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Abstract 

 

In this thesis, the flow around airfoils at low Reynolds numbers has been modeled. The 

model utilizes inviscid-viscous interaction method. The inviscid-viscous interaction method 

supplemented by an adequate laminar separation bubble modeling has been proven to be 

efficient design tool when numerical optimization, by systematic shape modification, is 

anticipated.  

The inviscid solution of the potential flow equation is based on conformal mapping. The 

viscous formulation employs the solution of integral momentum and energy boundary layer 

equations. Eppler transition prediction model is followed when no laminar separations 

occur. In case of laminar flow separation, however, Drela modified transition is applied 

inside a laminar separation bubble model. The laminar separation bubble is divided into 

three parts, laminar part, turbulent part and reattachment region. After reattachment the 

boundary layer dissipation coefficient equation is solved with the standard two boundary 

layer equations. This formulation allows the method to account for drag effects from 

laminar separation bubble, as well as tracking boundary layer features.  

The calculation method is also applicable to higher range of Reynolds numbers since it is 

based on methods that were successfully used to design many nowadays working airfoils. It 

is, on the other hand, limited by low range Reynolds number by the violation of basic 

assumptions of boundary layer theory and laminar separation bubble model.  

The above mentioned procedure is coded in a Matlab, and the results of the calculation is 

validated over an important range of Reynolds numbers (from       to      ) using 

recent published experimental data for benchmark airfoils.  

Airfoil design in this Reynolds number range is important for many widely used 

applications. These applications include UAV's , wind turbines, and propellers as well as 

sport cars.  

Surface pressure distributions together with drag polar and boundary layer features are 

calculated and compared with experimental data. The comparisons show acceptable 

agreement with experimental data. 
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After validation, this code is used for airfoil optimization examples by systematic shape 

modification. In this context airfoil shape parameterization and objective function 

formulations are discussed and sample calculations are shown. Airfoil optimization studies 

at the mentioned Reynolds number range is successfully accomplished using the proposed 

code and methodology. Airfoil shape design is efficiently achieved by systematic shape 

modification and direct aerodynamic calculation. 

 

 

Key words:  Airfoils, low Reynolds number, conformal mapping, airfoil 

aerodynamics, airfoil shape parameterization, aerodynamic 

optimization. 
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АПСТРАКТ 

У овој тези је моделирано струјање око аеропрофила са ниским Рејнолдсовим бројем. 

Вискозно невискозна интеракција комбинована са моделирањем ламинарног мехура 

је ефикасан метод за конструисање нових аеропрофила систематским 

модификовањем облика аеропрофила. Невискозно решење је засновано на 

конформном пресликавању. Вискозна формулација је заснована на решавању 

интегралних једначина за количину кретања и енергије. Када нема одцепљења 

струјања примењен је Еплеров модел за предвиђање транзиције из ламинарног у 

турбулентно струјање. Ламинарни мехур, који узрокује отцепљење је моделиран из 

три сегмента: ламинарни део, турбулентни део и област прилепљења струјања. 

Овиме је омогућено одређивање доприноса укупном отпору аеропрофила, такође је 

омогућено и праћење карактеристика граничног слоја. 

 

Прорачунски метод је применљив и за конструисање аеропрофила за лет при вишим 

Рејнолдсовим бројевима јер је базиран на методима који су превиђени за такво 

конструисање. Метод је програмиран помоћу MATLAB-a за област Рејнолдосивих 

бројева (од       до      ) решења су поређена са експерименталним 

резултатима. Одабрана област Рејнолдсових бројева има веома велики праткчни 

значај. Конструисани аеропрофили су примењиви код беспилотних летелица, 

лопатица ветротурбина, лопатица пропелера, као и код узгонских аеропрофила на 

аутомобилима. 

 

Прорачунате су расподеле притисака, поларе, и карактеристике граничног слоја и 

упоређене са расположивим експерименталним подацима. Поређење показује 

задовољавајуће слагање између прорачуна и експерименталних података. 

 

Након верификације прорачуном је одређено више оптималних аеропрофила за 

различите услове. Аеропрофил је параметризован на неколико опционих начина, а 

функција циља за оптимизацију је дефинисана такође на више начина. 

Продискутовани су различити оптимизациони критеријуми и за њих је одређен 



iv 

оптимални облик аеропрофила. Развијени софтвер омогућује ефикасно пројектовање 

нових облика аеропрофила са систематском модификацијом облика аеропрофила. 
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CHAPTER 1 

1 Introduction  

In this work, direct potential flow solution procedure over airfoils using conformal 

mapping is implemented. The obtained pressure distribution is then used to derive an 

uncoupled boundary layer formulation over the airfoil upper and lower surfaces in which, a 

boundary layer displacement thickness calculation is included. Within this boundary layer 

development a laminar separation bubble model has been incorporated.  

The transition criterion is hybrid between that of Eppler and XFOIL codes. When laminar 

separation does not occur Eppler criterion is utilized. If laminar separation appears on 

either airfoil surfaces Drela    formula is used within the laminar separation bubble model. 

This approach allows the calculation of lift, drag and pitching moment including laminar 

separation bubble effects. A computer code to perform the aerodynamic calculations is 

developed and validated for Reynolds number range from       to      .  

 

The efficiency of the airfoil design and optimization procedures is demonstrated using 

several case studies. In doing this airfoil parameterization methods are reviewed and CST 

method is chosen for the demonstration. Representative objective function formulations are 

illustrated. 

 A computer code is developed that utilizes genetic search algorithms (GAs) to call the 

above mentioned, airfoil parametric representation function, the aerodynamic function, and 

the objective function. The code flow chart is shown in Figure  1.1. The flow chart starts 

with input section where the design flight conditions, the initial airfoil and the desired 

airfoil aerodynamic objectives are specified. The next section is an outer GAs function that 

calls airfoil parameterization function, aerodynamic calculation function, and the objective 

function. Within the aerodynamic function three sub-functions are shown, namely inviscid 

flow solution (conformal mapping), boundary layer development and laminar separation 

bubble model.  

 When the optimization process converges drag polar for the selected best airfoil is 

computed to check airfoil off design conditions. 

. 



 

2 

 

 
Figure  1.1  The code flow chart 
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1.1 Low Reynolds number airfoils 

Airfoils operating at low Reynolds number range are characterized by presence of laminar 

flow over most of the airfoil surface. They are called laminar flow airfoils. Their applications 

cover civil, military and hoppy model sectors. UAV's operating at low speeds or high altitudes 

are usually flying at this range. Wind turbines form important and growing field of interest to 

low Reynolds number airfoils. Figure  1.2 shows chord Reynolds number versus flight speed 

for some important applications. It can be said that, whenever airfoils operate at relatively low 

speeds or high altitudes, they most likely to operate at low Reynolds number regime.  

Carmichael  [1] has presented a classification of flow over low Reynolds number airfoils. He 

pointed out that, the main difficulty in low Reynolds number flow is laminar flow separations.  

In high Reynolds number, typically exceeding    , laminar flow extends for short percent of 

chord length, soon after that flow transition to turbulent occur mostly during favorable 

pressure gradient, before theoretical laminar separation point. Turbulent flows are known to 

be more resistant to flow separations, therefore, flow remains attached over most chord length 

for large range of angles of attack.  

In case of low Reynolds numbers, as flow starts laminar, it continue for relatively longer 

percent of chord length than higher Reynolds numbers. Laminar flow, which is less resistant 

to separation, can separate before transition to turbulent flow takes place. This laminar flow 

separation complicates the flow and modifies the effective airfoil shape causing degradation 

of airfoils performance. That is way, airfoils designed for high Reynolds numbers doses not 

work as efficient at low Reynolds number conditions. It is now more a common practice to 

design airfoils for specific application and not to select airfoil from ready catalogue. 
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Tani  [5] presented a review of published results of flows involving separation. He pointed out 

that one condition for laminar flow separation at low Reynolds number flows is existence of 

severe pressure gradients. He also pointed out that there exists a range of Reynolds numbers 

for which separated flow may reattach again forming Laminar Separation Bubble (LSB). If 

Reynolds number is further lowered flow may not attach and will stay separated. According to 

Carmicheal rough rule, the Reynolds number necessary for reattachment based on free stream 

velocity and distance from separation to reattachment is      . It means that for airfoil with 

chord Reynolds number lower than       separation bubble will not form because flow will 

not reattach. Airfoils with chord Reynolds number higher than this number will have a 

separation bubble with different lengths, as noted by Gad-EL-HAK  [4].  

Therefore, LSB formation is possible only for limited range of Reynolds numbers and its 

formation also depends on local Reynolds number, pressure distribution, airfoil surface 

curvature, airfoil surface roughness and free stream turbulence.  

Shyy  [2] has illustrated based on Lissaman  [3] the effect of lowering Reynolds number using 

several representative airfoils as shown in Figure  1.3. As Reynolds number is decreased the 

 

Figure  1.2 Flight speed versus chord Reynolds number for different natural and  manmade objects 
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lift to drag ratio is substantially reduced. The reason is related back to the transition from 

laminar flow to turbulent. 

 

 

Figure  1.3  Reynolds number effect on representative airfoils performance  

 

1.2 Efficiency in airfoil design 

In predicting aerodynamic characteristics at high Reynolds numbers there exists a 

sophisticated Computational Fluid Dynamics (CFD) based flow solvers that uses Direct 

Numerical simulation (DNS), Large Eddy Simulation (LES), and Reynolds's Averaged Navier 

Stocks equations (RANS). At low Reynolds number airfoil design however, these codes are 

not preferable due to two reasons. Firstly, the domination of separation and transition 

phenomena at low Reynolds number flows which is not suitably solved by classical 

turbulence models. Secondly, CFD based codes which can capture these physical phenomena 

requires high computational cost (memory and time).  

The inviscid viscous interaction solvers are most suitable for airfoil design and trade off 

studies and optimization  [6],  [7], and  [8]. In practice, two programs are in use. Eppler code  [9] 
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and XFOIL  [10]. The two codes use for analysis and design of airfoils potential flow solvers 

and a boundary layer solution method.  

In Eppler code conformal mapping is used as inverse design tool, in which a velocity 

distribution is specified. Uncoupled boundary layer calculations are then followed. The 

transition criterion is empirically based which is function of boundary layer momentum 

thickness, boundary layer shape factor    , and local condition in the boundary layer. This 

code does not contain LSB formulation but it issues a warning when LSB exists.  

 

XFOIL code uses panel method for solving potential flow coupled with integral boundary 

layer formulations. The transition prediction criterion is also empirically derived from    

method formulation  [11]. It is capable of moderate LSB but only mild separations. The 

maximum lift which is usually close to complete stall with large separations is still over 

estimated by both codes. In fact, it is hard to estimate by most CFD solvers as well. This 

means that experimental work is still required to verify the airfoil performance. 

Theses codes can carry out calculations extremely fast and also can perform efficient airfoil 

shape analysis. Therefore, they are more suitable for airfoil optimization studies. 

 

1.3 Thesis Outline 

The purpose of this thesis is twofold. The first, is to model the aerodynamic flow around 

airfoils at low Reynolds numbers (from       to      . ). The second is to demonstrate 

the airfoil aerodynamic design approach by systematic shape modification. Therefore, in order 

to accomplish these two tasks, a computer MATLAB code is developed as explained in  the 

thesis outline below. 

 

In chapters 2, 3 and 4 the modeling and calculation of airfoil aerodynamic characteristics, 

boundary layer features and separation bubble effects are explained. The calculation of 

inviscid pressure distribution is based on conformal mapping method (chapter 2). The 

boundary layer development method is explained in chapter 3. The laminar separation bubble 

model is explained in chapter 4. Validation of the aerodynamic characteristics and locations 

of boundary layer features for two airfoils are also presented  

  



Low Reynolds Number Airfoils 

7 

In Chapter 5, most common airfoil parametric representation methods are reviewed, a Matlab 

code is prepared for each method and sample calculations are performed. Those methods are 

NACA, and PARSEC, Bezier curves and CST method. Airfoil shape parameterization with 

each method is examined, and finally as an illustration of method robustness a matching of 

pressure distribution is performed. 

In chapter 6, some aerodynamic airfoil design methods are described from point of view of 

optimization algorithms usage. This includes formulation of design problem and specification 

of objective function and constraints to genetic search algorithms. Finally, the direct 

aerodynamic optimization based on shape perturbation is discussed.  

 

In Chapter 7, aerodynamic design case studies are performed using the established code.  

They include design for given point and objective. The cases covered include inverse design, 

or design for given pressure distribution. The design can be for single point or multipoint, and 

the objective can vary from single to multi objective optimization. Design for varying 

Reynolds numbers is also accomplished. In chapter 8, concluding remarks and few suggested 

future research points are given.  
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CHAPTER 2 

2 Two dimensional Ideal Fluid Flow  

There are many levels of fluid flow approximations starting from Navier–Stokes equations 

(N-S) equations where most complex flow equations are considered, to the most simplified 

equations of potential flow models. Navier–Stokes equations are five highly nonlinear 

coupled partial differential equations, with six unknowns. When the equation of state for 

perfect gas is added theses equations are still hard to solve. It is normally simplified by 

making appropriate assumptions about flow  [12]. Figure  2.1 illustrates a hierarchy of the 

different levels of approximation. This figure illustrates how appropriate assumption can lead 

to simplified solutions and faster computations. 

One main assumption is if viscosity effects are neglected or taken into account. In many 

engineering problems neglecting viscosity leads to solutions of acceptable accuracy. These 

solutions are either in close form or require low computational power. This makes inviscid 

approximation very interesting for analysis and design methods utilizing large number of 

repeated calculations. Aerodynamic drag is an essential aerodynamic physical quantity which 

requires viscous effects to be taken into consideration. The use of these models depend on 

application requirement, time available and computational cost. 

According to this classification this chapter discusses the part where viscosity effects are 

neglected, and the next two chapters deal with solution of flow inside boundary layer. It is 

known that the solution of inviscid flow is much faster than that of boundary layer even with 

many other assumptions. 
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Figure  2.1 Hierarchy of the different levels of approximation  [12] 

 

2.1 Assumption of an Ideal Fluid  [12] 

The‏ perfect fluid concept is significant simplification in fluid mechanics. In this concept ideal 

or perfect fluid is assumed to be a continuous and homogeneous medium, so that no effect of 

shearing stresses is considered.  For ideal fluid the compressibility is neglected, and fluid is 

assumed incompressible. Not considering shearing stresses has the consequence of inability to 

know information about airfoil drag or about flow separations from airfoil surfaces. But this 

assumption simplifies the equations of motion and enables many close form solutions to wide 

range of problems to be found with reasonable accuracy. In many cases, the viscous forces are 

small compared to the inertia forces. The exception is in the layer of fluid adjacent to the 

surface, known as boundary layer, where viscosity must be considered.  

The incompressibility assumption is acceptable when dealing with low speeds, since relative 

change in air density is small provided that the speed is well below the speed of sound.   
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2.2  Fundamental principles 

The fundamental physical principles that should be satisfied are: 

Principle of conservation of mass. 

Principle of conservation momentum. 

The first principle is enforced by applying the continuity equation. If a fixed area is filled with 

a perfect gas then the mass must remain constant. This means that the net rate of outflow must 

be zero. Mathematically the continuity equation is given by Eq.( 2.1) 

 
  
  

  
  
  

   
( 2.1) 

The second principle is satisfied by applying Newton’s second law of motion to fluid particles 

which states that the rate of change of momentum of a particle is equal to the resultant of the 

forces acting on it. The resulting equations are Euler equations and are given by Eq.( 2.2) 

   
  
  

   
  
  

  
  
  

   
  
  

 

( 2.2) 

   
  
  

   
  
  

  
  
  

   
  
  

 

These two equations can be simplified further, if the steady flow is assumed, the resulting 

equation is Bernoulli’s equation which is given by Eq.( 2.3) 

    
   

 
        ( 2.3) 

This equation is valid for perfect gas, steady flows along stream line. 

2.2.1 Irrotational flow 

The circulation around closed curve   is defined as the negative integral in anticlockwise 

direction of the tangential velocity around that curve expressed as in Eq.( 2.4) and illustrated 

in Figure  2.2 .  

 
                       

( 2.4) 
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Figure  2.2 Circulation around closed path   [13] 

 

The circulation for an area   enclosed by boundary C can be expressed as    and is given by: 

 
      

  

  
 

  

  
 

 

      
( 2.5) 

Where the term  
  

  
 

  

  
  is called the vorticity  .Thus the vorticity is given by Eq.( 2.6) 

 
   

  

  
 

  

  
  

( 2.6) 

If the vorticity is zero the flow is termed irrotational flow. Flows around airfoils can be 

assumed irrotational except in very small region close to the boundary layer where the fluid 

particles experience rotational motion. Irrationality condition (   ) which implies: 

 

  

  
 

  

  
 

( 2.7) 

2.2.2 Velocity Potential and stream function 

For irrotational flow, which is an appropriate approximation of inviscid flow outside the 

boundary layer, a velocity potential function        exists which defines the velocity 

components of flow at each point. In two dimensional Cartesian coordinate system the 

velocity components       at coordinates       are given in terms of the velocity potential   

by the following equations respectively: 
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 ( 2.8) 

 
  

       

  
 ( 2.9) 

Substitution these two equations back into the continuity equation Eq.( 2.1) results in the 

Laplace equation Eq.( 2.10). 

       
( 2.10) 

Laplace equation describes the continuity equation of incompressible irrotational fluid. It has 

an important property being linear differential equation, so that solutions may be 

superimposed and the resulting function is also a solution to the Laplace equation. If the 

Laplace equation in terms of the velocity potential is known the velocity components can be 

readily obtained. 

The stream function        is also defined so that it is constant along specific lines called a 

stream lines. The flow is always parallel to these lines and never cross them. The velocity 

components        are defined in terms of stream function as  

 
  

       

  
 

( 2.11) 

 
   

       

  
 ( 2.12) 

This function satisfies Laplace equation which is given in terms of the stream function as 

       
( 2.13) 

The stream function   and velocity potential   lines are perpendicular to each other through 

any point in the flow field. They are commonly used in complex form. 

2.2.3 The complex Velocity  

Conformal mapping, which is used in the calculation of' wing section characteristics depends 

on the use of complex variables. If   defined as               is a complex number, 

where both   and   are real numbers, then the function                  is called the 

complex velocity, if it satisfies the Cauchy-Riemann equation given by Eq. ( 2.14)  [18]. It is 

clear that the complex velocity function      satisfies also the Euler and continuity 

equations. 
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( 2.14) 

The speed is given by                  and the direction is given by the slope of the 

velocity at the point 
 

 
            . In polar form the complex velocity is expressed 

alternatively in exponential form                       
 

       . Where      

         is the angle of the velocity at point         to the positive real axis, as shown in 

Figure  2.3. 

 

Figure  2.3 Variables defining complex velocity 

 

2.2.4 The Complex Potential  

The function      is called complex potential if,   

       
  

  
 

In words it means that the derivation of the complex potential with respect to z will result in 

the velocity potential. 

The complex potential is given by    

         

If the velocity components are expressed in terms of          as given by Eq.( 2.15) 

 

  
  

  
   

  

  
 

( 2.15) 
  

  

  
  

  

  
 

If we let         i.e.   
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Then  

 
   

   
   

   

   
                   

 

and  

 
   

   
   

   

   
                    

 

adding the two last equations, we get  

 
   

   
   

   

   
 

   

   
   

   

   
 

 

 
   

   
 

   

   
   

   

   
 

   

       
 

In any equation involving complex variables, the real and imaginary parts must be equal to 

each other independently. Therefore  

 
   

   
 

   

   
   

( 2.16) 
 

   

   
 

   

   
   

These equations are the same as Laplace equation in two dimensional flow and thus any 

differentiable function        where        and        may be interpreted as a 

possible case of irrotational fluid motion by giving   and   the meaning of velocity potential 

and stream function, respectively. 

The derivative       has a simple meaning in terms of the velocities in the flow field, and 

can be illustrated as follows 

             

             

and  

Therefore   

  
 

 
  
  

    
  
  

        
  
  

     
  
  

    

       
 

 

In order for       to have a definite meaning, it is necessary that the value of       be 

independent of the manner with which    approaches zero. If    is assumed to be zero, the 

value of the differential quotient       is  
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Similarly, if    is assumed to be zero, the value of the differential quotient       is  

 
 

 

  

  
  

  

  
         

 

The expressions for simple two-dimensional elementary flows may be expressed conveniently 

in terms of complex variables  [13] as illustrated in the following section.  

Uniform stream parallel to x axis       
( 2.18) 

Source at origin                
 

  
      

( 2.19) 

Doublet at origin with axis along x axis   
 

   
 

( 2.20) 

  Vortex at origin              
   

  
      

( 2.21) 

The superposition principle plays an important role to the general solution of incompressible 

potential flow problems. The solution to the governing equation (Laplace equation) can be 

obtained by defining elementary solutions that satisfy the infinity boundary condition of 

undisturbed flow and have singular solutions at the coordinate origin. Therefore, these 

elementary flows sometimes called singular solutions. The linear nature of the Laplace 

equation allows the solution of individual elementary flow and adding the resulting solution 

either numerically or analytically. The most widely used combined flows are given below 

 

Circular cylinder of radius a in a uniform stream  

        
  

 
  

( 2.22) 

Circular cylinder with circulation 

        
  

 
   

   

  
    

 

 
 

( 2.23) 

Where : 

   is uniform stream velocity 

   source strength 

    Doublet strength 

   Circular cylinder radius 

 Γ Circulation. 

More about this flow is given in the next section. 

 
  

  
   

  

  
       

  

  
  

( 2.17) 
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2.2.5 Circular Cylinder with Circulation  

A few simple flows upon which the theory of airfoils is based, can be used to calculate the 

flow around circular cylinder see references  [13] and  [15] among many others. The lift force 

can be calculated but drag force cannot be found because boundary layer viscous effects are 

not included. The flow pattern represented by a circular cylinder with circulation is the basic 

flow pattern from which the flow about wing sections of arbitrary shape at various angles of 

attack is calculated. Such a flow pattern is obtained by superposing the flow produced by a 

point vortex upon the flow about a circular cylinder. The stream function is given as 

          
  

  
       

 

  
    

 

 
  

( 2.24) 

Where  

 a is circle radius 

 r is radial distance from origin to any point. 

 V is free stream velocity of uniform flow. 

    is angular position calculated anti-clock wise from x axis. 

    is the value of circulation. 

A typical flow pattern for a moderate value of the circulation Γ is given in Figure  2.4. 

 

 

Figure  2.4 A typical stream lines of flow around circular cylinder with moderate circulation Γ 

The velocity distribution about the cylinder is found by differentiating the expression for the 

stream function Eq. ( 2.24) as follows:  

 
  

  
       

  

  
       

 

   
  

( 2.25) 

The tangential component of velocity v' (positive counterclockwise) at the surface of the 

cylinder is obtained from the relation     
  

  
 and the substitution of        . 
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( 2.26) 

It is seen that the addition of the circulation Γ moves the points of zero velocity (stagnation 

points) from the positions      and       to the positions  

         
 

    
 

( 2.27) 

The pressure distribution about the cylinder may be found by applying Bernoulli's equation 

along the streamline    .  

