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Abstract

In this thesis, the flow around airfoils at low Reynolds numbers has been modeled. The
model utilizes inviscid-viscous interaction method. The inviscid-viscous interaction method
supplemented by an adequate laminar separation bubble modeling has been proven to be
efficient design tool when numerical optimization, by systematic shape modification, is
anticipated.

The inviscid solution of the potential flow equation is based on conformal mapping. The
viscous formulation employs the solution of integral momentum and energy boundary layer
equations. Eppler transition prediction model is followed when no laminar separations
occur. In case of laminar flow separation, however, Drela modified transition is applied
inside a laminar separation bubble model. The laminar separation bubble is divided into
three parts, laminar part, turbulent part and reattachment region. After reattachment the
boundary layer dissipation coefficient equation is solved with the standard two boundary
layer equations. This formulation allows the method to account for drag effects from
laminar separation bubble, as well as tracking boundary layer features.

The calculation method is also applicable to higher range of Reynolds numbers since it is
based on methods that were successfully used to design many nowadays working airfoils. It
is, on the other hand, limited by low range Reynolds number by the violation of basic
assumptions of boundary layer theory and laminar separation bubble model.

The above mentioned procedure is coded in a Matlab, and the results of the calculation is
validated over an important range of Reynolds numbers (from 2 x 10° to 5 x 10°) using
recent published experimental data for benchmark airfoils.

Airfoil design in this Reynolds number range is important for many widely used
applications. These applications include UAV's , wind turbines, and propellers as well as
sport cars.

Surface pressure distributions together with drag polar and boundary layer features are
calculated and compared with experimental data. The comparisons show acceptable

agreement with experimental data.



After validation, this code is used for airfoil optimization examples by systematic shape
modification. In this context airfoil shape parameterization and objective function
formulations are discussed and sample calculations are shown. Airfoil optimization studies
at the mentioned Reynolds number range is successfully accomplished using the proposed
code and methodology. Airfoil shape design is efficiently achieved by systematic shape
modification and direct aerodynamic calculation.

Key words: Airfoils, low Reynolds number, conformal mapping, airfoil
aerodynamics, airfoil shape parameterization, aerodynamic

optimization.
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AIICTPAKT

Y 0BOj TE€3U j& MOJCIHMPAHO CTPYjame OKO aeporpoduia ca HUICKUM PejHonacoBuM 6pojem.
Bucko3HO HEBUCKO3HA MHTEpAKIMja KOMOMHOBAaHA ca MOJCIMPAKHEM JIAMUHAPHOT MeXypa
je edukacaH METON 3a KOHCTpPYUCam€ HOBHX aeponpoduia  CHUCTEMATCKUM
MoauduKoBambeM o0nuKa aepornpoduia. HeBHCKO3HO pemieme je 3acHOBaHO Ha
KOH(OPMHOM TpeciMKaBawky. BHCKO3HAa QopMmynanyja je 3acHOBaHa Ha pellaBamby
UHTETPAJHAX jEeJJHAYMHA 3a KOJIMYMHY KpeTama M eHepruje. Kama Hema ofierubema
cTpyjama npuMemneH je EmnepoB monen 3a mpeasuhame TpaH3UIMjEe U3 JIAMHHAPHOT Yy
TypOyJIEHTHO cTpyjame. JIaMHHApHU MeXyp, KOjU Y3pOKyje OTICIUBCHE j& MOJCIHPaH U3
TPU CErMEHTA: JAMHHAPHU J1e0, TypOYJICHTHH Je0 U 00JacT MpHICIUbCHha CTPYjamba.
OBuMe je omoryheHo oapehuBame TONpUHOCA YKYITHOM OTHOpY aeporpoduiia, Takohe je

omoryheHo u npaheme KapaKTepUCTHKA TPAHUIHOT CII0ja.

[TpopauyHCKH METOA je MPUMEHJBUB U 32 KOHCTPYHCabE aeponpoduiia 3a JIeT Py BUIIUM
PejnonacoBum OpojeBuma jep je OasupaH Ha METOAMMA KOjU Cy TMpeBUNEHH 3a TaKBO
KOHCTpyucame. Meroj je mporpamupan nomohy MATLAB-a 3a obnact PejHonmocuBux
opojeBa (om 2 X 10° 1o 5x 10%) pemema cy mnopeheHa ca eKcepUMEHTATHAM
pesynaratuma. OpaOpana oOmact PejHoincoBux OpojeBa MMa BeoMa BEJIMKHM MPATKYHU
3Hayaj. KoHcTpyHcanu aeponpoguiu cy NpUMEHHUBH KOJ OECIMIOTHUX JIETEIHIA,
JOTIATHIIa BETPOTYpOMHA, JIOTIATUIA TIPOTIeNiepa, Kao W KOJ Y3TOHCKHX aeporpoduia Ha

ayTOMOOMIINMA.

[TpopauyHnare cy pacrojene MpHUTHCaKa, MoJiape, ¥ KapaKTepUCTUKE TPAHUYHOI CJloja U
yrnopeheHe ca pacmonoXKUBUM eKCllepuMeHTaTHuM nojaaunMa. Ilopehewme mokasyje

3a/10BOJbaBajyhe ciarame n3mely nmpopadyHa U eKCIIepUMEHTATHHUX T0/1aTaKa.

Hakon Bepudukanuje mpopauyHoMm je onapeleHO BHIe onTHUMaNHUX aeporpoduia 3a
paznunte ycioBe. Aepornpodui je mapaMeTpu30BaH Ha HEKOJUKO ONMIIMOHUX HAuWHa, a
byHKIIMja TMJ/ba 3a ONTHUMHU3aIM]y je naeduHuMcaHa Takol)e Ha BHINE HAYMUHA.

[TpoauckyTOBaHM Cy pPA3JIMYUTH ONTHUMHU3ALMOHM KPUTEPUjYMH U 3a BHX je onpehen



onTHUMAaTHU 00JUK aepornpoduia. Pazsujenu coprep omoryhyje epukacHO MPOjeKTOBAE

HOBUX 001MKa aeponpoduia ca cuCTeMaTckoM Moaudukarujom o6arKka aepornpoduia.

Key words: Aeporpounu, wmanu PejnongcoB  Opoj, kompopMHO
MpEeCIUKaBamke, aepoANHAMHKA acponpoduia, mapameTpu-
3anmja obOnuka aepornpoduia, aepoJuHAMUYKA ONTHMH-
3anuja
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Low Reynolds Number Airfoils

CHAPTER 1

1 Introduction

In this work, direct potential flow solution procedure over airfoils using conformal
mapping is implemented. The obtained pressure distribution is then used to derive an
uncoupled boundary layer formulation over the airfoil upper and lower surfaces in which, a
boundary layer displacement thickness calculation is included. Within this boundary layer
development a laminar separation bubble model has been incorporated.

The transition criterion is hybrid between that of Eppler and XFOIL codes. When laminar
separation does not occur Eppler criterion is utilized. If laminar separation appears on
either airfoil surfaces Drela e™ formula is used within the laminar separation bubble model.
This approach allows the calculation of lift, drag and pitching moment including laminar
separation bubble effects. A computer code to perform the aerodynamic calculations is

developed and validated for Reynolds number range from 2 x 10%to 5 x 10°.

The efficiency of the airfoil design and optimization procedures is demonstrated using
several case studies. In doing this airfoil parameterization methods are reviewed and CST
method is chosen for the demonstration. Representative objective function formulations are
illustrated.

A computer code is developed that utilizes genetic search algorithms (GAs) to call the
above mentioned, airfoil parametric representation function, the aerodynamic function, and
the objective function. The code flow chart is shown in Figure 1.1. The flow chart starts
with input section where the design flight conditions, the initial airfoil and the desired
airfoil aerodynamic objectives are specified. The next section is an outer GAs function that
calls airfoil parameterization function, aerodynamic calculation function, and the objective
function. Within the aerodynamic function three sub-functions are shown, namely inviscid
flow solution (conformal mapping), boundary layer development and laminar separation
bubble model.

When the optimization process converges drag polar for the selected best airfoil is

computed to check airfoil off design conditions.
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Low Reynolds Number Airfoils

1.1 Low Reynolds number airfoils

Airfoils operating at low Reynolds number range are characterized by presence of laminar
flow over most of the airfoil surface. They are called laminar flow airfoils. Their applications
cover civil, military and hoppy model sectors. UAV's operating at low speeds or high altitudes
are usually flying at this range. Wind turbines form important and growing field of interest to
low Reynolds number airfoils. Figure 1.2 shows chord Reynolds number versus flight speed
for some important applications. It can be said that, whenever airfoils operate at relatively low
speeds or high altitudes, they most likely to operate at low Reynolds number regime.
Carmichael [1] has presented a classification of flow over low Reynolds number airfoils. He
pointed out that, the main difficulty in low Reynolds number flow is laminar flow separations.
In high Reynolds number, typically exceeding 10°, laminar flow extends for short percent of
chord length, soon after that flow transition to turbulent occur mostly during favorable
pressure gradient, before theoretical laminar separation point. Turbulent flows are known to
be more resistant to flow separations, therefore, flow remains attached over most chord length
for large range of angles of attack.

In case of low Reynolds numbers, as flow starts laminar, it continue for relatively longer
percent of chord length than higher Reynolds numbers. Laminar flow, which is less resistant
to separation, can separate before transition to turbulent flow takes place. This laminar flow
separation complicates the flow and modifies the effective airfoil shape causing degradation
of airfoils performance. That is way, airfoils designed for high Reynolds numbers doses not
work as efficient at low Reynolds number conditions. It is now more a common practice to

design airfoils for specific application and not to select airfoil from ready catalogue.
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Figure 1.2 Flight speed versus chord Reynolds number for different natural and manmade objects

Tani [5] presented a review of published results of flows involving separation. He pointed out
that one condition for laminar flow separation at low Reynolds number flows is existence of
severe pressure gradients. He also pointed out that there exists a range of Reynolds numbers
for which separated flow may reattach again forming Laminar Separation Bubble (LSB). If
Reynolds number is further lowered flow may not attach and will stay separated. According to
Carmicheal rough rule, the Reynolds number necessary for reattachment based on free stream
velocity and distance from separation to reattachment is 5 x 10*. It means that for airfoil with
chord Reynolds number lower than 5 x 10* separation bubble will not form because flow will
not reattach. Airfoils with chord Reynolds number higher than this number will have a
separation bubble with different lengths, as noted by Gad-EL-HAK [4].

Therefore, LSB formation is possible only for limited range of Reynolds numbers and its
formation also depends on local Reynolds number, pressure distribution, airfoil surface
curvature, airfoil surface roughness and free stream turbulence.

Shyy [2] has illustrated based on Lissaman [3] the effect of lowering Reynolds number using

several representative airfoils as shown in Figure 1.3. As Reynolds number is decreased the
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lift to drag ratio is substantially reduced. The reason is related back to the transition from

laminar flow to turbulent.
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Figure 1.3 Reynolds number effect on representative airfoils performance

1.2 Efficiency in airfoil design

In predicting aerodynamic characteristics at high Reynolds numbers there exists a
sophisticated Computational Fluid Dynamics (CFD) based flow solvers that uses Direct
Numerical simulation (DNS), Large Eddy Simulation (LES), and Reynolds's Averaged Navier
Stocks equations (RANS). At low Reynolds number airfoil design however, these codes are
not preferable due to two reasons. Firstly, the domination of separation and transition
phenomena at low Reynolds number flows which is not suitably solved by classical
turbulence models. Secondly, CFD based codes which can capture these physical phenomena
requires high computational cost (memory and time).

The inviscid viscous interaction solvers are most suitable for airfoil design and trade off

studies and optimization [6], [7], and [8]. In practice, two programs are in use. Eppler code [9]
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and XFOIL [10]. The two codes use for analysis and design of airfoils potential flow solvers
and a boundary layer solution method.

In Eppler code conformal mapping is used as inverse design tool, in which a velocity
distribution is specified. Uncoupled boundary layer calculations are then followed. The
transition criterion is empirically based which is function of boundary layer momentum
thickness, boundary layer shape factor Hs,, and local condition in the boundary layer. This

code does not contain LSB formulation but it issues a warning when LSB exists.

XFOIL code uses panel method for solving potential flow coupled with integral boundary
layer formulations. The transition prediction criterion is also empirically derived from e™
method formulation [11]. It is capable of moderate LSB but only mild separations. The
maximum lift which is usually close to complete stall with large separations is still over
estimated by both codes. In fact, it is hard to estimate by most CFD solvers as well. This
means that experimental work is still required to verify the airfoil performance.

Theses codes can carry out calculations extremely fast and also can perform efficient airfoil

shape analysis. Therefore, they are more suitable for airfoil optimization studies.

1.3 Thesis Outline

The purpose of this thesis is twofold. The first, is to model the aerodynamic flow around
airfoils at low Reynolds numbers (from 2 x 10° to 1 x 10°. ). The second is to demonstrate
the airfoil aerodynamic design approach by systematic shape modification. Therefore, in order
to accomplish these two tasks, a computer MATLAB code is developed as explained in the

thesis outline below.

In chapters 2, 3 and 4 the modeling and calculation of airfoil aerodynamic characteristics,
boundary layer features and separation bubble effects are explained. The calculation of
inviscid pressure distribution is based on conformal mapping method (chapter 2). The
boundary layer development method is explained in chapter 3. The laminar separation bubble
model is explained in chapter 4. Validation of the aerodynamic characteristics and locations

of boundary layer features for two airfoils are also presented
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In Chapter 5, most common airfoil parametric representation methods are reviewed, a Matlab
code is prepared for each method and sample calculations are performed. Those methods are
NACA, and PARSEC, Bezier curves and CST method. Airfoil shape parameterization with
each method is examined, and finally as an illustration of method robustness a matching of
pressure distribution is performed.

In chapter 6, some aerodynamic airfoil design methods are described from point of view of
optimization algorithms usage. This includes formulation of design problem and specification
of objective function and constraints to genetic search algorithms. Finally, the direct

aerodynamic optimization based on shape perturbation is discussed.

In Chapter 7, aerodynamic design case studies are performed using the established code.

They include design for given point and objective. The cases covered include inverse design,
or design for given pressure distribution. The design can be for single point or multipoint, and
the objective can vary from single to multi objective optimization. Design for varying
Reynolds numbers is also accomplished. In chapter 8, concluding remarks and few suggested

future research points are given.
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CHAPTER 2

2 Two dimensional Ideal Fluid Flow

There are many levels of fluid flow approximations starting from Navier—Stokes equations
(N-S) equations where most complex flow equations are considered, to the most simplified
equations of potential flow models. Navier—Stokes equations are five highly nonlinear
coupled partial differential equations, with six unknowns. When the equation of state for
perfect gas is added theses equations are still hard to solve. It is normally simplified by
making appropriate assumptions about flow [12]. Figure 2.1 illustrates a hierarchy of the
different levels of approximation. This figure illustrates how appropriate assumption can lead
to simplified solutions and faster computations.

One main assumption is if viscosity effects are neglected or taken into account. In many
engineering problems neglecting viscosity leads to solutions of acceptable accuracy. These
solutions are either in close form or require low computational power. This makes inviscid
approximation very interesting for analysis and design methods utilizing large number of
repeated calculations. Aerodynamic drag is an essential aerodynamic physical quantity which
requires viscous effects to be taken into consideration. The use of these models depend on
application requirement, time available and computational cost.

According to this classification this chapter discusses the part where viscosity effects are
neglected, and the next two chapters deal with solution of flow inside boundary layer. It is
known that the solution of inviscid flow is much faster than that of boundary layer even with

many other assumptions.
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Flow physical
properties

Three-dimensional Navier-Stockes
Equations

Direct Numerical Simulation
(DNS)

4

Inviscid flow assumption

Model small scale turbulence and
DNS large scale fluctuations
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Euler Equations
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Large Eddy simulation
(LES)

Irrotational flow

Potential flow or Full
Potential Equations
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turbulence modeling
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Reynolds Equations
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Laplace's Equation

Restrict viscous effects to
gradients in normal direction

Y

Thin Layer N-S
Equations

Apply Prandtle's boundary layer
assumptions (Constant
pressure across BL)

Yy

Boundary Layer
Equations

Figure 2.1 Hierarchy of the different levels of approximation [12]

2.1 Assumption of an Ideal Fluid [12]

The perfect fluid concept is significant simplification in fluid mechanics. In this concept ideal

or perfect fluid is assumed to be a continuous and homogeneous medium, so that no effect of

shearing stresses is considered. For ideal fluid the compressibility is neglected, and fluid is

assumed incompressible. Not considering shearing stresses has the consequence of inability to

know information about airfoil drag or about flow separations from airfoil surfaces. But this

assumption simplifies the equations of motion and enables many close form solutions to wide

range of problems to be found with reasonable accuracy. In many cases, the viscous forces are

small compared to the inertia forces. The exception is in the layer of fluid adjacent to the

surface, known as boundary layer, where viscosity must be considered.

The incompressibility assumption is acceptable when dealing with low speeds, since relative

change in air density is small provided that the speed is well below the speed of sound.
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2.2  Fundamental principles

The fundamental physical principles that should be satisfied are:

Principle of conservation of mass.

Principle of conservation momentum.
The first principle is enforced by applying the continuity equation. If a fixed area is filled with
a perfect gas then the mass must remain constant. This means that the net rate of outflow must
be zero. Mathematically the continuity equation is given by Eq.(2.1)

g_l; + Z_; =0 2.1)

The second principle is satisfied by applying Newton’s second law of motion to fluid particles
which states that the rate of change of momentum of a particle is equal to the resultant of the
forces acting on it. The resulting equations are Euler equations and are given by Eq.(2.2)

ou  ow ou\_ op
Plac ™ “ax " Vay) T Tox

(2.2)
av_l_ ov _ov\  Ip
pP R ua‘F‘U@ = —@
These two equations can be simplified further, if the steady flow is assumed, the resulting

equation is Bernoulli’s equation which is given by Eq.(2.3)

pV?
p+ EN = const. (2.3)

This equation is valid for perfect gas, steady flows along stream line.

2.2.1 Irrotational flow

The circulation around closed curve s is defined as the negative integral in anticlockwise
direction of the tangential velocity around that curve expressed as in Eq.(2.4) and illustrated

in Figure 2.2 .

r:—ngtdszz—%udx—fvd)’ (2.4)
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Figure 2.2 Circulation around closed path [13]

The circulation for an area R enclosed by boundary € can be expressed as I'c and is given by:

[ = ﬂ (av au) dx d
c= Ji \ox oy xay (2.5)
Where the term (Z—Z — Z—;) is called the vorticity £.Thus the vorticity is given by Eq.(2.6)
_ (617 6u>
§= ox 0dy (2.6)

If the vorticity is zero the flow is termed irrotational flow. Flows around airfoils can be
assumed irrotational except in very small region close to the boundary layer where the fluid

particles experience rotational motion. Irrationality condition (¢ = 0) which implies:

av _ du
ox  dy (2.7)

2.2.2 Velocity Potential and stream function

For irrotational flow, which is an appropriate approximation of inviscid flow outside the
boundary layer, a velocity potential function ¢(x,y) exists which defines the velocity
components of flow at each point. In two dimensional Cartesian coordinate system the
velocity components (u, v) at coordinates (x,y) are given in terms of the velocity potential ¢

by the following equations respectively:

11
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_0¢(x,y)
U="5c (2.8)
v = 6¢(x, Y) (2.9)
dy

Substitution these two equations back into the continuity equation Eq.(2.1) results in the
Laplace equation Eq.(2.10).

Vi =0 (2.10)
Laplace equation describes the continuity equation of incompressible irrotational fluid. It has
an important property being linear differential equation, so that solutions may be
superimposed and the resulting function is also a solution to the Laplace equation. If the
Laplace equation in terms of the velocity potential is known the velocity components can be
readily obtained.
The stream function Y (x, y) is also defined so that it is constant along specific lines called a
stream lines. The flow is always parallel to these lines and never cross them. The velocity

components (u, v) are defined in terms of stream function as

q= P(x,y)

- ay (2.11)
__ &y (2.12)
- ox

This function satisfies Laplace equation which is given in terms of the stream function as
2.0 —
Vi =0 (2.13)
The stream function 1 and velocity potential ¢ lines are perpendicular to each other through

any point in the flow field. They are commonly used in complex form.

2.2.3 The complex Velocity

Conformal mapping, which is used in the calculation of' wing section characteristics depends
on the use of complex variables. If z defined as z = x + iy = re'® is a complex number,
where both x and y are real numbers, then the function w(z) = u(z) —i.v(2) is called the
complex velocity, if it satisfies the Cauchy-Riemann equation given by Eq. (2.14) [18]. It is
clear that the complex velocity function w(z) satisfies also the Euler and continuity

equations.

12
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Ju Jdv
ax dy
ov ou (2.14)
ax  dy

The speed is given by V = |w(z)| = vu? + v? and the direction is given by the slope of the

velocity at the pointg = tan (—argw). In polar form the complex velocity is expressed

alternatively in exponential form w(z) = u — iv = Ve ¥ "y = Vei®  Where 6(z) =
—arg (w) is the angle of the velocity at point z = x + iy to the positive real axis, as shown in

Figure 2.3.

Figure 2.3 Variables defining complex velocity

2.2.4 The Complex Potential

The function W (z) is called complex potential if,
_aw
"~ dz

In words it means that the derivation of the complex potential with respect to z will result in

w=u-—Iiv

the velocity potential.

The complex potential is given by

w=g¢p+iy
If the velocity components are expressed in terms of ¢ or 1 as given by Eq.(2.15)
L0 _ oy
0x dy
. op oY (2.15)
dy dx

Ifweletw = f(2)i.e.
w=¢+ip=fx+iy)

13
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Then

K 0%

a_x(f+ i a—xlf = fux(x +iy) = f"(2)
and

62 2

% = ) =~ ()

adding the two last equations, we get
K 02 02 K
¢ +i v ¢ +i Ld
0x? 0x? = 0y? dy?
02 02 02 02
A Y i s
0x?  0y? 0x? = 0y?

In any equation involving complex variables, the real and imaginary parts must be equal to

each other independently. Therefore

0?2 K
¢+ ¢ —0
ox? = dy?
20 92 (2.16)
ll)_l_ Y —0
0x?  dy?

These equations are the same as Laplace equation in two dimensional flow and thus any
differentiable function w = f(z) where w = ¢ + iy and z = x + iy may be interpreted as a
possible case of irrotational fluid motion by giving ¢ and y the meaning of velocity potential
and stream function, respectively.
The derivative dw/dz has a simple meaning in terms of the velocities in the flow field, and
can be illustrated as follows

dw = d¢ + i dy

dz=dx+idy
and

¢ 61/) W
Therefore dw [9x dx + qy dy +i dx + 7, dy

dz dx+tdy

In order for dw/dz to have a definite meaning, it is necessary that the value of dw/dz be
independent of the manner with which dz approaches zero. If dy is assumed to be zero, the

value of the differential quotient dw/dz is

14
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d¢ N oy . dw
ax lox W Tz (2.17)
Similarly, if dx is assumed to be zero, the value of the differential quotient dw/dz is
10¢ 0y .
?@ + @ =—iv +u

The expressions for simple two-dimensional elementary flows may be expressed conveniently

in terms of complex variables [13] as illustrated in the following section.

Uniform stream parallel to x axis w=Vz (2.18)
Source at origin w==1Inz (2.19)
2T .
Doublet at origin with axis along x axis W= M
2nz (2.20)
Vortex at origin w = % Inz 2.21)

The superposition principle plays an important role to the general solution of incompressible
potential flow problems. The solution to the governing equation (Laplace equation) can be
obtained by defining elementary solutions that satisfy the infinity boundary condition of
undisturbed flow and have singular solutions at the coordinate origin. Therefore, these
elementary flows sometimes called singular solutions. The linear nature of the Laplace
equation allows the solution of individual elementary flow and adding the resulting solution

either numerically or analytically. The most widely used combined flows are given below

Circular cylinder of radius a in a uniform stream

a2
w=YV <Z + 7) (2.22)

Circular cylinder with circulation

2T a (2.23)
Where :
V' is uniform stream velocity
m source strength
u Doublet strength
a Circular cylinder radius
I" Circulation.

More about this flow is given in the next section.

15
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2.2.5 Circular Cylinder with Circulation

A few simple flows upon which the theory of airfoils is based, can be used to calculate the
flow around circular cylinder see references [13] and [15] among many others. The lift force
can be calculated but drag force cannot be found because boundary layer viscous effects are
not included. The flow pattern represented by a circular cylinder with circulation is the basic
flow pattern from which the flow about wing sections of arbitrary shape at various angles of
attack is calculated. Such a flow pattern is obtained by superposing the flow produced by a
point vortex upon the flow about a circular cylinder. The stream function is given as

3 a?\ I‘l r
Y=Vr 1_r_2 sm6+§ na (2.24)

Where
a is circle radius
r is radial distance from origin to any point.
V is free stream velocity of uniform flow.
6 is angular position calculated anti-clock wise from x axis.
" is the value of circulation.

A typical flow pattern for a moderate value of the circulation I' is given in Figure 2.4.

Figure 2.4 A typical stream lines of flow around circular cylinder with moderate circulation I
The velocity distribution about the cylinder is found by differentiating the expression for the

stream function Eq. (2.24) as follows:

W _y(14+%) sing+--
or vz ) ST T oy (2.25)
The tangential component of velocity v' (positive counterclockwise) at the surface of the

cylinder is obtained from the relation v’ = — Z—lf and the substitution of r = a.

16
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r
v = —2Vsin9+2—
ra (2.26)
It is seen that the addition of the circulation I' moves the points of zero velocity (stagnation

points) from the positions & = 0 and 6 = m to the positions
, T
4maV (2.27)

@ = sin~

The pressure distribution about the cylinder may be found by applying Bernoulli's equation

along the streamline ¢ = 0.

(2.28)

oL (apzeinzg . 2VTsing T2
p 2p s wa 412q?

The pressure coefficient C, is given thus by

—Acin2p _ ; 2
Cp =4sin®60 —4Ksinf + K (2.29)

r . : . .
where e K . Egn. (2.29) is symmetric about the line 6 =§ which means that there

can be no drag force. The lift on the cylinder can be obtained by integration, over the surface,

of the components of pressure normal to the cylinder.

1 21
Lift = Epvzj; cp a sin6 do (2.30)
1 21T
= E'DVZ (4asin® 0 — 4a K sin? 0
0 (2.31)
+ aK?sinf) do
= 1/2pV?aK[26 — sin 20]%™ (2.32)
L =2pV?aKn = pVT (2.33)

This formula is valid for any shape. It states that the lift is function of air density, air velocity,
and the magnitude of circulation I'. The correct value of circulation is fixed by applying Kutta

condition at the trailing edge.

17
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2.3 Application to airfoils and conformal transformations

Superposition principle can be used to find the flow field about circular cylinder with
circulation in a uniform stream. It is possible to relate this field of flow to that about an
arbitrary wing section by means of conformal mapping. In relating these fields of flow, the
circulation is selected to satisfy the Kutta condition that the velocity at the trailing edge of the
section must be finite. Airfoil characteristics such as the lift and pressure distribution may
then be determined from the known flow about the circular cylinder. The resulting theory
permits the approximate calculation of the angle of zero lift, the moment coefficient, the
pressure distribution, and the field of flow about the airfoil section under the condition that
the flow stick to the surface.

A conformal transformation consists in mapping a region of one plane on another plane in
such a manner that the angles are preserved. For instance, equipotential lines and streamlines
intersect at right angles, thus create a large number of small rectangles in the flow field.

