be considered as such. Namely, 

alterations were found not only in tumor tissue, but also in margins and oral swabs. The finding 

of cells in the tumour margins and normal mucosa harboring multiple genetic alterations that can 

potentially lead to a neoplastic transformation in tumor margins and normal mucosa is one more 

contribution to the theory of oral field cancerization [196].   

As expected, the highest incidence of alterations was found in the tumor tissues. The next highest 

incidence was in the tumor margin tissues and, again quite expectedly, the lowest levels were 

detected in ‘normal’ oral mucosa of our OSCC patients.  
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Interestingly, epigenetic changes were significantly more frequent with an average 69.6% 

(77.5% and 61.7% in P14 and P16 respectively) than mutations which were found with an 

average frequency of 13.34% (14.17% and 12.5% in HER2 and c-MYC respectively). Co-

alterations (concurrent molecular events) were more prevalent in tumors with an average 2.15 

alterations per sample and margins with an average 1.70 alterations per sample, than in ‘normal’ 

mucosa which was with an average 1.13 alterations per sample. A significantly lower incidence 

of co-alterations was found in swabs compared to both tumors and margins. None of the swab 

samples harbored all 4 alterations, but OSCC patients with 3 alterations in the ‘normal’ mucosa 

had a statistically significant shorter survival.  

Oncogenes have been shown to undergo amplification during cancer development; this 

activation is a hallmark of nearly all advanced tumors. The amplified genes represent attractive 

targets for diagnostics, prognostics, and therapy. Recently, it has become evident that molecular 

classification of tumors gives fundamental knowledge about the mechanisms of carcinogenesis 

and guides clinical practices and the development of targeted therapies [81, 82]. Among the most 

studied oncogenes in human solid tumors, which are activated by amplification are c-MYC and 

HER2 [83]. The c-MYC oncogene contributes to at least 40% of tumors [90] and has been 

implicated in their progression [197]. It is amplified in different cancer types at various 

frequencies: in human breast cancer, it was found to be amplified in the range of 10-50% 

[198,199], in gastric cancers in the range 15-30% [200], in about 30% of ovarian cancers [201], 

in up to 50% of hepatocellular carcinomas [197], and in up to 70% of colorectal 

adenocarcinomas [202]. In the present study, c-MYC amplification was the least frequent 

alteration with an average frequency of 12.5% (22.5% of tumors, 10% of tumor margins, and 5% 

of swabs harbored the amplification). An increase in the incidence of c-MYC amplification with 

increasing clinical stage and histological grade was registered in tumors, margins, and normal 

mucosa, but without statistical significance, possibly due to the relatively small sample size. The 

c-MYC amplification in the margins is lower than the results of a previous study on OSCC by our 

study group which showed a relatively high percentage of cases with c-MYC amplification (30%) 

[203].  

However, it must be underlined that this is the first study of c-MYC amplification in normal 

mucosa of patients with OSCC. Since being unique, the findings could not be compared to the 

findings of other studies in this respect. In the case of oral tumors, previous studies correlated    
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c-MYC alterations with tumor stage and found that it was a clear indicator of poor prognosis 

[86]. Usually it was associated with poorly differentiated tumors [93]. c-MYC is considered as an 

important marker in oral dysplasia and OSCC. Its presence was correlated with the progression 

of dysplastic changes and with tumor grade [95]. The c-MYC amplification has been described in 

OSCC at various frequencies, ranging from 8.8% to 81.3%, depending mainly on the 

methodology used for the detection of gene amplification. A previous study of this group showed 

a relatively high percentage of cases with c-MYC amplification but no association was found 

between c-MYC amplification and OSCC stages and grades. Some studies have shown a 

correlation of c-MYC alterations (gene amplification and/or protein overexpression) with 

advanced OSCCs [196, 204, 205], while others have not made a clear correlation [206, 207]. 

This could be explained by numerous factors modulating the expression and function of c-MYC 

such as cell type, tumor location and the interaction between cells and extracellular environment 

[83]. In conclusion, it must be emphasized that the results of different studies dealing with the 

importance of c-MYC amplification in OSCC are quite inconsistent and often conflicting.  