    
 

 
            

       

  
 

  

       
( 2.28) 

The pressure coefficient    is given thus by  

                       
( 2.29) 

where  
 

    
   . Eqn. ( 2.29) is symmetric about the line   

 

 
  which means that there 

can be no drag force. The lift on the cylinder can be obtained by integration, over the surface, 

of the components of pressure normal to the cylinder. 

      
 

 
                

  

 

 ( 2.30) 

 
 

 

 
                        

  

 

              

( 2.31) 

                     
   ( 2.32) 

 
                  ( 2.33) 

This formula is valid for any shape. It states that the lift is function of air density, air velocity, 

and the magnitude of circulation  . The correct value of circulation is fixed by applying Kutta 

condition at the trailing edge.   
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2.3  Application to airfoils and conformal transformations 

Superposition principle can be used to find the flow field about circular cylinder with 

circulation in a uniform stream. It is possible to relate this field of flow to that about an 

arbitrary wing section by means of conformal mapping. In relating these fields of flow, the 

circulation is selected to satisfy the Kutta condition that the velocity at the trailing edge of the 

section must be finite. Airfoil characteristics such as the lift and pressure distribution may 

then be determined from the known flow about the circular cylinder. The resulting theory 

permits the approximate calculation of the angle of zero lift, the moment coefficient, the 

pressure distribution, and the field of flow about the airfoil section under the condition that 

the flow stick to the surface. 

A conformal transformation consists in mapping a region of one plane on another plane in 

such a manner that the angles are preserved. For instance, equipotential lines and streamlines 

intersect at right angles, thus create a large number of small rectangles in the flow field.  

If the equation        represents a possible flow pattern, and also the equation        

represents another possible flow pattern where   is a complex variable       . The 

coordinate in z plane are considered to be x and y, and those in the   plane are    and  . If the 

equipotential lines and streamlines are plotted in either of the planes, they will divide the 

plane into a large number of small rectangles. These rectangles will be similar at 

corresponding points in both planes. The corresponding points are found from the relation  

          . This equation represents a conformal transformation from z plane to the 

  plane, and it is necessary to solve this relation for   and to obtain the relation in the 

form        . 

The velocities in    plane are given by differentiating the complex velocity   with respect to 

 . 

 
  

  
        

( 2.34) 

The corresponding velocities in   plane are given by the relation 

 
  

  
  

  

  

  

  
 

( 2.35) 

As a an example of a conformal transformation, consider the relations  
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circular cylinder in z plane =     uniform flow in 

        

( 2.36) 

These relations transform the flow about a circular cylinder on the z plane to uniform flow 

parallel to the   axis on the   plane. Corresponding points of both planes are obtained by the 

Joukowsky transformation given by Eq.( 2.37). 

      
  

 
  ( 2.37) 

This transformation transforms circle placed at coordinate origin with radius   in the   plane 

to a straight line segment of length    overlapping real axis symmetrically with respect to 

coordinate origin in   plane , as shown in Figure  2.5. If this transformation is applied to any 

circle in   plane which encloses circle with radius   then closed curve is obtained in plane   

which encloses straight line segment, as shown in Figure  2.6. (note curves from Figure  2.5 ). 

If the larger circle is moved off the center in   plane such that it touches the unit circle in one 

point as in Figure  2.8 a , then the resulting shape is an ellipse which touches mid-real axis in   

plane at one point as in Figure  2.8 b. A symmetric airfoil shape appears in   plane if the unit 

circle is off centered on real x axis in   plane as in Figure  2.9. The camber is added to the 

airfoil shape if the center of the unit circle is off the origin in both   and  . in   plane, see 

Figure  2.10. The airfoil shapes obtained by Joukowsky transform in Eq.( 2.37) are cusped at 

the trailing edge, as can be seen in Figure  2.7 which makes them impractical. Karman-Trefftz 

transform can be used to form airfoils with non zero trailing edge is reviewed in the next 

section. 
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Figure  2.5 (a) a unit circle in z plane centered at origin with unit radius. (b) Joukowsky transform of z 

plane unit circle to a straight line segment from -2 to 2 in   plane. 

 

Figure  2.6 (a) A circle centered at origin with radius different than 1 in z plane transformed into ellipse 

in   plane. 

 

Figure  2.7 Close up view of trailing edge regions showing zero trailing edge angle. 
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Figure  2.8 (a) a circle centered off the origin and has touches the unit circle at one point . (b) 

Transformed into an ellipse which touches mid-real axis in   plane at one point. 

 

Figure  2.9 (a) a unit circle with center offset on real x axis in   plane  (b) A non cambered airfoil in   

plane. 

 

Figure  2.10 (a) circle with center off the origin in both        and       .with part of the contour 

outside the unit circle (b) Cambered airfoil in   plane with part of its contour above real axis. 
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2.4 Karma-Trefftz transformation 

This transformation can be used to transform a circle in   plane into an airfoil shape in   plane 

or vise versa. It is given by Eq.( 2.38). The coordinates of singular points         and 

        are chosen to simplify this figure generation, and     
 

 
  is slightly less than 2, 

and   is airfoil trailing edge angle. Figure  2.11 is generated by this transformation from a 

circle in   plane with a center at               and a radius of        . 

 
    

    
  

      

      
 
   

 
( 2.38) 

 

 

Figure  2.11 Karman-Trefftz transform of an off centered unit circle with          and         

and radius of 1.0512 in   plane into an airfoil, with finite trailing edge angle of 2 deg in   plane. 

 

2.5 Flow Analysis over an Airfoil Using Conformal Mapping  

 The Joukowsky and Karman-Trefftz conformal transformations are used to transform a circle 

in z plane into a curve resembling an airfoil in the   plane as shown in the above sections. 

Theodorsen showed that if inverse transformation is applied to an airfoil in   plane, the 

resulting curve in z plane will therefore be a near circle. He also showed that the flow about 

near circle, and hence the airfoil can be calculated from the flow about the true circle through 

an iterative procedure. The basic method is presented in references  [12]to  [17]. 

 The procedure starts with given       airfoil coordinates in   plane, flow angle of attack 

  and free stream velocity  . Airfoil coordinates are used to calculate near circle coordinates 

using Karman-Trefftz transformation, i.e. from Figure  2.12a to, Figure  2.12b. Every point on 

airfoil is conformly mapped to corresponding point on the near circle. There are two singular 

points    and    which are specified midway between airfoil leading edge and center of 
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curvature, and at airfoil trailing edge, respectively. The near circle shape is transformed to the 

origin of the coordinate system after finding its centroid, see Figure  2.12c. Fast Fourier 

Transform (FFT) is then used to find relations between the flow in the centered near circle (   

plane) and in the plane of the true circle (   plane). The final step, is combining the foregoing 

relations to obtain the final expression for the velocity distribution in the airfoil plane in terms 

of airfoil coordinates.  

The calculation of the velocity distribution about an airfoil is done mainly in few steps. Figure 

 2.12 shows schematically these steps:  

 Generation of airfoil shape. 

 Analytical mapping of airfoil to near circle shape by using Karmen-Traffitz 

transformation. 

 Translation of the near circle to the origin of the coordinate system. 

 Representing near circle couture as function of true circle this is done iteratively 

utilizing Fast Fourier Transform.  

 Obtaining velocity distribution on true circle and calculate modulus of 

transformations. 

And finally, calculate pressure distributions over the airfoil surface at given flow angle 

of attack and velocity. 
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Figure  2.12 Steps involved in transformations of airfoil to true circle 

 

            

2.5.1 Airfoil shape  

The airfoil       coordinates are generated using one of the geometric representation methods 

discussed in chapter (5). The points start from the trailing edge through the upper surface to 

the leading edge, and then back through the lower surface to the trailing edge. Thus the first 

point is same as last point, as illustrated in Figure  2.13. These coordinates are changed to 

complex variables in   plane and their radius and phase angles are computed         

    . 
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Figure  2.13 Airfoil generated for conformal mapping 

 

2.5.2  Apply Karman-Trefftz Transformation 

The basic relation between the near circle plane (   plane) and the airfoil plane (  plane) is 

performed through the Karman-Trefftz transformation ( 2.39) by which corners are removed 

from airfoil where     
 

 
 and   is airfoil trailing edge angle. Points    and    are locations 

of the singular points. The location of    is set med way between leading edge and nose center 

of curvature, while    is set at the trailing edge. The coordinate of the resulting nearly circular 

shape Figure  2.14 is given by     . The airfoil coordinates are defined by   with the relation 

          

 
    

    
  

       

       
 
   

 
( 2.39) 

From which    can be expressed explicitly as follows 

 

    
        

          
 

      
        

 
 

    
       

      
    
    

 
 

  

     

( 2.40) A 

 

B 

Equation ( 2.40) is valid when near the trailing edge upper surface is above real axis and lower 

surface is below it. For the points of the lower surface which are above real axis Eq.( 2.40) is 

used. 

The coordinates of    are defined by the relation 
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             =                         
( 2.41) 

 Where           is the radius at any point, and   is the angle at that point, as shown in the 

Figure  2.12. 

Knowing that                 the above relation can be split into real and imaginary 

parts. 

Where  
                                      +                             

                     Real part               +         Imaginary part ( 2.42) 

 The factor relating velocities in the    plane to those in the   plane is        is called 

modulus of transformation and is calculated in later step. 

 

 

 

 

 

2.5.3 Translation of the near circle to the origin  

The center of gravity of the near circular shape is calculated by Eq.( 2.43) 

      
                                

   
   

                   
   
   

 ( 2.43) 

After calculating the center of gravity, the translated near circle coordinates    are obtained by 

subtracting       from each point. 

               
( 2.44) 

 

 

Figure  2.14 Airfoil transformed to near circle 



Low Reynolds Number Airfoils 

27 

 

Figure  2.15 Shifted near circle 

 

Figure  2.16 NACA4412 airfoil transformed to near circle then shifted to origin 

 

2.5.4 Mapping of near circle in      plane) to true circle (  plane). 

The coordinates of   are defined by the relation  

                     
( 2.45) 
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The transformation relating the    plane to the   plane is the general transformation 

                           
    

( 2.46) 

But by definition this transformation should result in near circle 

                     
( 2.47) 

Consequently  

                                

 

   

 
( 2.48) 

Knowing that  

 
 

  
 

 

  
         

 

  
                

( 2.49) 

Substituting  
 

   into ( 2.48) we get 

 

             

            
 

  
               

 

   

 ( 2.50) 

 

             

    
  

  
       

  

  
      

 

   

     
  

  
       

  

  
      

 

   

  

( 2.51) 

Equating real and imaginary parts from both sides we obtain 

             
  

  
       

  

  
       

 

   

 
( 2.52) 

           
  

  
       

  

  
      

 

   

 
( 2.53) 

These relations show that      and        are conjugate functions. The true circle radius 

is chosen such that there is minimum deviation between points radii on the near circle ψ and 

the radius of the true circle which is found from the relation       .  

       
 

  
      

  

 

 
( 2.54) 

It can be written as  

                              

 

   

 
( 2.55) 
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( 2.56) 

Where    
  

    and     
  

   

Equations ( 2.55) and ( 2.56) constitute 2N equations, and 2N +2 unknowns. These unknowns 

are    and     where n=1 to N. Other two unknowns are    which is related to the true circle 

radius R as       . In order to place the trailing edge at the real axis (     Equation 

( 2.56) will be 

                  

 

   

 
( 2.57) 

 

The unknowns can be obtained by applying Fast Fourier transform (FFT) iteratively  [20]. 

Theodorsen originally solved those equations based on interpolation which requires O(  ) 

multiplications, but Fast Fourier Transform simplifies a lot this step with only O(N log N) 

multiplications. this approach is used by many authors and found to be efficient  [21]  [22] 

 [23] [24]. The main steps involved in the numerical procedure are listed below: 

1. Divide the true circle   into    equally spaced points   which is not changed 

during the rest of calculation procedure. 

2. Find the corresponding points in the centered near circle    plane i.e      by 

iteration.  

3. As first step assume that coefficients    and     are zero i.e coefficients 

     and      , Eq.( 2.56) will reduce to     at every point.  

4. Since    is a known function of   at every point in near circle plane i.e.     , 

and   is known from previous step, the left side of Eq. ( 2.56) is now known. 

The right side of this equation is easily computed by using FFT algorithm by 

which the coefficients    and     are obtained, as an estimate. 

5. Having obtained coefficients    and    a new estimate of angle   as function 

of   is possible through Eq.( 2.56). This is done by applying Inverse Fourier 

Transform IFFT. In this step new values of   are obtained. 

6. The value of     is obtained by letting     at trailing edge. And thus the 

angle at trailing edge in near circle plane is           
 
    .The value of 

   is obtained directly from FFT algorithm. 

Steps 4 through 6 should be repeated until convergence is reached. 
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2.5.5  Calculation of modulus of transformation 

The total modulus of transformation is obtained by multiplying modulus of all 

transformations.  

 
  

  
 

  

  
 
  

   
 
   

   
 
   

  
 ( 2.58) 

1-Airfoil shape is transformed by using analytic Karman-Trefftz transformation Eqn.( 2.40) A 

which is function of  . Differentiating this equation with respect to   we get 
   

  
 as follows  

 

   

  
     

        
            

   

                   

 
      

          
   

               
  

( 2.59) 

2- Shifting the near circle plane to origin has a modulus of 1, thus 

 
   

   
   

( 2.60) 

3- The third transformation is transformation of near circle    to true circle   which modulus 

of transformation is given by  
  

   
 . Mapping from near circle to circle is performed by the 

relation 

                         
    ( 2.61) 

But              ( 2.62) 

and  
                      where               ( 2.63) 

Substituting Eqs( 2.63) and ( 2.62) into Eqs ( 2.61) and substituting for  . The expression  
  

   
 

can be written in the form 

 
  

   
 

  
  
   

  

 
( 2.64) 

since        θ are functions of    and    is constant.  Thus  

  

  
                 

and   
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Substituting back into equation ( 2.64) we get 

 

  

   
 

   

      
        

  

 
( 2.65) 

Where 
        

  
   

  

  
    

  

  
, to find this derivative we proceed as follows: 

Knowing that 

   
       

    
 
      

  

         
  

             
  

         
  

         
     

    

Substituting in Eq.( 2.61) we get 

                    
  

  
         

  
             

  
         

  
         

     
    

Dropping out   and taking the log of both sides we get 

                 
  

         
  

             
  

         
  

         
     

    

Separating real and imaginary part we get 

         
  

         
  

          
    

         
  

         
  

         
    

It is worth to note that                and           

Differentiating w.r.t   both equations we get 
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If we proceed  

  

  
    

  

  
 

 

 
     

  

  
         

  

  
          

 

   

       
  

  
          

  

  
         

 

   

   

  

  
    

  

  
 

 

 
     

  

  
         

  

  
          

 

   

   
  

  
          

  

  
           

 

   

  

  

  
    

  

  
 

 

 
                   

 

   

    

Now we can substitute back into Eq.( 2.65)  

 
  

   
 

   

      
 
 
                    

      
 

( 2.66) 

 
  

   
 

  

                            
    

 
( 2.67) 

If we further substitute the equations for          we will get the following relation 

 
  

   
 

                   
   

                        
   

 ( 2.68) 

Equation ( 2.68) represents the modulus of transformation from the near circle plane to the true 

circle plane.  

 

2.5.6 Finding velocities in the true circle plane 

Flow around true circle with radius of        is obtained by the equation  

                  
       

      
 

   

  
            

( 2.69) 

Conjugate complex velocity on the true circle are obtained with 
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( 2.70) 

Since              
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      ( 2.72) 

But at the circle surface       and at the trailing edge where    , Kutta condition must be 

satisfied by letting the total velocity to zero and obtaining the required circulation   to satisfy 

this condition. 

Thus  
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( 2.73) 

At trailing edge there is a rotation by an angle of   and thus the angle of attack will be 

modified by this amount. The equation of circulation finally will be  

                    
( 2.74) 

Circulation   necessary to satisfy Kutta condition thus, depends on angle of attack   and 

position of trailing edge image in circle plane  .  Having obtained the value of circulation, the 

modulus of transformation is calculated by substitution. The last step is to calculate the 

velocities in airfoil plane by  

 
  

  
 

  

  
 
  

   
 
   

   
 
   

  
 

( 2.75) 

 

Once velocity distribution is obtained by the above method, pressure distribution is obtained 

via the relation 

       

  
  

  
 

 

 ( 2.76) 

Sample calculations for Low Reynolds number airfoil E387 are shown in Figure  2.17, Figure 

 2.18, and Figure  2.19. The pressure distribution calculated by this approach at angle of attack 

of   degrees and Reynolds number of 300,000 is compared with XFOIL code. Figure  2.20 
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show that the pressure distribution agrees well with XFOIL results. The flow chart for the 

above method is summarized in the flow chart shown on Figure  2.21. 

 

Figure  2.17 Potential flow velocity around circular cylinder dw/dz 

 

 

Figure  2.18  Derivative of transformation (dζ2/dz ) for E387 airfoil. 
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Figure  2.19 Derivative of transformation dz1/ς for E387 airfoil 

 

 

 

Figure  2.20 Inviscid pressure distributions at 2
o
 and Reynolds number of 300,000 for E387 airfoil. 
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Figure  2.21 Flow chart for the method of calculation 
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CHAPTER 3 

3 Boundary Layer Modeling 

As already stated in chapter 2, the assumption of neglecting viscosity leads to two main flow 

equations with different levels of complexity. Neglecting viscosity results in calculation of 

pressure distribution and lift for airfoils with acceptable accuracy at low angles of attack, 

when flow is mostly staying stick to the wall. When angle of attack increases flow separates 

and inviscid assumption become less accurate. The other important point is the calculation of 

airfoil total drag which is not possible without considering boundary layer flow. Therefore, 

this chapter deals with flow inside boundary layer, The first part introduces main concept of 

boundary layer, and fundamental integral boundary layer equations. Important boundary layer 

phenomena of laminar, turbulent flow transitions, separations are discussed and the method of 

solution is also explained. Finally, verification of obtained results are presented. 

The separation bubble which constitutes an important part of the boundary layer effort is left 

to next chapter. 

3.1  Boundary Layer Concept  

The boundary layer concept is related back to Ludwig Prandtl in 1904, who noted based on 

experimental work that a thin region exists close to the wall when a fluid passes over it. He 

divided the flow to two regions, one very close to the wall called boundary layer where all 

viscous effects occur. The second layer is inviscid where viscosity effects are negligible, as 

seen in Figure  3.1. The boundary layer is the thin region in which, a fluid velocity changes 

from zero at the wall     to potential flow value at boundary layer edge    . In this 

region the viscous force are comparably to inertia forces and thus the viscosity effects can’t be 

neglected. Outside this region,    , the viscous effects can be assumed unimportant, and 

the flow can be analyzed as potential flow.  The ratio of inertia forces to the viscous forces is 

called Reynolds number, defined as  

    
   

 
 

( 3.1) 

Prandtl derived the boundary layer equations, by simplifying the Navier-Stokes equations. 

The simplification is based on two main assumptions 
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 The boundary layer is thin compared to characteristic stream wise dimension 

of the body. 
 

 
   where L is the characteristic length of the body and   is the 

distance from wall where the velocity equals the inviscid stream velocity. 

 The highest viscous term must have same order of magnitude when compared 

with inertia term. 

 

Figure  3.1 Boundary layer concept 

 

It is also further assumed that the pressure change across the boundary layer is small and can 

be neglected. Thus the pressure on the wall (inside boundary layer) is assumed equal to that 

outside the boundary layer. Hence, the pressure is calculated using potential flow region laws 

as depending on stream wise distance x. 

 
  

  
  

  

  
  

 

 

  

  
 ( 3.2) 

If steady flow is assumed then the pressure is function of x only and the equation reduces to 

  
  

  
  

 

 

  

  
 

( 3.3) 

Prandtl’s boundary layer equations for steady, two dimensional flow is given by the Eq.s ( 3.4) 

together with boundary conditions stated beneath. The first equation is continuity equation, 

and the second is momentum equation. The pressure term can be replaced with velocity from 

Eq.( 3.3). 

 
  

  
 

  

  
   

( 3.4) 
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        Acceleration                      Pressure              Viscous 

            Forces.                           Forces.                Forces.   

B.C.                                                      

Where   is the viscosity of the fluid.         are components of velocity inside boundary 

layer in     directions, respectively, and   is the pressure at distance  , as calculated from 

potential flow. 

3.2 Boundary layer separation 

When a region of adverse pressure gradient exists along the flow, the fluid particles decelerate 

and cannot continue moving in forward direction. Thus a region of separated flow appears 

near the surface and the boundary layer deflects away from the wall into the main stream. 

Generally, fluid particles start to move in direction opposite to the external flow  [25]. 

The separation point is defined by the condition when shear stress vanishes or mathematically 

when the slop of the velocity gradient at the wall in the normal direction equals zero. This is 

shown in Figure  3.2 . a region of reversed flow downstream of separation point. 

  
  

  
 

   

   
( 3.5) 

 

 

Figure  3.2 Separation of boundary layer, defined when the slope of the velocity gradient at the wall in 

the normal direction equals zero. 

 

From Prandtl’s boundary layer equations Eq.( 3.4), the left hand side of the second equation 

represents the acceleration of fluid particles in the flow. The pressure term will be negative if  
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 is positive, i.e if pressure increases with increasing x, thus  the acceleration will be 

negative, which means that fluid particles will decelerate, and will have low momentum 

leading to separation as illustrated in Figure  3.3a.  

For steady flows, the flow may separate only when the pressure increases with increasing x, 

i.e. only when  
  

  
   the flow separation is possible. If the pressure term is negative fluid 

particles will accelerate, hence no separation danger exists, Figure  3.3 b. 

 

(a) Pressure increases 
 

(b) Pressure decreases 

Figure  3.3 Velocity distribution in boundary layer at different pressure situations 

Laminar boundary layer separations can occur, resulting in turbulent boundary layer. 

Turbulence adds shear stresses to the original viscous shear stress due to viscosity; the 

additional shear stresses are called Reynolds stresses. First consequence is that similar 

solutions in boundary layer are no longer true. Secondly, turbulence may start inside the 

separated laminar boundary layer. In this case, the separated shear layer may reach the airfoil 

surface and the turbulent flow may reattach again. The region formed after this process is 

called a laminar separation bubble (LSB). Laminar separation bubble is known to decrease lift 

and increase drag of airfoils, with higher degree as Reynolds number is decreased. Transition 

from laminar to turbulent may also occur without bubble formation. Figure  3.4, illustrates this 

possibility where airflows on upper and lower surfaces starting from stagnation point. 

Laminar boundary layer prolongs for some distance on both surfaces also. On upper surface 

the laminar boundary layer separates and flow moves away from the wall forming a 

circulatory region before it reattaches again as turbulent boundary layer. Attached turbulent 

flow continues until it separates totally from the airfoil surface. Turbulent separation 

eliminates the contribution of that portion of the surface from producing lift and produces 

more drag due to wake formation.  

 The lower surface experiences a different scenario. The laminar boundary layer become 

turbulent before it separates. This is called natural boundary layer transition. Turbulent flow 

continues until trailing edge without separation.  
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The locations on airfoil surface where boundary layer laminar separation, bubble transition, 

bubble reattachment, natural transition, and turbulent separation occur are very important 

airfoil flow features. They are sometimes called boundary layer features normally measured in 

wind tunnels and predicted by computational procedures. For instance, as turbulent separation 

point moves toward the airfoil’s leading edge the lift decreases and the drag increases, airfoils 

may be designed based on this fact to maximize lift with smooth stall characteristics by 

optimizing turbulent separation point movement with angle of attack, or using other boundary 

layer feature. One example is given in reference  [26]. 