If the equation w = f(z) represents a possible flow pattern, and also the equation w = g({)
represents another possible flow pattern where ¢ is a complex variable { = & +in. The
coordinate in z plane are considered to be x and y, and those in the ¢ plane are ¢ and n. If the
equipotential lines and streamlines are plotted in either of the planes, they will divide the
plane into a large number of small rectangles. These rectangles will be similar at
corresponding points in both planes. The corresponding points are found from the relation
f(z) = g(¢) . This equation represents a conformal transformation from z plane to the
¢ plane, and it is necessary to solve this relation for ¢ and to obtain the relation in the
form { = h(2).

The velocities in z plane are given by differentiating the complex velocity w with respect to

Z.

dz 4TtV (2.34)

The corresponding velocities in ¢ plane are given by the relation

dw B dwdz
A  dzdl (2.35)

As a an example of a conformal transformation, consider the relations

18
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aZ
w=V <Z + —> = V¢
Z
circular cylinder in z plane =  uniform flow in (2.36)
{ plane

These relations transform the flow about a circular cylinder on the z plane to uniform flow
parallel to the ¢ axis on the ¢ plane. Corresponding points of both planes are obtained by the

Joukowsky transformation given by Eq.(2.37).

a2
{=z+— (2.37)

This transformation transforms circle placed at coordinate origin with radius a in the z plane
to a straight line segment of length 4a overlapping real axis symmetrically with respect to
coordinate origin in ¢ plane , as shown in Figure 2.5. If this transformation is applied to any
circle in z plane which encloses circle with radius a then closed curve is obtained in plane ¢
which encloses straight line segment, as shown in Figure 2.6. (note curves from Figure 2.5).

If the larger circle is moved off the center in z plane such that it touches the unit circle in one
point as in Figure 2.8 a , then the resulting shape is an ellipse which touches mid-real axis in {
plane at one point as in Figure 2.8 b. A symmetric airfoil shape appears in ¢ plane if the unit
circle is off centered on real x axis in z plane as in Figure 2.9. The camber is added to the
airfoil shape if the center of the unit circle is off the origin in both x and y. in z plane, see
Figure 2.10. The airfoil shapes obtained by Joukowsky transform in Eq.(2.37) are cusped at
the trailing edge, as can be seen in Figure 2.7 which makes them impractical. Karman-Trefftz
transform can be used to form airfoils with non zero trailing edge is reviewed in the next

section.
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Figure 2.5 (a) a unit circle in z plane centered at origin with unit radius. (b) Joukowsky transform of z

plane unit circle to a straight line segment from -2 to 2 in ¢ plane.
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Figure 2.6 (a) A circle centered at origin with radius different than 1 in z plane transformed into ellipse

in ¢ plane.
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Figure 2.7 Close up view of trailing edge regions showing zero trailing edge angle.
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A
15 + q
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Figure 2.8 (a) a circle centered off the origin and has touches the unit circle at one point . (b)
Transformed into an ellipse which touches mid-real axis in ¢ plane at one point.
(@) z Plane (b) { Plane
A
1.5 nE y 1.5 T]

Figure 2.9 (a) a unit circle with center offset on real x axis in z plane (b) A non cambered airfoil in {

plane.
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Figure 2.10 (a) circle with center off the origin in both u, = 0.2 and p,, = 0.2.with part of the contour

outside the unit circle (b) Cambered airfoil in ¢ plane with part of its contour above real axis.
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2.4 Karma-Trefftz transformation

This transformation can be used to transform a circle in z plane into an airfoil shape in ¢ plane
or vise versa. It is given by Eq.(2.38). The coordinates of singular points s, = —1/8 and
s; = 1/B are chosen to simplify this figure generation, and g = 2 —% is slightly less than 2,

and t is airfoil trailing edge angle. Figure 2.11 is generated by this transformation from a

circle in z plane with a center at (—0.05,0.05) and a radius of 1.0512.

$ =50 _ (Z - BSO)W (2.38)

zZ— fs;

{—s1

15+

(@) zPlane (b) ¢ Plane

Figure 2.11 Karman-Trefftz transform of an off centered unit circle with u,, = —0.05 and p,, = 0.05

and radius of 1.0512 in z plane into an airfoil, with finite trailing edge angle of 2 deg in { plane.

2.5 Flow Analysis over an Airfoil Using Conformal Mapping

The Joukowsky and Karman-Trefftz conformal transformations are used to transform a circle
in z plane into a curve resembling an airfoil in the ¢ plane as shown in the above sections.
Theodorsen showed that if inverse transformation is applied to an airfoil in ¢ plane, the
resulting curve in z plane will therefore be a near circle. He also showed that the flow about
near circle, and hence the airfoil can be calculated from the flow about the true circle through
an iterative procedure. The basic method is presented in references [12]to [17].

The procedure starts with given (&,n) airfoil coordinates in ¢ plane, flow angle of attack
a and free stream velocity V. Airfoil coordinates are used to calculate near circle coordinates
using Karman-Trefftz transformation, i.e. from Figure 2.12a to, Figure 2.12b. Every point on
airfoil is conformly mapped to corresponding point on the near circle. There are two singular

points s, and s; which are specified midway between airfoil leading edge and center of
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curvature, and at airfoil trailing edge, respectively. The near circle shape is transformed to the

origin of the coordinate system after finding its centroid, see Figure 2.12c. Fast Fourier

Transform (FFT) is then used to find relations between the flow in the centered near circle (z,

plane) and in the plane of the true circle (z; plane). The final step, is combining the foregoing

relations to obtain the final expression for the velocity distribution in the airfoil plane in terms

of airfoil coordinates.

The calculation of the velocity distribution about an airfoil is done mainly in few steps. Figure

2.12 shows schematically these steps:

Generation of airfoil shape.

Analytical mapping of airfoil to near circle shape by using Karmen-Traffitz
transformation.

Translation of the near circle to the origin of the coordinate system.

Representing near circle couture as function of true circle this is done iteratively
utilizing Fast Fourier Transform.

Obtaining velocity distribution on true circle and calculate modulus of
transformations.

And finally, calculate pressure distributions over the airfoil surface at given flow angle

of attack and velocity.
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Figure 2.12 Steps involved in transformations of airfoil to true circle

2.5.1 Airfoil shape

The airfoil (¢, 7n) coordinates are generated using one of the geometric representation methods
discussed in chapter (5). The points start from the trailing edge through the upper surface to
the leading edge, and then back through the lower surface to the trailing edge. Thus the first
point is same as last point, as illustrated in Figure 2.13. These coordinates are changed to
complex variables in ¢ plane and their radius and phase angles are computed{ =& +in =

ret®.
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Figure 2.13 Airfoil generated for conformal mapping

2.5.2 Apply Karman-Trefftz Transformation

The basic relation between the near circle plane (z; plane) and the airfoil plane (¢ plane) is

performed through the Karman-Trefftz transformation (2.39) by which corners are removed
from airfoil where g = 2 — % and t is airfoil trailing edge angle. Points s, and s; are locations
of the singular points. The location of s, is set med way between leading edge and nose center
of curvature, while s; is set at the trailing edge. The coordinate of the resulting nearly circular

shape Figure 2.14 is given by z; . The airfoil coordinates are defined by ¢ with the relation

(=¢+in

¢ —so _ <Z1 - ﬁso)l/ﬁ (2.39)
{—s1 Zy — Bs1
From which z; can be expressed explicitly as follows

so({ — 51)B —s51({ - SO)B

z1 =8

(§ —s)P = ({—s0)F (2.40) A
z1=p .(5{1__:0)‘% - Bsy
efzmt ($=32) -1 5

Equation (2.40) is valid when near the trailing edge upper surface is above real axis and lower
surface is below it. For the points of the lower surface which are above real axis Eq.(2.40) is
used.

The coordinates of z; are defined by the relation
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— g pWHO _ o L L0 io
zi=ae ae¥.e r(@)e (2.41)

Where r(8) = a e¥ is the radius at any point, and @ is the angle at that point, as shown in the
Figure 2.12.

Knowing that e®

= cos 6 + isin 6 the above relation can be split into real and imaginary
parts.
zy = r(6) cos 8 + ir(@)sinb

Where
Real part + Imaginary part (2.42)

The factor relating velocities in the z; plane to those in the ¢ plane is dz;/d{ is called

modulus of transformation and is calculated in later step.

(b) near circle shape
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0.1 [

Center point
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-0.1 -

-0.2 -
-0.3 -

0.4

Figure 2.14 Airfoil transformed to near circle

2.5.3 Translation of the near circle to the origin

The center of gravity of the near circular shape is calculated by Eq.(2.43)

Yz + 200/ (Zagien) — Za)) (2.43)
2 -E?;11(Z1(i+1) - Z1(i))

After calculating the center of gravity, the translated near circle coordinates z, are obtained by

Z1cg =

subtracting z,.4 from each point.

Z2 =21+ Zicg (2.44)
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0.3

near circle is moved from
Center point to origin

Near circle shape (KarmaxTraﬁttz) in complex plane

T =

0.5

Figure 2.15 Shifted near circle
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Figure 2.16 NACA4412 airfoil transformed to near circle then shifted to origin

2.5.4 Mapping of near circle in (z, plane) to true circle (z plane).

The coordinates of z are defined by the relation

= Yot+ip — ip
y/ aev¥o R.e (2.45)
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The transformation relating the z, plane to the z plane is the general transformation

2y =z eZmalAntiB)(1/z"

(2.46)
But by definition this transformation should result in near circle
ZZ =7 ell)—ll)(] +i(9—(p) (247)
Consequently
_ cep N . n
Y=o +i(0-9) = ) (Ay+iB)(1/5") .49
n=1
Knowing that
1 _ 1 Cing _ 1 o
T e = (cosng — isinng) (2.49)
Substituting {in into (2.48) we get
Y=o +i(0—9)
=N +ip)S s (2.50)
= (A, +i ”)r_n (cosng — isinng)
n=1
Y=o +i(0—9)
- B,
(— cosng + —sm nqo)
n=1 (2.51)
. B, Ay
+1 Z (r—ncosnga - r—ﬂsmmp)
n=1
Equating real and imaginary parts from both sides we obtain
N [ By
Y=Y = Z (r_ cosng + r—nsm n(p) (2.52)
6 —¢)= y An
( Q) = Z (— cosng — r—sm n<p) (2.53)

n=1
These relations show that ¥ — A and (@ — ¢) are conjugate functions. The true circle radius

is chosen such that there is minimum deviation between points radii on the near circle y and

the radius of the true circle which is found from the relation R = e¥o.

1 21
A= IPOZEL Yde (2.54)

It can be written as

Y= 1, + Z(an cosng + by, sinng) (2.55)

28



Low Reynolds Number Airfoils

0= ¢ + Z(bn cosng — a, sinng) (2.56)
n=1 .
Where a,, = f—,': and b,, = %

Equations (2.55) and (2.56) constitute 2N equations, and 2N +2 unknowns. These unknowns
are A,, and B,, where n=1 to N. Other two unknowns are ¥, which is related to the true circle
radius R as R = e¥o. In order to place the trailing edge at the real axis (¢ = 0) Equation
(2.56) will be

N
Org = by + Z(bn) (2.57)
n=1

The unknowns can be obtained by applying Fast Fourier transform (FFT) iteratively [20].
Theodorsen originally solved those equations based on interpolation which requires O(N?)
multiplications, but Fast Fourier Transform simplifies a lot this step with only O(N log N)
multiplications. this approach is used by many authors and found to be efficient [21] [22]
[23][24]. The main steps involved in the numerical procedure are listed below:
1. Divide the true circle z into 2™ equally spaced points ¢ which is not changed
during the rest of calculation procedure.
2. Find the corresponding points in the centered near circle z, plane i.e 6(¢) by
iteration.
3. As first step assume that coefficients a,, and b, are zero i.e coefficients
a, = 0and b, = 0, Eq.(2.56) will reduce to 8 = ¢ at every point.
4. Since Y is a known function of € at every point in near circle plane i.e. ¥(6),
and @ is known from previous step, the left side of Eq. (2.56) is now known.
The right side of this equation is easily computed by using FFT algorithm by
which the coefficients a,, and b,, are obtained, as an estimate.
5. Having obtained coefficients a,, and b,, a new estimate of angle 8 as function
of ¢ is possible through Eq.(2.56). This is done by applying Inverse Fourier
Transform IFFT. In this step new values of 6 are obtained.
6. The value of b, is obtained by letting ¢ = 0 at trailing edge. And thus the
angle at trailing edge in near circle plane is 85 = by + Y.p1 b, .The value of
a, is obtained directly from FFT algorithm.

Steps 4 through 6 should be repeated until convergence is reached.
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2.5.5 Calculation of modulus of transformation

The total modulus of transformation is obtained by multiplying modulus of all

transformations.

dw dw dz dz, dz, (2.58)

dz ~ dz 'dz, dz, dz
1-Airfoil shape is transformed by using analytic Karman-Trefftz transformation Eqn.(2.40) A

which is function of ¢. Differentiating this equation with respect to { we get di; as follows

dz, _ {50(( —5)P 71— 5;({ = 50)P
¢ ! 50(¢ —51)F —51({ — 50)P
({—s)P ' = (¢~ So)ﬁ_l} (2.59)
G -sDF =G —so)f

2- Shifting the near circle plane to origin has a modulus of 1, thus

dz, _ (2.60)
dz,

3- The third transformation is transformation of near circle z, to true circle z which modulus

L d : : . :
of transformation is given by i . Mapping from near circle to circle is performed by the
2

relation

2, = 7 eSwea(An+iBa)(1/2") (2.61)
But Z, = aeVtio (2.62)
and z=ae¥oti? =rel? where r = ae¥o (2.63)

I . I . d
Substituting Eqs(2.63) and (2.62) into Eqs (2.61) and substituting for z. The expression d—z

Z2

can be written in the form

dz

dz _ %

dz, dz, (2.64)
do

since Y and 0 are functions of ¢ and 1, is constant. Thus
dz .
—=j.qae¥oti? =z
de

and
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dz, d(y+i6)
dp  do

gebrio— , dWTiO)

de
Substituting back into equation (2.64) we get
dz i.z
dz, | dW+i6) (2.65)
Zy d(p
d(y+i 0 d . do . : _—
Where aWtif) _ v + 1 —, to find this derivative we proceed as follows:
de e e

Knowing that
w AntiBp w (An By . . woo [Bn Ap .
Yt Ve Yt (r_n cosng + —sin ngo) +iYa (r_n cosng — —sin n<p)

Substituting in Eq.(2.61) we get

A Bn . . B An .
q eV+i0 — gedoti (pez;?zl(r—}l‘cos ne+ r—,’{smmp)ﬂ Z;’f;l(r—}l‘cos n(p—r—gsmmp)

Dropping out a and taking the log of both sides we get

U+i0=vyYy+iop+d_, (ﬁ—;‘cosmp + f—Zsinmp) +i Yo (f—gcosmp — /:—Zsinmp)
Separating real and imaginary part we get

o (An Bn .

U =1+ D1 (r_n cosng + —sin n<p)
_ o Bn Ap .

0=q@+X4 (r—ncos ne — r—nsmmp)

It is worth to note that s = In(r(#)) and ¥, = In(R)

Differentiating w.r.t ¢ both equations we get % and %
dy < ( An B )
— = ——.n.sinng + —.n.cosng
do rh rh
n=1
dé >/ B, A,
=1+ Z (——n.n. sinng — —n.n.cosmp)
do r r
n=1
dL'J Bn An .
—q) = Z r—n.n.cosmp —r—n.n.smmp
n=1
dé > (B, A,
—=1- Z (—.n. sinng + —.n. cosn<p>
do rh T
n=1

31



Low Reynolds Number Airfoils

3

n=1

B, Ay
—+M.COSNY — .. sinng

c An
1- Z(— n. smn<p+ —.n. cosn<p)

n=

=

If we proceed

ay 1{ = A,
+1 —:? LZ<_ ncosn(p—— nsmncp)

dg ¢ L
O (Br An
+|-1+ Z (F.n.smn(p + T—n.n.cosmp)
n=1
dy do 1 i (B,1 A, )
o +i —l i n.cosng — .n.sinng
n=1
oo . A
+Z (r” n. smn<p+ —. N cosn<p> 1
n=1
dys 1(w
[ = .4 1 B,)(1/z") —1
i g i{zn( n 1B (1/27) }
n=1
Now we can substitute back into Eq.(2.65)
dz i.z
N 1 v .
2 g, T{ZZin.(Ay+1B)(1/2z") — 1} (2.66)
dz z
dz, z; {1-Y2,n. (4, +iB,)(1/z")} (2.67)
If we further substitute the equations for z, and z we will get the following relation
dZ e_ 21?:1(1411"'1' Bn)(l/zn)
dz, 1-3%.n (A, +iBy)(1/z") (2.68)

Equation (2.68) represents the modulus of transformation from the near circle plane to the true

circle plane.

2.5.6 Finding velocities in the true circle plane
Flow around true circle with radius of R = ae¥° is obtained by the equation
R?Vee'® iT

w =V, e @ (z—2zp) + m-l_%ln (z — zp) (2.69)

Conjugate complex velocity on the true circle are obtained with
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dw . R¥*V,e" LT 1
dz ¢ (z—2z9)% 2m (z-—2zy) (2.70)
Since z — z, = re'®
dw _ o e R?Vee'® il
Q- Ve T Tagie togy © (2.71)
dw o, R¥Weee ¢ il
dz Ve — r2 + 2mr © (2.72)

But at the circle surface r = R and at the trailing edge where ¢ = u, Kutta condition must be
satisfied by letting the total velocity to zero and obtaining the required circulation T to satisfy
this condition.
Thus
e i ir

0=V, e'™ -V e '“e " to e g 2.73)
At trailing edge there is a rotation by an angle of u and thus the angle of attack will be
modified by this amount. The equation of circulation finally will be

['=4nR Vy, sin(a — w) (2.74)

Circulation I' necessary to satisfy Kutta condition thus, depends on angle of attack a and
position of trailing edge image in circle plane u. Having obtained the value of circulation, the
modulus of transformation is calculated by substitution. The last step is to calculate the

velocities in airfoil plane by
dw dw dz dz; dz;

d¢ ~ dz 'dz, dz, d{ (2.75)

Once velocity distribution is obtained by the above method, pressure distribution is obtained

via the relation
dw|®
d¢
G=1-19" (2.76)

Sample calculations for Low Reynolds number airfoil E387 are shown in Figure 2.17, Figure

2.18, and Figure 2.19. The pressure distribution calculated by this approach at angle of attack
of 2 degrees and Reynolds number of 300,000 is compared with XFOIL code. Figure 2.20
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show that the pressure distribution agrees well with XFOIL results. The flow chart for the

above method is summarized in the flow chart shown on Figure 2.21.

2.5

, // /\\\
,/ T \§\
/ N

|

0

dw/dz

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
xlc

Figure 2.17 Potential flow velocity around circular cylinder dw/dz

.
o
ﬂf

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x/c

Figure 2.18 Derivative of transformation (d,/dz ) for E387 airfoil.
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Figure 2.19 Derivative of transformation dz,/¢ for E387 airfoil
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Figure 2.20 Inviscid pressure distributions at 2° and Reynolds number of 300,000 for E387 airfoil.

35



Low Reynolds Number Airfoils

Given airfoil
shape,angle of
attack. and Flow
velocity

r

Calculate position
of singlar points

| Use Karman-Treffitz Transformation

-'H.d-\.
-

-
e
Mo T lower ™. Yes
—'F H'\-\.
——<surfaceabove the >
“~.geal axis
L =

o -
e

EQ(Z—Z]_)‘B —zliz—zo}‘ﬁ

a=F, (z— Z]_]I‘B—(Z—ZD)'S

c1=p (?I_ZD} - Bzg
ﬁﬂ il £€—Zp ‘H
gF=r ] =]
\ 2—21_

B

Compute centriod
of near circle

r
Shift the near
circle to the origin

¥

Apply FTT to find
the coefficients A's
and B's

!

Calculate the
circulation by satisfying
Kutta condition

¥

Compute modulus
of transformation

!

Calculate Velocity

and Pressure
distributions

Figure 2.21 Flow chart for the method of calculation
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CHAPTER 3

3 Boundary Layer Modeling

As already stated in chapter 2, the assumption of neglecting viscosity leads to two main flow
equations with different levels of complexity. Neglecting viscosity results in calculation of
pressure distribution and lift for airfoils with acceptable accuracy at low angles of attack,
when flow is mostly staying stick to the wall. When angle of attack increases flow separates
and inviscid assumption become less accurate. The other important point is the calculation of
airfoil total drag which is not possible without considering boundary layer flow. Therefore,
this chapter deals with flow inside boundary layer, The first part introduces main concept of
boundary layer, and fundamental integral boundary layer equations. Important boundary layer
phenomena of laminar, turbulent flow transitions, separations are discussed and the method of
solution is also explained. Finally, verification of obtained results are presented.

The separation bubble which constitutes an important part of the boundary layer effort is left

to next chapter.
3.1 Boundary Layer Concept

The boundary layer concept is related back to Ludwig Prandtl in 1904, who noted based on
experimental work that a thin region exists close to the wall when a fluid passes over it. He
divided the flow to two regions, one very close to the wall called boundary layer where all
viscous effects occur. The second layer is inviscid where viscosity effects are negligible, as
seen in Figure 3.1. The boundary layer is the thin region in which, a fluid velocity changes
from zero at the wall y = 0 to potential flow value at boundary layer edge y = §. In this
region the viscous force are comparably to inertia forces and thus the viscosity effects can’t be
neglected. Outside this region, y > &, the viscous effects can be assumed unimportant, and
the flow can be analyzed as potential flow. The ratio of inertia forces to the viscous forces is
called Reynolds number, defined as
_ULlp

U (3.1)
Prandtl derived the boundary layer equations, by simplifying the Navier-Stokes equations.

Re

The simplification is based on two main assumptions
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e The boundary layer is thin compared to characteristic stream wise dimension
of the body. % <« 1 where L is the characteristic length of the body and § is the

distance from wall where the velocity equals the inviscid stream velocity.
e The highest viscous term must have same order of magnitude when compared

with inertia term.

y A
U
® Inviscid flow ue)
>
= ,/=
Boundary Layer
(Viscous flow)
[ >
X

Figure 3.1 Boundary layer concept

It is also further assumed that the pressure change across the boundary layer is small and can
be neglected. Thus the pressure on the wall (inside boundary layer) is assumed equal to that
outside the boundary layer. Hence, the pressure is calculated using potential flow region laws

as depending on stream wise distance X.

oU 9U  1dp

TR Y (3.2)

If steady flow is assumed then the pressure is function of x only and the equation reduces to
au  1ldp

dx  pdx (3.3)
Prandtl’s boundary layer equations for steady, two dimensional flow is given by the Eq.s (3.4)
together with boundary conditions stated beneath. The first equation is continuity equation,
and the second is momentum equation. The pressure term can be replaced with velocity from
Eq.(3.3).

ou N ov _ 0
ox dy (3.4)
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ou  Ou 1dp 0%u

u I +v @ = - /—)a + 14 a_yz
Acceleration Pressure Viscous
Forces. Forces. Forces.

B.C. u(x,0)=0,v(x,0)=0 and u(x,8) = U(x)

Where v is the viscosity of the fluid. u and v are components of velocity inside boundary
layer in x, y directions, respectively, and p is the pressure at distance x, as calculated from

potential flow.
3.2 Boundary layer separation

When a region of adverse pressure gradient exists along the flow, the fluid particles decelerate
and cannot continue moving in forward direction. Thus a region of separated flow appears
near the surface and the boundary layer deflects away from the wall into the main stream.
Generally, fluid particles start to move in direction opposite to the external flow [25].

The separation point is defined by the condition when shear stress vanishes or mathematically
when the slop of the velocity gradient at the wall in the normal direction equals zero. This is

shown in Figure 3.2 . a region of reversed flow downstream of separation point.

<6u) "
av) 35
Y/, (3.5)
= ] ;.

5 Inflation point
y )

a. .

a region of reversed flow
. . downstream of separation poil
Y Separation point

G0 @) ()

Figure 3.2 Separation of boundary layer, defined when the slope of the velocity gradient at the wall in

the normal direction equals zero.

From Prandtl’s boundary layer equations EQ.(3.4), the left hand side of the second equation

represents the acceleration of fluid particles in the flow. The pressure term will be negative if
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ﬁ IS positive, i.e if pressure increases with increasing X, thus the acceleration will be

negative, which means that fluid particles will decelerate, and will have low momentum
leading to separation as illustrated in Figure 3.3a.

For steady flows, the flow may separate only when the pressure increases with increasing X,
i.e. only when Z—z > 0 the flow separation is possible. If the pressure term is negative fluid

particles will accelerate, hence no separation danger exists, Figure 3.3 b.

Y y
YA U Y A y A U YA A

> ou 9*u du d%u
2 o P
v | dy dy | - Jy *c)yz

(a) Pressure increases (b) Pressure decreases

Figure 3.3 Velocity distribution in boundary layer at different pressure situations

Laminar boundary layer separations can occur, resulting in turbulent boundary layer.
Turbulence adds shear stresses to the original viscous shear stress due to viscosity; the
additional shear stresses are called Reynolds stresses. First consequence is that similar
solutions in boundary layer are no longer true. Secondly, turbulence may start inside the
separated laminar boundary layer. In this case, the separated shear layer may reach the airfoil
surface and the turbulent flow may reattach again. The region formed after this process is
called a laminar separation bubble (LSB). Laminar separation bubble is known to decrease lift
and increase drag of airfoils, with higher degree as Reynolds number is decreased. Transition
from laminar to turbulent may also occur without bubble formation. Figure 3.4, illustrates this
possibility where airflows on upper and lower surfaces starting from stagnation point.
Laminar boundary layer prolongs for some distance on both surfaces also. On upper surface
the laminar boundary layer separates and flow moves away from the wall forming a
circulatory region before it reattaches again as turbulent boundary layer. Attached turbulent
flow continues until it separates totally from the airfoil surface. Turbulent separation
eliminates the contribution of that portion of the surface from producing lift and produces
more drag due to wake formation.

The lower surface experiences a different scenario. The laminar boundary layer become
turbulent before it separates. This is called natural boundary layer transition. Turbulent flow

continues until trailing edge without separation.
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The locations on airfoil surface where boundary layer laminar separation, bubble transition,
bubble reattachment, natural transition, and turbulent separation occur are very important
airfoil flow features. They are sometimes called boundary layer features normally measured in
wind tunnels and predicted by computational procedures. For instance, as turbulent separation
point moves toward the airfoil’s leading edge the lift decreases and the drag increases, airfoils
may be designed based on this fact to maximize lift with smooth stall characteristics by
optimizing turbulent separation point movement with angle of attack, or using other boundary

layer feature. One example is given in reference [26].