Generally, HER2 is amplified and overexpressed in a significant number of human tumors; its 

amplification has frequently been detected in tumors of various tissues such as breast, ovary, 

bladder, stomach, lung, gastric and salivary glands [69, 208]. It is not uncommon to encounter a 

huge variation in the frequencies of reported amplification of HER2 in different studies and for 

different tissues. For instance, HER2 over-expression/amplification in ovarian carcinomas shows 

considerable variation ranging from 8- 66% [209]. Similarly, in OSCC, HER2 

amplification/aberrant expression has been frequently observed, but the reported results are 

controversial because of their wide range (between 0% and 88%) [112]. Our results showed that 

HER2 amplification was a relatively frequent event; it was amplified with an average 14.16% 

(22.5% of tumors, 10% of tumor margins, and 5% of swabs).The same trend in gene 

amplification with higher clinical stage and histological grade was also noted for HER2 as it was 

the case with c-MYC amplification, but without statistical significance. However, importantly, 

the presence of HER2 amplification in tumor margins and swabs was significantly correlated 

with higher disease specific mortality. Our findings are in line with the results of a meta-analysis 

that demonstrated a significantly higher 5-year mortality rate in HER2-positive oesophageal SCC 

[210]. It is also in line with the results of a previous study performed at the School of Dental 

Medicine, University of Belgrade, showing HER2 amplification in OSCC margins to be a 
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predictor of a poor outcome in OSCC patients [203]. On the other hand, in another study, 

Hanken et al did not find association of HER2 amplification with survival of OSCC patients 

[104]. In breast and lung tumors, HER2 amplification has been associated with a poor prognosis, 

while overexpression in gastric tumors was related to the presence of metastases [69]. Two 

reports on carcinoma ex-pleomorphic adenoma have shown an association of HER2 

amplification with shorter survival as well [208, 211], and with worse prognosis [179].  

Once more, we must emphasize, that there are no previous studies dealing with HER2 

amplification in healthy mucosa of OSCC patients, and thus no comparison with literature data 

could be done in this regard. 

As we can see, our results showed that the amplification of both genes is observed in the three 

tissue types (tumor, tumor margins and normal buccal mucosa) at various frequencies, 

suggesting that this genetic alteration, to some extent, is an early event in the development of 

oral cancer. The detection of amplification in normal buccal mucosa could be used as a predictor 

of disease outcome in OSCC patients.     

Recent studies have described epigenetic aberrations and their critical role in cancer progression 

and prognosis; most of these studies have focused on aberrant DNA methylation status of the 

promoter regions in TSGs and their silencing effects. Epigenetic alterations in cancer, including 

oral cancer, affect or inactivate the functions of genes without altering their structure or their 

DNA sequence [51]. DNA methylation is the most common epigenetic alteration and considered 

as an early event in oral carcinogenesis [32, 50]. Knowledge of the hypermethylation of certain 

genes may contribute to a deeper understanding of cancer; the hypermethylation of tumor 

suppressor gene (TSG) promoters which is regarded as the major epigenetic change of cancer is 

a powerful mechanism of transcription silencing and can be found in almost all types of cancers. 

Assessing the methylation status of tumor suppressor genes represents a powerful tool for early 

diagnosis of various cancer types [51, 59, 179]. The hypermethylation is found in cancer lesions, 

cancer precursor lesions and in healthy mucosa, but at different percentages and that is why it 

has been proposed as a diagnostic and prognostic molecular marker to assist in better 

identification of lesions at risk of malignant transformation  [51]. The presence of methylation in 

specific tumour suppressor genes could modify their function and alter cell cycle control, so the 

patients could have an increased risk of developing cancer and also a more aggressive 
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malignancy [51]. Promoter hypermethylation of multiple genes has been previously described in 

OSCC [52].  

Aberrant promoter hypermethylation of P14 has been observed in many cancer types; it has been 

observed in lung cancer, breast cancer, gastric cancer, ovarian cancer, uterine cancer, colorectal 

carcinoma, colon cancer, and in oral cancer as well. In different cancer types it was 

hypermethylated at various frequencies. For instance, its promoter hypermethylation was 

observed in about 30% of lung cancers, 28% of colorectal carcinomas, 51% of colon cancers, 

24% of breast cancers, 24% of gastric cancers, in 16% of uterus cancers and in 5% of ovarian 

cancers [52,145,152]. In one study of our group on hypermethylation of P14 promoter in 

mucoepidermoid carcinoma (MEC), the most remarkable finding was that 100% of MECS were 

with P14 promoter hypermethylation [179]. There are not many studies about the prevalence of 