 

Figure  3.4 Boundary layer effects 

 

3.3  Shear stress and friction drag 

The shearing stress at the wall is defined as 

      
  

  
 
   

 
( 3.6) 
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The viscous drag is obtained from integrating shear stress over the body surface , as given by 

Eq. ( 3.7) and shown in Figure  3.5. Taking            we get: 

        

 

   

              
  

  
 
   

  
 

   

 ( 3.7) 

 

 

Figure  3.5 Viscous drag computation from shear stress 

 

3.4  Boundary layer momentum and energy integral equations  

For steady two dimensional incompressible flows, boundary layer momentum equations can 

be integrated with respect to   from the wall to some height   then, after substituting the wall 

shear stress from Eqn.( 3.6) , one obtains: 

    
  

  
  

  

  
  

  

  
   

 

   

  
  

 
 ( 3.8) 

From the continuity equation the velocity component      
  

  
 

 

 
   , which upon 

substitution becomes 

 

    
  

  
 

  

  
  

  

  
 

 

 

     
  

  
   

 

   

  
  

 
 

( 3.9) 

 

Integration by parts gives 
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( 3.10) 

Substituting we get 

     
  

  
    

  

  
   

  

  
   

 

   

  
  

 
 

( 3.11) 

Rearranging  

  
 

  
          

  

  

 

   

        

 

 

 
  

 
 

( 3.12) 

Introducing the definitions  

Displacement thickness         

 

 

     
( 3.13) 

 

Momentum thickness          

 

 

    
  

( 3.14) 

The substitution of these two definitions results in Von Karman integral equations 

given by   

 
 

  
    

      
  

  
 

  

 
 ( 3.15) 

The energy integral equation is deduced by K. Wieghadt  [100] for laminar boundary layer 

flow. It is obtained by multiplying the equations by u and integrating with respect to y, 

similarly to the above procedure; 

      
  

  
  

  

  
  

  

  
  

 

 

     
  

  
      

   

   
  

   

   

   

   

 ( 3.16) 

The second term is treated by integration by parts as 

     
  

  
  

  

  
  

 

 

     
 

 
        

  

  
  

   

   

   

   

 ( 3.17) 
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The first and third parts can be combined  

      
  

  
   

  

  
    

 

 
  

 

  
         

   

   

   

   

 ( 3.18) 

After integration 

 
 

 

 

  
               

  

  
 
 

  

   

   

   

   

 ( 3.19) 

 

The term on the right side represents energy per unit volume and time, dissipated into heat. 

Introducing again the dissipation energy thickness δ3 defined as 

Energy thickness            

 

 

    
  ( 3.20) 

The energy integral equation can be written in the following form 

 
 

  
    

       
  

  
 

 

  

 

 

 ( 3.21) 

Which is the energy integral equation for two dimensional laminar incompressible flow in the 

boundary layer. For turbulent flow this equation takes the form 

 
 

  
    

     
 

 
 
  

  
   

 

 

 ( 3.22) 

 

3.4.1 Boundary layer integral approach 

The boundary layer integral parameters are  

 

          
      

    
   

 

 

 

       
      

    
   

      

    
   

 

 

 

       
      

    
    

      

    
 
 

   

 

 

 

( 3.23) 
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The displacement thickness       represents the displacement of boundary layer, and the 

momentum thickness        is related to the friction drag from stagnation point up to the 

position  . The energy thickness       is connected to the energy dissipation in the boundary 

layer. The boundary layer separates if velocity near the surface reverses direction. Using these 

parameters the integral equations are written as: 

    

  
         

 

 

  

  
    ( 3.24) 

Where U is potential flow velocity at location x, and     is skin friction coefficient and is 

given by  

    
  

   
 ( 3.25) 

The energy equation is also written as  

    

  
     

 

 

  

  
    ( 3.26) 

Where    is the dissipation coefficient given by 

    
 

   
  

  

  

 

 

   ( 3.27) 

If the ratios of the local parameters are also defined as 

     
  

  
     and      

  

  
   ( 3.28) 

 

3.4.2 Laminar boundary layer 

The solution method for laminar boundary layer is based on the statement that        and      

are only function of one parameter. Thus      ,   , and   can be expressed as function of the 

shape parameter    . The following relations hold for skin friction coefficient and dissipation 

coefficient, respectively. 

    
       

       
  

( 3.29) 

 

    
        

       
  

( 3.30) 

Where         and         are given functions of the shape parameter     . The Reynolds 

number based on boundary layer momentum thickness is defined as 
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       ( 3.31) 

Noting that in dimensionless form of chord based Reynolds number    
 

 
 . Where the 

reference velocity is    the reference length is the chord  , and the reference density is   . 

 [27] . 

The relation for        
          are given by the following equations as described by Eppler 

works in references  [9], and  [27] through  [30], 

 

                                  

             
               

If                 
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( 3.32) 

 

 

                                     
              

  

If                 
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( 3.33) 

 

                                       
  ( 3.34) 

 

Equations ( 3.24) and ( 3.26) are coupled ordinary differential equations, which is solved by 

numerical integration for    and    from which the shape factors      and      are also 

calculated. Skin friction coefficient    and dissipation coefficient    can be obtained from the 

calculation using the above equations. The velocity U and it's derivative    are imposed by 

the  potential flow. 

   
         

   
 

 
    ( 3.35) 

 

  
      

  

 
    

( 3.36) 

The shape factor             specifies laminar separation. If the velocity U is constant the 

value of the shape factor       is greater than         . 
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The initial values of solution is given by the Eq. ( 3.37)  [27], which corresponds to the first 

step of    after the stagnation point , where the value         is the value of the parameter 

    at stagnation condition. 

                 
  

        
    ,                               ( 3.37) 

From which the initial value of the shape parameter in case when boundary layer starts from 

stagnation point is given by            . 

3.4.3 Turbulent boundary layer 

The same differential equations can be used for turbulent boundary layer. The relations 

between the    and     and,    and    are given by  [27]: 

     
         

          
 ( 3.38) 

 

                                 
                 ( 3.39) 

 

                               
     ( 3.40) 

These relations are derived for Reynolds number range from                   using 

empirical and semi-empirical investigations of turbulent boundary layer done by Ludwieg-

Tillmann. As argued in  [27] it is also applicable to outside of upper range but for the lower 

range it should be investigated. 

Turbulent separation, in this approach, is hardly related to a fixed value of the shape factor 

    . It is certainly known that for           there will be no turbulent separation and for 

values of            there will be for sure turbulent separation. In the calculations the 

turbulent separations is assumed to occur at           because it is more reliable for thick 

boundary layers, where separations is expected to happen.  

 It is known that turbulent boundary layer separation depends on Reynolds number, 

such that separation occurs later if Reynolds number increases. Laminar boundary layers 

separates in much shallower adverse pressure gradient as compared to turbulent boundary 

layer.  

The friction drag caused by laminar boundary layers is much less than that of turbulent 

boundary layer. For these reasons transition from laminar to turbulent is important issue. 
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3.5   Boundary layer transition 

Laminar boundary layer separates in mild pressure gradients for which turbulent boundary 

layers can resist and stay attached. Skin friction drag, on the other hand, is higher for turbulent 

boundary layer. It is a compromise between laminar boundary layer where skin friction drag 

is smaller but separation risk is higher and turbulent boundary layer where skin friction drag is  

higher with higher separation resistance.. Boundary layer starts usually laminar and then 

disturbances grow until it become either separated (laminar separation) or it become turbulent 

through either transition (forced or natural transition) or transitional separation bubble. The 

LSB becomes more important as Reynolds number is lowered. 

 Boundary layer transition is connected with stability of so called Tollmien-Schlichting 

waves. This stability is function of local Reynolds number based on boundary layer 

momentum thickness   ,      which is, defined by Eq.( 3.31) repeated here for convenience.  

     
    

 
       

There exists a critical value of      below which no wave will be amplified. This critical 

local Reynolds number      depends in turn on local velocity profile. Local velocity profiles 

without inflation points (which occur normally with favorable pressure gradients) have higher 

values of      and thus have later transition. In contrast, velocity profiles with inflation point 

have lower values of      which make transition more likely to happen in flow areas where 

separation risk is higher. The velocity profile itself is assumed to be function only of the shape 

parameter    .  

 

There are two general methods for transition analysis. The first method is based on analysis of 

amplification of Tollmien-Schlichting waves which assumes transition when one of the waves 

amplifies to the value of    . Where N is a specified critical number usually around 10 and 

depends on turbulence level in wind tunnels or flight test measurements. Drela  [31] developed 

a method based on amplification envelopes and implemented it in XFOIL code, this criteria 

will discussed in next section. 

The second method is empirically derived transition criteria based on local boundary layer 

parameters. The transition criterion adopted in this work is the one given in Eppler works. It is 

used to predict transition when no laminar separation occurs. If laminar separation is detected 

Drela method is invoked in the code.  

Equation ( 3.41) which depends on local values of shape factor     , which represent velocity 

profile shape, local Reynolds number based on   , and on  roughness factor    . The 
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roughness factor   may vary from 0 for theoretically very smooth surface to 6 which 

represents a highly turbulent air. 

                                                 ( 3.41) 

This criterion is plotted on Figure  3.6 for different roughness  . Higher values of roughness 

factor   shifts the curve down which means transition will occur earlier.  

Transition is assumed to occur if this criterion is satisfied (area above any red dashed curve). 

Flow starts from stagnation point at           as shown and as flow develops the shape 

factor      decreases and      increases toward either transition curve (red dashed) or 

laminar separation line (blue broken) depending boundary layer development calculations. If 

the transition criteria is reached first the calculations switches from laminar closure 

correlations Eq.( 3.32) through Eq.( 3.34) to turbulent correlations Eq.( 3.38) through Eq.( 3.40). 

Furthermore, if the laminar separation line is attained first a laminar separation bubble 

calculations are required. The next section discusses main laminar bubble features and 

addresses its effects on airfoil characteristics. Details of adopted LSB molding is discussed in 

chapter 5.  

 

 

Figure  3.6 Eppler Transition criteria for different roughness factor values 
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3.6 Laminar separation bubble 

As stated previously, transition could occur through laminar separation bubble, called 

sometimes laminar transitional bubble because it acts as a mechanism for transition from 

laminar to turbulent flow. Laminar separation bubble happens when laminar flow separates 

before transition criteria is reached and flow under goes a transition to turbulent in the 

separated shear layer , as illustrated in Figure  3.7. Now turbulent flow has higher momentum 

to resist adverse pressure gradients therefore it reattaches again to the surface after some 

distance along the airfoil chord. The distance from separation point to reattachment is called 

bubble length    and the distance from separation to transition is called transition length 

   where flow is still treated as laminar. Between transition location and reattachment point 

with length of    the flow is turbulent and there is a considerable velocity change in this 

region. The velocity profile at laminar separation point and at reattachment point is defined 

for the value of shape factor              which corresponds to zero shear stress, as 

shown in Figure  3.7.  

 

Figure  3.7 Sketch of laminar separation bubble 

 

The main effects of laminar separation bubble are: 

(a) Potential flow velocity distribution is modified by the bubble as shown in Figure  3.8 

which suggested by Tani  [34] . The solid lines represent velocity distribution without bubble, 

and the dashed lines represent the modified velocity. From the separation point   to transition 

point   the velocity is nearly constant        , which drops from this value to the intersection 

with the solid curve at reattachment. In some cases it was experimentally observed by Dini in 
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 [35] and  [36] that the reattachment occur with undershoot until the velocity distribution 

merges with viscous distribution without bubble. For longer bubbles this velocity distribution 

is modified along the bubble length and affects the entire airfoil surface. As Reynolds number 

is decreased the first part of the bubble    increases in length. 

(b) Thickness of separation bubble    is shown in Figure  3.7 and it is an important factor 

which indicates whether the reattachment will occur or not. It depends on the length   . It is 

also affected by the potential flow pressure gradient in the region of the bubble. This fact was 

studied by Gaster  [37] who suggested a non-dimensional parameter  . This parameter is given 

by 

   
   

 

 

   
 

  
 ( 3.42) 

Where     is the value the boundary layer momentum thickness at separation point. 

   
   which is the velocity drop along the bubble above which no reattachment can occur. 

This drop in velocity is equivalent to adverse pressure gradient in the region after separation 

point 
  

  
 , this slope depends on the angle of attack being higher for greater angles of attack   

, thus bubble thickness increase with increased angle of attack and decreases as angle of 

attack decreases. Furthermore, the location of separation point depends on angle of attack 

being more toward the leading edge for higher angles of attack. Therefore, in order to 

decrease bubble effects on airfoil performance, it is possible to decrease the operating angle of 

attack. 

 

 

Figure  3.8 Effect of separation bubble on velocity distribution 
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3.7 Eppler’s Bubble prediction method 

This method is based on predicting the distance from laminar separation to the point when the 

shape factor     increases to a value of about 1.6. At          reattachment is assumed. A 

warning is issued if a bubble exists and its effect on drag is not included.  

When the turbulent boundary layer starts after either laminar separation or transition criteria is 

reached the turbulent closure relations are directly evoked to solve the same differential 

equations. When Separation happens at            the shape factor then increases to 

higher values following the turbulent closure relations. As shown in Figure  3.9, if the 

condition given by the equation is satisfied then a bubble warning is issued. 

   
   

  
       ( 3.43) 

Where    the value of potential flow velocity at the laminar separation point, and     is the 

difference between the value of potential flow velocity at separation and reattachment points. 

 

Figure  3.9 Eppler's bubble analogy 

 

 

3.8  Lift, drag and moment 

 From the potential flow analysis an inviscid pressure distribution      can be obtained 

and from the boundary layer calculations shear stress distribution      is also obtained. These 

two distributions constitute the main sources of all forces and moments affecting airfoil at 
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given flow conditions. Their integration over the surface produces the resultant force     and 

moment      which can be resolved into lift and drag. This reference frame is shown in Figure 

 3.10 where the pressure distribution acts normal to the surface while the shear stress acts in 

the tangent direction. The starting point is chosen at the leading edge which normally different 

than stagnation point where boundary layer calculation begins. 

 The Resultant force is resolved into two coordinate axis systems (1) body axis system 

as normal   and axial  . (2) wind (aerodynamic) axis system as lift   and drag  . the angle 

between them is angle of attack  . The relation between these two frames is given by 

 

 
              

              ( 3.44) 

 

 

Figure  3.10 Sign conventions for pressure and shear stress  

 

 

Figure  3.11 Body and wind axis systems 
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3.8.1 Integration of pressure and shear stress distributions 

If an airfoil of unit span  [32] as shown in Figure  3.10 is considered. The integration of 

pressure and shear stress is performed from leading edge to trailing edge as follows: 

For small element of surface length    on the upper surface, there are normal and axial 

elemental forces    and    respectively given as 

 
                           

                           ( 3.45) 

For the lower surface  

 
                           

                           ( 3.46) 

The normal force N and axial force A can be obtained from  

 
                      

  

  

                       
  

  

    

 

( 3.47) 

 
                       

  

  

                       
  

  

    

 
( 3.48) 

The moment can obtained in similar manner , keeping in mind sign convention when the 

reference point is the leading edge is positive when increasing angle of attack, and using the 

non dimensional coefficients the following working form is obtained,             and 

           and reference area   and   is the airfoil chord. 
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( 3.51) 

 

From which the aerodynamic coefficients    and    are obtained with the equations: 

 
                 

                 ( 3.52) 
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3.8.2 Lift Drag Moment corrections 

When viscous separations are present these coefficients are corrected by using Eppler method 

 [28], as follows: Total drag coefficient is calculated from boundary layer solution data 

evaluated at trailing edge using Squire and Young formula  [33] which is modified for high 

values of H12 which was found to produce better results. And also corrected when separations 

exists  [27].  

   

 
 

         
   

  
 

     
 

 
               

         
  

  
 
    

  
  

   
 
    

                        

   

 

( 3.53) 

Where  

   
   

                        
                         

   ( 3.54) 

Equation ( 3.53) when applied to each surface results in drag due to that surface. The sum of 

upper and lower surfaces results in total drag on airfoil. 

The greatest effect on aerodynamic comes from boundary layer separation than that from 

boundary layer thickness. Thus when high separations exists on upper surface lift coefficient 

corrections are applied in which angle of attack is modified. The lift coefficient correction is 

computed based on the separated distance      travelled by air on the surface which is used to 

find out the angle of attack correction.  

    
    

  
          ( 3.55) 

Where,     is the slope of the upper surface at the area close to trailing edge, and    is the 

angle of attack relative to chord line, as shown in Figure  3.12.   Lift coefficient is modified for 

the upper and lower surfaces using the Eq.( 3.56) . The lift correction on upper surface is 

always negative and always positive for the lower surface, so lift is reduced in both cases.  

            ( 3.56) 

The moment coefficient is also corrected in similar manner  using the relation 

     
 

 
      

    

 
 
   

  ( 3.57) 
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Figure  3.12 Lift and moment corrections due to boundary layer separation 

 

3.9 Comparison of turbulent closure relations  

The calculation of turbulent boundary layer using two Von Karman momentum and energy 

equations, with five unknowns, namely                           additional closure relations are 

required. For turbulent boundary layer, Drela has developed a shape factor relations  [31]. One 

important parameter is the dissipation coefficient   , which depends on the distribution of 

Reynolds stresses in the boundary layer. The Reynolds stresses in turn depend on the 

upstream conditions. In order to take into account these effects Drela used Greens lag 

equation to calculate the maximum shear stress coefficient.       from which the dissipation 

coefficient    is computed. An additional differential equation is thus, added to the two Von 

Karman integral boundary layer equations. This equation has the form: 

 

     

      

  
                             

 

   
 
  

 
  

     

      
 
 

    
 

  

   

  
  

( 3.58) 

It is worth to note that these models are modified from time to time and there exists different 

forms of the equations and coefficients. For example the above equation only the first term is 

used by Dini  [35] with a coefficient of 4.2 instead of 5.6.  

In the rest of this section a comparison is shown between Drela as presented by Dini , 

modified Drela as presented by Lutz and Wagner  [38], and finally Lutz & Wagner model. All 

these models are derived for incompressible turbulent boundary layer flows. Eppler’s model is 

independent of       and presented here for reference. It can be seen that at high local 

Reynolds number of 5000, Figure  3.13 ,the three models match and produce same results. As 

the local Reynolds number based on momentum thickness is decreased to about 400 – 275 the 
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Drela model separates from other models and still produce same results, as shown of Figure 

 3.14 and Figure  3.15. Further decrease of      to about 200 - 100 Drela models produce 

different results and even deviate from the known limit, as seen on Figure  3.16 and Figure 

 3.17 and supported by Lutz and Wagner work , Figure  3.18. 

As a conclusion the above presented Drela models should not be used in low      range 

below about 400. Lutz and Wagner seem to produce acceptable results at this range of local 

Reynolds number. 

3.9.1 Eppler turbulent model: 

The relations between the     and    and,    and    are given by Eppler, These relations does 

not depend on      . 
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3.9.2 Drela Turbulent closure  

Following Dini because of completeness of expressions and report,  

 

     

      

  
                         

( 3.62) 

The maximum shear stress is for equilibrium state is obtained using  

            
        

       
  
     

   
 
 

 
( 3.63) 

The value of      is given by the equation 

             
    

     
       

( 3.64) 

The closure relation  

                
( 3.65) 

Where  
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Where 
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3.9.3 Modified Drela model used by LUTZ and Wagner  [38] 

             
 

    
        

   

     
 

             

   
      for          ( 3.78) 

Where 

                   ( 3.79) 

 

3.9.4 Lutz and Wagner model 

This model is published in  [38] , and they claimed that it produces good results compared 

with Drela model at low local Reynolds number, such that     is always greater than 1. 
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Figure  3.13 Comparisons of different shape factor relations for incompressible turbulent boundary 
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Figure  3.14 Comparisons of different shape factor relations for incompressible turbulent boundary 

layer at          

 

 

 

Figure  3.15 Comparisons of different shape factor relations for incompressible turbulent boundary 
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Figure  3.16 Comparisons of different shape factor relations for incompressible turbulent boundary 

layer at          

 

 

Figure  3.17 Comparisons of different shape factor relations for incompressible turbulent boundary 

layer at          
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Figure  3.18 Comparisons of different shape factor relations for incompressible turbulent boundary 

layer, from reference  [38] 
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3.10 Verification of boundary layer calculations 

3.10.1 Comparison with Eppler code 

Boundary layer calculations are verified by comparison with Eppler code results as for Eppler 

airfoil E1098 which shown in Figure  3.19. The velocity distribution shown in this figure is 

that obtained from Eppler code for the propose of boundary layer computations, such that any 

differences in velocity calculation methods between current calculations and Eppler's 

calculations will be avoided. 

 

Figure  3.19  Eppler airfoil E1098 and velocity distribution at Re 1E06  and     

 

Boundary layer development is compared in terms of main parameters which is the shape 

factor      and the boundary layer momentum thickness    as function of surface distance for 

both upper and lower surfaces as shown in Figure  3.22 through Figure  3.25. They 

comparisons show identical shape and trend of variation of the parameters on both upper and 
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illustrated for three angle of attack together with transition point location on upper surface on 

the following table. The results are identical for this airfoil at these conditions. The transition 

point location values seem to be overestimated, the reason may be related to the very fine 

integration step used in Eppler code close to separation point. Figure  3.26 through Figure  3.28 

show other important boundary layer parameters calculated on lower and upper surface for 

reference. 

Table  3.1 Comparisons of total drag and transition point location on upper surface at Re=1e06 

 

Figure  3.20 Comparison of drag coefficient for E1098 at        between current calculation and 

Eppler code. 
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Figure  3.21 Comparison of location of upper surface transition point for E1098 at        between 

current calculation and Eppler code. 

 

STR = for Eppler E1098 airfoil at Re1M and zero angle of attack used in verification 

 
 
 

 
 

          
           

            
          

 

 
 
 
 
 

                                                                                                  
                                                                                                          
                                                                         
                                                                                                       

                                                                             
 
 
 
 

 

      

 

 

Figure  3.22     comparisons over E1098 airfoil upper surface at Re 1E06 ,                                                                                                                                                                                                                            
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Figure  3.23      comparisons over E1098 airfoil lower surface at Re 1E06 ,     

 

 

 

Figure  3.24     comparisons over E1098 airfoil upper surface at Re 1E06 ,     
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Figure  3.25     comparisons over E1098 airfoil lower surface at Re=1E06 ,     

 

 

 

Figure  3.26  shape factor     development over E1098 airfoil surfaces as calculated 
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Figure  3.27  Reynolds number based on    over the airfoil surface 

 

 

Figure  3.28  Reynolds number based on    over the airfoil surface 
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3.10.2 Comparisons with XFOIL code 

It is known that Eppler code does not take the additional drag due to the separation bubble 

into account. Instead it creates a bubble warning . And the user should that the drag values are 

under estimated. Since laminar separation phenomenon is not taken care of ,yet,  by the code 

it is interesting to see the comparison of boundary layer parameters with XFOIL code which 

uses different laminar and turbulent closure relations and do account for separation bubble 

affects. The boundary layer parameters comparisons are performed for NACA 4412 at 

Reynolds number of 1E06 and angle of attack of 2 degrees shown in Figure  3.29. The shape 

factor     is compared to XFOIL in Figure  3.30. It is interesting to see that the values are in 

close agreement up to the laminar separation point, after which values predicted by XFOIL 

code grow to approximately 4 (inside the bubble) while values from current computations 

predict a sharp decrease in     values. The reason being that for XFOIL predictions 

    increases up to the point of transition which is some distance backward of the laminar 

separation point while  current computations assume transition just at laminar separation 

point. After a chord distance of 0.6 both curves agree and have similar trend and values, 

accept at trailing edge. This is expected since after this distance the boundary layer has 

reattached and is in equilibrium state thus both turbulent closure relations give similar results. 