Transitinal Separation bubble

e —

’’’’’’ :_:N/\’\‘

~ N D T \
— s R ANRY

Turbulent reattachment

point Enlarged view

Laminet separationt

— L}
_________ <
s e AT v
~
Transition
Nonviscous Flow
Figure 3.4 Boundary layer effects
3.3 Shear stress and friction drag
The shearing stress at the wall is defined as
Gy
To = HU\7
dy =0 (3.6)
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The viscous drag is obtained from integrating shear stress over the body surface , as given by
Eq. (3.7) and shown in Figure 3.5. Taking dx = cos¢ ds we get:

l

., (Z—;)FO dx 37)

l
szbf To COSQ ds =b,uf
x=0 X

Figure 3.5 Viscous drag computation from shear stress

3.4 Boundary layer momentum and energy integral equations

For steady two dimensional incompressible flows, boundary layer momentum equations can
be integrated with respect to y from the wall to some height h then, after substituting the wall

shear stress from Eqgn.(3.6) , one obtains:

h
f( 6u+ Ju Udu)d T
Yax Ty T Y ax )Y T, (38)
y=0
L . . a .
From the continuity equation the velocity component v = _foy(i) dy , which upon
substitution becomes
h y
f ou OJdu [ du p UdU gy = T
Y ox dy (ax) Y dx |~ p (3.9)
y=0 0

Integration by parts gives
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h y
f c')uf Ju i |4
3y G |y
=0 0
(3.10)
= Uf( )dy - fu(—)dy
Substituting we get
h
f (2 Ju U Ju UdU) T
“ox (c')x ax) Y =" (3.11)
y=0
Rearranging
‘ d du ‘
_Do
jaxu(U u)dy + de(U u)dy = ) (3.12)
y=0 0
Introducing the definitions
Displacement thickness f(U —uw)dy = 6,U (3.13)
0
i _ — 2
Momentum thickness ju(U w)dy = 6,U (3.14)
0
The substitution of these two definitions results in Von Karman integral equations
given by
d du
_ 2 -0
3y (52U + 8.0 — ) (3.15)

The energy integral equation is deduced by K. Wieghadt [100] for laminar boundary layer
flow. It is obtained by multiplying the equations by u and integrating with respect to v,

similarly to the above procedure;

y=h
You du 0%u
f u? ——u— axdy —ul——ldy=u ?d}’ (3.16)
y=0
The second term is treated by integration by parts as
y=h y=h
ou( (Y ou g\l gy = 1 U2 L. o0u 4
p “3y Oaxy y=5 | ( u?) 5,4y (3.17)
y=0 y=0

43



Low Reynolds Number Airfoils

The first and third parts can be combined

y:
1 2
f [u ——ulU— =§f (u — U®)dy (3.18)
y=0
After integration
y=0o = 5
b e [ ()
sax | WU T wIdy=w ay) ¥ (3.19)
y=0 =0

The term on the right side represents energy per unit volume and time, dissipated into heat.
Introducing again the dissipation energy thickness 83 defined as

[0e]

Energy thickness j w(U? —u?)dy = 6,U3 (3.20)
0

The energy integral equation can be written in the following form

0 2

%(63U3) = 2v f (g—;) dy (3.21)

0

Which is the energy integral equation for two dimensional laminar incompressible flow in the

boundary layer. For turbulent flow this equation takes the form

o)

—(63U ) =2 f (g;) dy (3.22)
0

3.4.1 Boundary layer integral approach

The boundary layer integral parameters are

o0}

5,(x) =f(1—u(x’y)> dy
0

U(x)
8,(x) = f ugzx})]) (1 - ugzx})])) dy (3.23)
0
o
0
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The displacement thickness &, (x) represents the displacement of boundary layer, and the
momentum thickness §,(x) is related to the friction drag from stagnation point up to the
position x. The energy thickness &5 (x) is connected to the energy dissipation in the boundary
layer. The boundary layer separates if velocity near the surface reverses direction. Using these

parameters the integral equations are written as:

E'i’ (81 +262 EE— Cf
Where U is potential flow velocity at location x, and ¢ is skin friction coefficient and is
given by
To
Cr = 00?2 (3.25)
The energy equation is also written as
dés 1dU
dx 37 dx =Cp (3.26)
Where cj, is the dissipation coefficient given by
2 (* du
If the ratios of the local parameters are also defined as
8 8
Hip =35 and Hy; =2 (3.28)

3.4.2 Laminar boundary layer

The solution method for laminar boundary layer is based on the statement that H;, and Hs,
are only function of one parameter. Thus H;, , €, and D can be expressed as function of the
shape parameter H;,. The following relations hold for skin friction coefficient and dissipation

coefficient, respectively.

o = €*(Hsz)

T~ ReUS&, (3.29)
o = 2D"(H3,)

D™ ReU &, (3.30)

Where €*(Hs,) and D*(Hs,) are given functions of the shape parameter Hs, . The Reynolds

number based on boundary layer momentum thickness is defined as
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2
Re(gz = T = U62Re (331)

Noting that in dimensionless form of chord based Reynolds number Re = % Where the

reference velocity is V,, the reference length is the chord c, and the reference density is pg,.
[27] .
The relation for Hy, ,€*,and D* are given by the following equations as described by Eppler
works in references [9], and [27] through [30],

H,, = 4.02922 — (583.60182 — 724.5591H;,

+227.18220H%,),/H3, — 1.51509
If H;, <1.57258 (3.32)
H,, = 79.80845 — 89.58214 H;, + 25.715786 HZ,) If Hs, > 1.57258

€ = 2.512589 — 1.686096 H,, + 0.391541 HZ, + 0.031729 H3,
If Hs, < 1.57258

(3.33)
€ = 1.372391 — 4.226253 Ha, + 2.221687 HZ,) If Ha, > 1.57258

D* = 7.853976 — 10.260551 H;, + 3.418898 HZ, (3.34)

Equations (3.24) and (3.26) are coupled ordinary differential equations, which is solved by
numerical integration for 8, and 65 from which the shape factors H;, and H;, are also
calculated. Skin friction coefficient ¢, and dissipation coefficient ¢, can be obtained from the
calculation using the above equations. The velocity U and it's derivative U’ are imposed by

the potential flow.

8,U"

&+ (i +2)——=¢ (3.35)

U’ (3.36)
5é + 3 83 F =Cp

The shape factor Hz, = 1.51509 specifies laminar separation. If the velocity U is constant the

value of the shape factor Hs, is greater than 1.57258 .
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The initial values of solution is given by the Eq. (3.37) [27], which corresponds to the first
step of Ax after the stagnation point , where the value 1.61998 is the value of the parameter
H,, at stagnation condition.

Ax

8, (Ax) = 0.29004 ReUGD

85 = 1.61998 6, (3.37)
From which the initial value of the shape parameter in case when boundary layer starts from
stagnation point is given by H;, = 1.61998.

3.4.3 Turbulent boundary layer

The same differential equations can be used for turbulent boundary layer. The relations

between the 8, and &3 and, ¢, and cj, are given by [27]:

S 11 H, + 15
12 = %5 H,, — 59 (3.38)
¢ = 0.045716[(Hy; — 1) Re U &, ]70232¢ 7126 Hiz (3.39)
cp = 0.0100[( H;, — 1) Re U §,]7 /¢ (3.40)

These relations are derived for Reynolds number range from 10% < Re U §, < 10 using
empirical and semi-empirical investigations of turbulent boundary layer done by Ludwieg-
Tillmann. As argued in [27] it is also applicable to outside of upper range but for the lower
range it should be investigated.

Turbulent separation, in this approach, is hardly related to a fixed value of the shape factor
Hs,. It is certainly known that for Hs;, > 1.58 there will be no turbulent separation and for
values of Hj, < 1.46 there will be for sure turbulent separation. In the calculations the
turbulent separations is assumed to occur at Hs, = 1.46 because it is more reliable for thick
boundary layers, where separations is expected to happen.

It is known that turbulent boundary layer separation depends on Reynolds number,
such that separation occurs later if Reynolds number increases. Laminar boundary layers
separates in much shallower adverse pressure gradient as compared to turbulent boundary
layer.

The friction drag caused by laminar boundary layers is much less than that of turbulent

boundary layer. For these reasons transition from laminar to turbulent is important issue.
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3.5  Boundary layer transition

Laminar boundary layer separates in mild pressure gradients for which turbulent boundary
layers can resist and stay attached. Skin friction drag, on the other hand, is higher for turbulent
boundary layer. It is a compromise between laminar boundary layer where skin friction drag
is smaller but separation risk is higher and turbulent boundary layer where skin friction drag is
higher with higher separation resistance.. Boundary layer starts usually laminar and then
disturbances grow until it become either separated (laminar separation) or it become turbulent
through either transition (forced or natural transition) or transitional separation bubble. The
LSB becomes more important as Reynolds number is lowered.

Boundary layer transition is connected with stability of so called Tollmien-Schlichting
waves. This stability is function of local Reynolds number based on boundary layer
momentum thickness §,, Res, which is, defined by Eq.(3.31) repeated here for convenience.

U s,
Re(gz = T = U62R€

There exists a critical value of Res, below which no wave will be amplified. This critical
local Reynolds number Regs, depends in turn on local velocity profile. Local velocity profiles
without inflation points (which occur normally with favorable pressure gradients) have higher
values of Reg, and thus have later transition. In contrast, velocity profiles with inflation point
have lower values of Res, which make transition more likely to happen in flow areas where
separation risk is higher. The velocity profile itself is assumed to be function only of the shape

parameter Hs,.

There are two general methods for transition analysis. The first method is based on analysis of
amplification of Tollmien-Schlichting waves which assumes transition when one of the waves
amplifies to the value of eV . Where N is a specified critical number usually around 10 and
depends on turbulence level in wind tunnels or flight test measurements. Drela [31] developed
a method based on amplification envelopes and implemented it in XFOIL code, this criteria
will discussed in next section.

The second method is empirically derived transition criteria based on local boundary layer
parameters. The transition criterion adopted in this work is the one given in Eppler works. It is
used to predict transition when no laminar separation occurs. If laminar separation is detected
Drela method is invoked in the code.

Equation (3.41) which depends on local values of shape factor Hs,, which represent velocity

profile shape, local Reynolds number based on 6&,, and on roughness factor r . The
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roughness factor » may vary from O for theoretically very smooth surface to 6 which

represents a highly turbulent air.

InRes, > 18.4 Hyy — 21.74 + 125 (Ha, — 1.573)2 — 0.36 1 (3.41)

This criterion is plotted on Figure 3.6 for different roughness r. Higher values of roughness
factor r shifts the curve down which means transition will occur earlier.

Transition is assumed to occur if this criterion is satisfied (area above any red dashed curve).
Flow starts from stagnation point at Hz, = 1.62 as shown and as flow develops the shape
factor H;, decreases and Regs, increases toward either transition curve (red dashed) or
laminar separation line (blue broken) depending boundary layer development calculations. If
the transition criteria is reached first the calculations switches from laminar closure
correlations Eq.(3.32) through Eq.(3.34) to turbulent correlations Eq.(3.38) through Eq.(3.40).
Furthermore, if the laminar separation line is attained first a laminar separation bubble
calculations are required. The next section discusses main laminar bubble features and

addresses its effects on airfoil characteristics. Details of adopted LSB molding is discussed in

chapter 5.
5
10 I j ] ! f !
InReg, = 18.4 Hy;, — 21.74 + 125 (H;, — 1.573)2 - 0.36 r
|
4
]0 - -
Lol Y - P *
o S et et
Res, i B e
e T L P
7 I T A A el o R Tt
10 I BT N L Zheer” At
------ - - e - (/. — PL. o
2 l ------
10
Stagnation.pnomit
Laminar.separation b
- /
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1.5 1.52 1.54 1.56 1.58 1.6 1.62 1.64 1.66
Hs2

Figure 3.6 Eppler Transition criteria for different roughness factor values
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3.6 Laminar separation bubble

As stated previously, transition could occur through laminar separation bubble, called
sometimes laminar transitional bubble because it acts as a mechanism for transition from
laminar to turbulent flow. Laminar separation bubble happens when laminar flow separates
before transition criteria is reached and flow under goes a transition to turbulent in the
separated shear layer , as illustrated in Figure 3.7. Now turbulent flow has higher momentum
to resist adverse pressure gradients therefore it reattaches again to the surface after some
distance along the airfoil chord. The distance from separation point to reattachment is called
bubble length Lz and the distance from separation to transition is called transition length
Ly where flow is still treated as laminar. Between transition location and reattachment point
with length of Ly the flow is turbulent and there is a considerable velocity change in this
region. The velocity profile at laminar separation point and at reattachment point is defined
for the value of shape factor H;, = 1.51509 which corresponds to zero shear stress, as

shown in Figure 3.7.

Transition Reattachment

Separation

Figure 3.7 Sketch of laminar separation bubble

The main effects of laminar separation bubble are:

(@) Potential flow velocity distribution is modified by the bubble as shown in Figure 3.8
which suggested by Tani [34] . The solid lines represent velocity distribution without bubble,
and the dashed lines represent the modified velocity. From the separation point S to transition
point T the velocity is nearly constant Ug(x) , which drops from this value to the intersection

with the solid curve at reattachment. In some cases it was experimentally observed by Dini in
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[35] and [36] that the reattachment occur with undershoot until the velocity distribution
merges with viscous distribution without bubble. For longer bubbles this velocity distribution
is modified along the bubble length and affects the entire airfoil surface. As Reynolds number
is decreased the first part of the bubble L increases in length.

(b) Thickness of separation bubble Hy is shown in Figure 3.7 and it is an important factor
which indicates whether the reattachment will occur or not. It depends on the length L. It is
also affected by the potential flow pressure gradient in the region of the bubble. This fact was

studied by Gaster [37] who suggested a non-dimensional parameter P. This parameter is given

by

280

_— (3.42)

Where §,,is the value the boundary layer momentum thickness at separation point.
AUy which is the velocity drop along the bubble above which no reattachment can occur.

This drop in velocity is equivalent to adverse pressure gradient in the region after separation
point Z—Z , this slope depends on the angle of attack being higher for greater angles of attack «

, thus bubble thickness increase with increased angle of attack and decreases as angle of
attack decreases. Furthermore, the location of separation point depends on angle of attack
being more toward the leading edge for higher angles of attack. Therefore, in order to
decrease bubble effects on airfoil performance, it is possible to decrease the operating angle of

attack.

R

undershoot

Figure 3.8 Effect of separation bubble on velocity distribution
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3.7 Eppler’s Bubble prediction method

This method is based on predicting the distance from laminar separation to the point when the
shape factor Hs, increases to a value of about 1.6. At H;, = 1.6 reattachment is assumed. A
warning is issued if a bubble exists and its effect on drag is not included.

When the turbulent boundary layer starts after either laminar separation or transition criteria is
reached the turbulent closure relations are directly evoked to solve the same differential
equations. When Separation happens at Hs, = 1.5151 the shape factor then increases to
higher values following the turbulent closure relations. As shown in Figure 3.9, if the
condition given by the equation is satisfied then a bubble warning is issued.

AUp

1-— < 0.958 (3.43)

N

Where U, the value of potential flow velocity at the laminar separation point, and AUy is the

difference between the value of potential flow velocity at separation and reattachment points.

[

U /\Separa‘[ion

; AU,

Hs2 - X
1.6 :
1.5151

Separation Reattachment X

Figure 3.9 Eppler's bubble analogy

3.8 Lift, drag and moment

From the potential flow analysis an inviscid pressure distribution p(s) can be obtained
and from the boundary layer calculations shear stress distribution 7(s) is also obtained. These

two distributions constitute the main sources of all forces and moments affecting airfoil at
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given flow conditions. Their integration over the surface produces the resultant force R and

moment M which can be resolved into lift and drag. This reference frame is shown in Figure
3.10 where the pressure distribution acts normal to the surface while the shear stress acts in
the tangent direction. The starting point is chosen at the leading edge which normally different
than stagnation point where boundary layer calculation begins.

The Resultant force is resolved into two coordinate axis systems (1) body axis system
as normal N and axial . (2) wind (aerodynamic) axis system as lift L and drag D. the angle

between them is angle of attack a. The relation between these two frames is given by

L=Ncosa—Asina

D =Nsina+ Acosa (3.44)

s - surface distance along
the airfoil

p=p(s)

=1(s)

stagnation point

Figure 3.10 Sign conventions for pressure and shear stress

Figure 3.11 Body and wind axis systems
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3.8.1 Integration of pressure and shear stress distributions

If an airfoil of unit span [32] as shown in Figure 3.10 is considered. The integration of
pressure and shear stress is performed from leading edge to trailing edge as follows:

For small element of surface length ds on the upper surface, there are normal and axial
elemental forces dN and dA respectively given as

dN, = —p, ds, cos8 — 1, ds, sinf

dA, = —p, ds, sin@ + 1, ds, cos 0 (3.45)
For the lower surface
dN;, = —p; ds; cos 0 — 1, ds;sin 6
dA; = —p; ds;sinf + t; ds; cos 6 (3.46)
The normal force N and axial force A can be obtained from
TE TE
N =— f [py cos@ + 1, sinf]ds, + J [p; cosO + 1; sinf]ds;
LE LE (3.47)
TE TE
A=— f [—py sinB + T, cosB]ds, + f [p; sinB@ + t; cos O] ds;
LE LE (3.48)

The moment can obtained in similar manner , keeping in mind sign convention when the
reference point is the leading edge is positive when increasing angle of attack, and using the
non dimensional coefficients the following working form is obtained, dy = —ds sinf and

dx = ds cos@ and reference area S and c is the airfoil chord.
1 c TE
Cv =7 [fo (Cor = Cou) dx + [ (Cru — Cr1) dy] (3.49)

CA = % I:fL’;'E(Cpu - Cpl) dy + foc(cfu —_ Cfl) dX] (350)

Cm@LE = Ciz [foc(cpu - Cpl) x dx — fLT;gE(Cfu - Cfl) x dy + ILZE(CPu - Cpl) ydy+

(3.51)
Jy (Cru = C) y dx |
From which the aerodynamic coefficients cl and cd are obtained with the equations:
Cp =cCcyCosa —cySina
(3.52)

Cq =cCySina +c4cosa
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3.8.2 Lift Drag Moment corrections

When viscous separations are present these coefficients are corrected by using Eppler method
[28], as follows: Total drag coefficient is calculated from boundary layer solution data
evaluated at trailing edge using Squire and Young formula [33] which is modified for high
values of Hi, which was found to produce better results. And also corrected when separations
exists [27].

5+H],
o 2 8yri (%) 2 for U, <V,
=
U375/ u, \0-15
2 Gy5ep (E) (U_TE) for separated flow (3.53)

Where

e = {leTE for Hy, <25
127125 for Hy, >25 (3.54)

Equation (3.53) when applied to each surface results in drag due to that surface. The sum of
upper and lower surfaces results in total drag on airfoil.

The greatest effect on aerodynamic comes from boundary layer separation than that from
boundary layer thickness. Thus when high separations exists on upper surface lift coefficient
corrections are applied in which angle of attack is modified. The lift coefficient correction is
computed based on the separated distance S, travelled by air on the surface which is used to

find out the angle of attack correction.

Ssep
Aa = — e (6us + CZC) (3.55)

Where, &, is the slope of the upper surface at the area close to trailing edge, and a, is the
angle of attack relative to chord line, as shown in Figure 3.12. Lift coefficient is modified for
the upper and lower surfaces using the Eq.(3.56) . The lift correction on upper surface is

always negative and always positive for the lower surface, so lift is reduced in both cases.

Acy =27 Aa (3.56)

The moment coefficient is also corrected in similar manner using the relation

_ 1 Ssep 15
Ac,, = —ZACZ (1 - ) (3.57)

55



Low Reynolds Number Airfoils

loation of boundary layer separation Ssep

point on upper surafce —
\ 1/23“!1

> Y

Figure 3.12 Lift and moment corrections due to boundary layer separation

3.9 Comparison of turbulent closure relations

The calculation of turbulent boundary layer using two Von Karman momentum and energy
equations, with five unknowns, namely &, &, 63 Cr, and Cp, additional closure relations are
required. For turbulent boundary layer, Drela has developed a shape factor relations [31]. One
important parameter is the dissipation coefficient C,,, which depends on the distribution of
Reynolds stresses in the boundary layer. The Reynolds stresses in turn depend on the
upstream conditions. In order to take into account these effects Drela used Greens lag
equation to calculate the maximum shear stress coefficient. C;,,q, from which the dissipation
coefficient Cp is computed. An additional differential equation is thus, added to the two Von
Karman integral boundary layer equations. This equation has the form:

6 d C‘L’max
C‘L’max dS

B ¢ (Hi,—1\* 1dU,
B 5'6*( Comaxleq = ””“")”5 351< (6.7H12) )_U_EE (3.58)

It is worth to note that these models are modified from time to time and there exists different
forms of the equations and coefficients. For example the above equation only the first term is
used by Dini [35] with a coefficient of 4.2 instead of 5.6.

In the rest of this section a comparison is shown between Drela as presented by Dini ,
modified Drela as presented by Lutz and Wagner [38], and finally Lutz & Wagner model. All
these models are derived for incompressible turbulent boundary layer flows. Eppler’s model is
independent of Res, and presented here for reference. It can be seen that at high local
Reynolds number of 5000, Figure 3.13 ,the three models match and produce same results. As
the local Reynolds number based on momentum thickness is decreased to about 400 — 275 the
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Drela model separates from other models and still produce same results, as shown of Figure
3.14 and Figure 3.15. Further decrease of Reg, to about 200 - 100 Drela models produce
different results and even deviate from the known limit, as seen on Figure 3.16 and Figure
3.17 and supported by Lutz and Wagner work , Figure 3.18.

As a conclusion the above presented Drela models should not be used in low Regs, range
below about 400. Lutz and Wagner seem to produce acceptable results at this range of local

Reynolds number.

3.9.1 Eppler turbulent model:

The relations between the &, and 65 and, ¢, and cj, are given by Eppler, These relations does
not depend on Reg,

g o WHs+ 15
12 4‘8 H32 - 59 (359)

. —-0. -1.26 H
¢; = 0.045716[(Hy, — 1) Re U 8, ] 0232¢ =126 Haz (3.60)

cp = 0.0100[(H;, —1)Re U 8, ]"%/¢ (3.61)

3.9.2 Drela Turbulent closure

Following Dini because of completeness of expressions and report,

6 dC
TR = 4.2 ( C‘L’maxleq — C‘L’max) (3.62)

C‘rmax ds
The maximum shear stress is for equilibrium state is obtained using

0015H32 H12 - 1]3

C =
Tmaxleq 1 _ Usllp le (363)
The value of § is given by the equation
1.72
5= 6 (315+5)+ & 360
The closure relation
CD = f . CDDrela (365)

Where
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—s\2 _
1+ (CDpax = D () for 0 < <1
f = S—ST
1+ (CDpgyr — 1)e‘T(T"1) for (S’l"—s) >1 (3.66)
2

=15 — hy
r=15-1000 - (3.67)

he
CDpox = 1.+ /2007 (3.68)

CDpreiqg = Cf Uslip + ZC‘L'(]- - Uslip)

(3.69)
_ Hsz| 4
Usiip =~ [le 1 (3.70)
le = —H120 T for Cf>1
1+[H32-H320]m
c1
(3.71)
1
H3p—Hszz0]c3
Hyp = Hyp + [‘32C2 320] > for Cr<a
Where
4
Hs3,o = 1.505 + Rem (3.72)
400
Hyzo =3+ Reg, (3.73)
c; = 0.081 (Res, — 300)%1 (3.74)
¢, = 0.0158(Res, — 300)0-08 (3.75)
3000
c3 =1.06 + (Regp+600)15 (3.76)

Cromin = — / 0002% (3.77)
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3.9.3 Modified Drela model used by LUTZ and Wagner [38]

_ 4 16 . (H129-H12)"®
H;, = 1.505 + Ress + (0.165 \/FM) 1 for H <H, (3.78)
Where
H120 = 3 + 400/Reé‘2 (379)

3.9.4 Lutz and Wagner model

This model is published in [38] , and they claimed that it produces good results compared

with Drela model at low local Reynolds number, such that H, , is always greater than 1.

Hiz = k — Jk? — H}, for Hi; < Hiyo (3.80)
Hspo
k = Hyp + 2(322_—:;2:) (Hyzo — 1)? (3.81)

4

H320 = 1.505 + Reg, H120 = 3 + 400/Re52 (382)
comparison of turbulent boundary layer clouser relations Re;,= 5000
5 T
Eppler
4.5 —— Lutz&Wagner |
----- Drela Dini
---------- Drela L&W
4 :
a5\
\ Y
- \ \
) \‘Q\
2 “
1.5 \
l MM‘,
1.4 1.5 1.6 1.7 1.8 1.9 2

H32

Figure 3.13 Comparisons of different shape factor relations for incompressible turbulent boundary

layer at Res, = 5000
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comparison of turbulent boundary layer clouser relations ReBZ: 400
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Figure 3.14 Comparisons of different shape factor relations for incompressible turbulent boundary
layer at Res, = 400

comparison of turbulent boundary layer clouser relations Re62= 275
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Figure 3.15 Comparisons of different shape factor relations for incompressible turbulent boundary

layer at Res, = 275
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comparison of turbulent boundary layer clouser relartions Reézz 200
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Figure 3.16 Comparisons of different shape factor relations for incompressible turbulent boundary
layer at Res, = 200

comparison of turbulent boundary layer clouser relations Re;,= 100
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Figure 3.17 Comparisons of different shape factor relations for incompressible turbulent boundary
layer at Reg, = 100
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Figure 3.18 Comparisons of different shape factor relations for incompressible turbulent boundary

layer, from reference [38]
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3.10 Verification of boundary layer calculations

3.10.1 Comparison with Eppler code

Boundary layer calculations are verified by comparison with Eppler code results as for Eppler
airfoil E1098 which shown in Figure 3.19. The velocity distribution shown in this figure is
that obtained from Eppler code for the propose of boundary layer computations, such that any
differences in velocity calculation methods between current calculations and Eppler's

calculations will be avoided.

Eppler E1098 airfoil
0.15¢ T T T T T T T T T
0.1
0.05
(&S]
=
0
-0.05
_01 r r r r r r r r r r [
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Velocity distribution at Reynolds number of 1E06 and zero angle of attack
2r
1.5 \\
N I
\ \

——
/ \\
0.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x/c

Figure 3.19 Eppler airfoil E1098 and velocity distribution at Re 1E06 and ¢ = 0

Boundary layer development is compared in terms of main parameters which is the shape
factor H;, and the boundary layer momentum thickness &, as function of surface distance for
both upper and lower surfaces as shown in Figure 3.22 through Figure 3.25. They
comparisons show identical shape and trend of variation of the parameters on both upper and
lower surfaces. Since drag is computer using these parameters the comparison of drag is
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illustrated for three angle of attack together with transition point location on upper surface on
the following table. The results are identical for this airfoil at these conditions. The transition
point location values seem to be overestimated, the reason may be related to the very fine
integration step used in Eppler code close to separation point. Figure 3.26 through Figure 3.28
show other important boundary layer parameters calculated on lower and upper surface for
reference.

Table 3.1 Comparisons of total drag and transition point location on upper surface at Re=1e06

CD total Upper Transition point location
ALFA
Current Eppler Current Eppler
0 .0106 .0104 0.57736 0.4549
2 .0072 .0071 0.58 0.4597
8 .0081 .0079 0.5722 0.4794
0.012 T T T
0.01 |- I Eppler 4
| Jcurrent calc
0.008 [~ .
&° 0.006 .
0.004 [~ -
0.002 |~ .
0 L [l L
2 4 8
a [deg]

Figure 3.20 Comparison of drag coefficient for E1098 at 1 x 10°¢ between current calculation and

Eppler code.

64



Low Reynolds Number Airfoils

0.7 T T T
[ Eppler
0.6/~ [ Jcurent calc 7

0.4+ .

0.3 -

transition location

0.2~ -

o [deg]
Figure 3.21 Comparison of location of upper surface transition point for E1098 at 1 x 10°¢ between

current calculation and Eppler code.