P14 promoter hypermethylation in OSCC. In addition, there are no such studies in margins and 

normal mucosa of oral cancer patients. The frequency of the reported hypermethylation of the 

promoter regions of P14 in OSCC patients ranges from 3.8 to 44% in tumor samples (the only 

tissue that was tested) [141, 149], which is significantly lower than in our study. Differences in 

methylation frequencies may, among others, be attributed also to environmental, geographical, 

ethnical etc. factors [196]. Interestingly, in our study P14 methylation showed a statistically 

significant association with lower histological grade tumors (p=0.35), which is in agreement with 

some previous reports on the association of P14 methylation with lower recurrence rate and good 

prognosis [154, 217]. On the other hand, it is in contrast with some other studies. For instance, 

P14 hypermethylation has been observed as a late event in carcinogenesis, associated with 

increased tumor size, tumor stage and nodal metastasis, although in these late-stage tumors it 

appeared as a predictor of lower recurrence rate and better clinical outcome [52,141]. 

The P16 gene was also found to be hypermethylated in different cancer types at various 

frequencies; its promoter hypermethylation was observed in about 31% of lung cancers, 48% of 

lymphomas, 37% of colon cancers, 17% of breast cancers, 36% of gastric cancers, and in 18% of 

ovarian cancer [152].  

The loss of P16 activation by methylation has also been observed in OSCC, and it is considered 

to be one of the initial events in oral carcinogenesis [213]. There are no many studies dealing 

with P16 methylation in OSCC and the results are often conflicting. The percentages of promoter 
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methylation show also huge variations: between 9% [214] and 87% in tumor tissue [215], 5.7% 

[216] and 43% in non-neoplastic oral mucosa and tumour-free margins [215], and up to 70% in 

the blood of OSCC patients [217].  

In the present study, similarly to P14 methylation, P16 methylation appeared to be quite a 

frequent event - on average 61.7%. P16 was methylated in 31 tumor samples (77.5%), in 28 

margin samples (70%) and in 14 swab samples (35%). For both genes, the hypermethylation rate 

was significantly higher in the tumor tissues than in the tumor margins and the normal mucosa. 

P16 methylation, as well as P14, did not appear to be significantly correlated with tumor 

phenotype, i.e. with clinico-pathological parameters (with the exception of P14 methylation in 

lower grade tumors). However, their high frequency in the analyzed specimens points to the 

importance of this epigenetic event in oral carcinogenesis. A similar finding was reported in 

mucoepidermoid carcinomas of the salivary glands in Serbian patients [179].  

The hypermethylation of both P14 and P16 is detected in the three tissue types- tumor, tumor 

margins and normal buccal mucosa, suggesting that this epigenetic alteration is an early event in 

the development of cancer, a view that is in accordance with the concept of “field cancerization” 

in oral cancer [52]. The detection of aberrant methylation of P14 and P16 emerged as a potential 

biomarker for early detection of various carcinomas, including early detection and treatment of 

OSCC [32]. Some reports have stated that P16 methylation was not correlated with tumor stage 

or grade and has no prognostic significance [218], which is in accordance with our results. 

However, other studies have found a predictive value of P16 methylation for advanced OSCCs, 

earlier tumor recurrence, lymph node involvement and shorter survival [52, 214].  

The inclusion of more rigorous treatment and more intensive surveillance during follow-up in 

patients with methylation changes detected in surgical margins may provide an enhanced overall 

survival. Further studies of larger patients groups and additional quantitative validation are 

needed to confirm our findings, along with their therapeutic potential.  

Human papilloma virus (HPV) infection is correlated with many cancers, the most well known 

being its correlation with cervical carcinoma. HPV infection is considered as an etiological factor 

in the development of OSCC too. Reported incidence of high-risk HPVs in oral carcinoma 

patients varied from 0% to 100% [32]. HPV DNA has been identified in approximately 24 % of 

OSCC, with HPV-16 and HPV-18, the most common types, accounting for almost 70 % and 8 % 
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of HPV positive OSCC, respectively. HPV positive head and neck cancer is associated with 

poorly differentiated, non-keratinizing, basaloid morphology, wild type p53, overexpression of 

P16, and inactivation of cyclin D1 and Rb. Furthermore Mendenhall et al. reported that high-risk 

HPV related OSCC is associated with the over expression of P16 [213]. Our results showed that 

HPV16 DNA was detected in eight of the 40 tumor samples (20%). No statistically significant 

association was found between HPV infection and molecular changes, i.e. the present study 

could establish no specific relationship between HPV and epigenetic silencing of P16 or P14. 

In conclusion, the molecular mechanisms of carcinogenesis, tumor progression and metastasis of 

OSCC are now better understood thanks to the recent advances in molecular biology. However, 

many unanswered questions remain. The molecular pathological approach is becoming the 

mainstream in current pathological research.  