The above differences in the key solution parameter     has manifested in the boundary layer 

momentum thickness    and the skin friction coefficient    as shown in Figure  3.31 and 

Figure  3.32 respectively. Next chapter deals with laminar separation bubble modeling. 

 

Figure  3.29  NACA 4412 airfoil shape and velocity distribution using current calculation 
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Figure  3.30  Comparisons of shape factor    , 

 

 

Figure  3.31  Comparisons of boundary layer thickness    
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Figure  3.32  Comparisons of skin friction coefficient on upper surface    
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CHAPTER 4 

4 Laminar Separation Bubble modeling 

A laminar separation bubble appears on airfoil surfaces when an attached laminar boundary 

layer is subjected to an adverse pressure gradient of specific magnitude that causes the flow to 

separate before transition occur. The separated laminar flow soon reattaches after being 

transformed to turbulent in a region away from the airfoil surface. This phenomenon is more 

important as Reynolds number is decreased, as noted by Shyy  [55]. It is considered a 

challenge to low Reynolds number airfoil aerodynamics predictions.  Laminar separation 

bubble is first noted by Jones (1933)  [39] when he studied airfoil stall process. Since then, 

extensive experimental and theoretical investigations of the laminar separation bubble 

structures are performed. Leading edge bubble were first studied because it was believed to 

cause sudden airfoil stall at low speeds. Owen  [41], Crabtree  [46], Gaster  [49] [50], Horton 

 [52] [53] are among the first who contributed to laminar separation bubble research.  

Mc Cullough and Gault  [54] related the stall type with boundary layer features. According to 

their analysis, there are three types of stall that depend on boundary layer characteristics. 

Trailing edge stall occurs when turbulent boundary layer separation point leaves the trailing 

edge and moves forward. Whereas, in leading edge stall laminar boundary layer separates 

near leading edge without subsequent reattachment. The third type of stall is called thin airfoil 

stall when the separated laminar boundary layer reattaches (as turbulent boundary layer) and 

the turbulent reattachment point moves toward the trailing edge as the angle of attack is 

increased causing decreased lift which limits aircraft operations at low speeds  [53]. 

Recently, remotely piloted vehicles (UAVs), Micro Air Vehicles (MAVs) and wind turbine 

applications mostly operate at Reynolds number range below 1 million, as argued by Muller 

 [51], Figure  4.1. At this Reynolds number range laminar separation bubble may appear on 

airfoil near mid chord, causing a significant decrease in lift and increase in drag. Due to this 

reason general aviation airfoils does not perform well for these applications, and low 

Reynolds number effects, such as, bubble formation, its structure ,separation, transition and 

reattachment conditions has to be studied.  

Classically laminar separation bubbles are classified as short and long bubbles, see the review 

by Tani  [40]. Bubbles are alternatively classified depending on their effect on inviscid 

pressure distribution rather than on its length. Laminar separation bubbles may show local 
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pressure distribution change (Weak bubbles) or it may significantly alter the pressure 

distribution (strong bubble).  

  

It is the estimation of increased drag and the investigation of type of airfoil stall that motivate 

most of recent laminar separation bubbles studies. These methods vary from issuing a 

warning so that the designer may suggests airfoil shape modifications to the evaluation of 

global bubble effects on pressure distribution.  

Horton was the first who presented laminar separation bubble structure as can be seen in 

Figure  4.2. The flow at low Reynolds number usually starts laminar and thus is more likely to 

separate. Thus a mild pressure gradient will cause laminar boundary layer separation just after 

maximum velocity point. The separation never happen in the favorable pressure gradient part, 

it always happens in adverse pressure gradient region. The boundary layer moves away from 

the wall as a result of separation creating a region of approximately stagnant air followed by 

reversed flow region.  

 

Figure  4.1 Chord Reynolds number Vs. flight speed for different natural and  manmade objects 
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Figure  4.2 A schematic shape of short laminar separation bubble. [52] 

 The flow undergoes a transition to turbulent at a point above this region in the shear layer. 

The turbulent flow as known with higher mixing and more resistance to separation may 

reattach to the surface after some distance along the surface from the transition point. If the 

flow reattaches again a laminar separation bubble is formed, but if the turbulent flow fails to 

reattach to the surface the turbulent boundary layer continue separated (sometimes this it is 

understood as a long bubble which extends into the wake). Laminar separation bubble length 

decrease with an increase of angle of attack up to a point when it suddenly increases. This 

phenomenon is called bubble bursting and is explained as a failure of turbulent boundary 

layer to reattach again to the surface. Laminar separation bubble bursting causes high and 

sudden drop in lift and an increase in drag. A typical pressure distribution is shown in Figure 

 4.3. 

Gaster has related this phenomenon to the boundary layer conditions at separation. He 

developed an empirical relation between      and Gaster parameter P given by Eqn. ( 4.1), 

which expresses the average velocity gradient over the length of the bubble. He found from 

experimental measurements analysis that at bursting P is a function of       at separation. 

   
   

 

 
 
     

 
 ( 4.1) 

Where    and    are the velocities at separation and reattachment points respectively. L is the 

bubble length defined as the surface distance from separation point to reattachment.   
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Figure  4.3 Effect of long and short bubble at high Reynolds number [51] 

While, short bubble affects mostly the stall behavior of airfoil long bubble has an un-

preferred effect on the entire polar. 

 

Numerical methods are also used by many authors such as Cebece  [42], Alam & Sandham 

 [43], Jones  [44], Cadieux [45] to investigate numerically bubble formation and effects. They 

predicted bubble structure in two dimensional flow in order to simulate experiments. In some 

cases three dimensional studies are performed as flow is really three dimensional on wing 

sections. Alam, used Direct Numerical Simulations (DNS) to study short laminar separation 

bubbles  [46]. Crivellini has. Studied laminar separation bubble on low Reynolds number 

operating airfoils using RANS modeling by means of an high-accuracy solver and 

experimental verification  [47].  

Although, numerical methods provide large quantity of detailed information about the flow, it 

is not used as routine methods, as it requires more effort in domain size selections and grid 

sensitivity analysis, in addition to the choice of turbulence models. Bubble forcing method 

also has an effect on obtained results. Due to these reasons it is hard to be used for 

optimization purposes especially if many shapes is to be analyzed. It is more suitable if a 

given shape is to be analyzed such that experimental measurements are more focused and 

specific. In the last decades successful airfoil designs for different applications were possible 

using inviscid-viscous interaction methods followed by experimental measurements. 

Airfoil design, analysis and optimization will require the development of laminar separation 

bubble model that is faster than finite differences or N-S equation solvers.  Dini used an 
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inviscid–viscous interaction model to predict effects of laminar separation on airfoil drag at 

low Reynolds numbers.  The method is based on the hypothesis that laminar separation 

bubble can be modeled using local flow parameters. Boundary layer development a head of 

the bubble is performed to predict both separation conditions and forward disturbances 

information needed to predict transition. This method shows very good accuracy regarding the 

prediction of the modified inviscid distribution and the increase in drag in the range of 

Reynolds number as low as 100,000  [35]. This range represents most interesting operational 

range of UAV’s and wind turbines, as argued by Muller’s in Figure  4.1. 

Drela and Giles used interactive methods that make use of integral boundary layer 

formulation these methods provide efficient solution procedures, with accuracy contained 

within boundary layer assumptions applicability. Eppler also uses this formulation to issue a 

warning of expected bubble effect on airfoils. Eppler’s method is used successfully to design 

airfoils for many applications in the past for Reynolds number 500,000 and higher. For lower 

Reynolds numbers, however, it is difficult to use this criteria to eliminate bubble by 

modifying the shape of airfoil since laminar separation bubble is always present at Reynolds 

number lower than 500,000  [51]. Therefore, an improvement in LSB prediction will result in 

better estimation of aerodynamic characteristics at this range. 

 

4.1 Reynolds number and angle of attack variation  

At higher Reynolds numbers natural flow transition from laminar to turbulent inside the 

boundary layer happens very quickly in the favorable pressure region, where no laminar 

separation risk is expected.  The turbulent boundary layer is more resistant to adverse pressure 

gradients and usually flow may separate close to the trailing edge (Turbulent separation), as 

seen in Figure  4.4. As the angle of attack is increased this separation point moves forward and 

as a result airfoil lift decreases. The resulting lift curve has smooth shape indicating smooth 

airfoil stall.  
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Figure  4.4 High Reynolds number flow over a large wing 

At lower Reynolds numbers laminar boundary layer continue inside the region of adverse 

pressure gradient, without transition. At some point laminar separation may occur and the 

boundary layer moves away from the airfoil surface, see Figure  4.5 for which angle of attack 

is small and the flow transition occurs far from the wall. Turbulent reattachment occur after 

that and turbulent flow continue to the trailing edge. Figure  4.6, shows a case when higher 

angle of attack is encountered where bubble is shorter and closer to the leading edge. Figure 

 4.7 shows a case when the bubble bursts and airfoil stalls. Airfoil characteristics are affected 

by stall type and bubble length. Figure  4.3 shows effect of short and long bubble on drag polar 

and lift curve. While, short bubble affects mostly the stall behavior of airfoil long bubble has 

an un-preferred effect on the entire polar. It is thus avoided in the design process. 

 

 

Figure  4.5 Low Reynolds number flow at low angle of attack 

Laminar separation occur during adverse pressure gradient, followed by transition and 

subsequent reattachment resulting in additional drag. 
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Figure  4.6 Low Reynolds number flow over airfoil at higher angle of attack, a case when higher angle 

of attack is encountered where bubble is shorter and closer to the leading edge 

 

 

Figure  4.7 Low Reynolds number flow at stall, when the bubble bursts, airfoil stalls and airfoil 

characteristics are affected by stall type and bubble length. 

 

4.2 Laminar separation bubble model 

The model adopted in this work is developed by Dini  [35]and  [36], in which a weakly 

interacting laminar separation bubble in two dimensional incompressible flow over airfoils is 

modeled. The main aim of the model is to compute the increased airfoil drag that result from 

bubble formation. 

A weakly interacting bubble is characterized by dominant local effect on pressure distribution. 

The model focus on the calculation of the shear layer through different bubble parts as 

illustrated in the following sections. Laminar separation bubble starts when a laminar flow 

separates, at a point  , causing the boundary layer to move away from the airfoil surface, see 

Figure  4.8. The point of laminar separation can be predicted by the solution of integral 

boundary layer method described in chapter (2). The shear layer grows until transition from 

laminar to turbulent occurs at point T. The region between points S and T is characterized by 

presence of velocity plateau distribution shown on Figure  4.8. The location of transition is to 

be calculated since it determines the bubble length and thus bubble drag. The surface distance 

between the point of separation and the point of transition is denoted by   . After transition 

occurs at point   the flow becomes turbulent and the pressure recovers leading to 
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reattachment at point   , with length   . In many cases, the pressure recovery region is 

observed to continue downstream of reattachment point, and the velocity distribution 

undershoots the inviscid velocity distribution curve and merges after some distance with 

inviscid curve at point  , shown on Figure  4.8. 

Therefore, the bubble is divided into three regions: 

 Laminar region that starts from point of laminar separation and ends at point of transition. 

 Turbulent pressure recovery region, form the point of transition to reattachment. 

 Undershoot region where the smooth merge of the velocity distribution with inviscid 

distribution happen. 

The main goal is to estimate the drag contribution of the separation bubble. This goal is 

established through the correct calculation of the boundary layer momentum thickness 

   across the above three bubble regions. 

 

 

Figure  4.8  schematic of bubble and its effects on pressure distribution [dini] 
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4.2.1 Laminar part of the bubble  [36] 

The solution of integral boundary layer equations described in chapter (2) is continued until 

laminar separation occurs. Laminar separation is indicated when the shape parameter     

decreases to the value 1.51509. Starting at this point, the laminar velocity plateau function is 

computed based on local boundary layer parameters     and     as follows:  

The average velocity gradient over the bubble area is first estimated form the velocity 

distribution.  It is defined as the change in velocity   
 

  
  divided by the difference in chord 

  
 

 
  between the point of laminar separation to the point of reattachment. Since, the point of 

reattachment is not known at the beginning of the calculation iterative procedure is used to fix 

this value. 

 Reynolds number based on momentum thickness at separation     
is computed as 

 
    

  
  

  
 
    

 
 

( 4.2) 

 

Gaster parameter P is computed depending on the local boundary layer parameters at the 

separation point     and     as 

     
   

 
 
 

 
  

 
  

 

  
 
  

 ( 4.3) 

 

Where R is chord based Reynolds number, U is inviscid velocity at separation point location 

S, and    is free stream velocity.  

 

The pressure recovery    calculated using experimentally fitted data as shown in Figure  4.9. 

and is given by the following equation 

                                                        
                                                                               

  
( 4.4) 

 

The velocity plateau function is computed starting from separation point until transition is 

triggered at point T, and is given by the following equation  

 
 

  
            

 

  

  
 

  
          

( 4.5) 
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Where   
  is the slope of velocity profile at separation point, and subscript s indicate condition 

at separation. The variable S is the surface distance along the airfoil upper or lower side. 

 

Figure  4.9 Pressure recovery in the laminar part of the bubble as function of Gaster's pressure 

gradient parameter 

  

 The boundary layer closure correlations adopted for the laminar part of the bubble are given 

by 

     
           

    
   

           

    
 
 

      

 
 

 ( 4.6) 

 

    

  

 
 

 
 
 

 
              

         
 

     
                    

              
   

     
 
 

                    

  
( 4.7) 

 

    

  

   
                    

( 4.8) 

The integral boundary layer equations (Chapter 2) are solved in direct mode using these 

correlations, derived by the above velocity plateau function. 

 

The separation angle γ is defined in Figure  4.10, as the tangent of the separation stream line 

that makes with the surface. It is calculated from the empirical relationship proposed 

Wortmann (1974)  [56] as: 



Low Reynolds Number Airfoils 

82 

       
   

    

 
( 4.9) 

 

 

Figure  4.10 Bubble  geometry and scaling parameters 

 

4.2.2 Transition 

Prediction of transition location inside the bubble has important role in determining the 

bubble drag. Eppler criteria is very useful in predicting transition at high Reynolds numbers 

for which transition occurs usually in favorable pressure gradient region. When bubble 

presents in the flow, however, more accurate criteria is necessary in which upstream 

disturbance history is taken into account and transition inside the shear layer can be predicted. 

The transition prediction method adopted here is    method. 

It is a semi-empirical transition prediction approach. Using this method one can distinguish 

between leading edge and med-chord bubbles and also model the effect of pressure 

distribution variations upstream of the bubble location. 

The logarithm of the ratio of disturbance amplitude at station   to its amplitude at natural 

stability    is defined as factor n(s), where s is the chord station.  In this manner, transition is 

assumed to occur if the ratio   reaches a predefined critical value    . This value is observed 

experimentally to be in the range from 9 at low turbulence wind tunnels up 14 at some flight 

test. It is also Reynolds number dependent. An approximate    method developed by Drela 

[1986] is used in this work. The amplification factor n(s) derived by Drela is given by  

        
  

    
      

 

  

        

 

      

     
    

( 4.10) 

 

Where: 
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( 4.11) 

 

         
              

   
  

( 4.12) 

 

        
              

             
 
 

 
 

( 4.13) 

 

and    is the location at which            which is defined with the following 

function  

 

                

   
     

     
             

  

     
       

     

     
       ( 4.14) 

  

During the boundary layer development the value of     ,     are available at each point  . 

Thus,      is calculated at each point   using Eq.( 4.14). The chord station at which     

      is taken as the lower integration limit    in Eqn.( 4.10). Therefore at this point the 

computation of value of the amplification factor      starts. Drela added this equation to the 

system of equations that are solved by finite difference in XFOIL code  [57]. When integral 

boundary layer approach is adopted, like in this work, the amplification factor      is 

computed by integrating this equation with the boundary layer integral equations. 

The integration continue until the value of      equals the predefined value           , at 

which transition from laminar to turbulent is assumed. And the code switches to calculation of 

turbulent part of the bubble. In wind tunnels it was reported that n=9 is an accurate 

approximation. 

The transition point corresponds to the highest point of the bubble   , and the surface length 

from the separation point to this point corresponds to the laminar part of the bubble   . The 

bubble height at transition is given by the empirical relation  

             
( 4.15) 

 

Where   is the separation angle defined by Eq.( 4.9) above. 
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4.2.3 Turbulent part of the bubble 

The turbulent shear layer spreading angle θ is modeled as 

                        
( 4.16) 

 

When transition location    is specified the turbulent length of the bubble     is thus 

calculated by  

     
  

    
 

( 4.17) 

 

Following this derivation, bubble geometry has the shape shown in Figure  4.10. The 

reattachment location is given by the summation of separation and    and    surface distances. 

In order to account for drag increment from the bubble the turbulent part of the bubble is 

solved. The solution is based on assumed shape factor     in the form given in the Figure 

 4.11, and formulated by the Eqns.( 4.18) to ( 4.24): 

              
 

  
  

( 4.18) 

 

Where  

      
           

                   
   

( 4.19) 
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( 4.24) 

 

 

Figure  4.11 normalized shape factor turbulent recovery function 

 

While    is calculated based on bubble height at transition, the value of    is obtained 

iteratively so that the solution merges with inviscid smoothly. The computations is repeated 

with different values of A2 until the error in the slope of the obtained velocity distribution and 

the inviscid solution is acceptably small, at the point where the two solutions cross each other. 

One deg. error was found to be satisfactory.  

It is known that the value of the shape factor     at separation equals 1.51509 is equivalent to 

       . The value     rises inside the laminar part of the bubble above the value of 4.0 up 

to the transition point when it has the maximum value where it starts to decrease to 4.0 again 

at reattachment point, as discussed by Drela  [58]. The behavior of     is just the opposite and 

normally presented in the boundary layer development chart after boundary layer calculation 

are performed. In fact, in laminar part of the bubble velocity is almost constant, and thus the 

pressure, which means that the momentum thickness    is almost constant. The variation in 

the shape factors in the turbulent part of the bubble reflects a jump in pressure which in turn 

produces additional drag, known as bubble drag. If the above mentioned maximum value of 

    is kept low the resulting increase in drag will be also low. This can be accomplished by 

proper choice of velocity distribution in the area around the bubble location. This method is 

known as transition ramp normally used in inverse design. This approach can be also utilized 

if airfoil design by shape perturbation is selected. A target pressure distribution is pre-

specified and the airfoil shape is found by optimal optimization methods. If a bubble effect is 
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to be minimized the pressure distribution can be modified in the region ahead and over the 

bubble.  

The solution of turbulent part of the bubble is performed by integrating the boundary layer 

integral equation in inverse mode, derived by the above     shape factor model. The integral 

boundary layer equations in inverse mode are slightly different than standard Von Karman 

equations stated in chapter (2). In the turbulent part of the bubble shear stress is the most 

important quantity and that is why it is modeled by the shear stress lag equation, which 

models the dissipation coefficient in the turbulent boundary layer. The accurate modeling of 

dissipation coefficient is necessary to get correct prediction of pressure jump in the turbulent 

part of the bubble.  

Once the shape factor     is calculated, it is used to drive the solution of the system of 

equations Eqn.( 4.25) to Eqn.( 4.29)  for the variables U,    and   . Specifically, the abrupt 

increase in the value of    is of great concern because it will lead to the additional drag, and 

thus accounts for transitional bubble effect. It will be shown also in the pressure distribution 

which can be compared with measurement. 
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Where 
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  ,    , and    is given by 

                
( 4.30) 
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Where 
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The    coefficient is calculated at each point by fitting a parabola between the values at 

transition     , minimum        and at reattachment      . Where  

               
  

 
 ( 4.42) 
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4.2.4 Intersection with inviscid distribution  

The above procedure is valid for surface points up stream of the reattachment point. The 

calculation procedure continues from point of reattachment to the point where the obtained 

velocity U curve crosses the inviscid distribution. At crossing, the slopes are compared. If the 

difference in slope is greater than 1 deg another value of the factor    is used to repeat the 

calculations. When the slop difference condition is satisfied the bubble model is terminated. 

The integration of the integral boundary layer equations continue using Drela turbulent 

closure up to the trailing edge. 

If at reattachment the calculated velocity U is higher than the inviscid velocity the merge 

happens from above and    is not iterated as argued by Dini  [35].  

4.2.5 Attached turbulent boundary layer 

After the intersection with the inviscid profile is established, the integration of the integral 

boundary layer equations ( 4.43), ( 4.44), and ( 4.45) is continued in direct mode using the 

relations Eq.( 4.46) to ( 4.56) 
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The skin friction coefficient is obtained from the equation 
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Where 
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The turbulent separation is triggered if the following condition is meet 

           
   

   

 
( 4.57) 

The drag is then calculated by squire young formula as 

    
    

 
 
   

  
 

             

 ( 4.58) 

The computation procedure is best explained through a Figure  4.12 and flow chart Figure 

 4.13. 

 

Figure  4.12 schematics of possible flow on airfoil with and without bubble 
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Figure  4.13 Flow chart for laminar separation bubble model 
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4.3 Validation of Aerodynamic calculations 

Validation is performed by comparison with available experimental data from literature for 

incompressible flow at Reynolds number from 200,000 to 500,000 from NASA  [59], and 

results from Illinois university  [60], and  [61]. Results are also verified by comparison with 

XFOIL code. The inviscid solution obtained from conformal mapping is utilized by 

momentum and energy integral equations solver. The resulting drag polar shows good 

agreement with experimental data. The computation cost is very small compared to other 

methods. The exception is when the interaction between viscous and inviscid is not weak, 

particularly close to maximum lift. The location of turbulent separation point is used to 

correct the lift and moment coefficients, which is successfully used to design large number of 

airfoils in the past. In fact, maximum lift coefficient is over estimated in most of the tested 

cases.  

The validation process is performed for lift coefficient, drag coefficient, pressure distribution 

and boundary layer features for two airfoils at different angles of attack and Reynolds 

numbers. 

 

The Eppler E387 airfoil is selected for the comparison since it is widely used in the Reynolds 

number range 200,000 to 500,000 and experimental data are available from different wind 

tunnels. 

Figure  4.14 and Figure  4.15 show comparisons of calculated lift and drag coefficients 

compared to experimental measurement from  [61] at Reynolds number of 300,000. The 

comparison show excellent agreement with experimental measurement both in lift and drag 

curves. At this Reynolds number a laminar separation bubble is formed on the airfoil upper 

surface during angles of attack up to approximately 7 degrees, as shown in Figure  4.16. The 

bubble starts at about med chord and extends to 65% of the chord length. As the angle of 

attack is increased the bubble decreases in length and moves toward the airfoil leading edge. 