STR = for Eppler E1098 airfoil at Re1M and zero angle of attack used in verification

( [ s v 8, Hi, Hs, Resz
Lam. sep. | 0 0 0 0 0 0 |
Turb. sep. | 10324 0.794 0.0045623  2.8032 146 3622 4 |

Reattachment [ 0 0 0 J
Transition 0.57736  1.285 0.0004 3.6034 1. 5186 505.02

H,, develpment on upper surface of E1098 airfoil at a=0 Re=1M

1.75

----- Eppler code
17 current code == \
. ,,, \
1
/ \
1.65 /,'
II
4
S 16 /"
I \
1.55
15

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Surface distance

Figure 3.22 H;, comparisons over E1098 airfoil upper surface at Re 1IE06 , a = 0
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H?’2 development on the lower surface of E1098 airfoil at Re1M and o.=0
1.8 I I

1.75 N Current code

— \\ ----- Eppler code
1.7 /
1.65 \
6] N\

1.55 | \

H32

15 \

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Surface distance

Figure 3.23 H;, comparisons over E1098 airfoil lower surface at Re 1E06, « = 0

10° 82 develpment on upper surface of E1098 airfoil at =0 Re=1M
X
5 r r r
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Current Code
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Surface distance

Figure 3.24 §, comparisons over E1098 airfoil upper surface at Re 1E06 , a = 0
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X 10-3 82 development on the lower surface of E1098 airfoil at Re1M and o.=0
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Figure 3.25 §, comparisons over E1098 airfoil lower surface at Re=1E06 , « = 0
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3.10.2 Comparisons with XFOIL code

It is known that Eppler code does not take the additional drag due to the separation bubble
into account. Instead it creates a bubble warning . And the user should that the drag values are
under estimated. Since laminar separation phenomenon is not taken care of ,yet, by the code
it is interesting to see the comparison of boundary layer parameters with XFOIL code which
uses different laminar and turbulent closure relations and do account for separation bubble
affects. The boundary layer parameters comparisons are performed for NACA 4412 at
Reynolds number of 1E06 and angle of attack of 2 degrees shown in Figure 3.29. The shape
factor H,, is compared to XFOIL in Figure 3.30. It is interesting to see that the values are in
close agreement up to the laminar separation point, after which values predicted by XFOIL
code grow to approximately 4 (inside the bubble) while values from current computations
predict a sharp decrease in H;, values. The reason being that for XFOIL predictions
H,, increases up to the point of transition which is some distance backward of the laminar
separation point while current computations assume transition just at laminar separation
point. After a chord distance of 0.6 both curves agree and have similar trend and values,
accept at trailing edge. This is expected since after this distance the boundary layer has
reattached and is in equilibrium state thus both turbulent closure relations give similar results.
The above differences in the key solution parameter H;, has manifested in the boundary layer
momentum thickness &, and the skin friction coefficient Cras shown in Figure 3.31 and
Figure 3.32 respectively. Next chapter deals with laminar separation bubble modeling.

NACA 4412 airfoil shape and inviscid velocity profile
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Figure 3.29 NACA 4412 airfoil shape and velocity distribution using current calculation
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CHAPTER 4

4 Laminar Separation Bubble modeling

A laminar separation bubble appears on airfoil surfaces when an attached laminar boundary
layer is subjected to an adverse pressure gradient of specific magnitude that causes the flow to
separate before transition occur. The separated laminar flow soon reattaches after being
transformed to turbulent in a region away from the airfoil surface. This phenomenon is more
important as Reynolds number is decreased, as noted by Shyy [55]. It is considered a
challenge to low Reynolds number airfoil aerodynamics predictions. Laminar separation
bubble is first noted by Jones (1933) [39] when he studied airfoil stall process. Since then,
extensive experimental and theoretical investigations of the laminar separation bubble
structures are performed. Leading edge bubble were first studied because it was believed to
cause sudden airfoil stall at low speeds. Owen [41], Crabtree [46], Gaster [49][50], Horton
[52][53] are among the first who contributed to laminar separation bubble research.

Mc Cullough and Gault [54] related the stall type with boundary layer features. According to
their analysis, there are three types of stall that depend on boundary layer characteristics.
Trailing edge stall occurs when turbulent boundary layer separation point leaves the trailing
edge and moves forward. Whereas, in leading edge stall laminar boundary layer separates
near leading edge without subsequent reattachment. The third type of stall is called thin airfoil
stall when the separated laminar boundary layer reattaches (as turbulent boundary layer) and
the turbulent reattachment point moves toward the trailing edge as the angle of attack is
increased causing decreased lift which limits aircraft operations at low speeds [53].

Recently, remotely piloted vehicles (UAVSs), Micro Air Vehicles (MAVs) and wind turbine
applications mostly operate at Reynolds number range below 1 million, as argued by Muller
[51], Figure 4.1. At this Reynolds number range laminar separation bubble may appear on
airfoil near mid chord, causing a significant decrease in lift and increase in drag. Due to this
reason general aviation airfoils does not perform well for these applications, and low
Reynolds number effects, such as, bubble formation, its structure ,separation, transition and
reattachment conditions has to be studied.

Classically laminar separation bubbles are classified as short and long bubbles, see the review
by Tani [40]. Bubbles are alternatively classified depending on their effect on inviscid

pressure distribution rather than on its length. Laminar separation bubbles may show local
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pressure distribution change (Weak bubbles) or it may significantly alter the pressure

distribution (strong bubble).
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Figure 4.1 Chord Reynolds number Vs. flight speed for different natural and manmade objects

It is the estimation of increased drag and the investigation of type of airfoil stall that motivate
most of recent laminar separation bubbles studies. These methods vary from issuing a
warning so that the designer may suggests airfoil shape modifications to the evaluation of
global bubble effects on pressure distribution.

Horton was the first who presented laminar separation bubble structure as can be seen in
Figure 4.2. The flow at low Reynolds number usually starts laminar and thus is more likely to
separate. Thus a mild pressure gradient will cause laminar boundary layer separation just after
maximum velocity point. The separation never happen in the favorable pressure gradient part,
it always happens in adverse pressure gradient region. The boundary layer moves away from
the wall as a result of separation creating a region of approximately stagnant air followed by

reversed flow region.
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Figure 4.2 A schematic shape of short laminar separation bubble.[52]

The flow undergoes a transition to turbulent at a point above this region in the shear layer.
The turbulent flow as known with higher mixing and more resistance to separation may
reattach to the surface after some distance along the surface from the transition point. If the
flow reattaches again a laminar separation bubble is formed, but if the turbulent flow fails to
reattach to the surface the turbulent boundary layer continue separated (sometimes this it is
understood as a long bubble which extends into the wake). Laminar separation bubble length
decrease with an increase of angle of attack up to a point when it suddenly increases. This
phenomenon is called bubble bursting and is explained as a failure of turbulent boundary
layer to reattach again to the surface. Laminar separation bubble bursting causes high and
sudden drop in lift and an increase in drag. A typical pressure distribution is shown in Figure
4.3.

Gaster has related this phenomenon to the boundary layer conditions at separation. He
developed an empirical relation between Regs, and Gaster parameter P given by Eqn. (4.1),
which expresses the average velocity gradient over the length of the bubble. He found from
experimental measurements analysis that at bursting P is a function of Reg, . at separation.

_ 0% Us—Ug
Ty I (4.2)

Where U and Uy, are the velocities at separation and reattachment points respectively. L is the

P

bubble length defined as the surface distance from separation point to reattachment.
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Figure 4.3 Effect of long and short bubble at high Reynolds number[51]
While, short bubble affects mostly the stall behavior of airfoil long bubble has an un-

preferred effect on the entire polar.

Numerical methods are also used by many authors such as Cebece [42], Alam & Sandham
[43], Jones [44], Cadieux[45] to investigate numerically bubble formation and effects. They
predicted bubble structure in two dimensional flow in order to simulate experiments. In some
cases three dimensional studies are performed as flow is really three dimensional on wing
sections. Alam, used Direct Numerical Simulations (DNS) to study short laminar separation
bubbles [46]. Crivellini has. Studied laminar separation bubble on low Reynolds number
operating airfoils using RANS modeling by means of an high-accuracy solver and
experimental verification [47].

Although, numerical methods provide large quantity of detailed information about the flow, it
IS not used as routine methods, as it requires more effort in domain size selections and grid
sensitivity analysis, in addition to the choice of turbulence models. Bubble forcing method
also has an effect on obtained results. Due to these reasons it is hard to be used for
optimization purposes especially if many shapes is to be analyzed. It is more suitable if a
given shape is to be analyzed such that experimental measurements are more focused and
specific. In the last decades successful airfoil designs for different applications were possible
using inviscid-viscous interaction methods followed by experimental measurements.

Airfoil design, analysis and optimization will require the development of laminar separation

bubble model that is faster than finite differences or N-S equation solvers. Dini used an
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inviscid—viscous interaction model to predict effects of laminar separation on airfoil drag at
low Reynolds numbers. The method is based on the hypothesis that laminar separation
bubble can be modeled using local flow parameters. Boundary layer development a head of
the bubble is performed to predict both separation conditions and forward disturbances
information needed to predict transition. This method shows very good accuracy regarding the
prediction of the modified inviscid distribution and the increase in drag in the range of
Reynolds number as low as 100,000 [35]. This range represents most interesting operational
range of UAV’s and wind turbines, as argued by Muller’s in Figure 4.1.

Drela and Giles used interactive methods that make use of integral boundary layer
formulation these methods provide efficient solution procedures, with accuracy contained
within boundary layer assumptions applicability. Eppler also uses this formulation to issue a
warning of expected bubble effect on airfoils. Eppler’s method is used successfully to design
airfoils for many applications in the past for Reynolds number 500,000 and higher. For lower
Reynolds numbers, however, it is difficult to use this criteria to eliminate bubble by
modifying the shape of airfoil since laminar separation bubble is always present at Reynolds
number lower than 500,000 [51]. Therefore, an improvement in LSB prediction will result in

better estimation of aerodynamic characteristics at this range.

4.1 Reynolds number and angle of attack variation

At higher Reynolds numbers natural flow transition from laminar to turbulent inside the
boundary layer happens very quickly in the favorable pressure region, where no laminar
separation risk is expected. The turbulent boundary layer is more resistant to adverse pressure
gradients and usually flow may separate close to the trailing edge (Turbulent separation), as
seen in Figure 4.4. As the angle of attack is increased this separation point moves forward and
as a result airfoil lift decreases. The resulting lift curve has smooth shape indicating smooth

airfoil stall.
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Transition occur before minimum pressure point

Minimum pressure point

3
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Transition

Figure 4.4 High Reynolds number flow over a large wing

At lower Reynolds numbers laminar boundary layer continue inside the region of adverse
pressure gradient, without transition. At some point laminar separation may occur and the
boundary layer moves away from the airfoil surface, see Figure 4.5 for which angle of attack
is small and the flow transition occurs far from the wall. Turbulent reattachment occur after
that and turbulent flow continue to the trailing edge. Figure 4.6, shows a case when higher
angle of attack is encountered where bubble is shorter and closer to the leading edge. Figure
4.7 shows a case when the bubble bursts and airfoil stalls. Airfoil characteristics are affected
by stall type and bubble length. Figure 4.3 shows effect of short and long bubble on drag polar
and lift curve. While, short bubble affects mostly the stall behavior of airfoil long bubble has

an un-preferred effect on the entire polar. It is thus avoided in the design process.

Laminar separation occures before transition

Transition

Figure 4.5 Low Reynolds number flow at low angle of attack
Laminar separation occur during adverse pressure gradient, followed by transition and

subsequent reattachment resulting in additional drag.
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Short bubble followed by turbulent reattachment

Possible flow separation
near trailing edge

Figure 4.6 Low Reynolds number flow over airfoil at higher angle of attack, a case when higher angle

of attack is encountered where bubble is shorter and closer to the leading edge

Airfoil stall due to bubble busrt

-y

Figure 4.7 Low Reynolds number flow at stall, when the bubble bursts, airfoil stalls and airfoil

characteristics are affected by stall type and bubble length.

4.2 Laminar separation bubble model

The model adopted in this work is developed by Dini [35]and [36], in which a weakly
interacting laminar separation bubble in two dimensional incompressible flow over airfoils is
modeled. The main aim of the model is to compute the increased airfoil drag that result from
bubble formation.

A weakly interacting bubble is characterized by dominant local effect on pressure distribution.
The model focus on the calculation of the shear layer through different bubble parts as
illustrated in the following sections. Laminar separation bubble starts when a laminar flow
separates, at a point S, causing the boundary layer to move away from the airfoil surface, see
Figure 4.8. The point of laminar separation can be predicted by the solution of integral
boundary layer method described in chapter (2). The shear layer grows until transition from
laminar to turbulent occurs at point T. The region between points S and T is characterized by
presence of velocity plateau distribution shown on Figure 4.8. The location of transition is to
be calculated since it determines the bubble length and thus bubble drag. The surface distance
between the point of separation and the point of transition is denoted by ;. After transition

occurs at point T the flow becomes turbulent and the pressure recovers leading to
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reattachment at point R , with length [,. In many cases, the pressure recovery region is
observed to continue downstream of reattachment point, and the velocity distribution
undershoots the inviscid velocity distribution curve and merges after some distance with
inviscid curve at point M, shown on Figure 4.8.

Therefore, the bubble is divided into three regions:

e Laminar region that starts from point of laminar separation and ends at point of transition.

e Turbulent pressure recovery region, form the point of transition to reattachment.

e Undershoot region where the smooth merge of the velocity distribution with inviscid
distribution happen.

The main goal is to estimate the drag contribution of the separation bubble. This goal is
established through the correct calculation of the boundary layer momentum thickness

&, across the above three bubble regions.

U/Us

Dividing stream line
Zero velocity line

77
Laminar part

Turbulent part

Figure 4.8 schematic of bubble and its effects on pressure distribution [dini]
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4.2.1 Laminar part of the bubble [36]

The solution of integral boundary layer equations described in chapter (2) is continued until
laminar separation occurs. Laminar separation is indicated when the shape parameter Hs,
decreases to the value 1.51509. Starting at this point, the laminar velocity plateau function is
computed based on local boundary layer parameters Uy and 6, as follows:

The average velocity gradient over the bubble area is first estimated form the velocity

distribution. 1t is defined as the change in velocity A( ) divided by the difference in chord

A G) between the point of laminar separation to the point of reattachment. Since, the point of

reattachment is not known at the beginning of the calculation iterative procedure is used to fix
this value.

Reynolds number based on momentum thickness at separation Ry, is computed as

U, ¢ (4.2)

Gaster parameter P is computed depending on the local boundary layer parameters at the

separation point Us and 6, as

p - () 2

Where R is chord based Reynolds number, U is inviscid velocity at separation point location

S, and U,, is free stream velocity.

The pressure recovery DU calculated using experimentally fitted data as shown in Figure 4.9.

and is given by the following equation

DU = {0.0610 +0.3048 P + 0.5072 P? —P<3
0.0152 —P>023 (4.4)

The velocity plateau function is computed starting from separation point until transition is
triggered at point T, and is given by the following equation

U
U_s =1-DU {1 —exp lﬁU_ (s— Ss)l} (4.5)
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Where Ug is the slope of velocity profile at separation point, and subscript s indicate condition

at separation. The variable S is the surface distance along the airfoil upper or lower side.
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Figure 4.9 Pressure recovery in the laminar part of the bubble as function of Gaster's pressure

gradient parameter

The boundary layer closure correlations adopted for the laminar part of the bubble are given
by

1

Hs, — 194068 [/Hs, — 1.94068\° 2
M2 = =348 ( 0.04 ) - 644 (4.6)
(7.4 — Hyy)?
—.067 + 0.01977 ——————==~_ Hy, <74
R C_f — le - 1

6279 14 12 (4.7)

k—.067 +0.022 [1 - 6] Hy, =74

12

Cp B N2
R52H32—0.207 .003(Hy; — 4) 4.8)

The integral boundary layer equations (Chapter 2) are solved in direct mode using these

correlations, derived by the above velocity plateau function.

The separation angle v is defined in Figure 4.10, as the tangent of the separation stream line

that makes with the surface. It is calculated from the empirical relationship proposed
Wortmann (1974) [56] as:
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Figure 4.10 Bubble geometry and scaling parameters

4.2.2 Transition

Prediction of transition location inside the bubble has important role in determining the
bubble drag. Eppler criteria is very useful in predicting transition at high Reynolds numbers
for which transition occurs usually in favorable pressure gradient region. When bubble
presents in the flow, however, more accurate criteria is necessary in which upstream
disturbance history is taken into account and transition inside the shear layer can be predicted.
The transition prediction method adopted here is e™ method.

It is a semi-empirical transition prediction approach. Using this method one can distinguish
between leading edge and med-chord bubbles and also model the effect of pressure
distribution variations upstream of the bubble location.

The logarithm of the ratio of disturbance amplitude at station s to its amplitude at natural
stability s, is defined as factor n(s), where s is the chord station. In this manner, transition is
assumed to occur if the ratio n reaches a predefined critical value n.,.. This value is observed
experimentally to be in the range from 9 at low turbulence wind tunnels up 14 at some flight
test. It is also Reynolds number dependent. An approximate e™ method developed by Drela
[1986] is used in this work. The amplification factor n(s) derived by Drela is given by

_ ([ dn m(Hy,) + 11(Hy2)
n(s) = | Jam | =55 @ w10

Where:

82



Low Reynolds Number Airfoils

_d 1
[ . R’; (le)] — 0.01[{2.4 Hyy — 3.7 + 2.5 tanh(1.5(Hy, — 3.1))}2 + 0.25]2

(4.11)
6.54 Hy, — 14.07
[(Hyp) = Hy,> (4.12)
(H ) _ 0.058 (le - 4‘)2 1
M) = 1) — 0,068 1 (4.13)

and s, is the location at which Rs, = Rgyo Which is defined with the following
function

logi1o[Rs20(H12)]

1.415

= Ho—1 — 0.489] tanh[

20
le - 1

+0440 (419

12

3.295
— 12.9] +

During the boundary layer development the value of H,, , Rs, are available at each point s.
Thus, Rg,, is calculated at each point s using Eq.(4.14). The chord station at which Rs, =
Rgs,o is taken as the lower integration limit s, in Eqn.(4.10). Therefore at this point the
computation of value of the amplification factor n(s) starts. Drela added this equation to the
system of equations that are solved by finite difference in XFOIL code [57]. When integral
boundary layer approach is adopted, like in this work, the amplification factor n(s) is
computed by integrating this equation with the boundary layer integral equations.

The integration continue until the value of n(s) equals the predefined value n. itica; » at
which transition from laminar to turbulent is assumed. And the code switches to calculation of
turbulent part of the bubble. In wind tunnels it was reported that n=9 is an accurate
approximation.

The transition point corresponds to the highest point of the bubble h, and the surface length
from the separation point to this point corresponds to the laminar part of the bubble [;. The

bubble height at transition is given by the empirical relation

hr =1; tany (4.15)

Where y is the separation angle defined by Eq.(4.9) above.
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4.2.3 Turbulent part of the bubble

The turbulent shear layer spreading angle 0 is modeled as

_ -8
tan6 = 0.0975 + 2.5x10"° R (4.16)

When transition location [, is specified the turbulent length of the bubble [, is thus
calculated by

" tan® (4.17)

L

Following this derivation, bubble geometry has the shape shown in Figure 4.10. The
reattachment location is given by the summation of separation and [, and [, surface distances.
In order to account for drag increment from the bubble the turbulent part of the bubble is
solved. The solution is based on assumed shape factor Hs, in the form given in the Figure
4.11, and formulated by the Eqns.(4.18) to (4.24):

Hs,(5) = sin (g)

(4.18)
Where
H — H32 - (H32)R _ 1

27 Al (Hsp)7 — (Hsp)gl (4.19)

_ 2 _ _
y= (g - )’0>U + Yo (4.20)

— T
Yo = 30 Zsin1(1/4; — 1) (4.21)
_((s=sp)/L, s < sg

o= {[(s —sp)l, — 1]SF + 1 s> sp (4.22)

SF = A
= |4, (4.23)
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_ ~300(hr/c)

Figure 4.11 normalized shape factor turbulent recovery function

While A; is calculated based on bubble height at transition, the value of A, is obtained
iteratively so that the solution merges with inviscid smoothly. The computations is repeated
with different values of A2 until the error in the slope of the obtained velocity distribution and
the inviscid solution is acceptably small, at the point where the two solutions cross each other.
One deg. error was found to be satisfactory.

It is known that the value of the shape factor H;, at separation equals 1.51509 is equivalent to
H;, = 4.0. The value H;, rises inside the laminar part of the bubble above the value of 4.0 up
to the transition point when it has the maximum value where it starts to decrease to 4.0 again
at reattachment point, as discussed by Drela [58]. The behavior of Hs, is just the opposite and
normally presented in the boundary layer development chart after boundary layer calculation
are performed. In fact, in laminar part of the bubble velocity is almost constant, and thus the
pressure, which means that the momentum thickness &, is almost constant. The variation in
the shape factors in the turbulent part of the bubble reflects a jump in pressure which in turn
produces additional drag, known as bubble drag. If the above mentioned maximum value of
H,, is kept low the resulting increase in drag will be also low. This can be accomplished by
proper choice of velocity distribution in the area around the bubble location. This method is
known as transition ramp normally used in inverse design. This approach can be also utilized
if airfoil design by shape perturbation is selected. A target pressure distribution is pre-
specified and the airfoil shape is found by optimal optimization methods. If a bubble effect is

85



Low Reynolds Number Airfoils

to be minimized the pressure distribution can be modified in the region ahead and over the
bubble.

The solution of turbulent part of the bubble is performed by integrating the boundary layer
integral equation in inverse mode, derived by the above H, shape factor model. The integral
boundary layer equations in inverse mode are slightly different than standard Von Karman
equations stated in chapter (2). In the turbulent part of the bubble shear stress is the most
important quantity and that is why it is modeled by the shear stress lag equation, which
models the dissipation coefficient in the turbulent boundary layer. The accurate modeling of
dissipation coefficient is necessary to get correct prediction of pressure jump in the turbulent
part of the bubble.

Once the shape factor Hs, is calculated, it is used to drive the solution of the system of
equations Eqn.(4.25) to Egn.(4.29) for the variables U, &, and C,. Specifically, the abrupt
increase in the value of §, is of great concern because it will lead to the additional drag, and
thus accounts for transitional bubble effect. It will be shown also in the pressure distribution

which can be compared with measurement.

dU  [cs Hs, dHs, U
- = [ - CD + 62
dS 2 dS 62H32 (le - 1) (425)
d62 _ 3Cf H32 n dH32 (le + 2)
ds | 2(H;,+2) ° "2 ds |Hyp(Hyp — 1) (4.26)
6 dCT 0.5 0.5
AT 4.2(C%y — C2®) 4.27)
Where
. 0.015 Hs, [Hyy — 1]3
T 1= Ugy L Hyy (4.28)
§=6 (3.15 i ) 5
2 * Hy, — 1 To (4.29)
Cp, Hy,, and C¢ is given by
CD = f . CD Drela (4.30)
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{1 + (CDmax - 1) (S - ST)Z 0<
f= 2
k 1+ (Comax — 1)e_T(T_1)

hr
r=15-1000 —

hr
Comax = 1.0+ [200—

Cp preta = Cstlip +2C.(1—- Uslip)

Hs, 1 4
Uyiyy =—|—— 1]
slip 6 le
( Hiz
o H 1
1 32 — I330)1:27
le =< + ( Cq )
1
H3, — H3zpp\Cs
o+ (F)
Where
4
H320 = 1505 + e
R52
400
Hiz0 =3 R52

¢ = 0.081 (Rs, — 300)°

c; = 0.0158 (Rs, — 300)°8

3000

c; = 1.06 +

(Rs, + 600)15

S_ST
L, —
S—Sr

>1

G >0

Cr <0

(4.31)

(4.32)

(4.33)

(4.34)

(4.35)

(4.36)

(4.37)

(4.38)

(4.39)

(4.40)

(4.41)

The Cr coefficient is calculated at each point by fitting a parabola between the values at

transition Cgr , minimum,, C,,;, and at reattachment C, = 0 . Where

hy
Crmin = = 0.0002—
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4.2.4 Intersection with inviscid distribution

The above procedure is valid for surface points up stream of the reattachment point. The
calculation procedure continues from point of reattachment to the point where the obtained
velocity U curve crosses the inviscid distribution. At crossing, the slopes are compared. If the
difference in slope is greater than 1 deg another value of the factor A, is used to repeat the
calculations. When the slop difference condition is satisfied the bubble model is terminated.
The integration of the integral boundary layer equations continue using Drela turbulent
closure up to the trailing edge.

If at reattachment the calculated velocity U is higher than the inviscid velocity the merge

happens from above and A, is not iterated as argued by Dini [35].

4.2.5 Attached turbulent boundary layer

After the intersection with the inviscid profile is established, the integration of the integral
boundary layer equations (4.43), (4.44), and (4.45) is continued in direct mode using the
relations Eq.(4.46) to (4.56)

ds, ¢ 8, dU

—2_J 4.43
C= T (Hp+ DT (443
dés 63 du (4.44)
ds “~ U ds
S5 dc (4.45)
s = 42 (e — )
C _ 0015 H32 le - 1]3
T - Uslip Hyp (4.46)
§=26 5 2 )
= 5,(315+ —1)+ : (4.47)
The skin friction coefficient is obtained from the equation
0.3¢~ 13312
Cr = (log Ry,)17++0317; +.00011 [tanh( ) - 1] (4.48)
Cp = Cstlip +2C;(1 - Uslip) (4.49)
H32
Usi = =4~ le 1] (4.50)
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( Hiz0 . Cf >0
Hey = | 1+ (H32 C1H320)1-27
L (4.51)
Hazo + (H32 ;H”")Cg ¢ <0
Where
H;,, = 1.505 + A
Rs, (4.52)
Hi;o =3+ @
Rs, (4.53)
c; = 0.081 (Rs, — 300)%* (4.54)
¢, = 0.0158 (Rs, — 300)%08 (455)
3000
c3 = 1.06 + (Rs, + 600)15 (4.56)
The turbulent separation is triggered if the following condition is meet
Hs, = 1.505 + 200
Rs, (4.57)
The drag is then calculated by squire young formula as
Syrg (Urp 2.5+0.5 Hy5TE
Cq = - <U_oo> (4.58)

The computation procedure is best explained through a Figure 4.12 and flow chart Figure
4.13.

Figure 4.12 schematics of possible flow on airfoil with and without bubble
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4.3 Validation of Aerodynamic calculations

Validation is performed by comparison with available experimental data from literature for
incompressible flow at Reynolds number from 200,000 to 500,000 from NASA [59], and
results from Illinois university [60], and [61]. Results are also verified by comparison with
XFOIL code. The inviscid solution obtained from conformal mapping is utilized by
momentum and energy integral equations solver. The resulting drag polar shows good
agreement with experimental data. The computation cost is very small compared to other
methods. The exception is when the interaction between viscous and inviscid is not weak,
particularly close to maximum lift. The location of turbulent separation point is used to
correct the lift and moment coefficients, which is successfully used to design large number of
airfoils in the past. In fact, maximum lift coefficient is over estimated in most of the tested
cases.

The validation process is performed for lift coefficient, drag coefficient, pressure distribution
and boundary layer features for two airfoils at different angles of attack and Reynolds

numbers.

The Eppler E387 airfoil is selected for the comparison since it is widely used in the Reynolds
number range 200,000 to 500,000 and experimental data are available from different wind
tunnels.

Figure 4.14 and Figure 4.15 show comparisons of calculated lift and drag coefficients
compared to experimental measurement from [61] at Reynolds number of 300,000. The
comparison show excellent agreement with experimental measurement both in lift and drag
curves. At this Reynolds number a laminar separation bubble is formed on the airfoil upper
surface during angles of attack up to approximately 7 degrees, as shown in Figure 4.16. The
bubble starts at about med chord and extends to 65% of the chord length. As the angle of
attack is increased the bubble decreases in length and moves toward the airfoil leading edge.
Figure 4.16 also shows a comparison of location of upper surface boundary layer features at
Reynolds number 300,000 at different angles of attack. The figure shows location of laminar
separation points, reattachment points and turbulent separation points. At low angles of attack
current calculations, experimental measurement, and XFOIL results show similar trend for
location of laminar separation and reattachment points. As the angle of attack increases above

8 degrees theoretical calculations fail to predict the short leading edge bubble shown by
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experimental measurement. The turbulent separation location is very close to the trailing edge
at low angles of attack, as the angle of attack is increased it moves forward in the direction of
the leading edge causing smooth curvature in lift curve and increased drag. Experimental
measurement show a sudden jump in location of turbulent separation location after certain
angle of attack, while current calculations and XFOIL results show smooth variations up to
high angle of attack.