The presence of histologically normal cells with multiple genetic/epigenetic alterations in tissues 

surrounding the tumor, and the fact that adequate surgical resection is a key step in the local 

control and prognosis of OSCC, point to the need for more accurate assessment methods than 

classical histopathology. Determining the molecular status of tumors, tumor margins and 

unaffected areas of the oral cavity mucosa, along with the inclusion of a panel of different cell 

cycle regulating genes involved in the development of cancer as biomarkers, would yield more 

prognostic information. In the present study, a predictive factor previously determined by our 

group was confirmed one more time (HER2 amplification in tumor margins as a factor of shorter 

survival). In addition, new prognostic parameters have emerged: HER2 amplification in ‘normal’ 

oral mucosa, and multiple alterations in margin and ‘normal’ oral mucosa as factors of shorter 

survival. Therefore, the analysis of oncogene amplification and tumor suppressor gene 

methylation status proved to be a useful approach in the evaluation of the biological 

characteristics of OSCCs and an additional indicator of patient prognosis and survival.  
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7. Conclusions 

1. Oncogene amplification, although not negligible, was a significantly less frequent 

molecular event (13%) compared to tumor suppressor gene methylation (70%). 

 

2. Oncogene amplification: 

• HER2 oncogene was amplified in 25% of tumors, 10% of tumor margins and 8% 

of normal mucosa. The level of amplification ranged between 3.5 and 80 fold 

• c-MYC was amplified in 22% of tumors, 10% of tumor margins and 5% of normal 

mucosa. The level of amplification ranged between 3.5 and 13 fold 

 

3. Tumor suppressor gene promoter methylation: 

• P14 was methylated in 90 % of tumors,  80% of tumor margins and 62% of 

normal mucosa. 

• P16 was methylated in 78% of tumors,  70% of tumor margins and 35% of 

normal mucosa 

 

4. HER2 and c-MYC amplification and P16 methylation did not show statistically 

significant association with histological grade nor clinical stage. P14 methylation was 

associated with lower tumor stages. 

 

5. HPV 16 was detected in 20% of OSCC but the virus did not appear to influence clinical 

characteristics. No association could be established between molecular alterations and 

gender, smoking, alcohol consumption and presence of HPV 16. 

 

6. The total number of alterations and HER2 status in the margins and normal mucosa of 

OSCC patients had strong impact on survival. HER2 amplification in tumor margins and 

normal mucosa was associated with significantly shorter survival. The presence of 

multiple alterations in these tissues was also associated with shorter survival. 
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7. Array CGH analysis showed a number of recurrent aberrations involving interesting 

candidate genes some previously implicated in OSCC and some not, both in tumors and 

margins. 
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Supplementary Materials 

1. DNA extraction 

1.1. DNA extraction using phenol/chloroform protocol (tissues) 

Day 1 

1. Cut the tissues into small pieces (as small as possible) in 1.5 ml microcentrifuge tube, add 

500µl of NE buffer, 10 μl of 10% Sodium Dodecyl Sulfate (SDS) and 25 μl of proteinase 

K (20mg/ml) 

2. Incubate for 12 to 16 hours at 50°C. 

Day 2 

1. Add 500 μl of phenol/chloroform/isoamyl alcohol (25:24:1), mix well by inverting the 

tube, centrifuge for 3minutes at 12000 RPM without cooling. 

2. Transfer the upper phase (water supernatant) into new tube, do not disturb the interphase 

which contains proteins. 

3. Add 500 μl of chloroform/isoamyl alcohol (24:1), mix well by inverting the tube, 

centrifuge for 3minutes at 12000 RPM without cooling. 

4. Transfer the upper phase (water supernatant) into new tube, do not disturb the interphase 

which contains proteins. 

5. Add 1/10 of the water phase volume 30-50 μl) of 4M NaCl and 1-5 volume of water 

phase (about750 μl) of cold 96% ethanol (from -20°C), mix well by inverting the tube, 

DNA should be seen as white string. 

6. (If DNA after step 5 cannot be seen or there is a need for a break, put the tubes in the 

freezer at -20°C for an hour or until the break is over). 

7. Centrifuge the tubes for 3 minutes at 12000 RPM without cooling. 

8. Remove the ethanol by pipetting without disturbing the pellet. 

9. Add 10 μl of 3M Na acetate and 300 μl of cold 96% ethanol (from -20°C). 

10. Mix by inverting the tubes and centrifuge for 3 minutes at 12000 RPM without cooling. 

11. Remove the ethanol by pipetting (without disturbing the pellet) and add 1ml of cold 70% 

ethanol (from -20°C). 