Figure  4.16 also shows a comparison of location of upper surface boundary layer features at 

Reynolds number 300,000 at different angles of attack. The figure shows location of laminar 

separation points, reattachment points and turbulent separation points. At low angles of attack 

current calculations, experimental measurement, and XFOIL results show similar trend for 

location of laminar separation and reattachment points. As the angle of attack increases above 

8 degrees theoretical calculations fail to predict the short leading edge bubble shown by 
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experimental measurement. The turbulent separation location is very close to the trailing edge 

at low angles of attack, as the angle of attack is increased it moves forward in the direction of 

the leading edge causing smooth curvature in lift curve and increased drag. Experimental 

measurement show a sudden jump in location of turbulent separation location after certain 

angle of attack, while current calculations and XFOIL results show smooth variations up to 

high angle of attack. 

 

Figure  4.14    versus   for for E387 airfoil at Re 300000, Exp from [61]. 

 

Figure  4.15    versus    for for E387 airfoil at Re 300000, Exp from [61]. 
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Figure  4.16 Comparisons of upper surface boundary layer features for E387 airfoil at Re 300,000 

 

Pressure distribution 

The pressure distribution calculated by the above method is compared to experimental 

measurement at angle of attack of 2 degrees and Reynolds number of 300,000, as shown in 

 [59]. The laminar separation bubble calculations follow closely the experimental 

measurements. The bubble pressure variations is well predicted, the upper surface bubble is 

clearly shown, and the lower surface has nearly constant pressure over most of its length. 

Reference back to Figure  4.16 the pressure distribution show a large bubble that start at 

approximately 0.5c up to .65c. Details of upper surface boundary layer parameters are shown 

in Figure  4.19. 
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Figure  4.17 comparison of experimental and calculated pressure distribution 

for E387 airfoil at Re 300000 and angle of attack  2 deg. 
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angle of attack  2 deg. 
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Boundary layer parameters 

Figure  4.19 show upper surface boundary layer parameters as computed by the current code 

compared with that calculated by XFOIL. It shows laminar separation point at corresponding 

to H32 = 1.51 or H12 =4.The boundary layer momentum thickness    variations show sudden 

increase inside turbulent part of the bubble as expected. The values of dissipation coefficient 

   and the friction coefficient    are also shown.  

Figure  4.20 show upper surface boundary layer development as obtained for the above case. 

the points of laminar separation , transition and  reattachment are indicated on the chart. 

Comparisons with XFOIL code is also presented in Figure  4.21 and Figure  4.22 .     shape 

factor is XFOIL main shape factor. Comparisons show similar trend and similar maximum 

value. The momentum thickness    , which is the most important boundary layer parameter 

we looked for by this modeling to calculate drag , show good agreement with XFOIL. 

Comparisons of friction coefficient   , dissipation coefficient    , velocity distribution 
 

  
 and 

Reynolds number based on momentum thickness      show generally good agreement with 

XFOIL calculation. Lower surface boundary layer parameters are shown in Figure  4.23 to 

Figure  4.26, in which a laminar flow is preserved up to close vicinity to the trailing edge. 

Comparisons with XFOIL very close agreement. Boundary layer development chart shown on 

Figure  4.26 indicate a laminar separation very close to the trailing edge. 
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Figure  4.19 Upper surface boundary layer parameters at Re 300000 and   =2 deg. (continued) 
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Figure  4.20 Upper surface boundary layer development chart for E387 at Re 300000 and 

   2 deg. 

 

 

 

Figure  4.21 Comparison of upper surface boundary layer shape factor     for E387 at Re 

300000 and    2 deg. 
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Figure  4.22 Comparison of upper surface boundary layer momentum thickness for E387 at Re 

300000 and    2 deg. 

 

 

 

Figure  4.23 Lower surface velocity distribution for E387 at Re 300000 and  =2 deg. 
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Figure  4.24 Variation of momentum thickness for the lower surface of E387 at Re 300000 and    2 

deg. 
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Figure  4.25 Lower surface boundary layer development parameters at Re 300000 and   =2 deg. 

(continued) 
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Figure  4.26 Lower surface boundary layer development chart for E387 at Re 300000 and    2 deg. 
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4.3.1 Variation of aerodynamic coefficients with Reynolds number 

Aerodynamic lift and drag coefficients of two airfoils at three Reynolds numbers are plotted 

in the following figures from Figure  4.27 to Figure  4.32. Comparisons show generally a good 

agreement with experimental data.  When large separations are present, however, the current 

calculations over estimate both lift and drag. Maximum lift coefficient is over estimated but 

the angle of attack of maximum lift is computed with fair accuracy.  

 

Figure  4.27 Comparisons between calculated and experimental data for E387 at Re=200,000. 

 

 

Figure  4.28 Comparisons between calculated and experimental data for E387 at Re=350,000. 
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Figure  4.29 Comparisons between calculated and experimental data for E387 at Re=500,000. 

 

 

Figure  4.30 Comparisons between calculated and experimental data for S8036 at Re=200,000 
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Figure  4.31 Comparisons between calculated and experimental data for S8036 at Re=350,000 

 

 

Figure  4.32 Comparisons between calculated and experimental data for S8036 at Re=500,000. 
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4.3.2 Variation of boundary layer features with Reynolds number 

Boundary layer flow features are the positions on the airfoil surface where important changes 

happen in the boundary layer flow on upper or lower surfaces, such as location of laminar 

separation point, transition point, reattachment point and turbulent separation point. When 

laminar separation bubble occurs transition is assumed inside the bubble. 

Current calculation results are compared with published experimental data for two selected 

airfoils. The first airfoil is Eppler low Reynolds number airfoil E387 which is used as 

benchmark for validating low Reynolds number aerodynamic computations. It is extensively 

tested in NASA Langley Low Turbulence Pressure Tunnel (LTPT, where drag polar, and 

pressure measurements at low Reynolds numbers are published  [59]. Recently, E387 airfoil is 

tested in the University of Illinois at Urbana-Champaign (UIUC) subsonic wind tunnel  [60], 

 [61], which is intended to validate and refine airfoil low Reynolds number computation 

methods. The second airfoil is Selig S8036 low Reynolds number airfoil designed for soft 

stall characteristics. Experimental measurement data for these two airfoils at flow Reynolds 

numbers are 200,000, 350,000 and 500,000 are used in the validation of current computations. 

These measurements include drag polar and location of upper surface boundary layer flow 

features.  

Comparisons of measured  [59] and calculated pressure distributions over E387 airfoil at 

Reynolds number of 300,000 and at angles of attack of 4, and 6 degrees are shown in Figure 

 4.33 and Figure  4.34. The location of the separation bubble is clearly observed on the upper 

surface. Calculated pressure distribution agrees with experimental data and XFOIL results. 

The bubble location is calculated with acceptable accuracy for optimization computations.

  

The general observation is that the bubble moves upstream as angle of attack increase, with 

length being shorter. Figure  4.18 shows comparisons of locations of upper surface features of 

the two airfoils at different angles of attack and Reynolds numbers of 200,000, 350,000, and 

500,000.The computed laminar separation, Reattachment, and turbulent separation locations 

on upper surface are compared to experimental measurements. Laminar separation and 

reattachment locations from XFOIL are also shown for E387 at Reynolds number 350,000.  

A laminar separation bubble extends on the upper surface starting approximately at mid 

chord. As angle of attack increases the bubble moves toward the leading edge, and its length 

decreases. When the bubble length close to leading edge is very short, it could be interpreted 
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as a transition without bubble. Current calculations follow the general trend of both 

experimental measurement and XFOIL predictions. As Reynolds number increases the 

laminar separation bubble tend to shorten in length, which is in agreement with the general 

fact that laminar separation bubble is more dominant in low Reynolds number range. The 

results of XFOIL and current calculations seem to under estimate the reattachment point 

location, this is also noted  [62]. For low angles of attack turbulent separation take place at or 

very close to the trailing edge. When angle of attack increases further turbulent separation 

moves forward causing high increase in drag and loss in lift.  

In all cases turbulent separation point assessed by current computations and XFOIL code at 

high angles of attack is more aft than the measured locations. This miss-predictions has the 

consequence of over estimating the angle of maximum lift, and thus the value of maximum 

lift coefficient. 

 

 
Figure  4.33 Pressure distribution for E387 at Re 300 000 and   4° 
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Figure  4.34 Pressure distribution for E387 at Re 300 000 and      
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Figure  4.35 Comparisons of locations of upper surface flow features for E387 and S8036 at Re 

200,000, 350,000, and 500,000. (Solid lines represent experimental data, dashed lines is XFOIL, and 

filled symbols are current calculations).   
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CHAPTER 5 

5 Airfoil Parametric Representation 

5.1 General Requirement 

Parameterization is defined as representing aerodynamic characteristics, such as shape or 

pressure distribution, in terms of few numerical parameters. These parameters are called 

design variables. Parameterization is often applied to aerodynamic geometric characteristics 

of airfoils, wings or even complete configuration. When the design variables are modified the 

aerodynamic performance is correspondingly changed. The optimization algorithm and the 

designer should look for the design variables that will improve aerodynamic, structure or 

flight performance. This process is called optimization. The aerodynamic analysis will lead to 

a selection of a set of design variables that satisfies predefined requirements. Each design 

variable can change within specified range. Design space is defined by the ranges of all 

design variables. For instance, airfoils can be described using NACA representation 

(discussed in the next section). Four digit NACA definition uses only 3 parameters to 

represent airfoils. The low number of parameters allows fast design and analysis but it may 

not cover all possible airfoil shapes. Other airfoil parameterization methods are in use that can 

cover more design space and produce improved performance. Conversely, a higher number of 

design parameters may lead to improvement in performance, but requires higher 

computational cost during the optimization process. Therefore, in many cases tradeoff studies 

between computational cost and number of required parameters is necessary. Computational 

cost is often measured by number of calls to analysis code. In this work the parameterization 

method that will capture a global design space with reduced number of design parameters is 

used. 

 

Airfoil parametric representation is considered recently by many authors for use in numerical 

optimization and design. One main reason is that aerodynamic analysis codes ask for many 

airfoil coordinate points (about 100 points or more). Using these coordinates as design 

variables results in non-smooth airfoils which is not aerodynamically acceptable and will also 

result in very long optimization time due to large number of design variables. By selecting 
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proper airfoil parametric representation method this problem can be solved. Klfan,  [63] stated 

a number of factors that are considered during the choice of parametric representation 

methods for aerodynamic design. Selection of optimization algorithm, computational cost 

required to reach optimum design, and if the optimum design is contained in the design space, 

and whether it can be found by search algorithms. 

Parametric airfoil representation methods work with parameterization of airfoil shape, which 

means that it represent airfoils with few parameters that control airfoil counters. NACA 4 

digit airfoil representations uses 3 parameters, PARSEC method uses 11 parameters to 

represent upper and lower airfoil surfaces, CST method on the other hand uses a number of 

coefficients in polynomial series which can produce rounded leading edge and sharp trailing 

edge shapes. The following section describes some airfoil parametric representation methods. 

5.2 NACA Airfoil Series 

Airfoils shape is defined in a variety of methods. NACA has its own methods of representing 

groups of airfoils, such as 4 digit 5 digit or 6 digit series. Reference  [65] provides details of 

NACA definitions. Although, these airfoils are successfully used in many applications, a need 

for airfoil shapes that perform better in for specific applications, such as blade design, 

propellers, or at low Reynolds number has derived the research toward other airfoil 

representation methods. 

NACA airfoils grouped in series such as 4-digit, 5-digit and 6-digit series. Their coordinates 

were derived from either geometrical methods using analytical equations that describe the 

camber distribution and the thickness distribution along the chord line, see Figure  5.1, or are 

derived using theoretical methods like 6-digit series.   

 

5.3 4-digit series airfoils 

It is the first series of airfoils designed using this approach. They have 4 digits; the first digit 

is denoted by (m) specifies the maximum camber in percent of airfoil chord. The second digit 

represents the position of maximum camber (p) in tenths of airfoil chord. The last two digits 

represent the maximum airfoil thickness (t) in percent of chord. Thus NACA2412 airfoil, for 

example, has 2% camber located at 40% of its chord from leading edge and 12% chord thick. 

This representation requires specification of theses 3 parameters to find out the airfoil 

coordinates for upper and lower airfoil surfaces. as in Figure  5.1. 
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Figure  5.1 NACA Airfoil geometrical parameters 

 

The procedure to find the airfoil coordinates is summarized by the following steps and sample 

calculations are shown in Figure  5.2 : 

a. Chord length is made non dimensional be dividing by chord, thus x varies from 0 at LE to 1 

at TE.  

b. Using the values of p and m, it is possible to compute mean chamber for each value of x 

using the following equations: 

   
 

                                      for x from 0 to p 
( 5.1) 

 

   
 

      
                  for x from p to  1 

( 5.2) 

where 

yc  is camber coordinates. 

p  - is first digit in NACA designation divided by 100. 

m - is the second digit value in NACA designation divided by 10. 

t-  is the last two digits divided by 100. 

c. Compute the thickness distribution around the mean chamber by substituting t into the 

following equation: 

    
 

   
                                                  

( 5.3) 

d. Calculate the upper ( xu , yu )and lower ( xL , yL )airfoil coordinates using: 
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Figure  5.2 NACA 4- digit airfoil representation parameters 
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5.4 PARSEC Method 

 It is a commonly used method. This method is originally developed by Sobieczky, 1998  [66] 

for used in subsonic and transonic airfoils. Its main idea is expressing the airfoil surface as an 

unknown linear combination of appropriate mathematical function, and selecting a number of 

important geometric characteristics of the airfoil as the design variables, in such a way that 

the airfoil shape can be determined from these variables by solving a linear system of 

equations. Eleven airfoil geometric characteristics are used to represent airfoil as illustrated in 

Table (1) and Figure  5.3. 

Table  5.1 Parsec method parameters 

rLE  Leading edge radius 

Xup X location of Upper crest  

Yup Y location of Upper crest  

Yxxup Upper surface curvature 

XLo X location of Lower crest  

YLo Y location of Lower crest  

YxxLo Lower surface curvature 

DYTE Trailing edge thickness 

YTE Trailing edge y location 

αTE Trailing edge direction 

βTE Trailing edge included angle 

 

 

Figure  5.3 PARSEC method for airfoil parameters 

The parsec equation is given by Eq.(1) 

          

  
 
 

 

   

 
( 5.4) 
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Where j takes a value of 1 for upper surface and 2 for the lower surface, the coefficients and 

are determined by using the above mentioned airfoil geometric characteristics. 

The above equation can be written for the upper and lower airfoil surfaces as follows 

           

  
 
 

 

   

 
( 5.5) 

           

  
 
 

 

   

 
( 5.6) 

A specific relations can be derived for the upper and lower surfaces as follows 

    

 
 
 
 
    

  
  

 
 

 
   
     

 
 
 
 

 
( 5.7) 

1- Leading edge radius 

For upper surface         
     

 
    

( 5.8) 

For lower surface                               
     

 
  ( 5.9) 

2- Trailing edge position      

For lower surface                               
 

 
      

( 5.10) 

For lower surface                                
 

 
      ( 5.11) 

 

3- Airfoil coordinates  

           

  
 
 

 

   

 
( 5.12) 

           

  
 
 

 

   

 
( 5.13) 

 

4-Trailing edge slope 

  

 
  

  
 

    
                   

 

 
         

 

 
       

  
 
 

 

   

 

 

( 5.14) 
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( 5.15) 

 

5- Slope at any maximum thickness 
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( 5.17) 

 

6- Curvature  

       
   

    
     

     
 

 
    

 

 
       

  
 
 

 

   

 
( 5.18) 

       
   

    
     

     
 

 
    

 

 
       

  
 
 

 

   

 
( 5.19) 

 

These equations can be written in matrix form as for the upper and lower surfaces separately. 

              
( 5.20) 

              
( 5.21) 

Where the matrices are given as 
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( 5.27) 

                                                        

The unknown coefficients an and bn are found by solving the above system of equations 

       
        and similarly        

      . The obtained coefficients are feed back to the 

original equations and the airfoil coordinates     and     are calculated. A sample 

calculation is shown on Figure  5.4, with PARSEC parameters given in Table  5.2 



Low Reynolds Number Airfoils 

117 

 

Figure  5.4 Parsec representation (dotted line ) of NACA 4412 airfoil (solid line)  

 

Table  5.2 Values of PARSEC parameters for NACA2412   

parameter Meaning Value 

    Leading edge radius 0.0119 

Xup X location of Upper crest 0.3391 

Yup Y location of Upper crest 0.0792 

Yxxup Upper surface curvature -0.6222 

XLo X location of Lower crest 0.2226 

YLo Y location of Lower crest -0.0424 

YxxLo Lower surface curvature 0.3815 

DYTE Trailing edge thickness 0.0025 

YTE Trailing edge y location 0 

αTE Trailing edge direction -5 deg 

βTE Trailing edge included angle 15.9752 deg 

 

5.5 Bezier Parameterization              

Bezier curves are special curves in which they are controlled by control points  [96]. They 

curve starts and ends at a control point but it is not necessary to pass through each 

intermediate control point. For n degree Bezier curve n+1 control points are required.  Figure 

 5.5 Two Bezier curves of order 5 representing upper surface of an airfoil. A Bezier curve is 

defined by Eq.( 5.28) for given control points Pi and Bernstein polynomials   
 .  
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( 5.28) 

Bezier curves are based on Bernstein polynomials Bj
n
 which is given as 

  
   

 

 
            

( 5.29) 

where i=0,1 ,2,3.  and   
 

 
  is a binomial coefficent given as 

 
 

 
  

  

        
 

( 5.30) 

If n=3 Bezier curve is to be written the following Bernstein polynomial of n+1 =4 terms is 

constructed as 

  
         

( 5.31) 
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( 5.34) 

 

 

 

Figure  5.5 Two Bezier curves of order 5 representing upper surface of an airfoil 
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Figure  5.5 shows two Bezier curve of order 5 which requires 6 control points. First curve 

(red) represents forward part of airfoil upper surface and second curve (blue) represents 

backward part of upper surface. Red circles are control points denoted by subscript b and f for 

forward and backward part respectively. Bezier curves has useful properties that makes it 

suitable for airfoil shape representation, these properties are 

a) A single Bezier curve is continuous, their derivatives can be calculated analytically 

because it is a polynomial. The curve is also bounded by straight lines connecting it's 

control points. 

b) Curves start and end with control point which makes the curve contained between 

the control points. 

c) Initial curve slope can be controlled by location of next point , for example 2nd 

control point located at same x distance from 1st point will generate a curve having 90 

degrees, as shown in Figure for forward part, note that the curve does not pass through 

the second point . 

d) Airfoil maximum thickness can be controlled by specifying coordinates of the last 

points in each part, (P5) which is also common for both part.  

e) First and second order continuity at maximum thickness is assured  by giving same 

y coordinate for points P3 and P4 of forward and backward parts. 

f) Finally, the trailing edge location and angle are controlled by backward part 1st and 

second points. 

Thus, in order to represent airfoil upper surface with 5 degree Bezier curve some 

constraints should be applied. Table  5.3 shows these constraints for upper surface, a 

similar constraints is applied to the lower surface. 
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Table  5.3 Five point Bezier curves constraints 

Point 

/Coordinates 
Constraints for Forward part Constraints for Backward part 

1 
x Fixed at axis origin x=0 Fixed at x=1 

y Fixed at axis origin y=0 Fixed at y=0 or specific value. 

2 

x Fixed at  x=0 Floats between the two neighboring points 

y Floats between the two neighboring 

points 

Floats between given max. and min. to 

give logical TE angles. 

2 

x Floats between the two neighboring 

points 
Floats between the two neighboring points 

y Floats between the two neighboring 

points 
Floats between the two neighboring points 

3 
x Floats between the two neighboring 

points 
Floats between the two neighboring points 

y Fixed to y = maximum thickness Fixed to y = maximum thickness 

4 
x Floats between the two neighboring 

points 
Floats between the two neighboring points 

y Fixed to y = maximum thickness Fixed to y = maximum thickness 

5 
x Fixed to the position of maximum 

thickness 

Fixed to the position of maximum 

thickness 

y Fixed to y = maximum thickness Fixed to y = maximum thickness 

 

 

Figure  5.6  NACA 2424 airfoil represented by Bezier curve using the above method 
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Figure  5.6 NACA 2424 represented by 4 Bezier curve, and NACA representation , They are 

very close and hardlly be distiguashable . (Red) circles represent control points. dotted lines is 

inclosing shape.Bezier curve parameters are shown on Table  5.4, with 11 parameters for each 

curve. 

Table  5.4 Bezier curve parameters used to generate NACA 2424 

point 0 1 2 3 4 5 6 7 8 9 10 

PU 0.0364      .0071     0.1035  0.1594     0.2978     0.4007     0.5363     0.8638     0.0597     0.96 0.0117 

PL -0.0052     0.0069  -0.0672    0.0669 0.2445     0.3290     0.5929      0.9638    -0.0005     0.960   -0.0111 

 

5.6 CST Method 

This method is developed my Brenda Kulfan in Boeing Commercial Airplanes, as illustrated 

in  [97],and  [98], and its characteristics has been thoroughly studied in many works as in  [99]. 

In CST method an airfoil geometry is expressed by the mathematical expression of Eq.( 5.35) 

                 
    

 

   

     
( 5.35) 

Where         
 

 
         

 

 
            

    

 
 

In this expression airfoil nose shape is governed by the term    , while the term       

controls the trailing edge angle and the last term      represents the trailing edge thickness. 

The term     
    

   shapes the rest of the airfoil surface. The equation can be rearranged to 

give the so called class function and denoted by       given by Eq.( 5.36). 

     
         

        
   with              

   
        and               

    

 
 

( 5.36) 

 

The shape function can be formulated by using Bernstein polynomial in which first term 

represent leading edge radius and last term represent trailing edge angle and thickness. The 

rest of the terms can not affect neither leading edge radius nor trailing edge properties, and 

thus called shaping terms. 

If Bernstein polynomial of order   is used then the shape function takes the form 

          
             with        

 
  

  

        
 

( 5.37) 

Using this shape function the airfoil upper and lower surfaces can be expressed as 
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( 5.38) 

Where      
    

 
 and      

    

 
  are upper and lower trailing edge thicknesses 

respectively.  

The coefficients Aup and ALO can be found for different airfoil shapes. This formulation 

methodology is suitable for systematic design optimization approach. Figure  5.7 shows 

construction of airfoil upper surface using various Bernstein polynomials shape function 

       along with corresponding airfoil terms (by using only one term with                

in the             equations ( 5.38)).  

The terms of the shape function always sum up to 1. The sum of airfoil terms results in airfoil 

surface coordinates. It is worth to note that the coefficients Aup and ALO are set to 1 in the 

shown example, which means that they are not used. When these coefficients are assigned to 

some value they will scale up or down the corresponding term, and thus different airfoil shape 

is formed with any perturbed coefficient. 