Lift variation with angle of attack for E387 ; Re= 300000
15 - :

500
1 o

,,,
R

o
C
o
OO
0 o
O calc
®) O Exp
-0.5 - - ;
-10 -5 0 5 10 15
Angle of attack [deg]

Figure 4.14 C; versus «a for for E387 airfoil at Re 300000, Exp from [61].

Drag polar for E387 ; Re= 300000
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Figure 4.15 C4 versus C; for for E387 airfoil at Re 300000, Exp from [61].
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Location of upper surface flow features for E387 airfoil
at Re 300000 [Exp:AlAA 2003-4067]
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Figure 4.16 Comparisons of upper surface boundary layer features for E387 airfoil at Re 300,000

Pressure distribution

The pressure distribution calculated by the above method is compared to experimental
measurement at angle of attack of 2 degrees and Reynolds number of 300,000, as shown in
[59]. The laminar separation bubble calculations follow closely the experimental
measurements. The bubble pressure variations is well predicted, the upper surface bubble is
clearly shown, and the lower surface has nearly constant pressure over most of its length.
Reference back to Figure 4.16 the pressure distribution show a large bubble that start at
approximately 0.5c up to .65c. Details of upper surface boundary layer parameters are shown
in Figure 4.19.
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Pressure distribution for E387 airfoil at Re 300000 ,a =2 deg.
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Figure 4.17 comparison of experimental and calculated pressure distribution

for E387 airfoil at Re 300000 and angle of attack 2 deg.
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Figure 4.18 Comparison of pressure distribution with Xfoil code for E387 airfoil at Re 300000 and
angle of attack 2 deg.
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Boundary layer parameters

Figure 4.19 show upper surface boundary layer parameters as computed by the current code
compared with that calculated by XFOIL. It shows laminar separation point at corresponding
to H32 = 1.51 or H12 =4.The boundary layer momentum thickness &, variations show sudden
increase inside turbulent part of the bubble as expected. The values of dissipation coefficient
Cp and the friction coefficient ¢, are also shown.

Figure 4.20 show upper surface boundary layer development as obtained for the above case.
the points of laminar separation , transition and reattachment are indicated on the chart.
Comparisons with XFOIL code is also presented in Figure 4.21 and Figure 4.22 . H;, shape
factor is XFOIL main shape factor. Comparisons show similar trend and similar maximum
value. The momentum thickness &, , which is the most important boundary layer parameter

we looked for by this modeling to calculate drag , show good agreement with XFOIL.

Comparisons of friction coefficientCy , dissipation coefficient Cp, , velocity distribution Vl and

Reynolds number based on momentum thickness Res, show generally good agreement with
XFOIL calculation. Lower surface boundary layer parameters are shown in Figure 4.23 to
Figure 4.26, in which a laminar flow is preserved up to close vicinity to the trailing edge.
Comparisons with XFOIL very close agreement. Boundary layer development chart shown on

Figure 4.26 indicate a laminar separation very close to the trailing edge.
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Figure 4.19 Upper surface boundary layer parameters at Re 300000 and a=2 deg. (continued)
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Upper surface boundary layer development for E387
at Re 300000 ¢=2 [deg]
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Figure 4.20 Upper surface boundary layer development chart for E387 at Re 300000 and
a = 2 deg.
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Figure 4.21 Comparison of upper surface boundary layer shape factor H,, for E387 at Re
300000 and a = 2 deg.
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Figure 4.22 Comparison of upper surface boundary layer momentum thickness for E387 at Re
300000 and a = 2 deg.
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Figure 4.23 Lower surface velocity distribution for E387 at Re 300000 and a=2 deg.
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Figure 4.24 Variation of momentum thickness for the lower surface of E387 at Re 300000 and a =2
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Figure 4.25 Lower surface boundary layer development parameters at Re 300000 and a=2 deg.

(continued)
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Lower surface boundary layer development for E387
at Re 300000 o=2.0[deq]

10" ——

H32

Figure 4.26 Lower surface boundary layer development chart for E387 at Re 300000 and a = 2 deg.
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4.3.1 Variation of aerodynamic coefficients with Reynolds number

Aerodynamic lift and drag coefficients of two airfoils at three Reynolds numbers are plotted
in the following figures from Figure 4.27 to Figure 4.32. Comparisons show generally a good
agreement with experimental data. When large separations are present, however, the current
calculations over estimate both lift and drag. Maximum lift coefficient is over estimated but
the angle of attack of maximum lift is computed with fair accuracy.

Airfoil E387 ; Re=199747
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Figure 4.27 Comparisons between calculated and experimental data for E387 at Re=200,000.
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Figure 4.28 Comparisons between calculated and experimental data for E387 at Re=350,000.
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Airfoil E387 ; Re=500000
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Figure 4.29 Comparisons between calculated and experimental data for E387 at Re=500,000.
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Figure 4.30 Comparisons between calculated and experimental data for S8036 at Re=200 000
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Figure 4.31 Comparisons between calculated and experimental data for S8036 at Re=350,000
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Figure 4.32 Comparisons between calculated and experimental data for S8036 at Re=500,000.
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4.3.2 Variation of boundary layer features with Reynolds number

Boundary layer flow features are the positions on the airfoil surface where important changes
happen in the boundary layer flow on upper or lower surfaces, such as location of laminar
separation point, transition point, reattachment point and turbulent separation point. When
laminar separation bubble occurs transition is assumed inside the bubble.

Current calculation results are compared with published experimental data for two selected
airfoils. The first airfoil is Eppler low Reynolds number airfoil E387 which is used as
benchmark for validating low Reynolds number aerodynamic computations. It is extensively
tested in NASA Langley Low Turbulence Pressure Tunnel (LTPT, where drag polar, and
pressure measurements at low Reynolds numbers are published [59]. Recently, E387 airfoil is
tested in the University of Illinois at Urbana-Champaign (UIUC) subsonic wind tunnel [60],
[61], which is intended to validate and refine airfoil low Reynolds number computation
methods. The second airfoil is Selig S8036 low Reynolds number airfoil designed for soft
stall characteristics. Experimental measurement data for these two airfoils at flow Reynolds
numbers are 200,000, 350,000 and 500,000 are used in the validation of current computations.
These measurements include drag polar and location of upper surface boundary layer flow
features.

Comparisons of measured [59] and calculated pressure distributions over E387 airfoil at
Reynolds number of 300,000 and at angles of attack of 4, and 6 degrees are shown in Figure
4.33 and Figure 4.34. The location of the separation bubble is clearly observed on the upper
surface. Calculated pressure distribution agrees with experimental data and XFOIL results.

The bubble location is calculated with acceptable accuracy for optimization computations.

The general observation is that the bubble moves upstream as angle of attack increase, with
length being shorter. Figure 4.18 shows comparisons of locations of upper surface features of
the two airfoils at different angles of attack and Reynolds numbers of 200,000, 350,000, and
500,000.The computed laminar separation, Reattachment, and turbulent separation locations
on upper surface are compared to experimental measurements. Laminar separation and
reattachment locations from XFOIL are also shown for E387 at Reynolds number 350,000.

A laminar separation bubble extends on the upper surface starting approximately at mid
chord. As angle of attack increases the bubble moves toward the leading edge, and its length

decreases. When the bubble length close to leading edge is very short, it could be interpreted
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as a transition without bubble. Current calculations follow the general trend of both
experimental measurement and XFOIL predictions. As Reynolds number increases the
laminar separation bubble tend to shorten in length, which is in agreement with the general
fact that laminar separation bubble is more dominant in low Reynolds number range. The
results of XFOIL and current calculations seem to under estimate the reattachment point
location, this is also noted [62]. For low angles of attack turbulent separation take place at or
very close to the trailing edge. When angle of attack increases further turbulent separation
moves forward causing high increase in drag and loss in lift.

In all cases turbulent separation point assessed by current computations and XFOIL code at
high angles of attack is more aft than the measured locations. This miss-predictions has the
consequence of over estimating the angle of maximum lift, and thus the value of maximum

lift coefficient.
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Figure 4.33 Pressure distribution for E387 at Re 300 000 and a =4°
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Figure 4.35 Comparisons of locations of upper surface flow features for E387 and S8036 at Re
200,000, 350,000, and 500,000. (Solid lines represent experimental data, dashed lines is XFOIL, and

filled symbols are current calculations).
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CHAPTER 5

5 Airfoil Parametric Representation

5.1 General Requirement

Parameterization is defined as representing aerodynamic characteristics, such as shape or
pressure distribution, in terms of few numerical parameters. These parameters are called
design variables. Parameterization is often applied to aerodynamic geometric characteristics
of airfoils, wings or even complete configuration. When the design variables are modified the
aerodynamic performance is correspondingly changed. The optimization algorithm and the
designer should look for the design variables that will improve aerodynamic, structure or
flight performance. This process is called optimization. The aerodynamic analysis will lead to
a selection of a set of design variables that satisfies predefined requirements. Each design
variable can change within specified range. Design space is defined by the ranges of all
design variables. For instance, airfoils can be described using NACA representation
(discussed in the next section). Four digit NACA definition uses only 3 parameters to
represent airfoils. The low number of parameters allows fast design and analysis but it may
not cover all possible airfoil shapes. Other airfoil parameterization methods are in use that can
cover more design space and produce improved performance. Conversely, a higher number of
design parameters may lead to improvement in performance, but requires higher
computational cost during the optimization process. Therefore, in many cases tradeoff studies
between computational cost and number of required parameters is necessary. Computational
cost is often measured by number of calls to analysis code. In this work the parameterization
method that will capture a global design space with reduced number of design parameters is

used.

Airfoil parametric representation is considered recently by many authors for use in numerical
optimization and design. One main reason is that aerodynamic analysis codes ask for many
airfoil coordinate points (about 100 points or more). Using these coordinates as design
variables results in non-smooth airfoils which is not aerodynamically acceptable and will also

result in very long optimization time due to large number of design variables. By selecting
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proper airfoil parametric representation method this problem can be solved. Klfan, [63] stated
a number of factors that are considered during the choice of parametric representation
methods for aerodynamic design. Selection of optimization algorithm, computational cost
required to reach optimum design, and if the optimum design is contained in the design space,
and whether it can be found by search algorithms.

Parametric airfoil representation methods work with parameterization of airfoil shape, which
means that it represent airfoils with few parameters that control airfoil counters. NACA 4
digit airfoil representations uses 3 parameters, PARSEC method uses 11 parameters to
represent upper and lower airfoil surfaces, CST method on the other hand uses a number of
coefficients in polynomial series which can produce rounded leading edge and sharp trailing

edge shapes. The following section describes some airfoil parametric representation methods.
5.2 NACA Airfoil Series

Airfoils shape is defined in a variety of methods. NACA has its own methods of representing
groups of airfoils, such as 4 digit 5 digit or 6 digit series. Reference [65] provides details of
NACA definitions. Although, these airfoils are successfully used in many applications, a need
for airfoil shapes that perform better in for specific applications, such as blade design,
propellers, or at low Reynolds number has derived the research toward other airfoil
representation methods.

NACA airfoils grouped in series such as 4-digit, 5-digit and 6-digit series. Their coordinates
were derived from either geometrical methods using analytical equations that describe the
camber distribution and the thickness distribution along the chord line, see Figure 5.1, or are

derived using theoretical methods like 6-digit series.

5.3 4-digit series airfoils

It is the first series of airfoils designed using this approach. They have 4 digits; the first digit
is denoted by (m) specifies the maximum camber in percent of airfoil chord. The second digit
represents the position of maximum camber (p) in tenths of airfoil chord. The last two digits
represent the maximum airfoil thickness (t) in percent of chord. Thus NACA2412 airfoil, for
example, has 2% camber located at 40% of its chord from leading edge and 12% chord thick.
This representation requires specification of theses 3 parameters to find out the airfoil

coordinates for upper and lower airfoil surfaces. as in Figure 5.1.
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NACA 4 digit airfoils
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Figure 5.1 NACA Airfoil geometrical parameters

The procedure to find the airfoil coordinates is summarized by the following steps and sample
calculations are shown in Figure 5.2 :

a. Chord length is made non dimensional be dividing by chord, thus x varies from O at LE to 1
at TE.

b. Using the values of p and m, it is possible to compute mean chamber for each value of x

using the following equations:

=m )

Ye =77 (Zpx — x%) for x from 0 to p 61
=_m _ _ .2

Ye = gy L1 = 2p) + 2px — x*] forxfrompto 1 652

where

Yy is camber coordinates.

p -is first digit in NACA designation divided by 100.

m - is the second digit value in NACA designation divided by 10.

t- is the last two digits divided by 100.

c. Compute the thickness distribution around the mean chamber by substituting t into the

following equation:
t
+y, = ﬁ(0.2969\& —0.1260 x —.0351 x% + 0.2843 x3 — 0.1015 x*%) (53)
d. Calculate the upper ( Xy, Yu )and lower ( X, y. )airfoil coordinates using:
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d
0 = arctan (i>
dx

Xy =x — 1y, sinf Y, =Y.+ y: cosO
X, =x+y,sinf Y, =y, —y. cosO
NACA 4 digit airfoils
0.2 I
— Upper surface
Lower surface
0.15
—
0.1 P™~om=5--p=-6-t=-15
)]

ylc

0.05 /,;f m=0 p=0 t=12
Aol
ol

0
e ._../.----'4
005 L e
-0.1
0 0.2 04 0.6 0.8 1

x/c

Figure 5.2 NACA 4- digit airfoil representation parameters
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54 PARSEC Method

It is a commonly used method. This method is originally developed by Sobieczky, 1998 [66]
for used in subsonic and transonic airfoils. Its main idea is expressing the airfoil surface as an
unknown linear combination of appropriate mathematical function, and selecting a number of
important geometric characteristics of the airfoil as the design variables, in such a way that
the airfoil shape can be determined from these variables by solving a linear system of
equations. Eleven airfoil geometric characteristics are used to represent airfoil as illustrated in
Table (1) and Figure 5.3.

Table 5.1 Parsec method parameters

Me Leading edge radius

Xup X location of Upper crest
Yup Y location of Upper crest
Y Up Upper surface curvature
Xio X location of Lower crest
Yo Y location of Lower crest
Y,LO Lower surface curvature
DY+ Trailing edge thickness
Y+e Trailing edge y location
OTg Trailing edge direction
Bre Trailing edge included angle

Y:-:::LC."

Figure 5.3 PARSEC method for airfoil parameters
The parsec equation is given by Eq.(1)

6 1
= X, 2
=) ani¥] (5.4)
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Where j takes a value of 1 for upper surface and 2 for the lower surface, the coefficients and
are determined by using the above mentioned airfoil geometric characteristics.

The above equation can be written for the upper and lower airfoil surfaces as follows

6 1

n—-=
Yup = z an X‘Ll,p (55)

2
=1

_1
n-3

5.6
b, X, , (56)

n

6
Yio =

n=1

A specific relations can be derived for the upper and lower surfaces as follows

[ dz 2]
i Il + (%)
d2z (5.7)
| (W) |
1- Leading edge radius
For upper surface rpop = |22
LEUP 2 (5.8)
_ |eo?
For lower surface "iELo = |, (5.9
2- Trailing edge position
1
For lower surface Yrgyp = Yrg + 5 DYrg (5.10)
For lower surface Yrero = Yre — %DYTE (5.11)
3- Airfoil coordinates
6 L1
— 2
Yp = Z an Xyp (5.12)
n=1
o _1
Yio = Z bnX,0? (5.13)
n=1
4-Trailing edge slope
6
day 3 B 1 3 1 -2
(d_X)TEUP = tan(@up) = tan (arp + E‘BTE) = z (n — E) an Xrp (5.14)
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6
dy 1 1 n-3 5.15
<—) = tan(8,0) = tan (arg — 5 fre) = Z (n - —) bn Xpg? (.15)
5- Slope at any maximum thickness
_qdy NN R,
Youp = (ﬁ)xmp - Zl (" N E) n Xyp™ = (5.16)
n=
_dy NNy
Yao = (d_X)X=XL0 = Z (n=3)n¥io? = (5.17)
6- Curvature
(a2 o 3y 1 s
Yorup =\ g2 P Z (" - z) (" - z) @ Kyp (5.18)
- o
_(dy N (B L), S
Yoto =\qxz) = Z (" B z) (" B z) n L0 (5.19)
- =

These equations can be written in matrix form as for the upper and lower surfaces separately.

Aup Bup = Cup (5.20)
Ao Bro =Cro (5.21)
Where the matrices are given as
1 0 0 0 0 0
1 3 5 7 2 11
2 2 2
X’?‘ E XYZ‘E X% E XT E XTE XT E
1 3 5 z 9 11
2 2 2 2 2 2
XUP XUP XUP XUP XUP XUP
— 1 1 3 5 7 9
Ap=11, 3,5 55 7.5 9,5 1., (5.22)
2 TE 2 TE 2 TE 2 TE 2 TE 2 TE
1.1 31 53 7 3 9 7 1.2
2 2 2 2 2
EXLZIP EXUP EXUP EXUP EXUP 7XUP
-3 -1 1 3 5 7
Iyz 3xz 15,3 35,5 53,50 99,5
4 TE 4 UP 4 UP 4 UP 4 UP 4 UP
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1 0

1 3

2 2

XTE XTE

1 3

2 2

XLO XLO

_ 1 1
Mo=|1 3.4
2 TE 2 TE

1 1 31

2 2

EXLO EXLO
1 =2 3 =

2 2
ZXTE ZXLO

CUP = tan(eup)

CrLo = |tan(6,p)

0 0 0
5 7 9
2 2 2
XTE XTE XTE
5 7 9
2 2 2
XLO XLO XLO
5 3 7 3 9 7
2 2 2
EXTE EXTE EXTE
5 3 7 3 9 7
2 2 2
EXLO EXLO EXLO
15 1 35 3 53 3
—X?2 —X? —X?
4 LO 4 LO 4 LO
_al_
a;
as
Byp = ay
as
Lag ]
_bl_
b,
b
BL0: bj—
bs
b |

S —
Yreup
Yy

0
dazy
| dx2 UP |
P

YTELO
Yio

0
d?y
| dx2 Lo |

(5.23)

(5.24)

(5.25)

(5.26)

(5.27)

The unknown coefficients a, and b, are found by solving the above system of equations

Byp = Ayt Cyp and similarly B, = A;} Cpo. The obtained coefficients are feed back to the

original equations and the airfoil coordinates x/c and y/care calculated. A sample

calculation is shown on Figure 5.4, with PARSEC parameters given in Table 5.2
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Parsec representation for NACA 2412

—
\ .
0.05 “~\
o S
S, \
0 /
//
//
_-—.—-""
-0.05
0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1
x/c

Figure 5.4 Parsec representation (dotted line ) of NACA 4412 airfoil (solid line)

Table 5.2 Values of PARSEC parameters for NACA2412

parameter Meaning Value

g Leading edge radius 0.0119
Xup X location of Upper crest 0.3391
Y Y location of Upper crest 0.0792

Y Up Upper surface curvature -0.6222
Xio X location of Lower crest 0.2226
Yo Y location of Lower crest -0.0424

Y, LO Lower surface curvature 0.3815

DYt Trailing edge thickness 0.0025
Y+e Trailing edge y location 0
aTE Trailing edge direction -5 deg
Bre Trailing edge included angle 15.9752 deg

5.5 Bezier Parameterization

Bezier curves are special curves in which they are controlled by control points [96]. They
curve starts and ends at a control point but it is not necessary to pass through each
intermediate control point. For n degree Bezier curve n+1 control points are required. Figure
5.5 Two Bezier curves of order 5 representing upper surface of an airfoil. A Bezier curve is

defined by Eq.(5.28) for given control points P; and Bernstein polynomials B;*.
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n
P(t) = z P;Bi(t) (5.28)
i=0 '
Bezier curves are based on Bernstein polynomials B;j" which is given as
n ..
n _ S \N—isl
By =(,)a-omt (5.29)

where i=0,1,2,3. and G) is a binomial coefficent given as

(n) _ n!
i/ il(n =) (5.30)
If n=3 Bezier curve is to be written the following Bernstein polynomial of n+1 =4 terms is

constructed as

By =(1-¢) (5.31)
3 — 43
B; =t (5.34)
Two Bezier curves of order 5 representing upper surface of an airfoil shape
0.2
0.15
0.1
> o
0.05 Plf( <z
0 ¢
PO
f POb
-0.05
-0.1
-0.2 0 0.2 0.4 0.6 0.8 1 1.2

X

Figure 5.5 Two Bezier curves of order 5 representing upper surface of an airfoil
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Figure 5.5 shows two Bezier curve of order 5 which requires 6 control points. First curve
(red) represents forward part of airfoil upper surface and second curve (blue) represents
backward part of upper surface. Red circles are control points denoted by subscript b and f for
forward and backward part respectively. Bezier curves has useful properties that makes it
suitable for airfoil shape representation, these properties are
a) A single Bezier curve is continuous, their derivatives can be calculated analytically
because it is a polynomial. The curve is also bounded by straight lines connecting it's
control points.
b) Curves start and end with control point which makes the curve contained between
the control points.
c) Initial curve slope can be controlled by location of next point , for example 2nd
control point located at same x distance from 1st point will generate a curve having 90
degrees, as shown in Figure for forward part, note that the curve does not pass through
the second point .
d) Airfoil maximum thickness can be controlled by specifying coordinates of the last
points in each part, (Ps) which is also common for both part.
e) First and second order continuity at maximum thickness is assured by giving same
y coordinate for points P3 and P4 of forward and backward parts.
f) Finally, the trailing edge location and angle are controlled by backward part 1st and
second points.
Thus, in order to represent airfoil upper surface with 5 degree Bezier curve some
constraints should be applied. Table 5.3 shows these constraints for upper surface, a
similar constraints is applied to the lower surface.
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Table 5.3 Five point Bezier curves constraints

Point

/Coordinates

Constraints for Forward part

Constraints for Backward part

1 X Fixed at axis origin x=0 Fixed at x=1
y Fixed at axis origin y=0 Fixed at y=0 or specific value.
X Fixed at x=0 Floats between the two neighboring points
2 y Floats between the two neighboring | Floats between given max. and min. to
points give logical TE angles.
) X E:)?ﬁz between the two neighboring Floats between the two neighboring points
y E:)?ﬁ:: between the two neighboring Floats between the two neighboring points
X Flc_)ats between the two neighboring Floats between the two neighboring points
3 points
y Fixed to y = maximum thickness Fixed to y = maximum thickness
X Flc_)ats between the two neighboring Floats between the two neighboring points
4 points
y Fixed to y = maximum thickness Fixed to y = maximum thickness
X Fixed to the position of maximum | Fixed to the position of maximum
5 thickness thickness
y Fixed to y = maximum thickness Fixed to y = maximum thickness
Bezier curve representing NACA 2424
0.2
0.15
0.1
0.05
Q
>
0
-0.05
0.1

0.4 0.6

x/c

0.8 1

Figure 5.6 NACA 2424 airfoil represented by Bezier curve using the above method
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Figure 5.6 NACA 2424 represented by 4 Bezier curve, and NACA representation , They are
very close and hardlly be distiguashable . (Red) circles represent control points. dotted lines is

inclosing shape.Bezier curve parameters are shown on Table 5.4, with 11 parameters for each

curve.
Table 5.4 Bezier curve parameters used to generate NACA 2424
point | 0 1 2 3 4 5 6 7 8 9 10
PU 0.0364 | .0071 | 0.1035 | 0.1594 | 0.2978 | 0.4007 | 0.5363 | 0.8638 | 0.0597 | 0.96 | 0.0117
PL -0.0052 | 0.0069 | -0.0672 | 0.0669 | 0.2445 | 0.3290 | 0.5929 | 0.9638 | -0.0005 | 0.960 | -0.0111

56 CST Method

This method is developed my Brenda Kulfan in Boeing Commercial Airplanes, as illustrated
in [97],and [98], and its characteristics has been thoroughly studied in many works as in [99].
In CST method an airfoil geometry is expressed by the mathematical expression of Eq.(5.35)

N
W) =B A=) ) Ap' + g (5.35)
i=1

Where  y =2, ¢=2 and & ===

c
In this expression airfoil nose shape is governed by the term \/E , While the term (1 — )
controls the trailing edge angle and the last term 1 &, represents the trailing edge thickness.
The term YN, A;y* shapes the rest of the airfoil surface. The equation can be rearranged to

give the so called class function and denoted by S(y) given by Eq.(5.36).

S(lp)=% with  S(0) = /ZTLE/C and  S(1) = tan f + “2IE (5.36)

The shape function can be formulated by using Bernstein polynomial in which first term
represent leading edge radius and last term represent trailing edge angle and thickness. The
rest of the terms can not affect neither leading edge radius nor trailing edge properties, and
thus called shaping terms.

If Bernstein polynomial of order n is used then the shape function takes the form

n!

Si) = Kip' (L =) with K; = (7) = 0= (5.37)

Using this shape function the airfoil upper and lower surfaces can be expressed as
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N
Eup = \/E a1- l/))zAupSi(l/)) + l/)AEup
i=1
N (5.38)
§10= VB (=) ) AuoSi) + 1 Ao
i=1

Yurg
C

YLTE
Cc

and AfLO =

Where A&, = are upper and lower trailing edge thicknesses

respectively.

The coefficients A, and Ao can be found for different airfoil shapes. This formulation
methodology is suitable for systematic design optimization approach. Figure 5.7 shows
construction of airfoil upper surface using various Bernstein polynomials shape function
S;(y), along with corresponding airfoil terms (by using only one term with i = 1,2,..or N
in the &,,,, and &, equations (5.38)).

The terms of the shape function always sum up to 1. The sum of airfoil terms results in airfoil
surface coordinates. It is worth to note that the coefficients Ay, and Ao are set to 1 in the
shown example, which means that they are not used. When these coefficients are assigned to
some value they will scale up or down the corresponding term, and thus different airfoil shape
is formed with any perturbed coefficient.

Figure 5.7 through Figure 5.10 show airfoil upper surface constructed with different degree of
polynomials. The values of the polynomials coefficients will differ with n and will change
with the scaling coefficients A's.
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Terms of shape function S(y) represented
by Bernstein Polynomial with n=2
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Figure 5.7 CST representation of airfoil upper surface using 3 terms (n=2). Upper part: Shows 3 terms
of Bernstein polynomial of equation (5.37) (dotted curve), and its summation is equal to 1 . Lower

part: Shows airfoil upper surface shape (solid) and terms of equations (5.38) (dotted), The summation

of these three curves at each point results in a point on airfoil surface.
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Terms of shape function S(y) represented
by Bernstein Polynomial with n=3
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Figure 5.8 CST representation of airfoil upper surface using 4 terms (n=3). Upper part: Shows
4 terms of Bernstein polynomial of equation (5.37) (dotted curve), and its summation is equal
to 1 . Lower part: Shows airfoil upper surface shape (solid) and terms of equations (5.38)

(dotted), The summation of these four curves at each point results in a point on airfoil surface.
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Terms of shape function S(y)represented
by Bernstein Polynomial with n=4
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Figure 5.9 CST representation of airfoil upper surface using 5 terms (n=4)
Upper part: Shows 5 terms of Bernstein polynomial (dotted) equation (5.37), and the
summation of these terms equal 1 is one.
Lower part: Shows airfoil upper surface shape (solid) and the five terms of equations (5.38)
(dotted).