12. Centrifuge for 15 seconds (short spin). 



 

 

13. Remove all the ethanol by pipetting without disturbing the pellet and leave the tubes open 

to dry at room temperature (they can be left overnight). 

14. Dissolve the DNA pellets in water, adding 30 to 100 μl of water, depending on the pellet 

size. 

15. Store the extracted DNA at –20°C or use DNA for the desired downstream application. 

 
 

1.2. DNA extraction with Invitrogen, Carlsbad, CA (the PureLink® Genomic 

DNA) Kit (swabs) 

1.2.1. Manufacturers’ recommendations: 

Follow the listed recommendations to obtain the best results: 

• Maintain a sterile environment when handling DNA to avoid any contamination from 

DNases 

• Ensure that no DNases are introduced into the sterile solutions of the kit 

• Make sure all equipment that comes in contact with DNA is sterile including pipette tips 

and microcentrifuge tubes. 

• Do not vortex the samples for more than 5–10 seconds at each vortexing step to avoid 

extensive shearing of DNA. 

• To minimize DNA degradation, perform lysate preparation steps quickly, and avoid 

repeated freezing and thawing of DNA samples. 

1.2.2. Swabs genomic DNA extraction protocol  

1. Set a water bath or heat block at 55°C. 

2. Place the buccal swab in a sterile, 2-mL microcentrifuge tube. Add 400 μL (for cotton 

and Dacron swab) or 600 μl (for Omni Swab) PBS to the sample. 

3. Add 20 μl Proteinase K into a sterile microcentrifuge tube capable of holding three times 

the volume of lysate (for example, if you plan to process 600 μl lysate, use a 

microcentrifuge tube capable of holding 1800 μl). 

4. Transfer 200–600 μl swab lysate to the microcentrifuge tube containing Proteinase K 

(Step 3). Mix well by pipetting. 



 

 

5. Add an equal volume of PureLink® Genomic Lysis/Binding Buffer to the lysate and mix 

well by brief vortexing. For example, if you are processing 200 μl lysate, add 200 μl 

PureLink® Genomic Lysis/Binding Buffer. 

6. Incubate at 55°C for at least 10 minutes. 

7. Centrifuge briefly to collect any lysate from the tube caps. 

8. Add 200 of μl 96–100% ethanol to the tube. Mix well by vortexing for 5 seconds to yield 

a homogenous solution. 

9. Remove a PureLink® Spin Column in a Collection Tube from the package. 

10. Add the lysate (~640 μl) prepared with PureLink® Genomic Lysis/Binding Buffer and 

ethanol to the PureLink® Spin Column. 

11.  Centrifuge the column at 10,000 × g for 1 minute at room temperature. Note: If you are 

processing >200 μl starting material such as blood, buccal swabs, or Oragene™ 

preserved saliva, you need to perform multiple loading of the lysate by transferring any 

remaining lysate to the same PureLink® Spin Column (above) and centrifuge at 10,000 × 

g for 1 minute. 

12. Discard the collection tube and place the spin column into a clean PureLink® Collection 

Tube supplied with the kit. 

13. Add 500 μl Wash Buffer 1* prepared with ethanol to the column. 

14. Centrifuge column at room temperature at 10,000 × g for 1 minute. 

15. Discard the collection tube and place the spin column into a clean PureLink® collection 

tube supplied with the kit. 

16. Add 500 μl Wash Buffer 2* prepared with ethanol to the column. 

17. Centrifuge the column at maximum speed for 3 minutes at room temperature. Discard 

collection tube. 

18. Place the spin column in a sterile 1.5-mL microcentrifuge tube. 

19. Add 25–200 μl of PureLink® Genomic Elution Buffer to the column. 

20. Incubate at room temperature for 1 minute. Centrifuge the column at maximum speed for 

1 minute at room temperature. 

21. To recover more DNA, perform a second elution step using the same elution buffer 

volume as first elution in another sterile, 1.5-mL microcentrifuge tube. 

22. Centrifuge the column at maximum speed for 1.5 minutes at room temperature. Remove 

and discard the column. 



 

 

23. Store the tubes containing the purified DNA at –20°C or use DNA for the desired 

downstream application. 