Figure  5.7 through Figure  5.10 show airfoil upper surface constructed with different degree of 

polynomials. The values of the polynomials coefficients will differ with n and will change 

with the scaling coefficients A's.  
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Figure  5.7 CST representation of airfoil upper surface using 3 terms (n=2). Upper part: Shows 3 terms 

of Bernstein polynomial of equation ( 5.37) (dotted curve), and its summation is equal to 1 . Lower 

part: Shows airfoil upper surface shape (solid) and terms of equations ( 5.38) (dotted), The summation 

of these three curves at each point results in a point on airfoil surface. 
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Figure  5.8 CST representation of airfoil upper surface using 4 terms (n=3). Upper part: Shows 

4 terms of Bernstein polynomial of equation ( 5.37) (dotted curve), and its summation is equal 

to 1 . Lower part: Shows airfoil upper surface shape (solid) and terms of equations ( 5.38) 

(dotted), The summation of these four curves at each point results in a point on airfoil surface. 
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Figure  5.9 CST representation of airfoil upper surface using 5 terms (n=4) 

Upper part: Shows 5 terms of Bernstein polynomial (dotted) equation ( 5.37), and the 

summation of these terms equal 1 is one.  

Lower part: Shows airfoil upper surface shape (solid) and the five terms of equations ( 5.38) 

(dotted). 
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Figure  5.10 Construction of an airfoil upper surface shape using n=5 

Upper part: Shows 5 terms of Bernstein polynomial (dotted) equation ( 5.37), and the 

summation is one.  

Lower part: Shows airfoil upper surface shape (solid) and the six terms of equations ( 5.38) 

(dotted) 
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It is shown in  [63] that a relatively low order Bernstein polynomial, (such as n=6 to n=9), 

matches the airfoils geometries, slopes and second derivatives. It is also shown that pressure 

distributions and aerodynamic forces are also matched. The results also indicated that lower 

order Bernstein Polynomials, corresponding to fewer design variables, (perhaps n=4 to n=6), 

should be adequate for developing optimum designs.  

 

5.7 Matching of NACA 4412 Airfoil shape 

An example of CST method is shown in Figure  5.11 in which NACA 2412 is represented by 2 

coefficients for upper and other 2 coefficients for lower surfaces. The difference in airfoil 

coordinates is shown in the lower part of the same figure. The maximum difference is about 

2.1E-3 which is fairly satisfactory for optimization purposes given that it will be 

computationally inexpensive. With 4 coefficients CST fits NACA2412 with high accuracy 

Figure  5.13 maximum differences in order of 10
-4

. Figure  5.12.and Figure  5.14 show the 

fitness value versus the number of generations. About 50 generations are required to reach the 

best close to the best accuracy for 2 coefficients as compared to about 200 for the 4 

coefficients case. The mean value is improved faster as a property of genetic search 

algorithms. The value of best generation is shown in the lower part of each figure, where the 

upper surface coefficients are positive while the lower are negative. 
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Figure  5.11 NACA 2412 represented with two coefficients for each surface and difference y in 

coordinates. Aup= [ 0.1995    0.2103 ]   and  ALO=[ -0.1350   -0.0584 ]   
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Figure  5.12 Convergence history and coefficients with best values when two CST coefficients for each 

surface are used. 
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Figure  5.13  NACA 2412 represented with four coefficients for each surface and difference in y 

coordinates.    = [0.1899    0.2254   0.1847    0.2193] and      = [-0.1518   -0.0788   -0.0990  -

0.0677].  
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Figure  5.14 Convergence history and coefficients with best values when four CST coefficients for 

each surface. 
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5.8 Matching of Target Pressure Distribution 

In order to check the capability of CST method to match a given pressure distribution, a study 

is performed in which a pressure distribution around known NACA 2412 is calculated at 

angle of attack of 2 degrees and Reynolds number of 300,000. This pressure distribution is 

used as input to the optimization code as target pressure distribution Cpt. Genetic Search 

Algorithms GA optimization is used to find the CST aerodynamic shape that produces this 

pressure distribution.  

The optimization procedure should converge to the same starting airfoil, or to a shape which 

is very close to it. The objective function for this case is based on finding the difference 

between calculated pressure distribution and target pressure distribution. The difference is 

calculated as the mean of difference squared between two functions as given by Eqn.( 5.39). 

      
    

    
    

   

 
 ( 5.39) 

 

 Where CP
T
   is target pressure distribution at each airfoil surface point from          

and   
  is the pressure distribution calculated at k

th
 iteration step. 

This error measure is used as objective function during the optimization process. It should 

rapidly diminish as the optimization method converges to the target pressure distribution 

shape. It is worth to note that the number of iterations needed to converge depends on the 

starting point. Figure  5.15 shows NACA 2412 airfoil and, Figure  5.16 shows target pressure 

distribution. Two CST and four CST coefficients are discussed in the following sections. 

 

 

Figure  5.15 NACA 2412 used as test airfoil 
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Figure  5.16 Target pressure distribution 

5.8.1 CST with n=2 parameters 

The accuracy of CST method can be checked for different number of parameters. N=2 uses 

two coefficients for each airfoil side, and thus 4 optimization parameters are used by genetic 

search algorithm. Results of optimization are shown in Figure  5.18 and Figure  5.19.  

For this case, the CST takes about 35 generations to converge to the target pressure 

distribution with a value of fitness function of 3.4x10
-4

. The parameters for n=2 are  

                                                        The pressure distribution is 

matched exactly from engineering point of view. As can be seen in Figure  5.19, and the found 

airfoil shape is very close to the target NACA2412 airfoil, as seen in Figure  5.17. 

 

Figure  5.17 NACA 2412 airfoil and obtained CST shape when number of CST parameters N=2 
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Figure  5.18 Fitness value versus number of generations for target pressure distribution at α=2 degrees 

and number of CST coefficients N=2. 
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Figure  5.19 Comparison of target and CST pressure distributions when number of CST parameters 

N=2  

 

5.8.2 CST with n=4 parameters 
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Figure  5.20 Comparison of target and CST pressure distributions when number of CST parameters 

N=4 
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Figure  5.21 Fitness value versus number of generations for target pressure distribution at α=2 degrees 

and number of CST coefficients N=4 
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CHAPTER 6 

6 Aerodynamic design and shape Optimization 

Aerodynamic design is historically classified into two classes of problems. These 

classification are the direct and inverse airfoil design problems. Direct airfoil design problem 

means finding performance parameters for given airfoil at given flow conditions, while the 

inverse design problem deals with finding airfoil shape that has pre-specified performance 

(most often  velocity or pressure distributions), this is illustrated in Figure  6.1. 

 Optimization can be applied to both forms of the design problems. If the problem is set as 

direct optimization, the airfoil shape is changed until the required fitness function is satisfied. 

For the inverse optimization problem the airfoil target performance is pre-specified and the 

optimization methods searches for the corresponding airfoil shape. Although, an initial design 

point (shape) is required, the design should converge to the optimum shape regardless of the 

initial shape. This is usually checked by repeating the optimization process with different 

initial shapes. 

 

Figure  6.1 Inverse and direct aerodynamic problems 

 

The other important issue is multipoint design. One essential design requirement in airfoil 

design process is to check airfoil performance at off design conditions. For instance, design 

requirement can be formulated to maximize lift or minimize drag, or to maximize lift to drag 

ratio, or to optimize airfoil thickness, or pitching moment. These requirements can be placed 

at one angle of attack or flight condition (design condition or point). The other flight 

conditions are checked later after the design is obtained, this approach is called single design 

point. Multipoint design is possible with more complex objective functions and demanding 

computational cost. Michael S. Selig  [67] and  [68], has presented a multipoint inverse airfoil 

design for incompressible potential flow which was basically based on Eppler work  [27].  
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6.1 Inverse design approach 

In this design approach a target pressure (or velocity) distribution and an initial airfoil shape 

are usually specified for given flow Reynolds number and angle of attack. The pressure 

distribution of the initial airfoil is then computed and compared to the target pressure 

distribution. The airfoil shape is manipulated by the inverse design method in order to overlap 

its pressure distribution with target pressure distribution. For instance, if the pressure 

distribution of a known airfoil shape is specified as target pressure distribution, the inverse 

design method should converge to the target airfoil shape. This constitutes an advantage 

because the required performance (pressure distribution) is already specified, which makes 

inverse design a powerful design method. 

The choice of pressure distribution as target performance characteristics was derived from the 

fact that favorable pressure distributions will delay transition from laminar to turbulent flow 

 [28] as noted by Schlichting  [69] and adopted by Liebeck in his works  [70] -  [72] and used by 

Wortmann  [73] to design glider airfoil series. Miley  [74] had theoretically investigated the 

influence of lowered Reynolds numbers on airfoil designs based on the requirement to 

achieve transition upstream of a major adverse pressure gradient. Maughmer and Somers  [75], 

and others as has used similar design philosophy to design laminar flow airfoils with aft 

pressure recoveries for a wide range of application. Startford  [77] and  [78] has adopted the 

idea that keeping the flow on the edge of separation can result in airfoil shapes that have 

prolonged laminar flow, with minimal energy lose. 

Hence, inverse design approach possesses the advantage that the required performance (in 

terms of velocity or pressure distributions) is already specified. This advantage puts a difficult 

task to the designer who should formulate the design requirements in terms of target pressure 

distribution. Inverse design methods are formulated to calculate airfoil shapes for given 

pressure distribution, but not to optimize the problem. Target pressure optimization will do 

the job of finding the optimum airfoil shape. The difference between the target pressure 

distribution and the calculated pressure distribution for i
th

 iteration is used to correct the airfoil 

shape toward the target pressure distribution. This correction, often, results in non-smooth 

airfoil shape therefore smoothing procedures are applied to the resulting shape. Connecting 

airfoil shape with pressure distribution and smoothing form a major drawback for this type of 

inverse formulation method. 
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Eppler  [27] establishes conformal mapping method to find out the airfoil shape for given 

target velocity distribution at known segments over a unit circle, which is mapped to the 

airfoil. His method forms the bases of many successful airfoil designs for different 

applications  [67] [68] [80].  

6.2 Direct design approach 

Direct design is the approach used when the airfoil shape is given and the performance 

characteristics (velocity distribution or drag polar) is calculated at known flow conditions. It 

is referred to as direct analysis problem. Because the airfoil is given it is always specified as 

realistic airfoil shape. A new airfoil is generated depending on optimization fitness function 

which requires more aerodynamic function calls than inverse approach that searches around 

the required performance shape. Therefore direct methods cover wider search space and come 

with variety of airfoil shapes, and it is up to the designer to put additional constraints such as, 

lift or drag or moment coefficients or some geometric constraints for example, the maximum 

thickness or nose radius or trailing edge angle. A comparison between direct and inverse 

design approaches is illustrated in the following table 

Table  6.1 comparison between direct and inverse design approaches 

Characteristic             Direct approach Inverse approach 

Required performance   
No direct control on airfoil 

performance. 

The designer specifies the required 

performance. 

Problem formulation 
Problem is solved in direct 

manner 
Inverse formulation is needed. 

Airfoil shape 
Always results in realistic airfoil 

shapes.  

Additional conditions are required, 

since non-realistic shape may appear. 

Computer 

computations 

Requires relatively large number 

of aerodynamic code calls to 

arrive at required performance. 

Generally, smaller number of 

aerodynamic code calls. 

Designer experience 
More suitable with low experience 

design engineers. 

Higher experience is required to 

identify target pressure distribution, or 

other performance specifications. 

Search space 
Depends on parameterization 

method 

Depends on inverse formulation and 

airfoil smoothing as well as 

parameterization method. 
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6.3 Numerical Optimization 

Nowadays, variety of optimization tools are accessible to the designer which are suitable for 

use to wide range of applications. They utilize a different search techniques, gradient based 

optimization, and genetic search algorithms are most popular techniques. These techniques 

are used for one point optimization in which an airfoil is designed for one operating point and 

other operating conditions are analyzed after the optimum shape is found. Multipoint 

optimization, on the other hand, can also be implemented. It demands more computational 

cost, especially if the number of design parameters is high. Multipoint design approach can be 

combined with inverse airfoil design formulation to minimize computational cost. Inverse 

design can be efficiently achieved through direct aerodynamic calculations. Firstly, the target 

airfoil performance is specified, and secondly, the airfoil shape is perturbed to match the 

target performance. Airfoil shape perturbation is accomplished through airfoil 

parameterization with a set of design parameters. These design parameters are used by the 

optimization method to generate new airfoil shapes toward the optimum solution.  

The general flow chart for most of optimization methods starts with given vector of design 

parameters, Figure  6.2. Each combination of these design parameters produces certain 

aerodynamic shape or geometry. This is done inside one parameterization function as per user 

selection. NACA, PARSEC, CST, and Bezier curves are available as an option in this 

function. Each method can cover wide design space. The resulting geometric shape is 

analyzed by the aerodynamic function and the aerodynamic characteristics are computed.  A 

fitness function is evaluated as a measure of performance. The main job of optimization 

method is to efficiently manipulate the combination of design parameters to search for 

improved performance in terms of better fitness value. 

 

Figure  6.2 Flowchart illustrating design search and optimization process 
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For the optimization process to be built, the following topics are discussed: 

 Choice of airfoil shape parameterization method. 

 Selection of aerodynamic solver. 

 Selection of the optimization method. 

 Choice of constraints.  

 Formulation of objective function. 

The first two topics are covered in details in separate chapters. CST parameterization method 

will be used in the optimization. The aerodynamic model descried in the previous chapters 

will be used for aerodynamic analysis. In the following sections some insight on the last three 

topics will be given.  The attention will be toward aerodynamic and performance of airfoil 

design. 

6.3.1 Formulation of the mathematical problem 

For given vector of design variables,           , where N is the number of design variables, 

the optimization finds the values of the vector X subjected to constrains of various types. 

Mathematically it is formulated as minimization of some function  (x) as: 

               
( 6.1) 

        
( 6.2) 

        
( 6.3) 

   
       

             
( 6.4) 

The equation Eq.( 6.4) represent the bounds of search space. The middle equations Eq.( 6.2) 

and Eq.( 6.3) are the inequality and equality constraints functions, respectively. These 

constraints can be of geometric type and some are of aerodynamic type. For example, airfoil 

thickness, leading edge radius, and trailing edge angle are geometric variables and can be 

constrained. Airfoil drag, moment, lift coefficients, and pressure distributions are used as 

aerodynamic constraints. 

6.3.2 Genetic Search algorithms 

In this project Genetic Algorithm (GA) method is selected which is included inside MATLAB 

ga function  [81], or SCILAB optim_ga functions  [104]  It calls the aerodynamic function. The 

aerodynamic code explained in the previous chapters is written in form of aerodynamic 

function; whose arguments are airfoil coordinates, angle of attack, and Reynolds number. 



Low Reynolds Number Airfoils 

143 

Genetic search algorithms GAs is a widely used class of evolutionary algorithms. It can work 

without the need to calculate gradients (which is a drawback of gradient based optimization 

methods). This method uses random search that allows a global search capability over local 

search methods inside the design space. The name comes from the attempt to replicate life 

evolution. The design parameters vector, or variables, represents one aerodynamic shape i.e. 

one airfoil candidate. This airfoil candidate is a member of one population. GA is used in 

many airfoil direct and inverse design studies as  [101] [102], and  [103].  

The method starts with initial population. The objective function of the initial population is 

evaluated, as the first step. This is called the first generation, which is subjected to two natural 

selection techniques called fitness and crossover. The design with higher fitness will survive 

and will contribute more to the next generation of airfoil shapes. Designs having higher 

fitness are paired up, so that offspring (children) are constructed from them by the crossover 

process. By this rules the method is forced to use the best designs and their combinations 

exploring search space. The less fitness designs die, although, mutation process is used where 

few individuals are randomly changed to produce new ones. This insures the search space is 

covered by the method. 

The ga optimization function asks for a set of inputs to perform the calculation. The main 

inputs are listed in Table  6.2, other parameters are not changed and used as in their defaults. 

The function returns a vector of optimum design variables together with their fitness values. 

Table  6.2 illustrates the input arguments to a standard ga function. 

Table  6.2 Description of input arguments for ga function 

Input description 

Objective function 

The function that calls airfoil parameterization, performs 

aerodynamic calculations and returns the fitness value of each 

airfoil in the generation. 

Number of design 

variables 

Number of parameters required to represent airfoil shape. 

Upper Bound Upper limit for each design variable. 

Lower Bound Lower limit for each design variable. 

Initial population Values of design variables for an initial design (airfoil shape) 

Fitness limit The value used to stop search algorithm, set by the user. 
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6.3.3 Choice of constraints 

The choice of parameterization method plays an important role in the ease of applying 

geometric constraints. For instance, In PARSEC method the geometric parameters like 

maximum thickness and position of maximum thickness are directly constrained without the 

need for additional formulation. For Bezier curves method there is a connection between the 

control point position and geometric variables, but it needs additional formulation. On the 

other hand, CST method requires computation of the geometric variables from airfoil 

coordinates. The following table lists some aerodynamic and geometric constraints commonly 

used: 

Table  6.3 Common aerodynamic and geometric constraints 

Constraints  Type Source of constrain 

Maximum and minimum 

thickness and its location 
Geometric 

Structure, fuel tank packaging, ease of 

manufacturing. 

Leading edge radius. Geometric Stall characteristics. 

Trailing edge angle and thickness Geometric Manufacturing 

cm0 Aerodynamic Tail volume, control surfaces. 

    Aerodynamic Performance requirements 

   max Aerodynamic Take off, stall capability. 

      Aerodynamic Performance requirements 

 

In the airfoil design problem, the vector of design variables            can be set as target 

aerodynamic performance (ex. drag coefficients) at one angle of attack, or a range of angles of 

attack. If the pressure coefficient is the target aerodynamic performance then this function is 

the functional difference between calculated and target distributions. 

6.3.4 Formulation of objective function  

Objective function for airfoil design may vary from one application to another. Optimization 

algorithm manipulates airfoil shape parameters in systematic manner to satisfy the objective 

function. For instance, maximizing range can be formulated in terms of maximizing lift to 

drag ratio at specified range of angles of attack α and Reynolds numbers as given by Eq. ( 6.5). 

The negative singe is used to allow using minimization. A weighting coefficients    where 

             and    is the number of angles of attack are used in the formulation. These 
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coefficients can have values from 0 to 1, and are chosen in such a way to allow shaping of the 

objective function inside the operating range of angle of attack according to the design 

requirements.. Higher values of the weighting factor    indicate more important components 

and lower values indicate less important components. 

     

  

  

             ( 6.5) 

The objective function for minimum drag can be formulated as follows: 

                     
( 6.6) 

 

Optimizing airfoils for specific pressure distribution can be achieved by similar objective 

function formulations as given by Eq.( 6.7) 

The superscripts   and   stand for specified and computed pressure coefficients respectively, 

and the factor    allows different weights being given to each component at i
th

 point. This 

equation means that functional difference between specified and computed pressure 

coefficient is minimum. The functional difference is given as the sum of the square of the 

difference between the specified and the computed pressure coefficient at each point  , which 

is always positive. This formulation permits the user to put more weight to specific location of 

airfoil surfaces, such as front part where pressure variation are most, or near separation bubble 

location. 

6.3.5 Single objective versus multi objective optimization 

Maximizing airfoil lift, for example, has many benefits for all aircraft performance resulting 

in shorter takeoff and landing distances, reduces aircraft noise, and lowers stall. It is, 

therefore, the dream of designing airfoil with maximum lift and low drag remains a topic of 

considerable interest. High airfoil lift or low airfoil drag alone are not the only desirable 

feature during airfoil design. Aerodynamic characteristics like lift-to-drag ratio, endurance 

parameter, thickness, pitching moment, stall characteristics, and roughness sensitivity are 

always considered during airfoil design and optimization. Therefore multi objective 

optimization is widely anticipated in airfoil design studies. The other reason for multi-

         
 
 
   

 
 
 
 

         
( 6.7) 
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objective optimization is that, it is difficult to control one airfoil aerodynamic characteristics 

without affecting the other performance characteristics. 

A great deal of existing research reveals that instead of using airfoils from ready catalogues of 

existing airfoils, many aircraft and turbo machinery designers have utilized special airfoils 

which are more adequate to their functional requirements. For instance, for low Reynolds 

number vehicles, the preferred requirements are listed as follows:  

1) High lift coefficient       . 

2) High lift-to-drag ratio      . 

3) High endurance factor   
 

     . 

4) High maximum lift coefficient      
. 

5) Smooth stall characteristics. (Turbulent separation point jump) 

6) Limited pitching moment coefficient Cm. 

7) Large relative thickness    . 

8) Wide range of low drag angles of attack. 

Due to the mentioned multipoint requirement discussion, objective function can be formulated 

by combining these performance characteristics. One example is illustrated by Eq. ( 6.8) in 

which the lift to drag ratio together with endurance factor can be maximized for given range 

of flight conditions. Where the factor             are selected weighting coefficients given to 

each component at i
th

 point. 

       
  

  
   

  
   

  
          

( 6.8) 

 

6.4 Direct Aerodynamic optimization by shape perturbation  

Numerical optimization can be used to design airfoil shapes using direct aerodynamic 

calculations for given specific objective function. This approach is equivalent to classical 

inverse design problem. But it has the advantage that the aerodynamic calculations are 

performed in direct manner, and no need for inverse formulation. The numerical optimization 

procedure like one given in Figure  6.3 will search for the optimum shape. Designers with 

lower experience can specify the initial shape from similar or like designs. The choice of 

initial shape shouldn’t, in principle, affect the resulting optimum airfoil, but it will affect the 

computational cost. 
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The flowchart of Figure  6.3 illustrates the method. In this method the new airfoil shape is 

calculated based on GA population which is then parameterized to realistic airfoil shape. The 

airfoil parameterization method can be selected by the designer, detailed explanation of airfoil 

parameterization methods are given in separate chapter. It is important to mention that for 

high number of parameters (design variables) wider search space can be covered and new 

shapes can result. This is not without cost, the computational time and number of iteration 

required will increase dramatically with increased number of design variables. This is one 

drawback of direct optimization approach. 

Direct design method avoids the difficulty of using the differences in pressure distributions to 

drive the new airfoil shape. This difficulty, common to inverse methods, comes from 

unsmooth shapes, and the need to extra formulations to relate the required shape perturbation 

to the differences in pressure distribution. Furthermore, working with limited number of 

parameters in airfoil parameterization will reduce the number of design variables (about 11) 

compared to using pressure differences at each airfoil coordinate point, which is usually more 

than 50 points. 

The aerodynamic computations, which is the heart of the direct design procedure can be 

performed by various aerodynamic codes having different levels of accuracy. These codes use 

theories ranging from inviscid potential flow theory to CFD methods. The accuracy of the 

whole optimization process is off course highly dependent on the accuracy of the 

aerodynamic calculation code. 

The designers usually verify the convergence of the optimization process by repeating the 

calculations with different initial airfoil shape and make sure that the procedure converges to 

the same or very close shapes. 
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Figure  6.3 Flowchart illustrating Direct Aerodynamic Optimization by shape perturbation  
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CHAPTER 7 

7 Airfoil Optimization Case Studies 

This chapter deals with using the code developed in the previous chapters together with 

genetic optimization (GA) to search for optimized airfoils with different objectives and 

constraints. It is aimed at showing the flexibility of systematically changing airfoil geometry 

to get required airfoil performance characteristics, and the ability to formulate various 

objective functions and constraints that best suit the problem under hand. In this study, for 

objective function formulation weighted sum approach is adopted with penalty terms added to 

enforce constraints. 