125



Low Reynolds Number Airfoils

Terms of shape function S(y)represented
by Bernstein Polynomial with n=5
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Figure 5.10 Construction of an airfoil upper surface shape using n=5
Upper part: Shows 5 terms of Bernstein polynomial (dotted) equation (5.37), and the
summation is one.
Lower part: Shows airfoil upper surface shape (solid) and the six terms of equations (5.38)

(dotted)

126



Low Reynolds Number Airfoils

It is shown in [63] that a relatively low order Bernstein polynomial, (such as n=6 to n=9),
matches the airfoils geometries, slopes and second derivatives. It is also shown that pressure
distributions and aerodynamic forces are also matched. The results also indicated that lower
order Bernstein Polynomials, corresponding to fewer design variables, (perhaps n=4 to n=6),

should be adequate for developing optimum designs.

5.7 Matching of NACA 4412 Airfoil shape

An example of CST method is shown in Figure 5.11 in which NACA 2412 is represented by 2
coefficients for upper and other 2 coefficients for lower surfaces. The difference in airfoil
coordinates is shown in the lower part of the same figure. The maximum difference is about
2.1E-3 which is fairly satisfactory for optimization purposes given that it will be
computationally inexpensive. With 4 coefficients CST fits NACA2412 with high accuracy
Figure 5.13 maximum differences in order of 10™. Figure 5.12.and Figure 5.14 show the
fitness value versus the number of generations. About 50 generations are required to reach the
best close to the best accuracy for 2 coefficients as compared to about 200 for the 4
coefficients case. The mean value is improved faster as a property of genetic search
algorithms. The value of best generation is shown in the lower part of each figure, where the

upper surface coefficients are positive while the lower are negative.
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Representation of naca 2412 airfoil by CST of n=2 for each surface
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Figure 5.11 NACA 2412 represented with two coefficients for each surface and difference y in
coordinates. A,,=[0.1995 0.2103] and A o=[ -0.1350 -0.0584 ]
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Best: 0.00194516 Mean: 0.00194525
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Figure 5.12 Convergence history and coefficients with best values when two CST coefficients for each

surface are used.
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Representation of NACA 2412 by CST of n=4 for each surface
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Figure 5.13 NACA 2412 represented with four coefficients for each surface and difference iny
coordinates. A,,=[0.1899 0.2254 0.1847 0.2193]and A,, =[-0.1518 -0.0788 -0.0990 -
0.0677].
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Figure 5.14 Convergence history and coefficients with best values when four CST coefficients for

each surface.
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5.8 Matching of Target Pressure Distribution

In order to check the capability of CST method to match a given pressure distribution, a study
is performed in which a pressure distribution around known NACA 2412 is calculated at
angle of attack of 2 degrees and Reynolds number of 300,000. This pressure distribution is
used as input to the optimization code as target pressure distribution Cp;. Genetic Search
Algorithms GA optimization is used to find the CST aerodynamic shape that produces this
pressure distribution.

The optimization procedure should converge to the same starting airfoil, or to a shape which
is very close to it. The objective function for this case is based on finding the difference
between calculated pressure distribution and target pressure distribution. The difference is
calculated as the mean of difference squared between two functions as given by Eqgn.(5.39).

§V= CT—CK 2
diff = i jv F) (5.39)

Where Cp' s target pressure distribution at each airfoil surface point fromi =1to N
and Ck is the pressure distribution calculated at k™ iteration step.

This error measure is used as objective function during the optimization process. It should
rapidly diminish as the optimization method converges to the target pressure distribution
shape. It is worth to note that the number of iterations needed to converge depends on the
starting point. Figure 5.15 shows NACA 2412 airfoil and, Figure 5.16 shows target pressure

distribution. Two CST and four CST coefficients are discussed in the following sections.
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Figure 5.15 NACA 2412 used as test airfoil
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Target pressure distribution of NACA 2412 at 2 deg.
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Figure 5.16 Target pressure distribution

5.8.1 CST with n=2 parameters

The accuracy of CST method can be checked for different number of parameters. N=2 uses
two coefficients for each airfoil side, and thus 4 optimization parameters are used by genetic
search algorithm. Results of optimization are shown in Figure 5.18 and Figure 5.19.

For this case, the CST takes about 35 generations to converge to the target pressure
distribution with a value of fitness function of 3.4x10™. The parameters for n=2 are

Ayp = 0.1995 0.2107 and 4,, = —0.1351 —0.0585.The pressure distribution is
matched exactly from engineering point of view. As can be seen in Figure 5.19, and the found

airfoil shape is very close to the target NACA2412 airfoil, as seen in Figure 5.17.

Target airfoil NACA 2412 and CST shape

0.15 :
— CST shape
o1- T NACA2412 | |
—
2 005 e T
0
-0.05
0 0.2 04 0.6 0.8 1
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Figure 5.17 NACA 2412 airfoil and obtained CST shape when number of CST parameters N=2
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Figure 5.18 Fitness value versus number of generations for target pressure distribution at o=2 degrees

and number of CST coefficients N=2.
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Target and CST pressure distribution for n=2
Aup =[0.1995 0.2107],A ,=[-0.1351 -0.0585]
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Figure 5.19 Comparison of target and CST pressure distributions when number of CST parameters
N=2

5.8.2 CST with n=4 parameters
In this case total number of parameters is 8, the optimization algorithm will require more
computations to converge at the target shape.
By comparing Figure 5.18 and Figure 5.21, the number of representation parameters is
increased from n=2 to n=4, which results in increase number of GA generations from 35 to 50
generations to reach the same fitness function. The CST parameters for n=4 are

Ayp = 0.1991 0.2047 0.2039 0.2126

Ao =—0.1400 -0.0891 -0.1064 - 0.0509
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Target and CST pressure distribution for n=4
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Figure 5.20 Comparison of target and CST pressure distributions when number of CST parameters
N=4
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Figure 5.21 Fitness value versus number of generations for target pressure distribution at a=2 degrees

and number of CST coefficients N=4
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CHAPTER 6

6 Aerodynamic design and shape Optimization

Aerodynamic design is historically classified into two classes of problems. These
classification are the direct and inverse airfoil design problems. Direct airfoil design problem
means finding performance parameters for given airfoil at given flow conditions, while the
inverse design problem deals with finding airfoil shape that has pre-specified performance
(most often velocity or pressure distributions), this is illustrated in Figure 6.1.

Optimization can be applied to both forms of the design problems. If the problem is set as
direct optimization, the airfoil shape is changed until the required fitness function is satisfied.
For the inverse optimization problem the airfoil target performance is pre-specified and the
optimization methods searches for the corresponding airfoil shape. Although, an initial design
point (shape) is required, the design should converge to the optimum shape regardless of the
initial shape. This is usually checked by repeating the optimization process with different

initial shapes.

Direct problem

—

T~

Airfoil Shape

Inverse problem

Velocity Distribution

Figure 6.1 Inverse and direct aerodynamic problems

The other important issue is multipoint design. One essential design requirement in airfoil
design process is to check airfoil performance at off design conditions. For instance, design
requirement can be formulated to maximize lift or minimize drag, or to maximize lift to drag
ratio, or to optimize airfoil thickness, or pitching moment. These requirements can be placed
at one angle of attack or flight condition (design condition or point). The other flight
conditions are checked later after the design is obtained, this approach is called single design
point. Multipoint design is possible with more complex objective functions and demanding
computational cost. Michael S. Selig [67] and [68], has presented a multipoint inverse airfoil

design for incompressible potential flow which was basically based on Eppler work [27].
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6.1 Inverse design approach

In this design approach a target pressure (or velocity) distribution and an initial airfoil shape
are usually specified for given flow Reynolds number and angle of attack. The pressure
distribution of the initial airfoil is then computed and compared to the target pressure
distribution. The airfoil shape is manipulated by the inverse design method in order to overlap
its pressure distribution with target pressure distribution. For instance, if the pressure
distribution of a known airfoil shape is specified as target pressure distribution, the inverse
design method should converge to the target airfoil shape. This constitutes an advantage
because the required performance (pressure distribution) is already specified, which makes
inverse design a powerful design method.

The choice of pressure distribution as target performance characteristics was derived from the
fact that favorable pressure distributions will delay transition from laminar to turbulent flow
[28] as noted by Schlichting [69] and adopted by Liebeck in his works [70] - [72] and used by
Wortmann [73] to design glider airfoil series. Miley [74] had theoretically investigated the
influence of lowered Reynolds numbers on airfoil designs based on the requirement to
achieve transition upstream of a major adverse pressure gradient. Maughmer and Somers [75],
and others as has used similar design philosophy to design laminar flow airfoils with aft
pressure recoveries for a wide range of application. Startford [77] and [78] has adopted the
idea that keeping the flow on the edge of separation can result in airfoil shapes that have
prolonged laminar flow, with minimal energy lose.

Hence, inverse design approach possesses the advantage that the required performance (in
terms of velocity or pressure distributions) is already specified. This advantage puts a difficult
task to the designer who should formulate the design requirements in terms of target pressure
distribution. Inverse design methods are formulated to calculate airfoil shapes for given
pressure distribution, but not to optimize the problem. Target pressure optimization will do
the job of finding the optimum airfoil shape. The difference between the target pressure
distribution and the calculated pressure distribution for i iteration is used to correct the airfoil
shape toward the target pressure distribution. This correction, often, results in non-smooth
airfoil shape therefore smoothing procedures are applied to the resulting shape. Connecting
airfoil shape with pressure distribution and smoothing form a major drawback for this type of

inverse formulation method.
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Eppler [27] establishes conformal mapping method to find out the airfoil shape for given
target velocity distribution at known segments over a unit circle, which is mapped to the
airfoil. His method forms the bases of many successful airfoil designs for different
applications [67][68][80].

6.2 Direct design approach

Direct design is the approach used when the airfoil shape is given and the performance
characteristics (velocity distribution or drag polar) is calculated at known flow conditions. It
is referred to as direct analysis problem. Because the airfoil is given it is always specified as
realistic airfoil shape. A new airfoil is generated depending on optimization fitness function
which requires more aerodynamic function calls than inverse approach that searches around
the required performance shape. Therefore direct methods cover wider search space and come
with variety of airfoil shapes, and it is up to the designer to put additional constraints such as,
lift or drag or moment coefficients or some geometric constraints for example, the maximum
thickness or nose radius or trailing edge angle. A comparison between direct and inverse

design approaches is illustrated in the following table

Table 6.1 comparison between direct and inverse design approaches

Characteristic Direct approach ‘ Inverse approach

) No direct control on airfoil The designer specifies the required
Required performance

performance. performance.
] Problem is solved in direct o

Problem formulation Inverse formulation is needed.

manner
o Always results in realistic airfoil Additional conditions are required,

Airfoil shape ) o
shapes. since non-realistic shape may appear.
Requires relatively large number

Computer ) Generally, smaller number of

) of aerodynamic code calls to ]
computations aerodynamic code calls.

arrive at required performance.

) ) . Higher experience is required to
) ] More suitable with low experience | ) o
Designer experience ) ) identify target pressure distribution, or
design engineers. o
other performance specifications.

o Depends on inverse formulation and
Depends on parameterization o )
Search space airfoil smoothing as well as
method o
parameterization method.
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6.3 Numerical Optimization

Nowadays, variety of optimization tools are accessible to the designer which are suitable for
use to wide range of applications. They utilize a different search techniques, gradient based
optimization, and genetic search algorithms are most popular techniques. These techniques
are used for one point optimization in which an airfoil is designed for one operating point and
other operating conditions are analyzed after the optimum shape is found. Multipoint
optimization, on the other hand, can also be implemented. It demands more computational
cost, especially if the number of design parameters is high. Multipoint design approach can be
combined with inverse airfoil design formulation to minimize computational cost. Inverse
design can be efficiently achieved through direct aerodynamic calculations. Firstly, the target
airfoil performance is specified, and secondly, the airfoil shape is perturbed to match the
target performance. Airfoil shape perturbation is accomplished through airfoil
parameterization with a set of design parameters. These design parameters are used by the
optimization method to generate new airfoil shapes toward the optimum solution.

The general flow chart for most of optimization methods starts with given vector of design
parameters, Figure 6.2. Each combination of these design parameters produces certain
aerodynamic shape or geometry. This is done inside one parameterization function as per user
selection. NACA, PARSEC, CST, and Bezier curves are available as an option in this
function. Each method can cover wide design space. The resulting geometric shape is
analyzed by the aerodynamic function and the aerodynamic characteristics are computed. A
fitness function is evaluated as a measure of performance. The main job of optimization
method is to efficiently manipulate the combination of design parameters to search for

improved performance in terms of better fitness value.

Iterate design (
Parameters

Geometry

—— 3| Parametrization >
Initial Design function Aerodynaamic Optimization
g ) Method

Parameters calculation
Rynolds number [—{function (ga function)

angle of attack

Optimum
design

Figure 6.2 Flowchart illustrating design search and optimization process
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For the optimization process to be built, the following topics are discussed:

e Choice of airfoil shape parameterization method.

e Selection of aerodynamic solver.

e Selection of the optimization method.

e Choice of constraints.

e Formulation of objective function.
The first two topics are covered in details in separate chapters. CST parameterization method
will be used in the optimization. The aerodynamic model descried in the previous chapters
will be used for aerodynamic analysis. In the following sections some insight on the last three
topics will be given. The attention will be toward aerodynamic and performance of airfoil

design.

6.3.1 Formulation of the mathematical problem

For given vector of design variables, X; ,j = 1: N, where N is the number of design variables,
the optimization finds the values of the vector X subjected to constrains of various types.
Mathematically it is formulated as minimization of some function f(x) as:

minimize f(X)

(6.1)
gx)=0 (6.2)
h(X) =0 6.3)
XF<Xx;<X! i=1N (6.4)

The equation Eq.(6.4) represent the bounds of search space. The middle equations Eq.(6.2)
and Eq.(6.3) are the inequality and equality constraints functions, respectively. These
constraints can be of geometric type and some are of aerodynamic type. For example, airfoil
thickness, leading edge radius, and trailing edge angle are geometric variables and can be
constrained. Airfoil drag, moment, lift coefficients, and pressure distributions are used as

aerodynamic constraints.

6.3.2 Genetic Search algorithms

In this project Genetic Algorithm (GA) method is selected which is included inside MATLAB
ga function [81], or SCILAB optim_ga functions [104] It calls the aerodynamic function. The
aerodynamic code explained in the previous chapters is written in form of aerodynamic

function; whose arguments are airfoil coordinates, angle of attack, and Reynolds number.
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Genetic search algorithms GAs is a widely used class of evolutionary algorithms. It can work
without the need to calculate gradients (which is a drawback of gradient based optimization
methods). This method uses random search that allows a global search capability over local
search methods inside the design space. The name comes from the attempt to replicate life
evolution. The design parameters vector, or variables, represents one aerodynamic shape i.e.
one airfoil candidate. This airfoil candidate is a member of one population. GA is used in
many airfoil direct and inverse design studies as [101][102], and [103].

The method starts with initial population. The objective function of the initial population is
evaluated, as the first step. This is called the first generation, which is subjected to two natural
selection techniques called fitness and crossover. The design with higher fitness will survive
and will contribute more to the next generation of airfoil shapes. Designs having higher
fitness are paired up, so that offspring (children) are constructed from them by the crossover
process. By this rules the method is forced to use the best designs and their combinations
exploring search space. The less fitness designs die, although, mutation process is used where
few individuals are randomly changed to produce new ones. This insures the search space is
covered by the method.

The ga optimization function asks for a set of inputs to perform the calculation. The main
inputs are listed in Table 6.2, other parameters are not changed and used as in their defaults.
The function returns a vector of optimum design variables together with their fitness values.
Table 6.2 illustrates the input arguments to a standard ga function.

Table 6.2 Description of input arguments for ga function

Input description

The function that calls airfoil parameterization, performs
Obijective function | aerodynamic calculations and returns the fitness value of each

airfoil in the generation.

Number of design | Number of parameters required to represent airfoil shape.

variables
Upper Bound Upper limit for each design variable.
Lower Bound Lower limit for each design variable.

Initial population Values of design variables for an initial design (airfoil shape)

Fitness limit The value used to stop search algorithm, set by the user.
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6.3.3 Choice of constraints

The choice of parameterization method plays an important role in the ease of applying
geometric constraints. For instance, In PARSEC method the geometric parameters like
maximum thickness and position of maximum thickness are directly constrained without the
need for additional formulation. For Bezier curves method there is a connection between the
control point position and geometric variables, but it needs additional formulation. On the
other hand, CST method requires computation of the geometric variables from airfoil

coordinates. The following table lists some aerodynamic and geometric constraints commonly

used:
Table 6.3 Common aerodynamic and geometric constraints

Constraints Type Source of constrain
Maximum and minimum ) Structure, fuel tank packaging, ease of
thickness and its location Geometric manufacturing.
Leading edge radius. Geometric Stall characteristics.
Trailing edge angle and thickness | Geometric Manufacturing
cmy Aerodynamic Tail volume, control surfaces.
Cro Aerodynamic Performance requirements
CJ max Aerodynamic Take off, stall capability.
c/ca Aerodynamic Performance requirements

In the airfoil design problem, the vector of design variables X;,j = 1: N can be set as target
aerodynamic performance (ex. drag coefficients) at one angle of attack, or a range of angles of
attack. If the pressure coefficient is the target aerodynamic performance then this function is

the functional difference between calculated and target distributions.

6.3.4 Formulation of objective function

Objective function for airfoil design may vary from one application to another. Optimization
algorithm manipulates airfoil shape parameters in systematic manner to satisfy the objective
function. For instance, maximizing range can be formulated in terms of maximizing lift to
drag ratio at specified range of angles of attack a and Reynolds numbers as given by Eq. (6.5).
The negative singe is used to allow using minimization. A weighting coefficients w; where

i= 1,2,3..n, and n is the number of angles of attack are used in the formulation. These
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coefficients can have values from 0 to 1, and are chosen in such a way to allow shaping of the
objective function inside the operating range of angle of attack according to the design
requirements.. Higher values of the weighting factor w; indicate more important components

and lower values indicate less important components.

(o} .
— Z w; a (a;) = minimum (6.5)

The objective function for minimum drag can be formulated as follows:

— Z w; . cq(0;) = minimum (6.6)

Optimizing airfoils for specific pressure distribution can be achieved by similar objective

function formulations as given by Eq.(6.7)

_ Z w;.(C5, — C,gl.)2 = minimum 6.7)
The superscripts s and ¢ stand for specified and computed pressure coefficients respectively,
and the factor w; allows different weights being given to each component at i point. This
equation means that functional difference between specified and computed pressure
coefficient is minimum. The functional difference is given as the sum of the square of the
difference between the specified and the computed pressure coefficient at each point i, which
is always positive. This formulation permits the user to put more weight to specific location of
airfoil surfaces, such as front part where pressure variation are most, or near separation bubble

location.

6.3.5 Single objective versus multi objective optimization

Maximizing airfoil lift, for example, has many benefits for all aircraft performance resulting
in shorter takeoff and landing distances, reduces aircraft noise, and lowers stall. It is,
therefore, the dream of designing airfoil with maximum lift and low drag remains a topic of
considerable interest. High airfoil lift or low airfoil drag alone are not the only desirable
feature during airfoil design. Aerodynamic characteristics like lift-to-drag ratio, endurance
parameter, thickness, pitching moment, stall characteristics, and roughness sensitivity are
always considered during airfoil design and optimization. Therefore multi objective

optimization is widely anticipated in airfoil design studies. The other reason for multi-
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objective optimization is that, it is difficult to control one airfoil aerodynamic characteristics
without affecting the other performance characteristics.
A great deal of existing research reveals that instead of using airfoils from ready catalogues of
existing airfoils, many aircraft and turbo machinery designers have utilized special airfoils
which are more adequate to their functional requirements. For instance, for low Reynolds
number vehicles, the preferred requirements are listed as follows:

1) High lift coefficient ¢; > 1.

2) High lift-to-drag ratio ¢;/c4.

3) High endurance factor cl3/2/cd.

4) High maximum lift coefficient ¢; . .

5) Smooth stall characteristics. (Turbulent separation point jump)

6) Limited pitching moment coefficient Cm.

7) Large relative thickness t/c.

8) Wide range of low drag angles of attack.
Due to the mentioned multipoint requirement discussion, objective function can be formulated
by combining these performance characteristics. One example is illustrated by Eq. (6.8) in
which the lift to drag ratio together with endurance factor can be maximized for given range

of flight conditions. Where the factor w;, and w; are selected weighting coefficients given to

each component at i point.
3/2

i Cl .
_Z wi.a+wj Cd = minimum 6.8)

6.4 Direct Aerodynamic optimization by shape perturbation

Numerical optimization can be used to design airfoil shapes using direct aerodynamic
calculations for given specific objective function. This approach is equivalent to classical
inverse design problem. But it has the advantage that the aerodynamic calculations are
performed in direct manner, and no need for inverse formulation. The numerical optimization
procedure like one given in Figure 6.3 will search for the optimum shape. Designers with
lower experience can specify the initial shape from similar or like designs. The choice of
initial shape shouldn’t, in principle, affect the resulting optimum airfoil, but it will affect the

computational cost.
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The flowchart of Figure 6.3 illustrates the method. In this method the new airfoil shape is
calculated based on GA population which is then parameterized to realistic airfoil shape. The
airfoil parameterization method can be selected by the designer, detailed explanation of airfoil
parameterization methods are given in separate chapter. It is important to mention that for
high number of parameters (design variables) wider search space can be covered and new
shapes can result. This is not without cost, the computational time and number of iteration
required will increase dramatically with increased number of design variables. This is one
drawback of direct optimization approach.

Direct design method avoids the difficulty of using the differences in pressure distributions to
drive the new airfoil shape. This difficulty, common to inverse methods, comes from
unsmooth shapes, and the need to extra formulations to relate the required shape perturbation
to the differences in pressure distribution. Furthermore, working with limited number of
parameters in airfoil parameterization will reduce the number of design variables (about 11)
compared to using pressure differences at each airfoil coordinate point, which is usually more
than 50 points.

The aerodynamic computations, which is the heart of the direct design procedure can be
performed by various aerodynamic codes having different levels of accuracy. These codes use
theories ranging from inviscid potential flow theory to CFD methods. The accuracy of the
whole optimization process is off course highly dependent on the accuracy of the
aerodynamic calculation code.

The designers usually verify the convergence of the optimization process by repeating the
calculations with different initial airfoil shape and make sure that the procedure converges to

the same or very close shapes.
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Figure 6.3 Flowchart illustrating Direct Aerodynamic Optimization by shape perturbation
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CHAPTER 7

7 Airfoil Optimization Case Studies

This chapter deals with using the code developed in the previous chapters together with
genetic optimization (GA) to search for optimized airfoils with different objectives and
constraints. It is aimed at showing the flexibility of systematically changing airfoil geometry
to get required airfoil performance characteristics, and the ability to formulate various
objective functions and constraints that best suit the problem under hand. In this study, for
objective function formulation weighted sum approach is adopted with penalty terms added to
enforce constraints.

Optimization has been in use as a design method to find solutions to various aerodynamic
problems. It is used in transonic range of flight since 1970™ by authors like Hicks and
Murman [82] and Hicks and Vanderplaats [83]. The optimization process has been limited to
few design variables due large number of computations needed for finite differences and
limited computer capabilities. In the 1990™ computer speed and memory have been improved
and numerical optimization methods appeared, such as gradient methods, and genetic search
algorithms and others. One illustrative work on application of airfoil design at low speeds
based on NACA airfoil representation is given in [95], in which the procedure of airfoil
optimization is demonstrated using inviscid flow solver.

Airfoil optimization in low Reynolds number regime where laminar flow covers large portion
of airfoil surfaces, depends primarily on the prediction of transition. Transition devices and
trips are usually used to fix transition at single point. But, from aerodynamic point of view,
since transition point varies with speed and angle of attack it is more efficient to design by
laminar separation bubble control approach. Furthermore, such devices may not be practical
when the wing surface is made of delicate materials such as foam, which are used in many
UAV designs. It is obvious that laminar separation bubble control approach requires an
aerodynamic code that can predict separation bubble effects on pressure distribution, and

computes the variation of aerodynamic performance due to perturbations in airfoil geometry.

The code developed in this work is validated for Reynolds numbers of 2 x 10° , 3 x 10°

and 5 x 105 [84]. The results of validation show comparable results with experimental
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measurement for Eppler low Reynolds number airfoil E387 and for S8036 low Reynolds
number airfoil designed for soft stall characteristics. Although this code results deviate from
experimental measurement as separation point moves forward (which depends also on airfoil
shape and angle of attack), it is possible to use with high degree of confidence. That is
because it is based on solid aerodynamic theory and being widely used computation methods.
This reason makes this code results follow the trend of similar aerodynamic codes in this
class, such as XFOIL for which aerodynamic features are calculated with same order of
magnitude as was shown in the comparisons of boundary layer features [84].

Airfoil design is mostly driven by minimization of drag. It is possible to design airfoils at low
Reynolds number based on laminar separation bubble (LSB) control instead of eliminating the
LSB totally by forcing early transition since the later will increase the turbulent friction drag.
Therefore, in low Reynolds number airfoils the primary concern is to control bubble losses
rather than minimizing skin friction drag [11]. It is worth to note, that at low Reynolds
number, laminar separation bubble (LSB) has a major contribution in airfoil drag. LSB also
moves and changes in length with changes in angle of attack. When angle of attack increases
LSB moves in the forward direction with decrease in length, and at much higher angles a
forward sudden jump in turbulent separation point occurs, causing much higher drag and
decrease in lift. As angle of attack is decreased the separation bubble becomes longer, which

may, not reattach resulting in a higher separation drag.

Historically, The inverse design approach utilizes the so called a transition ramp, in which the
pressure distribution of the forward portion of upper airfoil surface (suction side) is shaped in
such away to allow long weak pressure gradient with extended attached laminar flow. This
pushes the laminar separation point backward and forms a (LSB) as a mechanism for
turbulent transition. Therefore most of instability changes will occur at the back of the ramp
and inside the bubble which limits turbulent transition point to jump close to the leading edge
causing sudden stall. In inverse design, the transition ramp shape (length, slope and arc shape)
are varied, to control bubble movement and improve airfoil performance. In general total drag
with transition ramp can be larger but airfoil stall characteristics and off design performance
are improved.

There are few airfoil geometry parameters that have an effect on performance, such as leading

edge radius, thickness, trailing edge angle, position of maximum thickness. These airfoil
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geometric parameters are used by NACA and utilized by PARSEC airfoil parameterization
method. Bezier curves and CST parameterization methods, on the other hand, utilize control
points and polynomial coefficients which are not directly related to airfoil geometric
parameters.

Therefore, similar to transition ramp approach, airfoil upper surface geometry can be
modified by these last two methods to achieve low drag bubble characteristics. The effect of
upper surface shape on pressure distribution and drag polar is studied in [11]. Figure 7.1
shows effect of perturbing an airfoil surface on drag polar at Reynolds number of 2.5 x 10°.
Pushing airfoil surface around the maximum thickness down has the effect to generate a faster
pressure rise and a decrease in drag but also a decrease in maximum lift. Modification of
airfoil surface in the opposite direction causes more drag associated with getting higher values

of maximum lift coefficient, as seen.
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Figure 7.1 Relations between pressure distribution shape, and drag polar, and airfoil shape [11]

The airfoil lower surface shape affects both pitching moment coefficient and maximum lift

coefficient. Moving lower surface up (inside the airfoil) increases pitching moment
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coefficient and maximum lift coefficient, and show variation in drag at extreme sides of the
polar. While moving it down (outside) has the opposite effect.