1. For long-term storage, store the purified DNA in PureLink® Genomic Elution Buffer at –

20°C as DNA stored in water is subject to acid hydrolysis. 

2. To avoid repeated freezing and thawing of DNA, store the purified DNA at 4°C for 

immediate use or aliquot the DNA and store at –20°C for long-term storage. 

*-Add 96–100% ethanol to PureLink® Genomic Wash Buffer 1 and PureLink® Genomic Wash 

Buffer 2 according to instructions on each label. Mix well. Mark on the labels that ethanol is 

added. Store both wash buffers with ethanol at room temperature. 

 



 

 

2. Bisulfite modification of DNA with EZ DNA Methylation™ Kit 

• Reagent preparation: 

 • Preparation of CT Conversion Reagent The CT Conversion Reagent supplied within this kit is 

a solid mixture and must be prepared prior to first use. Prepare as follows: 

 1. Add 750 µl of water and 210 µl of M-Dilution Buffer to a tube of CT Conversion Reagent. 

 2. Mix at room temperature with frequent vortexing or shaking for 10 minutes. 

 Note: It is normal to see trace amounts of undissolved reagent in the CT Conversion Reagent. 

Each tube of CT Conversion Reagent is designed for 10 separate DNA treatments. 

Storage: The CT Conversion Reagent is light sensitive, so minimize its exposure to light. For 

best results, the CT Conversion Reagent should be used immediately following preparation. If 

not used immediately, the CT Conversion Reagent solution can be stored overnight at room 

temperature, one week at 4°C, or up to one month at -20°C. Stored CT Conversion Reagent 

solution must be warmed to 37°C, then vortexed prior to use. 

• Preparation of M-Wash Buffer: Add 24 ml of 100% ethanol to the 6 ml M-Wash 

Bufferconcentrate (D5001) or 96 ml of 100% ethanol to the 24 ml M-Wash Bufferconcentrate (D5002) 

before use. 

• Amount of DNA Required for Bisulfite Conversion: The minimal amount genomic 

DNA required for bisulfite treatment and subsequent PCR amplification is 100 pg. The optimal 

amount of DNA per bisulfite treatment is 200 to 500 ng. Although, up to 2 μg of DNA can be 

processed, it should be noted that high input levels of DNA may result in incomplete bisulfite 

conversion for some GC-rich regions. 

2.1. Protocol: 

1. Add 5 µl of M-Dilution Buffer to the DNA sample and adjust the total volume to 50 µl 

with water. Mix the sample by flicking or pipetting up and down. 

Example: For 14 µl of a DNA sample add 5 µl M-Dilution Buffer and 31 µl water. 

2. Incubate the sample at 37°C for 15 minutes. (to insure complete C to T conversion 

increase temperature to 42°C and extend the incubation time to 30 minutes)  



 

 

3.  After the above incubation, add 100 µl of the prepared CT Conversion Reagent to each 

sample and mix. 

4. Incubate the sample in the dark at 50°C for 12-16 hours.  

5. Incubate the sample at 0-4°C (e.g., on ice) for 10 minutes. 

6. Add 400 µl of M-Binding Buffer to a Zymo-Spin™ IC Column and place the column 

into a provided Collection Tube. 

7. Load the sample (from Step 5) into the Zymo-Spin™ IC Column containing the M 

Binding Buffer. Close the cap and mix by inverting the column several times. 

8. Centrifuge at full speed (>10,000 x g) for 30 seconds. Discard the flow-through. 

9. Add 100 µl of M-Wash Buffer to the column. Centrifuge at full speed for 30 seconds. 

10. Add 200 µl of M-Desulphonation Buffer to the column and let stand at room temperature 

(20-30°C) for 15-20 minutes. After the incubation, centrifuge at full speed for 30 

seconds. 

11. Add 200 µl of M-Wash Buffer to the column. Centrifuge at full speed for 30 seconds. 

Add another 200 µl of M-Wash Buffer and centrifuge for an additional 30 seconds. 

12. Place the column into a 1.5 ml microcentrifuge tube. Add 10 µl* of M-Elution Buffer 

directly to the column matrix. Centrifuge for 30 seconds at full speed to elute the DNA.  

*NB:  The DNA is ready for immediate analysis or can be stored at or below -20°C for later 

use. For long term storage, store at or below -70°C. We recommend using 1-4 µl of eluted DNA 

for each PCR, however, up to 10 µl can be used if necessary. The elution volume can be > 10 µl 

depending on the requirements of your experiments, but small elution volumes will yield more 

concentrated DNA. 
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