Optimization has been in use as a design method to find solutions to various aerodynamic 

problems. It is used in transonic range of flight since 1970
th

 by authors like Hicks and 

Murman  [82] and Hicks and Vanderplaats  [83]. The optimization process has been limited to 

few design variables due large number of computations needed for finite differences and 

limited computer capabilities. In the 1990
th

 computer speed and memory have been improved 

and numerical optimization methods appeared, such as gradient methods, and genetic search 

algorithms and others. One illustrative work on application of airfoil design at low speeds 

based on NACA airfoil representation is given in  [95], in which the procedure of airfoil 

optimization is demonstrated using inviscid flow solver. 

Airfoil optimization in low Reynolds number regime where laminar flow covers large portion 

of airfoil surfaces, depends primarily on the prediction of transition. Transition devices and 

trips are usually used to fix transition at single point. But, from aerodynamic point of view, 

since transition point varies with speed and angle of attack it is more efficient to design by 

laminar separation bubble control approach. Furthermore, such devices may not be practical 

when the wing surface is made of delicate materials such as foam, which are used in many 

UAV designs. It is obvious that laminar separation bubble control approach requires an 

aerodynamic code that can predict separation bubble effects on pressure distribution, and 

computes the variation of aerodynamic performance due to perturbations in airfoil geometry.  

 

The code developed in this work is validated for Reynolds numbers of        ,         

and        [84]. The results of validation show comparable results with experimental 
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measurement for Eppler low Reynolds number airfoil E387 and for S8036 low Reynolds 

number airfoil designed for soft stall characteristics.  Although this code results deviate from 

experimental measurement as separation point moves forward (which depends also on airfoil 

shape and angle of attack), it is possible to use with high degree of confidence. That is 

because it is based on solid aerodynamic theory and being widely used computation methods. 

This reason makes this code results follow the trend of similar aerodynamic codes in this 

class, such as XFOIL for which aerodynamic features are calculated with same order of 

magnitude as was shown in the comparisons of boundary layer features  [84]. 

Airfoil design is mostly driven by minimization of drag. It is possible to design airfoils at low 

Reynolds number based on laminar separation bubble (LSB) control instead of eliminating the 

LSB totally by forcing early transition since the later will increase the turbulent friction drag. 

Therefore, in low Reynolds number airfoils the primary concern is to control bubble losses 

rather than minimizing skin friction drag  [11]. It is worth to note, that at low Reynolds 

number, laminar separation bubble (LSB) has a major contribution in airfoil drag. LSB also 

moves and changes in length with changes in angle of attack. When angle of attack increases 

LSB moves in the forward direction with decrease in length, and at much higher angles a 

forward sudden jump in turbulent separation point occurs, causing much higher drag and 

decrease in lift. As angle of attack is decreased the separation bubble becomes longer, which 

may, not reattach resulting in a higher separation drag. 

 

Historically, The inverse design approach utilizes the so called a transition ramp, in which the 

pressure distribution of the forward portion of upper airfoil surface (suction side) is shaped in 

such away to allow long weak pressure gradient with extended attached laminar flow. This 

pushes the laminar separation point backward and forms a (LSB) as a mechanism for 

turbulent transition. Therefore most of instability changes will occur at the back of the ramp 

and inside the bubble which limits turbulent transition point to jump close to the leading edge 

causing sudden stall. In inverse design, the transition ramp shape (length, slope and arc shape) 

are varied, to control bubble movement and improve airfoil performance. In general total drag 

with transition ramp can be larger but airfoil stall characteristics and off design performance 

are improved.  

There are few airfoil geometry parameters that have an effect on performance, such as leading 

edge radius, thickness, trailing edge angle, position of maximum thickness. These airfoil 
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geometric parameters are used by NACA and utilized by PARSEC airfoil parameterization 

method. Bezier curves and CST parameterization methods, on the other hand, utilize control 

points and polynomial coefficients which are not directly related to airfoil geometric 

parameters. 

Therefore, similar to transition ramp approach, airfoil upper surface geometry can be 

modified by these last two methods to achieve low drag bubble characteristics.  The effect of 

upper surface shape on pressure distribution and drag polar is studied in  [11]. Figure  7.1 

shows effect of perturbing an airfoil surface on drag polar at Reynolds number of        . 

Pushing airfoil surface around the maximum thickness down has the effect to generate a faster 

pressure rise and a decrease in drag but also a decrease in maximum lift. Modification of 

airfoil surface in the opposite direction causes more drag associated with getting higher values 

of maximum lift coefficient, as seen. 

 

 

Figure  7.1 Relations between pressure distribution shape, and drag polar, and airfoil shape  [11]  

 

The airfoil lower surface shape affects both pitching moment coefficient and maximum lift 

coefficient. Moving lower surface up (inside the airfoil) increases pitching moment 
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coefficient and maximum lift coefficient, and show variation in drag at extreme sides of the 

polar. While moving it down (outside) has the opposite effect. 

The systematic modification of airfoil geometry is an efficient airfoil design approach when 

done with optimization techniques. In which upper surface shape is controlled through the 

choice of parameterization method coefficients that will cover variety of shapes. The LSB 

model will calculate the drag associated with each shape and finally, the optimization 

technique will drive the optimization process to the minimum drag shape. 

7.1 Problem formulation 

In this chapter a number of airfoil design methods are examined with systematic airfoil 

geometric modification approach. The first method is design to meet given target pressure 

distribution. The second design method is based on specifying design point which could be 

Single Point (SP), for one angle of attack or a multi point (MP) a set of angles of attack. The 

objective that has to be satisfied can vary from single objective (SO) to multi objective (MO).  

Therefore, in the rest of this chapter the following design concepts are demonstrated: 

1. Design to meet specific pressure distribution.  (section 7.5). 

2. Design for Single Point Single Objective (SPSO) (section 7.6). 

3. Design for Single Point Mingle Objective (SPMO) (section 7.7). 

4. Design for Multi Point Single Objective (MPSO) (section 7.8). 

5. Design for Multi Point Single Objective (MPMO) (section 7.9). 

6. Design at different Reynolds numbers. (section 7.10). 

 

An example of single objective is unconstrained drag minimization. If in addition to drag 

minimization the designer wants to maximize or minimize specific aerodynamic coefficient 

(lift or moment coefficient, for example) a multi-objective problem is formulated. Weighting 

coefficients are assigned by the designer to each term in the formulation. Other coefficients 

are also used to set approximate order of magnitude to each objective. Additional terms are 

added to the objective for each constraints violation.  

In all of these cases geometric constraints (bounds), CST airfoil parameterization method and 

initial airfoil (E387 airfoil) are kept the same. This allows the effect of objective function 

formulation, angle of attack and Reynolds number to be analyzed for different formulations. 

The code developed in the previous chapters is used throughout the analysis at Reynolds 

number             and the critical value of disturbance amplification        . 
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7.2 Geometric constraints: 

Geometric constraints are placed to search around the starting airfoil. The geometric 

constrains are shown in Figure  7.2. The airfoil upper surface can take any smooth shape 

between the upper limit (dotted dashed line) and the lower limit (dashed line) beneath it. The 

lower surface will be constrained in similar manner between its upper and lower limit lines 

shown in the lower side. It is clear that lower surface is allowed to have some points above the 

real axis causing aft loaded airfoils. It is worth to note that y axis is exaggerated in all airfoil 

shapes to show the small differences. 

 

Figure  7.2 SPSO geometric constraints 

 

7.3 Airfoil Parameterization 

Airfoil parameterization with CST method is used with 4 coefficients to each surface. The 

following table shows the upper and lower surfaces as well as the initial airfoil. 

Table  7.1 Parameters for CST method 

 

Upper surface Lower surface 

UB 0.22 0.35 0.2 0.25 -0.06 0.01 0.08 0.1 

LB 0.133 0.2 0.09 0.18 -0.09 -0.09 -0.09 -0.09 

Initial 0.1349 0.3291 0.1062 0.2218 -0.0758 -0.0001 0.004 0.03 
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7.4 Formulation of the objective function 

The objective function in this project is formulated based on weighed sum approach. A 

constraints enforcement function is necessary to grantee the operation at the desired 

aerodynamics requirements. In this approach, the two functions are combined into single 

merit equation using user specified constants. 

The objective functions    can be written in verity of forms, as explained in pervious chapter. 

The aerodynamics constraints function   can be formulated to specify the required 

aerodynamic coefficients range.  For example, in lift constrained drag minimization problem 

the objective function is given by        and the aerodynamic constraints equation   is given 

by          . Where     is the desired lift coefficient and    is the calculated lift coefficient 

for the given airfoil parameterization vector  , flow angle of attack   and Reynolds number. 

When these two functions are combined a weighing coefficients are introduced, as     and 

    in the following formulation  

                                 7.1) 

 

7.4.1 Equality and Inequality Constrained Optimization and Penalty Function 

In practice a penalty term is added to the objective function when a constraint is violated.  The 

goal of penalty function is to change a constrained optimization problem to unconstrained 

optimization one.  

The penalty function for inequality constraints can be formulated as in the following equation 

where K is a positive integer representing how strong the penalty will be applied. 

       
                        

                      
    

 7.2) 

 The function will look as in Figure  7.3. When the penalty term is applied to the objective 

function it is casted in the form         for  the constraint       such that the 

optimization is forced to choose values of x greater than   , because the objective function 

will be smaller for any     . The shape of the added term is shown in Figure  7.4, which 

illustrates how penalty function is used to strongly enforce two different constraints     and 

   . It is clear that the objective function will be smaller for values of              

when penalty terms are added. 

                 
 7.3) 
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Figure  7.3 penalty function      

 

Figure  7.4 A penalty function          added to the objective function if           

respectively  

 

The minimization of the function      can be generalized as follows, if   is the design 

variables, subjected to equality and inequality as in the following two equations 

  
                              

                               7.4) 
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And if the penalty function   is given by Eq.  7.2 then the objective function is written in the 

following form 

                 
   

       

 

   

         
  

            
  

         

 

   

  
 7.5) 

 

The first term       is the aerodynamic objective. The second term is the inequality constraint 

and the last term represents the equality constraint. The constants   
   

 and   
  

 a user 

specified constants for inequality and equality constraints respectively. The choice of those 

constants is problem specific, and the user should tune the constants for his optimization  [90] , 

and  [91].  

In our formulation another factor       is multiplied by each constrained term; if the 

constraint is violated. When multipoint optimization is studied this function is applied to each 

point separately and the sum is minimized.  
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7.5 Design for given pressure distribution (Inverse design) 

The design cases presented in this section aims at illustrating the efficiency and accuracy of 

the inverse design method by using systematic airfoil shape modification enforced by 

optimization algorithm. A predefined pressure distribution is given and an airfoil shape that 

matches this pressure distribution is found. The flight conditions for the design point are 

Reynolds number and angle of attack. The predefined pressure distribution is called target 

pressure distribution and the corresponding airfoil shape is called target airfoil. This 

procedure is known as inverse design.  

In order to check the efficiency of this procedure a known airfoil shape and pressure 

distribution is used. The initial airfoil is further parameterized by CST method and the 

obtained parameters are utilized in the optimization as design variables. The optimization 

procedure changes these parameters until the best functional difference in pressure 

distributions is obtained. 

As an illustration, CST method parameterization is performed to find the parameters for two 

sample airfoils. A separate code is written to match a given airfoil coordinates by given 

number of parameters, as explained in chapter 5.  The first airfoil is NACA0012 at Reynolds 

number of           and angle of attack of     . The second is Liebeck high lift airfoil at 

Reynolds number of           and angle of attack of      . 

7.5.1 NACA 0012 

In this case study NACA 0012 airfoil geometry is first parameterized using CST as shown in 

Figure  7.5 . The parameterization coefficients are shown in Table  7.2. 

Table  7.2 The CST parameters for NACA 0012 airfoil 

point Upper surface Lower surface 

1 0. 17072   -0. 17072   

2 0.16066 -0.16066 

3 0. 15542  -0. 15542  

4 0. 14038 -0. 14038 

5 0. 16382 -0. 16382 

6 0. 11797  -0. 11797  

7 0. 15965  -0. 15965  
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Figure  7.5 NACA 0012 geometry 

 

The second step the pressure distribution at Reynolds number of         and angle of attack 

of       is used as target pressure distribution as shown in Figure  7.6. 

 

 

Figure  7.6 Target airfoil shape and target pressure distribution at Reynolds number of  

      and at angle of attack of 4 degrees 
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Figure  7.7 Initial and target airfoils and corresponding pressure distributions 

 

The optimization process is started from NACA2412 airfoil as shown in Figure  7.7.  The 

optimization process uses 7 parameters for each surface. The objective function calculates the 

functional differences between target and current pressure distributions as per Eq.( 5.39). 

The difference is calculated as the mean of difference squared between two functions as given 

by  

       
    

    
    

   

 
 ( 7.6) 

 

 Where,   
  is the target pressure distribution at each airfoil surface point from         , 

and    
  is the pressure distribution calculated at k

th
 iteration step. 

This error measure is used as objective function during the optimization process. It should 

rapidly diminish as the optimization method converges to the target pressure distribution 

shape. The results of optimization after 5 generations are shown in Figure  7.8, where in the 
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  coordinate is compared. In the lower part the target and current pressure distributions are 

compared and the local difference are shown. The differences are drawn as function of surface 

distance from lower surface trailing edge to upper surface leading edge in clock wise 

direction. It can be seen that the maximum difference in y airfoil coordinates is lower 

than       . The pressure distribution show close agreement with the target with maximum 

difference of 0.02. Figure  7.9 show the same after 15 generations. The difference in airfoil 

shapes is about         close to the lower surface leading edge. The difference in pressure 

distribution is much improved with maximum difference of      . 

The convergence history is shown in Figure  7.10. The optimization process is rapidly 

converging to the target pressure distribution and at the same time the airfoil is closer to the 

target airfoil. 

 

Figure  7.8 Airfoil shape and pressure distribution after 5 generations 
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Figure  7.9 Airfoil shape and pressure distribution after 15 generations 

 

 

Figure  7.10 Convergence history for case of  NACA 0012 airfoil 

0 0.5 1
-0.1

-0.05

0

0.05

0.1
y
/c

-1 -0.5 0 0.5 1
-5

0

5

10

15
x 10

-4

y
/c

 T
 -

 y
/c

0 0.5 1

-2

-1

0

1

x/c

c
p

 

 

-1 -0.5 0 0.5 1
-0.02

-0.01

0

0.01

0.02

Surface distance s/c

c
p

T
 -

 c
p

          Target
           Current

0 5 10 15
0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Generation

F
it
n

e
s
s
 v

a
lu

e

Best: 0.0102265 Mean: 0.0111236

 

 

Best fitness

Mean fitness



Low Reynolds Number Airfoils 

162 

7.5.2 LIEBECK LNV109A high lift airfoil  

Liebeck utilizes the inverse design method for development of a class of airfoils with high lift 

 [92]. He uses the Stratford pressure distribution  [93] to recover the pressure without 

separation. The Liebeck LNV109A airfoil is selected as illustrative example as shown below 

in Table  7.3 and Figure  7.11.  

  

Table  7.3 CST parameters used to represent LNV109A Liebeck airfoil 

point Upper surface Lower surface 

1 0.25479 -0.26097 

2 0.37004 0.1911 

3 0.37664 -0.22163 

4 0.24632 0.18688 

5 0.093813 -0.0019703 

6 0.17872 -0.007597 

7 0.015989 0.040923 

 

 

Figure  7.11 Liebeck LNV109A airfoil geometry 
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differences are very low at the last generation. The convergence history shows that the inverse 

design approach examined here successfully constructed the target airfoil with very high 

accuracy. One advantage of this method is its simplicity in which only target pressure 

distribution is required, and no need for smoothing, in contradictory to other methods that use 

local pressure differences to modify the local normal to the airfoil surface. 

 

 

Figure  7.12 Target pressure distribution for Liebeck airfoil LNV109A at Reynolds number of     

    and      
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Figure  7.13 Target airfoil (LNV109A) and initial airfoil (NACA 2412) and pressure distributions at 

Reynolds number of         and     .  

 

Figure  7.14 Airfoil shape and pressure distribution after 15 generations 
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Figure  7.15 Convergence history for Liebeck LNV109A airfoil 

 

7.6 Single point single objective  

The objective of minimizing drag is examined. The optimization starts with Eppler E387 low 

Reynolds number airfoil. A single point in terms of angle of attack is targeted for drag 

minimization. The data for the starting airfoil are used as reference throughout the analysis of 

the results.   

The objective function is formulated as follows: 

      
 7.7) 
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mean fitness value for each generation. It is good to note that, the fitness value means airfoil 

drag in this case, and individual refers to airfoil shape. Subplot (b) shows the best and the 

worst fitness together with mean value, it is evident that the genetic search algorithms has 

reached close to the best fitness just after 10 generations, after which there were no much 

changes in the best fitness value. The values of the best individual (airfoil shape) is shown in 

subplot (c) the first four numbers represent upper surface and the last four numbers represent 

lower surface. Subplot (d) shows the fitness (drag coefficient) of each individual (airfoil). It is 

clear that the fitness most individuals in this generation is very close to the best except few 

with have higher fitness values.  

 

Figure  7.16 Results of genetic search method, (a) best airfoil fitness and mean for each generation.  

(b) Best, wore and mean scores in each generation. (c) The parameters of the best airfoil shape at last 

generation. (d) The fitness of each airfoil shape in the current generation. 
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The best airfoil CST parameters are shown in Table  7.4. The comparison in geometry 

between initial and optimized at single point for drag is shown in Figure  7.17. 

Table  7.4 Initial and best airfoil CST method parameterizations 

 

Upper surface Lower surface 

Initial 0.1349 0.3291 0.1062 0.2218 -0.0758 -0.0001 0.004 0.03 

Best 0.136189 0.246385 0.1184 0.19312 -0.07124 -0.006552 -0.07006 0.046167 

 

 

Figure  7.17 Comparison in airfoil shape 

7.6.3 Airfoil shape and pressure distributions 

 The optimization process finds airfoil shape that is in general close to initial shape. 

The upper and lower surfaces being lower than that of the initial airfoil, making upper and 

lower surface pressure distributions more close as seen in Figure  7.18 . This will result in 

decreased drag but lift will also decrease at this angle of attack. The moment coefficient will 

also decrease since airfoil shape has less bottom loading. This is expected since there is no 

aerodynamic constraints applied to the optimization process.  The laminar separation bubble 

extends around the med chord, the reattachment point is about 0.65 chord is shown on the 
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the laminar separation bubble shape. This can explain the lower drag associated with the 

optimized airfoil. Bubble length and position are most important factors in low Reynolds 

number drag reduction, as reported by many authors  [11]. This means that part of drag 

reduction is achieved by proper laminar separation bubble location as a result of airfoil shape 

manipulations. 

Aft of reattachment the pressure distribution shows wavy like curve, this is not related to the 

airfoil shape, nor to the airfoil parameterization method. It is caused by the turbulent Drela 

closure formulation incorporated in the laminar separation bubble model after turbulent 

reattachment occurs. 

 

Figure  7.18 Airfoil shape and pressure distribution for SPSO at Re         and at      
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7.6.4 Aerodynamic coefficients 

The aerodynamic performance of the optimized airfoil at zero angle of attack is plotted 

against that of the E387 airfoil as illustrated in Figure  7.19. The drag polar curves are shown 

in subplot (b). It consists of lift drag curve and lift curve versus angle of attack. The 

experimental data for Eppler 387 airfoil is also plotted for comparison. At zero angle of attack 

at which this airfoil is optimized has less drag coefficient than the initial airfoil. The 

percentage decrease in drag at this point is more than 40%. The values of drag of optimized 

airfoil does not show improvement in the drag polar at high angles of attack, away from the 

design point. This is expected result in when optimization is performed at single point. The 

lift curve shown in subplot (b) has consistently lower lift for all angles of attack. It could be 

attributed to the airfoil shape modifications in the upper surface, and partly to the shorter 

laminar separation bubble that results in less area under the pressure distribution curve. This 

affects also moment coefficient which is decreased for all angles of attack as shown in subplot 

(d).  

Lift to drag ratio as function of angle of attack is illustrated in subplot (e). The lift to drag 

ratio for the optimized airfoil at design point is considerably improved from about 40 to 65 

with more than 60%.  This shows that the optimization method can be very efficient tool in 

finding more suitable airfoils for specific application. In spite of this capability, the 

optimization with shape modification approach can be examined with more complex 

requirements (constraints), such as designing at range of angles of attack, design with 

maximum aerodynamic pitching moment or minimum lift. These cases will be illustrated in 

the following sections. 
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Figure  7.19 Drag polar plot of the initial and optimized airfoil at single angle of attack of zero degree 
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type of is lift constrained drag minimization for which the aerodynamic objective function to 

minimize drag at fixed lift is given by a weighted sum of lift and drag terms as 

                                7.8) 

Where,          and         . These two terms should have same order of magnitude.  

The penalty function is formulated in the code by specifying a factor        whenever the 

absolute value of the difference in lift is greater than .05 

      
                                   
                                                

   
 7.9) 

 The value of the desired lift coefficient is chosen as 0.387 which is the value of lift 

coefficient for initial airfoil at zero angle of attack. It is required thus to keep same lift 

coefficient and find minimum value of drag coefficient. 

The objective function can be casted in other alternative forms such as that suggested by 

Nemec  [85] and  [86]. This form is especially convenient when target drag and lift coefficients 

    and     are specified. 

   

 
 
 

 
        

  

   
 
 

  

         
  

   
 
 

              

        
  

   
 
 

                                                  

  
 7.10) 

Where the desired     and     coefficients are specified by the designer. The weighting 

factors are specified by user. One example is to use 1.0 for lift weighing factor     and .005 

for drag weighting factor     . 

If a multipoint optimization problem is analyzed the objective computed for each point and 

the problem is formulated as 

                   

 

   

 
 7.11) 

Where N is the number of design points which can be the number of angles of attack or lift 

coefficients and    is a weighting coefficient specified by the user for each design point. 

7.7.1 Optimization Results 

The genetic optimization plot is shown in Figure  7.20. Subplot (a) show that the best shape is 

reached after 10 generations. Subplot (b) show the values of each CST parameter for the best 

airfoil. And subplot (c) shows the value of the fitness function for each airfoil in the last 

generation, the largest value indicate that the corresponding airfoil has violated the constraints 

and a penalty is added to the objective function.  
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The CST parameters for the best airfoil are shown in Table  7.4. The comparison in geometry 

between initial and optimized airfoils is shown in Figure  7.21. 

Table  7.5 Initial and best airfoil CST method parameterizations 

 

Upper surface Lower surface 

Initial 0.1349 0.3291 0.1062 0.2218 -0.0758 -0.0001 0.004 0.03 

Best 0.14265   0.27109 0.142083 0.182703 -0.068476 -0.00689  0.00882   -0.04419 

 

 

Figure  7.20 Results of genetic search method, (a) best airfoil fitness and mean for each generation. (b) 

The parameters of the best airfoil shape at last generation. (c) The fitness of each airfoil shape in the 

current generation. 
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Figure  7.21 comparison of airfoil shape for SPMO 

7.7.2 Airfoil shape and pressure distributions 

The airfoil shape has lowered upper surface which results in less severe bubble and thus less 

drag the lower surface is only slightly modified, as can be seen from comparisons of pressure 

distribution plot shown in Figure  7.22. 