The systematic modification of airfoil geometry is an efficient airfoil design approach when
done with optimization techniques. In which upper surface shape is controlled through the
choice of parameterization method coefficients that will cover variety of shapes. The LSB
model will calculate the drag associated with each shape and finally, the optimization

technique will drive the optimization process to the minimum drag shape.
7.1 Problem formulation

In this chapter a number of airfoil design methods are examined with systematic airfoil
geometric modification approach. The first method is design to meet given target pressure
distribution. The second design method is based on specifying design point which could be
Single Point (SP), for one angle of attack or a multi point (MP) a set of angles of attack. The
objective that has to be satisfied can vary from single objective (SO) to multi objective (MO).

Therefore, in the rest of this chapter the following design concepts are demonstrated:

1. Design to meet specific pressure distribution. (section 7.5).

2. Design for Single Point Single Objective (SPSO) (section 7.6).

3. Design for Single Point Mingle Objective (SPMO) (section 7.7).

4. Design for Multi Point Single Objective (MPSO) (section 7.8).

5. Design for Multi Point Single Objective (MPMO) (section 7.9).

6

Design at different Reynolds numbers. (section 7.10).

An example of single objective is unconstrained drag minimization. If in addition to drag
minimization the designer wants to maximize or minimize specific aerodynamic coefficient
(lift or moment coefficient, for example) a multi-objective problem is formulated. Weighting
coefficients are assigned by the designer to each term in the formulation. Other coefficients
are also used to set approximate order of magnitude to each objective. Additional terms are
added to the objective for each constraints violation.

In all of these cases geometric constraints (bounds), CST airfoil parameterization method and
initial airfoil (E387 airfoil) are kept the same. This allows the effect of objective function
formulation, angle of attack and Reynolds number to be analyzed for different formulations.
The code developed in the previous chapters is used throughout the analysis at Reynolds

number R, = 3 X 10° and the critical value of disturbance amplification Ncr = 12.
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7.2 Geometric constraints:

Geometric constraints are placed to search around the starting airfoil. The geometric

constrains are shown in Figure 7.2. The airfoil upper surface can take any smooth shape

between the upper limit (dotted dashed line) and the lower limit (dashed line) beneath it. The

lower surface will be constrained in similar manner between its upper and lower limit lines

shown in the lower side. It is clear that lower surface is allowed to have some points above the

real axis causing aft loaded airfoils. It is worth to note that y axis is exaggerated in all airfoil

shapes to show the small differences.

ylc

Geometric constraints for Optimization of E387

Figure 7.2 SPSO geometric constraints

7.3 Airfoil Parameterization
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Airfoil parameterization with CST method is used with 4 coefficients to each surface. The

following table shows the upper and lower surfaces as well as the initial airfoil.

Table 7.1 Parameters for CST method

Upper surface

Lower surface

uB 0.22 0.35 0.2 0.25 -0.06 0.01 0.08 |0.1
LB 0.133 |0.2 0.09 0.18 -0.09 -0.09 -0.09 | -0.09
Initial | 0.1349 | 0.3291 | 0.1062 | 0.2218 | -0.0758 | -0.0001 | 0.004 | 0.03
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7.4 Formulation of the objective function

The objective function in this project is formulated based on weighed sum approach. A
constraints enforcement function is necessary to grantee the operation at the desired
aerodynamics requirements. In this approach, the two functions are combined into single
merit equation using user specified constants.

The objective functions f can be written in verity of forms, as explained in pervious chapter.
The aerodynamics constraints function g can be formulated to specify the required
aerodynamic coefficients range. For example, in lift constrained drag minimization problem
the objective function is given by f = ¢, and the aerodynamic constraints equation g is given
by g = c;q_c; . Where ¢4 is the desired lift coefficient and c; is the calculated lift coefficient
for the given airfoil parameterization vector x, flow angle of attack a and Reynolds number.
When these two functions are combined a weighing coefficients are introduced, as w.; and

w,; in the following formulation

f=weaca — Kegwe(cg-cp) 7.1)

7.4.1 Equality and Inequality Constrained Optimization and Penalty Function

In practice a penalty term is added to the objective function when a constraint is violated. The
goal of penalty function is to change a constrained optimization problem to unconstrained
optimization one.

The penalty function for inequality constraints can be formulated as in the following equation

where K is a positive integer representing how strong the penalty will be applied.

(0 forallx <0
¢ = {K x3 forallx>=0 7.2)

The function will look as in Figure 7.3. When the penalty term is applied to the objective
function it is casted in the form ¢@(x, —x) for the constraint x > x, such that the
optimization is forced to choose values of x greater than x,, because the objective function
will be smaller for any x > x,. The shape of the added term is shown in Figure 7.4, which
illustrates how penalty function is used to strongly enforce two different constraints x > 1 and
x = 3. It is clear that the objective function will be smaller for values of x > 1and x > 3

when penalty terms are added.

f =f+ (P(xo_x) 7.3)
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penalty function ¢(x)
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Figure 7.3 penalty function ¢(x)
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Figure 7.4 A penalty function @(x,—x) added to the objective function if x < 1and3

respectively

The minimization of the function f(x) can be generalized as follows, if x is the design
variables, subjected to equality and inequality as in the following two equations

gix) <0 and i=12,..m

hiixX)=0 and i=12,..n 7.4)
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And if the penalty function @ is given by Eq. 7.2 then the objective function is written in the
following form
fO) = fo) + Z ¢ (k{", g:(x)) + ) (@ (k" ) + 0 (K%, ~hy0))) 75)

j=1

The first term f(x) is the aerodynamic objective. The second term is the inequality constraint
and the last term represents the equality constraint. The constants kf"q and kjeq a user
specified constants for inequality and equality constraints respectively. The choice of those
constants is problem specific, and the user should tune the constants for his optimization [90] ,
and [91].

In our formulation another factor K. > 1is multiplied by each constrained term; if the
constraint is violated. When multipoint optimization is studied this function is applied to each

point separately and the sum is minimized.
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7.5 Design for given pressure distribution (Inverse design)

The design cases presented in this section aims at illustrating the efficiency and accuracy of
the inverse design method by using systematic airfoil shape modification enforced by
optimization algorithm. A predefined pressure distribution is given and an airfoil shape that
matches this pressure distribution is found. The flight conditions for the design point are
Reynolds number and angle of attack. The predefined pressure distribution is called target
pressure distribution and the corresponding airfoil shape is called target airfoil. This
procedure is known as inverse design.

In order to check the efficiency of this procedure a known airfoil shape and pressure
distribution is used. The initial airfoil is further parameterized by CST method and the
obtained parameters are utilized in the optimization as design variables. The optimization
procedure changes these parameters until the best functional difference in pressure
distributions is obtained.

As an illustration, CST method parameterization is performed to find the parameters for two
sample airfoils. A separate code is written to match a given airfoil coordinates by given
number of parameters, as explained in chapter 5. The first airfoil is NACA0012 at Reynolds
number of 0.3 x 10° and angle of attack of a = 4°. The second is Liebeck high lift airfoil at

Reynolds number of 0.5 x 10° and angle of attack of a = 5°.

7.5.1 NACA 0012

In this case study NACA 0012 airfoil geometry is first parameterized using CST as shown in
Figure 7.5 . The parameterization coefficients are shown in Table 7.2.
Table 7.2 The CST parameters for NACA 0012 airfoil

point Upper surface Lower surface
1 0.17072 -0. 17072
2 0.16066 -0.16066
3 0. 15542 -0. 15542
4 0. 14038 -0. 14038
5 0.16382 -0. 16382
6 0.11797 -0. 11797
7 0. 15965 -0. 15965
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NACA 0012
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0.2 0.4 0.6 0.8 1
x/c

Figure 7.5 NACA 0012 geometry

The second step the pressure distribution at Reynolds number of 3 x 10° and angle of attack

of a = 4° is used as target pressure distribution as shown in Figure 7.6.

NACAO0012 airfoil and its pressure distribution at Re300,000 and o. =4 deg
0.1¢ r . :

0.05 —_—

S >

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1
x/c

Figure 7.6 Target airfoil shape and target pressure distribution at Reynolds number of

3 x 10° and at angle of attack of 4 degrees
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Initial and target airfoils and pressure distributions
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Figure 7.7 Initial and target airfoils and corresponding pressure distributions

The optimization process is started from NACA2412 airfoil as shown in Figure 7.7. The
optimization process uses 7 parameters for each surface. The objective function calculates the
functional differences between target and current pressure distributions as per Eq.(5.39).

The difference is calculated as the mean of difference squared between two functions as given

by

N_ CT—CK 2
diff = j k‘l(‘;’v 2 (756)

Where, C; is the target pressure distribution at each airfoil surface point fromi =1to N,
and CE is the pressure distribution calculated at k™ iteration step.

This error measure is used as objective function during the optimization process. It should
rapidly diminish as the optimization method converges to the target pressure distribution
shape. The results of optimization after 5 generations are shown in Figure 7.8, where in the

upper part, the airfoil geometry is compared to target airfoil and the error difference in
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y coordinate is compared. In the lower part the target and current pressure distributions are
compared and the local difference are shown. The differences are drawn as function of surface
distance from lower surface trailing edge to upper surface leading edge in clock wise
direction. It can be seen that the maximum difference in y airfoil coordinates is lower
than 2 x 1073, The pressure distribution show close agreement with the target with maximum
difference of 0.02. Figure 7.9 show the same after 15 generations. The difference in airfoil
shapes is about 11 x 10™* close to the lower surface leading edge. The difference in pressure
distribution is much improved with maximum difference of 0.015.

The convergence history is shown in Figure 7.10. The optimization process is rapidly
converging to the target pressure distribution and at the same time the airfoil is closer to the

target airfoil.
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Figure 7.8 Airfoil shape and pressure distribution after 5 generations
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Figure 7.9 Airfoil shape and pressure distribution after 15 generations
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Figure 7.10 Convergence history for case of NACA 0012 airfoil
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7.5.2 LIEBECK LNV109A high lift airfoil

Liebeck utilizes the inverse design method for development of a class of airfoils with high lift
[92]. He uses the Stratford pressure distribution [93] to recover the pressure without
separation. The Liebeck LNV109A airfoil is selected as illustrative example as shown below
in Table 7.3 and Figure 7.11.

Table 7.3 CST parameters used to represent LNV109A Liebeck airfoil

point Upper surface Lower surface
1 0.25479 -0.26097
2 0.37004 0.1911
3 0.37664 -0.22163
4 0.24632 0.18688
5 0.093813 -0.0019703
6 0.17872 -0.007597
7 0.015989 0.040923
LNV109A Liebeck airfoil
0.15 r
Lo-o-0-o-0-9
0.1 {f‘ -\\\
S 0.05 {/ \\\
b eeereeeeees o —ebooe .\‘.‘“
-0.05 : -
0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1
xlc

Figure 7.11 Liebeck LNV109A airfoil geometry
The flight condition selected for this case are Reynolds number of 5 x 10° and a = 5°. the
target pressure distribution is shown in Figure 7.12. The optimization process started from
NACA2412 as shown in Figure 7.13.
Optimization results are shown in Figure 7.14 and Figure 7.15 from which it is clear that the

airfoil shape is constructed with very good accuracy and also the pressure distribution
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differences are very low at the last generation. The convergence history shows that the inverse
design approach examined here successfully constructed the target airfoil with very high
accuracy. One advantage of this method is its simplicity in which only target pressure
distribution is required, and no need for smoothing, in contradictory to other methods that use

local pressure differences to modify the local normal to the airfoil surface.

Target pressure distribution for Re=500,000 and a.=5 deg
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Figure 7.12 Target pressure distribution for Liebeck airfoil LNV109A at Reynolds number of 0.5 %
10% and o = 5°
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Initial and target airfoils and pressure distributions

0.15 s B
//\ _____ Inltlal All’fOll
> o Target Airfoil
< 0.05 K—— —————————————— A‘ _\
> . /,¢ -~-..~.~~
—— &~-
of - — =
005 Tm=m=mmmemmmmmmempmTTTRTE
02 04 0.6 0.8 .
-2
F
] e
1 S X
8 [ \ _____
R e = — T -
/’—‘— = ~§‘
'I
1
0 0.2 0.4 0.6 0.8 1

xic
Figure 7.13 Target airfoil (LNV109A) and initial airfoil (NACA 2412) and pressure distributions at
Reynolds number of 0.5 x 10° and a = 5°.
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Figure 7.14 Airfoil shape and pressure distribution after 15 generations
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Best: 0.0227736 Mean: 0.0272785
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Figure 7.15 Convergence history for Liebeck LNV109A airfoil

7.6 Single point single objective

The objective of minimizing drag is examined. The optimization starts with Eppler E387 low
Reynolds number airfoil. A single point in terms of angle of attack is targeted for drag
minimization. The data for the starting airfoil are used as reference throughout the analysis of
the results.

The objective function is formulated as follows:

f=ca 7.7)

7.6.1 Aerodynamic constraints

In this case no aerodynamic constrains are applied to the optimization problem. Only the
objective function which searches for minimum drag coefficient at the design point is

formulated.

7.6.2 Optimization Results

Genetic search optimization started with the initial airfoil parameters constrained by upper
and lower bounds shown in Table 7.1 arrives at final shape after 15 generations with 480
function evaluations, as shown in Figure 7.16 which results from Genetic search process.

Figure 7.16 consist of four subplots. Subplot (a) shows the best airfoil shape fitness and the
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mean fitness value for each generation. It is good to note that, the fitness value means airfoil

drag in this case, and individual refers to airfoil shape. Subplot (b) shows the best and the

worst fitness together with mean value, it is evident that the genetic search algorithms has

reached close to the best fitness just after 10 generations, after which there were no much

changes in the best fitness value. The values of the best individual (airfoil shape) is shown in

subplot (c) the first four numbers represent upper surface and the last four numbers represent

lower surface. Subplot (d) shows the fitness (drag coefficient) of each individual (airfoil). It is

clear that the fitness most individuals in this generation is very close to the best except few

with have higher fitness values.
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Figure 7.16 Results of genetic search method, (a) best airfoil fitness and mean for each generation.

(b) Best, wore and mean scores in each generation. (c) The parameters of the best airfoil shape at last

generation. (d) The fitness of each airfoil shape in the current generation.
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The best airfoil CST parameters are shown in Table 7.4. The comparison in geometry

between initial and optimized at single point for drag is shown in Figure 7.17.

Table 7.4 Initial and best airfoil CST method parameterizations

Upper surface Lower surface
Initial | 0.1349 0.3291 0.1062 | 0.2218 | -0.0758 -0.0001 0.004 0.03
Best 0.136189 | 0.246385 | 0.1184 | 0.19312 | -0.07124 | -0.006552 | -0.07006 | 0.046167
Optimization of E387 for Re=300000 and a. = O
case SPSO
0.15¢ F
—— Optimized
o1- 7T Initial 4
g 005 S
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Figure 7.17 Comparison in airfoil shape
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7.6.3 Airfoil shape and pressure distributions

The optimization process finds airfoil shape that is in general close to initial shape.

The upper and lower surfaces being lower than that of the initial airfoil, making upper and

lower surface pressure distributions more close as seen in Figure 7.18 . This will result in

decreased drag but lift will also decrease at this angle of attack. The moment coefficient will

also decrease since airfoil shape has less bottom loading. This is expected since there is no

aerodynamic constraints applied to the optimization process. The laminar separation bubble

extends around the med chord, the reattachment point is about 0.65 chord is shown on the

figure. The laminar separation points on both airfoils are close but the optimized airfoil has

less velocity drop which is proportional to bubble drag. The length of this bubble is

approximately equal, as seen from the length of velocity plateau and reattachment phases of

167




Low Reynolds Number Airfoils

the laminar separation bubble shape. This can explain the lower drag associated with the
optimized airfoil. Bubble length and position are most important factors in low Reynolds
number drag reduction, as reported by many authors [11]. This means that part of drag
reduction is achieved by proper laminar separation bubble location as a result of airfoil shape
manipulations.

Aft of reattachment the pressure distribution shows wavy like curve, this is not related to the
airfoil shape, nor to the airfoil parameterization method. It is caused by the turbulent Drela
closure formulation incorporated in the laminar separation bubble model after turbulent

reattachment occurs.
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Figure 7.18 Airfoil shape and pressure distribution for SPSO at Re 3 X 10> andata = 0
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7.6.4 Aerodynamic coefficients

The aerodynamic performance of the optimized airfoil at zero angle of attack is plotted
against that of the E387 airfoil as illustrated in Figure 7.19. The drag polar curves are shown
in subplot (b). It consists of lift drag curve and lift curve versus angle of attack. The
experimental data for Eppler 387 airfoil is also plotted for comparison. At zero angle of attack
at which this airfoil is optimized has less drag coefficient than the initial airfoil. The
percentage decrease in drag at this point is more than 40%. The values of drag of optimized
airfoil does not show improvement in the drag polar at high angles of attack, away from the
design point. This is expected result in when optimization is performed at single point. The
lift curve shown in subplot (b) has consistently lower lift for all angles of attack. It could be
attributed to the airfoil shape modifications in the upper surface, and partly to the shorter
laminar separation bubble that results in less area under the pressure distribution curve. This
affects also moment coefficient which is decreased for all angles of attack as shown in subplot
(d).

Lift to drag ratio as function of angle of attack is illustrated in subplot (e). The lift to drag
ratio for the optimized airfoil at design point is considerably improved from about 40 to 65
with more than 60%. This shows that the optimization method can be very efficient tool in
finding more suitable airfoils for specific application. In spite of this capability, the
optimization with shape modification approach can be examined with more complex
requirements (constraints), such as designing at range of angles of attack, design with
maximum aerodynamic pitching moment or minimum lift. These cases will be illustrated in

the following sections.
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Optimization of E387 at Re= 300000and o.=0
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Figure 7.19 Drag polar plot of the initial and optimized airfoil at single angle of attack of zero degree

7.7  Single point multi objective

Since, aerodynamic requirements are conflicting in the sense that improving one coefficient
will worsen other coefficient. For example increasing lift will result in increased drag and

pitching moment. It is necessary, therefore, to put additional objectives. The most common
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type of is lift constrained drag minimization for which the aerodynamic objective function to
minimize drag at fixed lift is given by a weighted sum of lift and drag terms as

f=weaca + Kqgwel(eg —c) 7.8)
Where, w4 =1 and w, = 0.1 . These two terms should have same order of magnitude.
The penalty function is formulated in the code by specifying a factor K., = 10 whenever the
absolute value of the difference in lift is greater than .05

{10 if abs(cq_c;) > .05
1 otherwise 7.9)

The value of the desired lift coefficient is chosen as 0.387 which is the value of lift

Ky =

coefficient for initial airfoil at zero angle of attack. It is required thus to keep same lift
coefficient and find minimum value of drag coefficient.

The objective function can be casted in other alternative forms such as that suggested by
Nemec [85] and [86]. This form is especially convenient when target drag and lift coefficients

cqq and c;4 are specified.

( Cq \? a\: .
Wed (1 - _) + Wer (1 - _> if Cq > Cda

_ Cda Cla
f _4 c;\2 7.10)
well—— Otherwise
Cla

Where the desired cy4 and c;, coefficients are specified by the designer. The weighting
factors are specified by user. One example is to use 1.0 for lift weighing factor w,; and .005
for drag weighting factor w,.

If a multipoint optimization problem is analyzed the objective computed for each point and

the problem is formulated as

N
fmultipoint = Z w; fi 7.11)
i=1

Where N is the number of design points which can be the number of angles of attack or lift

coefficients and w; is a weighting coefficient specified by the user for each design point.

7.7.1 Optimization Results

The genetic optimization plot is shown in Figure 7.20. Subplot (a) show that the best shape is
reached after 10 generations. Subplot (b) show the values of each CST parameter for the best
airfoil. And subplot (c) shows the value of the fitness function for each airfoil in the last
generation, the largest value indicate that the corresponding airfoil has violated the constraints

and a penalty is added to the objective function.
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The CST parameters for the best airfoil are shown in Table 7.4. The comparison in geometry

between initial and optimized airfoils is shown in Figure 7.21.

Table 7.5 Initial and best airfoil CST method parameterizations

Upper surface

Lower surface

Initial [ 0.1349 | 0.3291 | 0.1062 0.2218 -0.0758 -0.0001 | 0.004 0.03
Best 0.14265 | 0.27109 | 0.142083 | 0.182703 | -0.068476 | -0.00689 | 0.00882 | -0.04419
Best: 0.00615791 Mean: 0.00734083 Current Best Individual
0.081 0.3 ——— —
. Best fitness
g . Mean fitness ©
0.06 - 3 0.2
= s
g . g
» 0.04r ° o 0.1
8 bS]
T ., =
0.02 - = 0
° . . O
.oocazz:-li!ooo.:otl
0 : -0.1 5 E— : S
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Generation Number of variables (8)
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©

Figure 7.20 Results of genetic search method, (a) best airfoil fitness and mean for each generation. (b)

The parameters of the best airfoil shape at last generation. (c) The fitness of each airfoil shape in the

current generation.
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Optimization of E387 for minimum drag at constrained lift Re=
300000 : Case SPMO
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Figure 7.21 comparison of airfoil shape for SPMO

7.7.2 Airfoil shape and pressure distributions

The airfoil shape has lowered upper surface which results in less severe bubble and thus less

drag the lower surface is only slightly modified, as can be seen from comparisons of pressure

distribution plot shown in Figure 7.22.
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Figure 7.22 Airfoil shape and pressure distribution
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7.7.3 Aerodynamic coefficients

Figure 7.23 shows comparison of aerodynamic coefficients for optimized and initial airfoil.
Drag polar curve show that the lift constraint is satisfied. The drag is improved over the
entire range with about 20% as compared with experimental data at the same angle of attack.

The aerodynamic lift to drag ratio show considerable improvement of about 50% as
compared with experimental data at the same angle of attack. The values moment coefficient

for optimum airfoil is not constrained, but it shows a lower values as compared with initial

airfoil.

Optimization of E387 for minimum drag at constrained lift at Re= 300000
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Figure 7.23 Drag polar for SPMO drag minimization at given lift for zero angle of attack.

174



Low Reynolds Number Airfoils

In order to verify results a comparison with XFOIL code is performed for the optimized and

initial airfoil shapes. Table 7.6 shows numerical values obtained from XFOIL code. Figure

7.24 shows comparison between optimized and initial airfoils performed by FOIL code. It

shows an improvement in drag similar to the results obtain by current work code. XFOIL

results are more optimistic for which the drag improvement at the design point is less than 10

%.

Table 7.6 XFOIL Results for Optimized and initial airfoils

AOA | cl cd cm
Optimized | initial | Optimized | initial Optimized | Initial
0 0.3929 0.4114 | .0076 0.00833 | -.0812 -.0845
2 0.611 0.6276 | 0.00861 .00933 | -..08 -.0831
4 0.8285 0.8439 | .00979 .01057 | -.0788 -.0821
6 1.0319 1.049 | .01118 .01137 | -.075 -.0785
8 1.1667 1.1627 | .02135 .02199 | -.0639 -.0639
10 1.2984 1.2813 | .03329 .0358 -.0526 -.0509
Comparision between optimized and initial airfoils with XFOIL code
case SPMO
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Figure 7.24 XFOIL results for optimized and initial airfoils
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7.8  Multi point single objective

The single point optimization show a short coming when the optimized performance is
improved just at a single point, but the performance at off design points are not improved.
This short coming is eliminated by including off design points in the optimization process.

This approach is demonstrated through the objective of minimizing drag at a range of angles
of attack. The design points are a set of angles of attack N, and the objective is to minimize
the drag at these angles of attack. The objective function is formulated as in the following

eqn.

Ng
f= ZWi(Ca)i 7.12)
i=1

The weighting factor vector is chosen by the user to set the importance of the angle of attack

range for intended application.

7.8.1 Aerodynamic constraints

In this case no aerodynamic constrains are applied to the optimization problem. The objective

function is formulated to search for minimum drag over the design points range.

7.8.2 Optimization Results

Multipoint single objective optimization is started using the geometric constraints mentioned
in section (7.2) for a set of angles of attack of 0, 2, 4, and 5 degrees. The optimization arrives
at final shape after 20 generation with about 600 function evaluations. Figure 7.25 show the
genetic optimization results. It consists of four subplots; subplot (a) shows the best airfoil
shape fitness and the mean fitness value for each generation. From this subplot, it is evident
that the genetic search algorithms have reached close to the best fitness just after 12
generations. The values of the best individual (airfoil shape) is shown in subplot (b) the first
four numbers represent upper surface and the last four numbers represent lower surface.
Subplot(c) shows the fitness (drag coefficient) of each individual (airfoil) in the last
generation. It is clear that the fitness of the most individuals in this generation is very close to

the best fitness, as the optimization process converges to the optimum airfoil.
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Figure 7.25 Results of genetic search method, best airfoil shape and mean for each generation (a), the

best airfoil shape at the final generation (b), the fitness of each airfoil shape in the final generation (c).

7.8.3 Airfoil shape and pressure distributions

The best airfoil shape is shown in Figure 7.26. From this figure, it can be seen that the
forward portion of the upper surface is pushed down and the backward portion is slightly
above the initial airfoil upper surface. The apparent reason is to avoid separation bubble drag,
which is clear from comparison of airfoil shapes, and the pressure distributions shown in

Figure 7.26. There is a connection between the direction of pressure distribution curve
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movement with respect to initial pressure distribution and airfoil shape. When the airfoil
upper surface is moved down from the initial, the corresponding pressure distribution is
moved also down from the initial pressure distribution and vise versa. The lower surface show
opposite trend, when the airfoil shape is moved down the corresponding lower surface
pressure distributions tend to move up. This is called bottom loading. Higher bottom loading
will increase pitching moment and will result of higher maximum lift.

Optimization of E387
at Re= 300000 and o= 0
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Figure 7.26 Optimized airfoil for MPSO for minimum drag at range of angles of attack
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7.8.4 Lift and drag polar

Aerodynamic characteristics for the best airfoil are shown in Figure 7.27 . The drag polar

shows a considerable improvement in drag coefficient over the whole range of design angles

of attack (0, 2, 4 and 5) with about 25% compared to experimental data. The lift coefficient is

slightly decreased as a result of upper surface shaping and bottom loading. From the figure,

the lift to drag ratio shows similar improvement within the operating range.

Optimization of E387 for drag minimization at Re= 300000
over angle of attack range
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Figure 7.27 Aerodynamic performance showing comparison with experimental lift and drag

coefficients for initial airfoil.
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7.9  Multi point Multi Objective

Airfoil design requirements has growing combinations even for one application. For instance,
the requirement of low drag at a range of angles of attack and at the same time achieving high
maximum lift at low pitching moment. These requirements can be formulated by means of
multipoint multi objective design (MPMO).

The convenience of MPMO problem formulation constitutes a major advance of direct design
by shape perturbation approach. That is because the formulation is performed in terms of the
required performance parameters directly and not through pressure distribution or transition
curve as in the case of classical inverse design. The optimization method will select the shape
which will satisfy these multiple objectives.

It is useful to know that low drag requirement at low Reynolds number is mostly concerned
with extent of laminar flow over upper and lower surfaces (before transition), while higher
maximum lift requirement is related to transition point movement as angle of attack is
increased [94].

In this section multipoint multi objective airfoil design by geometry perturbation technique is

examined using drag minimization at given lift coefficients.

7.9.1 Drag minimization at a range of operating lift coefficients

It is possible to minimize drag and have strong control on lift coefficient through specifying
lift coefficient required for each operating point. In this example the lift coefficient is
specified as that of the low Reynolds number Eppler 387 airfoil and are given in the following
table

Table 7.7 Design lift coefficient at four operating points

Angle of attack [deg.] 0 2 4
Design lift coefficient 0.4055 0.626 0.8463
Weighting factor 1.0 1.0 1.0

7.9.2 Objective function formulation

It is required to minimize drag at these operating points as compared to the initial airfoil and
satisfying a given lift requirement. Therefore, the objective function is formulated in two

terms given by Eq. 7.13.

180



Low Reynolds Number Airfoils

f =30 Weai(ca)i + Tty wa (e [(€)i — (cia)i 7.13
The coefficients w.; and w,; are the weighting coefficients for lift and drag coefficients
respectively at each operating pointi. These coefficients are used to get same order of
magnitude of each term in the objective function, therefore the values are set to w.; = 1 and
w, = 0.1 for all operating points. The coefficient K., is a coefficient calculated by the
penalty function that is used to exclude airfoils with unsatisfactory lift coefficients. The
penalty function coefficient K, is set to 1 if the absolute difference between the design and
the calculated lift coefficient is less than 0.05 and set to 10 otherwise. The airfoils with
K. = 10 will result in higher value of objective function and thus will be rejected by

optimization method.

7.9.3 Optimization Results

Multi point Multi objective optimization is started from Eppler 387 airfoil with geometric
constraints described above. The population size is chosen after performing many trails. A
population size of 30 shows a good compromise between computation time and airfoil shapes
studied. Figure 7.28 shows three subplots representing the convergence of genetic algorithm
method. The fitness values versus number of generations show that the best airfoil shape is
obtained after 11 generations, with mean being improved after each generation. The values of
the (8) geometric shape parameters for the best airfoil are also shown. The number of
aerodynamic function calls is about 600.
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Figure 7.28 Genetic optimization results.

7.9.4 Airfoil shape and pressure distributions

The airfoil shape shown in Figure 7.29, where the forward part of the upper surface is shifted
up and the backward part is shifted down. The lower surface has less bottom loading. Figure
7.30 and Figure 7.31 show pressure distributions at @ = 0 and 4 . It can be seen that the

bubble effect is smaller.
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Optimization of E387 for drag minimization at constrained lift
at range of anggles of attack
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Figure 7.30 Best airfoil shape for Multipoint Multi objective optimization
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Figure 7.31 Comparison of pressure distributions for initial and optimized airfoils at « = 4 deg Re =
300,000 for MPMO

7.9.5 Liftand drag polar

The objective function was formulated to minimize drag at a set of given operating lift
coefficients. Figure 7.32 show a comparison between optimized and initial airfoils. It is clear
from the figures that optimized airfoil has considerably less drag over the whole drag polar
range. More drag improvement is seen at low angle of attack range with average value of
about 27 % as compared to experimental data. Since high reduction in bubble effect is seen
from pressure distribution comparisons in the above section, this drag reduction can be

attributed to lower bubble drag obtained by systematically changing airfoil shapes. The lift
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coefficient is kept equal to initial airfoil. The maximum lift to drag ratio within the design

range is about 125 at a = 4.

Optimization of E387 at Re= 300000 at constrained lift
and rangle of angles of attack
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Figure 7.32 Drag polar showing an improvement in drag at design lift coefficients
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7.10 Design at different Reynolds numbers

Low Reynolds number below 500,000 is considered low range. This range covers many
applications like unmanned aerial vehicles, human powered aircrafts, wind turbines and
propellers. Performance of airfoils at low Reynolds number was a point of continuing
experimental and theoretical research. Model wind tunnel at Stuttgart university [88], Low
Turbulence Tunnel at Delft [89] , Langley Low-Turbulence Pressure Tunnel (LTPT) [59] and
lately by Illinois university [61] have been active research facilities.

The most pronounced effect of operation at lower Reynolds number is the increase in airfoil
drag as shown by experimental investigations and theoretical research [87] [59]. Therefore
operation at lower Reynolds number is less aerodynamically efficient due to large decrease in
L/D ratios. The main reason is the increased viscous effects at low Reynolds numbers,
compared to very thin viscous layer associated with high Reynolds numbers. The lift
coefficient does not increase with this increase in drag. This is illustrated in Figure 7.33 and
Figure 7.34 for low Reynolds number airfoils Eppler 387 and S8064 airfoils respectively.
From these two figures it is evident that as Reynolds number decreases aerodynamic drag
increases. For Reynolds numbers lower than 200,000 experimental observations show great
degradation in airfoil performances due to domination of viscous effects. It is also shown that
for Reynolds numbers above 50,000 and moderate angles of attack the flow always reattach
after being separated due to laminar separation, as suggested by Carmichael [1] and argued by

Shyy [2].

Due to this domination it is important to check the accuracy of the developed code at low
Reynolds numbers as low as 200,000. Figure 7.35 ,Figure 7.36 , and Figure 7.37 show
comparison of data computed by current method and experimentally measured drag polar for
Eppler 387 airfoil at Reynolds numbers 2 x 10° 3 x 10° and 5 x 10° respectively. These
results show generally good agreement in lift and drag coefficients. At higher angles of attack
where separation plays a major role the computed results deviate slightly from experimental
data. Drag coefficient is still calculated with acceptable accuracy at all angle of attack up to
maximum lift. The maximum lift itself is hard to calculate and it is still a nightmare for most
aerodynamic prediction codes. This code over estimates maximum lift as most of theoretical
and CFD codes do as argued in [7] and [8] .
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Effect of Reynolds Number on E387 airfoil
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Figure 7.33 Effect of Reynolds number on E387 airfoil characteristics [61].

Effect of Reynolds Number on S8064 airfoil
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Figure 7.34 Effect of Reynolds number on S8064 airfoil aerodynamic characteristics [61].
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comparision between computed and experimental data
for E387 at Re 200k

1.2 © e © 12 ®©
O
1 5 1 /f

0.8 0.8 o
o o /é

0.6 0.6

04 0.4

0.2

o 0.2 (;
0 0.02 0.04 0.06 0.08 0 10 20

Figure 7.35 Comparison between experimental [61] and computed for E387 airfoil at 200,000
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for E387 airfoil at Re 300k
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Figure 7.36 Comparison between experimental [61] and computed for E387 airfoil at 3 x 10°
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Comparison between computed and experimental data
for E387 airfoil at 500k
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Figure 7.37 Comparison between experimental [61] and computed for E387 airfoil at 500,000

7.10.1 Optimization at different Reynolds numbers

During this exploration of the optimization process a multi point multi objective case is
examined. The design point and objective functions are kept same as that used in section 7.9.
These data are repeated for convenience. For the purpose of illustration same data is used for
all Reynolds numbers.

Table 7.8 Design lift coefficient at three operating points

Angle of attack [deg.] 0 2 4
Design lift coefficient 0.4055 0.626 0.8463
Weighting factor 1.0 1.0 1.0

Therefore, the objective function repeated from section 6.

f = T weai(ca)i + T war(Kei: [(); = (cia)i] 7.14
The coefficients w.; and w,; are the weighting coefficients for lift and drag coefficients

respectively at each operating point i.
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The objective is to minimize drag at the given lift coefficients with equal weights given to
each operating point. Results of optimization for Reynolds numbers 2 x 10% , 3 x 10> and
5 x 10> are shown in Figure 7.39, Figure 7.40, and Figure 7.41, respectively. Experimental
data for the initial airfoil are also shown for comparison. It is clear that design lift coefficient
is achieved in all cases with drag being minimized for all operation points. The objective
function formulation was convenient for this design example. Comparison of obtained airfoil
shapes is shown in Figure 7.38. The airfoils optimized at low Reynolds numbers have the
highest thickness and that at high Reynolds number results in less thickness. This is attributed
to the high desired lift coefficient imposed on airfoils at low Reynolds numbers in this
example. For Reynolds number of 500,000 this lift was achieved with thinner airfoil, but for
the airfoil optimized at Reynolds number of 200,000 a thicker airfoil is required for the same

lift.

Optimized airfoil shapes at three diffrent Reynolds numbers
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Figure 7.38 Comparison between optimized airfoil shapes at diffrent Reynolds numbers
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Optimization of E387 at Re= 200000 and a range of angles of attack
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Figure 7.39 Minimization of drag coefficient at Reynolds numbers 2 x 10> . Open circles are

experimental data for initial airfoil [61]
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Optimization of E387 at Re= 300000 at constrained lift
and rangle of angles of attack
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Figure 7.40 Minimization of drag coefficient at Reynolds numbers 3 x 10° . Open circles are

experimental data for initial airfoil [61]
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CHAPTER 8

8 Conclusion

In this thesis, the aerodynamic analysis and design of airfoils flying at low Reynolds numbers
is studied. Firstly, aerodynamic inviscid and viscous solutions are performed and the
formation of the laminar separation bubble on the airfoil surfaces has been modeled and
validated by comparisons with available experimental measurements for two airfoils, namely
E387 and S8036 in important range of Reynolds numbers (from 2 x 10° to 5x 10°%). The
developed method is implemented in a Matlab code.

Secondly, Aerodynamic parameterization methods applied to airfoils, such as NACA,
PARSEC, Bezier curves, and CST methods are reviewed and computer codes are written for
each method. Thirdly, anther code is written for various airfoil objective functions and
constraints formulations. Finally, the developed codes are called by a genetic search function
to explore various case studies of airfoil aerodynamic optimizations by systematic shape

perturbations.
8.1 Aerodynamic analysis

The adopted aerodynamic calculation is as follows, conformal mapping method is used to
solve potential flow equations. Karman-Trefftz conformal mapping calculation procedure
starts with mapping a given airfoil shape into a true circle in three subsequent transformations,
then multiplication of derivatives of these transformations with velocity distribution around a
circle. The value of the circulation is fixed by applying Kutta condition at trailing edge image
of the true circle. The resulting inviscid velocity distribution at a specified angle of attack is
used to derive the boundary layer solution.

The boundary layer integral equations solution enables the assessment of lift viscous
corrections, total drag, and laminar separation bubble location. The calculation procedure is
repeated by adding boundary layer momentum thickness to the airfoil sides, until the change
in airfoil shape is negligibly small. This requires only few iterations, making this approach
very efficient for airfoil design by systematic airfoil shape perturbation.

Two transition criteria are implemented. When natural transition happens first on the airfoil

surface Eppler modified transition criterion is applied to predict point of natural transition.
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This criterion is used in the past to design airfoils for various applications. However, when
laminar separation occurs before natural transition, it is assumed that, transition occur inside
the bubble and the conditions at transition is calculated using Drela e™ transition criterion
which constitutes an important part of laminar separation bubble effort. A critical value of the
disturbance amplification factor N.. = 12, which is used to predict transition, is found to be
satisfactory.

When a laminar separation bubble is encountered during boundary layer development
procedure a function is used to accumulate the increment in boundary layer momentum
thickness &, during each phase in the bubble structure. The boundary layer momentum
thickness at the trailing edge is used to calculate total drag using Squire-Young formula. Main
boundary layer features are also calculated. These features are locations on airfoil surface
where laminar separation, transition, reattachment, and finally turbulent separations occur.
The results of the code are validated using comparison with experimental measurements from
literature for E387 and S8036 airfoils and shown to be close to both experimental and XFOIL
predictions at moderate angles of attack. The following points can be concluded:

e In linear range of angles of attack, where airfoil optimization is expected, both lift and
drag are computed with reasonable accuracy.

e Curves of boundary layer flow features on upper surface and drag polar show
satisfactory agreement with measurement and XFOIL code.

e Separation bubble location can be also assessed in consistence with measurements as
seen from pressure distribution comparisons.

e Very weak laminar separation bubble is not captured by this procedure; however this
weak bubble often causes small drag penalties and can be neglected.

e When angle of attack is high, and when turbulent separation occurs on the upper
surface, maximum lift coefficient is overestimated.

e Bubble length predicted by current computation is shorter than that obtained from
experimental measurements, this may lead to underestimation of bubble effect or to
estimate transition without bubble in cases when laminar separation bubble
experimentally exists on airfoil surface.

e Turbulent separation point locations obtained from current computations are located

between experimental and XFOIL results.
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e Although computed lift and drag coefficients deviate from measured data at higher
angles of attack, the predicted aerodynamic data allows the use of current procedure in
design and optimization of airfoils for variety of applications without human

intervention utilizing systematic shape perturbation approach.
8.2 Airfoil parameterization

Four known airfoil parameterization methods are reviewed. CST method with 2 and 4
coefficients is examined to fit two objectives. The first objective is representation of NACA
2412 airfoil geometry. In case of 2 coefficients the maximum difference in airfoil coordinates
is about 2.1E-3 which is fairly satisfactory for optimization purposes. With 4 coefficients CST
fits NACA2412 with one order of magnitude higher accuracy and the maximum difference is
in order of 10™. About 50 generations are required for 2 coefficients as compared to about 200
for the 4 coefficients case.

The second objective is the matching of pressure distribution. For 2 coefficients, the CST
takes about 35 generations to converge to the target pressure distribution with a value of
fitness function of 3.4x10™. When the number of coefficients is increased from 2 to 4, the
number of GA generations required to reach similar accuracy is increased from 35 to 50

generations.

8.3  Objective function and constraints

Airfoil design and optimization is indeed a constrained multi objective problem. Therefore,
objective function formulation includes geometric and aerodynamic types of constraints. In
this work geometric constraints are implemented using the GA function upper and lower
bound constraints. Aerodynamic constraints, however, are written as part of the objective
function. A weighed sum approach is used to formulate different objectives and constraints. A
penalty function method is also implemented to enforce constraints.
The following computer code functions are written that implement several objective functions
and constraints formulations:

e Inverse design for given pressure distribution.

e Single and multi operating points and objectives combinations SPSO, SPMO, MPSO,

and MPMO.

e Drag coefficient minimization with constraints applied to lift coefficient.
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¢ Moment coefficient minimization with constraints applied to drag and lift coefficients.

e Equality and inequality penalty functions to enforce various constraints.

8.4  Airfoil design and optimization

In the second part of the project, the developed code is used as a tool to design and optimize

airfoil performance. Airfoil optimization using genetic search optimization function (GA) is

successfully used to demonstrate representative case studies using systematic airfoil shape

modifications, Table 8.1 illustrates summery of studied cases.

Table 8.1 Summery of the cases studies in this work

Case Re «[deg] | Airfoil Objective function and constraint
Inverse deign | 0.3 x 10° 4 NACAO0012 | Matching of pressure distribution. Eq.(7.6)
] Liebeck ) o
Inverse deign | 0.5 x 10° 5 Matching of pressure distribution. Eq.(7.6)
LNV109A
. Unconstrained Drag coefficient
Direct -SPSO | 0.3 x 10° 0 Eppler 387 o
minimization. Eq.7.7
) Drag minimization, with constrained ¢; =
Direct -SPMO | 0.3 x 10° 0 Eppler 387 _
0.387 . Penalty function. Eq. 7.8
Unconstrained drag coefficient
Direct -MPSO | 0.3 x 10° | 0, 2,4, 5 | Eppler 387 minimization with weighting coefficients.
Eq.7.12
Lift coefficient constrained [0.4055 0.626
) 0.8463], drag coefficient minimization with
Direct-MPMO | 0.3 x 10° | 0,2,4 | Eppler 387 o o
weighting coefficients [ 1.0 1.0 1.0], and
penalty function for each . Eq.7.13
Direct MPMO | 2 x 106 Lift coefficient constrained [0.4055 0.626
at three 0.8463], drag coefficient minimization with
0.3x10°| 0,2,4 | Eppler387 o o ]
Reynolds weighting coefficients [ 1.0 1.0 1.0], with
numbers 0.5 x 10° penalty function for each . Eq.7.13
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While the aerodynamic calculations are performed in direct way, the objective function is
formulated in two ways:

Firstly, the inverse airfoil method is examined through the specification of target pressure
distribution for two airfoils. It is concluded that when the target pressure distribution is
specified the objective function is formulated as functional difference between target and
computed pressures distributions. It is found that when the computed pressure distribution
comes close to the target pressure distribution, the airfoil shape is indeed close to the target
airfoil. The optimization function converges very quickly to the optimum shape, typically in 5
generations, and it takes about 15 generations to converge to the target airfoil within
acceptable error tolerances. The maximum difference in airfoil shapes is about 11 x 10~*
close to the lower surface leading edge. The maximum difference in pressure distribution
15 0.015.

Secondly, direct airfoil optimization is applied to optimize airfoils with several objective
functions and constraints formulations, as summarized in Table 8.1. Various combinations of
objective functions and constraints are tested. The weighted sum approach is successfully
utilized in this study where weighing coefficients are introduced to each term of the objective
function. In case of multi point other weighing terms are also assigned to each operating

point. Penalty terms are added to the objective function to insure constraints satisfaction.

The following points can be concluded:

o Airfoil optimization studies at low Reynolds numbers are successfully accomplished
using the proposed code and methodology.

e Airfoil shape design is efficiently achieved by systematic shape modification and
direct aerodynamic calculations by specifying pressure distribution.

e SPSO case: Unconstrained single point drag minimization at Re 3 x 10> and at
a = 0 results in locally improved aerodynamic performance.

e SPMO case: Lift constrained drag minimization for which the aerodynamic objective
function is formulated to minimize drag coefficient at fixed lift coefficient show that
the lift coefficient has been successfully constrained resulting in less pitching moment

change.
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e MPSO case: Single point optimization show lower performance at off design points.
In this case, the SPSO is repeated with additional operating points. It shows a
smoother drag variation than the SPSO case over a wider range of angles of attack.

e MPMO case: The problem is formulated to minimize drag at a set of given operating
lift coefficients. The result of optimization show improved performance over a wider
range of angles of attack.

e The formulation of the objective function was quite satisfactory to this type of design
problem. This formulation is very powerful when one aerodynamic coefficient is to be
improved, such as drag in this case. It allows user chose of some unconstrained
aerodynamics coefficients.

e This type of objective function formulation can be generalized to include as many
terms as required, provided that these terms should have same order of magnitude.

o Efficient airfoil design procedure is developed that is fast and directly used for routine

analysis and design of airfoils.
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8.5 Future work

Although the obtained results of this thesis are satisfactory in general, there are issues where
improvements are possible

1- To improve boundary layer code to predict better maximum lift coefficient cjqx:

This is in fact a nightmare for aerodynamic calculations because maximum lift is associated
usually with high angles of attack where severe separations occur leading to failure of
classical boundary layer theory assumptions. Therefore, is particularly evident for lower
Reynolds numbers where boundary layers are relatively thicker than higher Reynolds
numbers where thinner boundary layers appear. The same is true for CFD numerical methods
where turbulent models are used, but with less extent due to more complex mathematical
models.

2- Improving airfoil closure when boundary layer iterations are performed:

The conformal mapping method used in this work is based on a closed trailing edge airfoil
shape. (Trailing edge points have same coordinates). When adding boundary layer to the
airfoil shape these two points will move away from each other by a distance equals to the sum
of boundary layer momentum thicknesses from upper and lower sides at trailing edge points,
forming an open shape. This problem is solved by extending airfoil to the point of intersection
between upper and lower trailing edge points. This shows good lift and drag results as long as
the extension is few percents of airfoil chord.

3- Developing a multi objective optimization function to optimize airfoils for a range of
Reynolds numbers:

The same method of objective function formulation may be used to develop an objective
function to optimize airfoils for a Reynolds number range.

4- The optimization method may be extended to 3D wings
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Low Reynolds Number Airfoils

IpwuJor 1.
10 U3jaBa o ayTopcTBY

I[MTornucann  Mostafa H. S. Abobaker
6poj uagexca D3 /2013

HU3jaBbyjem
Jla je JOKTOPCKa IMCepTallyja Mol HACJIOBOM

Low REYNOLDS NUMBER AIRFOILS
AEPOITIPO®UNJIA 3A MAJIE PEJHOJIICOBE BPOJEBE

® PC3YJITAaT COIICTBCHOT UCTPAXKUBAYKOI pajid,

e Jla MpeyIoKeHa JUCEepTalyja y LEeJUHU HU y JIeJIOBUMAa HHUje Ouia mpeioKeHa 3a
nobujame OWIo Koje JAWIIIOME TMpeMa CTYAUJCKHM [porpaMHMa APYTUX
BHCOKOIIIKOJICKUX YCTaHOBA,

e Jla Cy pe3yaTaTH KOPEKTHO HaBEJIEHU U

e Jla HHMCAM KpIIHO/Ja ayTOpCKa IMpaBa U KOPUCTHO HHTENEKTYalHy CBOJUHY JPYTUX
JULA.

MMoTrnuc noKkTOpanga

VY Beorpany, November 2017
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Low Reynolds Number Airfoils

IpwuJor 2.

11 A3jaBa 0 NICTOBETHOCTM LUTaMMaHe U efieKTPOHCKe

Bep3uje AOKTOPCKOr paga

Hme u npe3ume ayropa : Mostafa H. S. Abobaker

bpoj unaekca D3/2013

Cryaujcku nmporpam Aerodynamics

Hacnos pana AEPOITPO®UJIN 3A MAJIE PEJHOJIICOBE BPOJEBE

MenTtop np 3narko [erposuh, pen. npod. MamuHckor dakynrera
[Torncanu

W3jaBibyjeM na je mraMiana Bep3uja MOT JOKTOPCKOT pajia MCTOBETHA €JIEKTPOHCKO] BEP3UjU
KOJy caMm 1mpenao 3a o0jaBjbHBamke Ha mopTaly JUruTajJHOr Ppeno3uTopujyma
Yuusepsurera y beorpany.

Jlo3BosbaBaM 1a ce o0jaBe MOjH JIMYHU TOJAIM BE3aHH 3a JOOHjame aKaJeMCKOT 3Bamba
JIOKTOpa HayKa, Kao IITO Cy UME U TIPe3uMe, TOJJMHA U MeCTO pol)erha U JaTyM oJ0paHe paja.
OBH JIMYHU MOJAIM MOTYy ce 00jJaBUTH Ha MPEKHUM CTpaHHLlaMa AUTUTaIHE OMOIUOTEKe, Y

€JIGKTPOHCKOM KaTaJlory U y myOiukanujama Y HuBep3ureta y beorpany.

MMornuc noxkropanaa

VY Beorpany, 16.,Hosem6ap, 2017.
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Low Reynolds Number Airfoils

IpwuJor 3.
12 UsjaBa o kopuwhemwy

Osnamhyjem YHUBEp3UTeTCKy OuOMMOTEKY ,,CBeto3ap Mapkosuh™ ma y Jlururamau
peno3uTopujyM YHUBep3uTeTa y beorpamy yHece MOjy JOKTOPCKY IUCEpTaldjy TOJ

HACJIOBOM:
Low REYNOLDS NUMBER AIRFOILS
AEPOITPO®UNJIA 3A MAJIE PEJHOJIICOBE BPOJEBE

KOja je MOje ayTOPCKO Jelo.

Jucepranujy ca CBUM IMPUIO3MMA MPENao/jia caM y eJIeKTPOHCKOM (hopMary IMOTOAHOM 3a
TPajHO apXUBUPAE.

Mojy IOKTOPCKY IHCEpTalujy MoXpameHy y JWruTamHu perno3uTopujyM YHUBEp3UTETA Y
beorpany mory ma KopucTe CBU KOjU TOIITY]y onpende calipkaHe y oa0paHOM THUILY
muuenne Kpearusne 3ajeanure (Creative Commons) 3a Kojy cam ce OIy4no.

1. AyropcTBO

2. AyTOpCcTBO - HEKOMEPIHjAIHO

3. AyTOpCcTBO — HEKOMEPIIHjaIHO — Oe3 mpepaje

4. AyTOpCTBO — HEKOMEPIIM]AJTHO — JIETUTH MOl HICTUM YCIIOBHMA

5. AytopcTBO — 0€3 npepaje

6. AyTOpCTBO — JI€JIUTH O]l UCTUM YCIIOBUMA

(Monumo 12 3a0KpyKUTE caMo je[HY O] LIecT NOHYh)eHUX JTUIEeHIM, KpaTaK ONUC JIMIEHIN

J1aT je Ha moJjiehuHu JTUCTa).

IHoTnuc noxkTOpanga

VY Beorpaxy, November 2017
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Low Reynolds Number Airfoils

1. AyropcTBo - Jl03BOJBaBaTE YMHOXaBame, MUCTPHOYIIM]Y W JaBHO CAONIITABAKE Jeia, U
npepaje, ako ce HaBele MME ayTopa Ha HayuH ojapeljeH o]l cTpaHe ayTopa WM JaBaola
JUIIEHIIe, YaK U y KoMepuujasiHe cBpxe. OBO je HajcI000IHHU]ja O] CBUX JIUIICHIIH.

2. AytopctBOo — HekoMeprujanHo. Jlo3BoJbaBaTe yMHOXaBame, JAUCTPUOYIH]Y H jaBHO
CaoNIITaBame Jiena, U Mpepaje, ako ce HaBeAe MME ayTopa Ha Ha4MH onpehen on crpane
ayTopa WM naBaora jurenie. OBa JIMIeHIIa He I03B0JbaBa KOMEPIIHjaliHy yrnoTpely nena.

3. AyTopcTBO - HEKoMepLujasiHo — Oe3 mpepase. [lo3BojbaBaTe yMHOKaBamwe, AUCTPUOYIH]Y
U jaBHO CaOIIITaBame Jiea, 0e3 MpoMeHa, MPeoOIMKOBaka WK YIIOTpeOe /1esia y CBOM ey,
aKo ce HaBelle MME ayTopa Ha Ha4MH ofjpel)eH o/ cTpaHe ayTopa WM AaBaola JuieHme. Opa
JIMIICHIIA HE JI03BOJbaBa KOMEPIIMjaIHY YIOTpeOy Jena. Y OJHOCY Ha CBE OCTaJle JIMIECHIIS,
OBOM JIMIICHIIOM Ce OorpaHu4aBa Hajsehu oOuM mpaBa Kopuihema aena.

4. AyTOpcTBO - HEKOMEpIHjallHO — JEJIUTH TOJ HWCTHM YycioBuMma. Jlo3BosbaBare
YMHO)KaBame, TUCTPUOYIHM]Y M jaBHO CAOIIITABamE Jejia, U Tpepaje, ako ce HaBele MMe
ayropa Ha Ha4yMH ojapeheH ox cTpaHe ayTropa MM JaBaolia JHUIICHIIE M aKO Ce IMpepaja
TUCTpuOyrpa TMOJ KCTOM WM CIMYHOM JuleHnoM. OBa &WIleHI]a HE J03BOJbaBa
KOMEpIIM]jaliHy yrnoTpeOy jena u mpepaja.

5. AyropctBo — 0e3 mpepane. Jlo3BosbaBaTe yMHOXKaBame, IJUCTPUOYIM]y U JaBHO
CaomIITaBame Jiesa, 0e3 nmpomMeHa, nMpeodInKoBamka WK yIoTpede Jema y CBOM ey, ako ce
HaBeJle MMe ayTopa Ha HauuH ojpeheH o cTpaHe ayTopa WM JaBaoua juieHue. Opa
JMIIEHIA 03B0JbaBa KOMEPIMjaIHy ynoTpely Jena.

6. AyTOpCTBO - AenuTn nog UctTum ycrnoeuma. [lo3aBorbaBaTe yMHOXaBake, ANCTpUBYLujy 1
jaBHO caonwTaBawe Aena, U npepage, ako ce HaBede MMe ayTopa Ha HauvH ogpeheH o
CTpaHe ayTopa Wnu faBaoua NuueHLe M ako ce npepaga AvucTpubyupa nog MCTOM unu
cnuyHom nuueHuoMm. OBa NuueHua 0o3BOrbaBa kKoMepumjanHy ynotpeby aena v npepaga.
CnuyHa je copTBEPCKMM NULEHLamMa, 04HOCHO fMLEHLLIaMa OTBOPEHOT KoAa.
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