 

Figure  7.22 Airfoil shape and pressure distribution 
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7.7.3 Aerodynamic coefficients 

Figure  7.23 shows comparison of aerodynamic coefficients for optimized and initial airfoil. 

Drag polar curve show that the lift constraint is satisfied.  The drag is improved over the 

entire range with about 20% as compared with experimental data at the same angle of attack.  

 The aerodynamic lift to drag ratio show considerable improvement of about 50% as 

compared with experimental data at the same angle of attack.  The values moment coefficient 

for optimum airfoil is not constrained, but it shows a lower values as compared with initial 

airfoil.  

 

Figure  7.23 Drag polar for SPMO drag minimization at given lift for zero angle of attack. 
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In order to verify results a comparison with XFOIL code is performed for the optimized and 

initial airfoil shapes. Table  7.6 shows numerical values obtained from XFOIL code. Figure 

 7.24 shows comparison between optimized and initial airfoils performed by FOIL code. It 

shows an improvement in drag similar to the results obtain by current work code. XFOIL 

results are more optimistic for which the drag improvement at the design point is less than 10 

%. 

 

Table  7.6 XFOIL Results for Optimized and initial airfoils 

AOA cl cd cm 

 Optimized initial Optimized  initial Optimized Initial 

0 0.3929 0.4114 .0076 0.00833 -.0812 -.0845 

2 0.611 0.6276 0.00861 .00933 -..08 -.0831 

4 0.8285 0.8439 .00979 .01057 -.0788 -.0821 

6 1.0319 1.049 .01118 .01137 -.075 -.0785 

8 1.1667 1.1627 .02135 .02199 -.0639 -.0639 

10 1.2984 1.2813 .03329 .0358 -.0526 -.0509 

 

 

Figure  7.24 XFOIL results for optimized and initial airfoils 
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7.8 Multi point single objective 

The single point optimization show a short coming when the optimized  performance is 

improved just at a single point, but the performance at off design points are not improved. 

This short coming is eliminated by including off design points in the optimization process. 

This approach is demonstrated through the objective of minimizing drag at a range of angles 

of attack. The design points are a set of angles of attack    and the objective is to minimize 

the drag at these angles of attack. The objective function is formulated as in the following 

eqn. 

           

  

   

  7.12) 

The weighting factor vector is chosen by the user to set the importance of the angle of attack 

range for intended application. 

7.8.1 Aerodynamic constraints 

In this case no aerodynamic constrains are applied to the optimization problem. The objective 

function is formulated to search for minimum drag over the design points range. 

7.8.2 Optimization Results 

Multipoint single objective optimization is started using the geometric constraints mentioned 

in section ( 7.2) for a set of angles of attack of 0, 2, 4, and 5 degrees. The optimization arrives 

at final shape after 20 generation with about 600 function evaluations. Figure  7.25 show the 

genetic optimization results. It consists of four subplots; subplot (a) shows the best airfoil 

shape fitness and the mean fitness value for each generation. From this subplot, it is evident 

that the genetic search algorithms have reached close to the best fitness just after 12 

generations. The values of the best individual (airfoil shape) is shown in subplot (b) the first 

four numbers represent upper surface and the last four numbers represent lower surface. 

Subplot(c) shows the fitness (drag coefficient) of each individual (airfoil) in the last 

generation. It is clear that the fitness of the most individuals in this generation is very close to 

the best fitness, as the optimization process converges to the optimum airfoil.  
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Figure  7.25 Results of genetic search method, best airfoil shape and mean for each generation (a), the 

best airfoil shape at the final generation (b), the fitness of each airfoil shape in the final generation (c). 
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movement with respect to initial pressure distribution and airfoil shape. When the airfoil 

upper surface is moved down from the initial, the corresponding pressure distribution is 

moved also down from the initial pressure distribution and vise versa. The lower surface show 

opposite trend, when the airfoil shape is moved down the corresponding lower surface 

pressure distributions tend to move up. This is called bottom loading. Higher bottom loading 

will increase pitching moment and will result of higher maximum lift.  

 

Figure  7.26 Optimized airfoil for MPSO for minimum drag at range of angles of attack 
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7.8.4 Lift and drag polar 

Aerodynamic characteristics for the best airfoil are shown in Figure  7.27 . The drag polar 

shows a considerable improvement in drag coefficient over the whole range of design angles 

of attack (0, 2, 4 and 5) with about 25% compared to experimental data. The lift coefficient is 

slightly decreased as a result of upper surface shaping and bottom loading. From the figure, 

the lift to drag ratio shows similar improvement within the operating range.  

 

Figure  7.27 Aerodynamic performance showing comparison with experimental lift and drag 

coefficients for initial airfoil. 
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7.9 Multi point Multi Objective 

Airfoil design requirements has growing combinations even for one application. For instance, 

the requirement of low drag at a range of angles of attack and at the same time achieving high 

maximum lift at low pitching moment. These requirements can be formulated by means of 

multipoint multi objective design (MPMO). 

The convenience of MPMO problem formulation constitutes a major advance of direct design 

by shape perturbation approach. That is because the formulation is performed in terms of the 

required performance parameters directly and not through pressure distribution or transition 

curve as in the case of classical inverse design. The optimization method will select the shape 

which will satisfy these multiple objectives.  

It is useful to know that low drag requirement at low Reynolds number is mostly concerned 

with extent of laminar flow over upper and lower surfaces (before transition), while higher 

maximum lift requirement is related to transition point movement as angle of attack is 

increased  [94]. 

In this section multipoint multi objective airfoil design by geometry perturbation technique is 

examined using drag minimization at given lift coefficients.  

7.9.1 Drag minimization at a range of operating lift coefficients 

It is possible to minimize drag and have strong control on lift coefficient through specifying 

lift coefficient required for each operating point. In this example the lift coefficient is 

specified as that of the low Reynolds number Eppler 387 airfoil and are given in the following 

table 

Table  7.7 Design lift coefficient at four operating points  

Angle of attack [deg.] 0 2 4 

Design lift coefficient 0.4055 0.626 0.8463 

Weighting factor 1.0 1.0 1.0 

 

7.9.2 Objective function formulation 

It is required to minimize drag at these operating points as compared to the initial airfoil and 

satisfying a given lift requirement. Therefore, the objective function is formulated in two 

terms given by Eq.  7.13.  



Low Reynolds Number Airfoils 

181 

The coefficients     and     are the weighting coefficients for lift and drag coefficients 

respectively at each operating point  . These coefficients are used to get same order of 

magnitude of each term in the objective function, therefore the values are set to       and 

        for all operating points.  The coefficient     is a coefficient calculated by the 

penalty function that is used to exclude airfoils with unsatisfactory lift coefficients. The 

penalty function coefficient     is set to 1 if the absolute difference between the design and 

the calculated lift coefficient is less than 0.05 and set to 10 otherwise. The airfoils with 

       will result in higher value of objective function and thus will be rejected by 

optimization method.  

7.9.3 Optimization Results 

Multi point Multi objective optimization is started from Eppler 387 airfoil with geometric 

constraints described above. The population size is chosen after performing many trails. A 

population size of 30 shows a good compromise between computation time and airfoil shapes 

studied. Figure  7.28 shows three subplots representing the convergence of genetic algorithm 

method. The fitness values versus number of generations show that the best airfoil shape is 

obtained after 11 generations, with mean being improved after each generation. The values of 

the (8) geometric shape parameters for the best airfoil are also shown. The number of 

aerodynamic function calls is about 600.  

                                       
  
   

  
       7.13 
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Figure  7.28 Genetic optimization results.  
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Figure  7.29 Airfoil shape 

 

 

Figure  7.30 Best airfoil shape for Multipoint Multi objective optimization 
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Figure  7.31 Comparison of pressure distributions for initial and optimized airfoils at            

        for MPMO  
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coefficient is kept equal to initial airfoil. The maximum lift to drag ratio within the design 

range is about 125 at       

 

 

Figure  7.32 Drag polar showing an improvement in drag at design lift coefficients 
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7.10 Design at different Reynolds numbers 

Low Reynolds number below 500,000 is considered low range. This range covers many 

applications like unmanned aerial vehicles, human powered aircrafts, wind turbines and 

propellers. Performance of airfoils at low Reynolds number was a point of continuing 

experimental and theoretical research. Model wind tunnel at Stuttgart university  [88],  Low 

Turbulence Tunnel at Delft  [89] , Langley Low-Turbulence Pressure Tunnel (LTPT)  [59] and 

lately by Illinois university  [61] have been active research facilities.  

The most pronounced effect of operation at lower Reynolds number is the increase in airfoil 

drag as shown by experimental investigations and theoretical research  [87]  [59]. Therefore 

operation at lower Reynolds number is less aerodynamically efficient due to large decrease in 

L/D ratios. The main reason is the increased viscous effects at low Reynolds numbers, 

compared to very thin viscous layer associated with high Reynolds numbers. The lift 

coefficient does not increase with this increase in drag. This is illustrated in Figure  7.33 and 

Figure  7.34 for low Reynolds number airfoils Eppler 387 and S8064 airfoils respectively. 

From these two figures it is evident that as Reynolds number decreases aerodynamic drag 

increases. For Reynolds numbers lower than 200,000 experimental observations show great 

degradation in airfoil performances due to domination of viscous effects. It is also shown that 

for Reynolds numbers above 50,000 and moderate angles of attack the flow always reattach 

after being separated due to laminar separation, as suggested by Carmichael  [1] and argued by 

Shyy  [2]. 

 

Due to this domination it is important to check the accuracy of the developed code at low 

Reynolds numbers as low as 200,000.  Figure  7.35 ,Figure  7.36 , and Figure  7.37 show 

comparison of data computed by current method and experimentally measured drag polar for 

Eppler 387 airfoil at Reynolds numbers                 and       respectively. These 

results show generally good agreement in lift and drag coefficients. At higher angles of attack 

where separation plays a major role the computed results deviate slightly from experimental 

data. Drag coefficient is still calculated with acceptable accuracy at all angle of attack up to 

maximum lift. The maximum lift itself is hard to calculate and it is still a nightmare for most 

aerodynamic prediction codes. This code over estimates maximum lift as most of theoretical 

and CFD codes do as argued in  [7] and  [8] . 
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Figure  7.33 Effect of Reynolds number on E387 airfoil characteristics  [61]. 

 

Figure  7.34 Effect of Reynolds number on S8064 airfoil aerodynamic characteristics  [61]. 
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Figure  7.35 Comparison between experimental [61] and computed for E387 airfoil at 200,000 

 

Figure  7.36 Comparison between experimental [61] and computed for E387 airfoil at       
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Figure  7.37 Comparison between experimental [61] and computed for E387 airfoil at 500,000 
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all Reynolds numbers.  

Table  7.8 Design lift coefficient at three operating points  

Angle of attack [deg.] 0 2 4 

Design lift coefficient 0.4055 0.626 0.8463 

Weighting factor 1.0 1.0 1.0 

 

Therefore, the objective function repeated from section 6.  
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The objective is to minimize drag at the given lift coefficients with equal weights given to 

each operating point. Results of optimization for Reynolds numbers        ,       and 

      are shown in Figure  7.39, Figure  7.40, and Figure  7.41, respectively. Experimental 

data for the initial airfoil are also shown for comparison. It is clear that design lift coefficient 

is achieved in all cases with drag being minimized for all operation points. The objective 

function formulation was convenient for this design example. Comparison of obtained airfoil 

shapes is shown in Figure  7.38. The airfoils optimized at low Reynolds numbers have the 

highest thickness and that at high Reynolds number results in less thickness. This is attributed 

to the high desired lift coefficient imposed on airfoils at low Reynolds numbers in this 

example. For Reynolds number of 500,000 this lift was achieved with thinner airfoil, but for 

the airfoil optimized at Reynolds number of 200,000 a thicker airfoil is required for the same 

lift. 

 

 

Figure  7.38 Comparison between optimized airfoil shapes at diffrent Reynolds numbers 
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Figure  7.39 Minimization of drag coefficient at Reynolds numbers       . Open circles are 

experimental data for initial airfoil  [61]  
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Figure  7.40 Minimization of drag coefficient at Reynolds numbers       . Open circles are 

experimental data for initial airfoil [61] 
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Figure  7.41 Minimization of drag coefficient at Reynolds numbers        . Open circles are 

experimental data for initial airfoil [61] 
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CHAPTER 8 

8 Conclusion 

In this thesis, the aerodynamic analysis and design of airfoils flying at low Reynolds numbers 

is studied. Firstly, aerodynamic inviscid and viscous solutions are performed and the 

formation of the laminar separation bubble on the airfoil surfaces has been modeled and 

validated by comparisons with available experimental measurements for two airfoils, namely 

E387 and S8036 in important range of Reynolds numbers (from       to 5    ). The 

developed method is implemented in a Matlab code. 

 Secondly, Aerodynamic parameterization methods applied to airfoils, such as NACA, 

PARSEC, Bezier curves, and CST methods are reviewed and computer codes are written for 

each method. Thirdly, anther code is written for various airfoil objective functions and 

constraints formulations.  Finally, the developed codes are called by a genetic search function 

to explore various case studies of airfoil aerodynamic optimizations by systematic shape 

perturbations.  

8.1 Aerodynamic analysis 

The adopted aerodynamic calculation is as follows, conformal mapping method is used to 

solve potential flow equations. Karman-Trefftz conformal mapping calculation procedure 

starts with mapping a given airfoil shape into a true circle in three subsequent transformations, 

then multiplication of derivatives of these transformations with velocity distribution around a 

circle. The value of the circulation is fixed by applying Kutta condition at trailing edge image 

of the true circle. The resulting inviscid velocity distribution at a specified angle of attack is 

used to derive the boundary layer solution. 

The boundary layer integral equations solution enables the assessment of lift viscous 

corrections, total drag, and laminar separation bubble location. The calculation procedure is 

repeated by adding boundary layer momentum thickness to the airfoil sides, until the change 

in airfoil shape is negligibly small. This requires only few iterations, making this approach 

very efficient for airfoil design by systematic airfoil shape perturbation. 

Two transition criteria are implemented. When natural transition happens first on the airfoil 

surface Eppler modified transition criterion is applied to predict point of natural transition. 
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This criterion is used in the past to design airfoils for various applications. However, when 

laminar separation occurs before natural transition, it is assumed that, transition occur inside 

the bubble and the conditions at transition is calculated using Drela    transition criterion 

which constitutes an important part of laminar separation bubble effort. A critical value of the 

disturbance amplification factor         , which is used to predict transition, is found to be 

satisfactory. 

When a laminar separation bubble is encountered during boundary layer development 

procedure a function is used to accumulate the increment in boundary layer momentum 

thickness    during each phase in the bubble structure. The boundary layer momentum 

thickness at the trailing edge is used to calculate total drag using Squire-Young formula. Main 

boundary layer features are also calculated. These features are locations on airfoil surface 

where laminar separation, transition, reattachment, and finally turbulent separations occur. 

The results of the code are validated using comparison with experimental measurements from 

literature for E387 and S8036 airfoils and shown to be close to both experimental and XFOIL 

predictions at moderate angles of attack. The following points can be concluded: 

 In linear range of angles of attack, where airfoil optimization is expected, both lift and 

drag are computed with reasonable accuracy. 

  Curves of boundary layer flow features on upper surface and drag polar show 

satisfactory agreement with measurement and XFOIL code. 

 Separation bubble location can be also assessed in consistence with measurements as 

seen from pressure distribution comparisons. 

  Very weak laminar separation bubble is not captured by this procedure; however this 

weak bubble often causes small drag penalties and can be neglected.  

 When angle of attack is high, and when turbulent separation occurs on the upper 

surface, maximum lift coefficient is overestimated. 

  Bubble length predicted by current computation is shorter than that obtained from 

experimental measurements, this may lead to underestimation of bubble effect or to 

estimate transition without bubble in cases when laminar separation bubble 

experimentally exists on airfoil surface.  

 Turbulent separation point locations obtained from current computations are located 

between experimental and XFOIL results. 
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  Although computed lift and drag coefficients deviate from measured data at higher 

angles of attack, the predicted aerodynamic data allows the use of current procedure in 

design and optimization of airfoils for variety of applications without human 

intervention utilizing systematic shape perturbation approach. 

8.2 Airfoil parameterization 

Four known airfoil parameterization methods are reviewed. CST method with 2 and 4 

coefficients is examined to fit two objectives. The first objective is representation of NACA 

2412 airfoil geometry. In case of 2 coefficients the maximum difference in airfoil coordinates 

is about 2.1E-3 which is fairly satisfactory for optimization purposes. With 4 coefficients CST 

fits NACA2412 with one order of magnitude higher accuracy and the maximum difference is 

in order of 10
-4

. About 50 generations are required for 2 coefficients as compared to about 200 

for the 4 coefficients case. 

 The second objective is the matching of pressure distribution. For 2 coefficients, the CST 

takes about 35 generations to converge to the target pressure distribution with a value of 

fitness function of 3.4x10
-4

. When the number of coefficients is increased from 2 to 4, the 

number of GA generations required to reach similar accuracy is increased from 35 to 50 

generations. 

 

8.3 Objective function and constraints 

Airfoil design and optimization is indeed a constrained multi objective problem. Therefore, 

objective function formulation includes geometric and aerodynamic types of constraints. In 

this work geometric constraints are implemented using the GA function upper and lower 

bound constraints. Aerodynamic constraints, however, are written as part of the objective 

function. A weighed sum approach is used to formulate different objectives and constraints. A 

penalty function method is also implemented to enforce constraints.  

The following computer code functions are written that implement several objective functions 

and constraints formulations: 

 Inverse design for given pressure distribution. 

 Single and multi operating points and objectives combinations SPSO, SPMO, MPSO, 

and MPMO. 

 Drag coefficient minimization with constraints applied to lift coefficient. 
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 Moment coefficient minimization with constraints applied to drag and lift coefficients. 

 Equality and inequality penalty functions to enforce various constraints. 

 

8.4 Airfoil design and optimization 

In the second part of the project, the developed code is used as a tool to design and optimize 

airfoil performance. Airfoil optimization using genetic search optimization function (GA) is 

successfully used to demonstrate representative case studies using systematic airfoil shape 

modifications, Table  8.1 illustrates summery of studied cases. 

Table  8.1 Summery of the cases studies in this work 

Case Re  [deg] Airfoil Objective function and constraint 

Inverse deign         4 NACA0012 Matching of pressure distribution. Eq.( 7.6) 

Inverse deign         5 
Liebeck 

LNV109A 
Matching of pressure distribution. Eq.( 7.6) 

Direct -SPSO         0 Eppler 387 
Unconstrained Drag coefficient 

minimization. Eq. 7.7 

Direct -SPMO         0 Eppler 387 
                                       

      . Penalty function. Eq.  7.8 

Direct -MPSO         0, 2, 4, 5 Eppler 387 

Unconstrained drag coefficient 

minimization with weighting coefficients. 

Eq. 7.12 

Direct-MPMO         0, 2, 4 Eppler 387 

Lift coefficient constrained [0.4055 0.626 

0.8463], drag coefficient minimization with 

weighting coefficients [ 1.0 1.0 1.0], and 

penalty function for each     Eq. 7.13 

Direct MPMO 

at three 

Reynolds 

numbers 

        

        

        

0, 2, 4 Eppler 387 

Lift coefficient constrained [0.4055 0.626 

0.8463], drag coefficient minimization with 

weighting coefficients [ 1.0 1.0 1.0], with 

penalty function for each    Eq. 7.13 
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While the aerodynamic calculations are performed in direct way, the objective function is 

formulated in two ways: 

Firstly, the inverse airfoil method is examined through the specification of target pressure 

distribution for two airfoils. It is concluded that when the target pressure distribution is 

specified the objective function is formulated as functional difference between target and 

computed pressures distributions. It is found that when the computed pressure distribution 

comes close to the target pressure distribution, the airfoil shape is indeed close to the target 

airfoil. The optimization function converges very quickly to the optimum shape, typically in 5 

generations, and it takes about 15 generations to converge to the target airfoil within 

acceptable error tolerances. The maximum difference in airfoil shapes is about         

close to the lower surface leading edge. The maximum difference in pressure distribution 

is      . 

 

Secondly, direct airfoil optimization is applied to optimize airfoils with several objective 

functions and constraints formulations, as summarized in Table  8.1. Various combinations of 

objective functions and constraints are tested. The weighted sum approach is successfully 

utilized in this study where weighing coefficients are introduced to each term of the objective 

function. In case of multi point other weighing terms are also assigned to each operating 

point. Penalty terms are added to the objective function to insure constraints satisfaction.  

 

The following points can be concluded: 

 Airfoil optimization studies at low Reynolds numbers are successfully accomplished 

using the proposed code and methodology. 

 Airfoil shape design is efficiently achieved by systematic shape modification and 

direct aerodynamic calculations by specifying pressure distribution. 

 SPSO case: Unconstrained single point drag minimization at Re         and at 

    results in locally improved aerodynamic performance. 

 SPMO case: Lift constrained drag minimization for which the aerodynamic objective 

function is formulated to minimize drag coefficient at fixed lift coefficient show that 

the lift coefficient has been successfully constrained resulting in less pitching moment 

change.  
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 MPSO case: Single point optimization show lower performance at off design points. 

In this case, the SPSO is repeated with additional operating points. It shows a 

smoother drag variation than the SPSO case over a wider range of angles of attack.  

 MPMO case: The problem is formulated to minimize drag at a set of given operating 

lift coefficients. The result of optimization show improved performance over a wider 

range of angles of attack.  

 The formulation of the objective function was quite satisfactory to this type of design 

problem. This formulation is very powerful when one aerodynamic coefficient is to be 

improved, such as drag in this case. It allows user chose of some unconstrained 

aerodynamics coefficients. 

  This type of objective function formulation can be generalized to include as many 

terms as required, provided that these terms should have same order of magnitude. 

 Efficient airfoil design procedure is developed that is fast and directly used for routine 

analysis and design of airfoils.  
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8.5 Future work 

Although the obtained results of this thesis are satisfactory in general, there are issues where 

improvements are possible  

1- To improve boundary layer code to predict better maximum lift coefficient      :  

This is in fact a nightmare for aerodynamic calculations  because  maximum lift is associated 

usually with high angles of attack where severe separations occur leading to failure of  

classical boundary layer theory assumptions. Therefore, is particularly evident for lower 

Reynolds numbers where boundary layers are relatively thicker than higher Reynolds 

numbers where thinner boundary layers appear. The same is true for CFD numerical methods 

where turbulent models are used, but with less extent due to more complex mathematical 

models. 

2- Improving airfoil closure when boundary layer iterations are performed: 

The conformal mapping method used in this work is based on a closed trailing edge airfoil 

shape. (Trailing edge points have same coordinates). When adding boundary layer to the 

airfoil shape these two points will move away from each other by a distance equals to the sum 

of boundary layer momentum thicknesses from upper and lower sides at trailing edge points, 

forming an open shape. This problem is solved by extending airfoil to the point of intersection 

between upper and lower trailing edge points. This shows good lift and drag results as long as 

the extension is few percents of airfoil chord.  

3- Developing a multi objective optimization function to optimize airfoils for a range of 

Reynolds numbers: 

The same method of objective function formulation may be used to develop an objective 

function to optimize airfoils for a Reynolds number range. 

4- The optimization method may be extended to 3D wings  
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