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ABSTRACT 

 

The linear buckling phenomenon is obviously a failure in the stability of structural 

systems. However, the performance and characteristic of any thin structural system are 

known to be significantly influenced by a range of buckling modes. For instance, local 

buckling, global buckling and distortional buckling. These buckling problems generally due 

to some different factors which affect the buckling behaviour and characteristic. Therefore 

the ultimate performance and capacity of the thin plate structural components, are effected 

by load, boundary conditions, material properties and structural geometry. Therefore, it is 

important to eliminate or delay these types of buckling problems in order to increase the 

capacity resistance of the structure. Nowadays, the understanding of the local and global 

buckling behaviour and its resistance capacity of any thin-walled plate structure is at a quite 

complicated.  The determination of buckling resistance is an important characteristic of the 

design of steel structure.  

This research contains a detailed description and contribution to the area of buckling by 

developing finite element modeling strategies. A solution procedure has made by using the 

advantages of the computational technology with commercially available FE package 

ABAQUS.  

The work of this thesis provides an in-depth understanding of the local and global buckling 

failure mechanics associated with unstiffened and stiffened beam-column and frame 

structures with thin plates that are subjected to axial compression load. Besides, the 

presence of transverse and longitudinal stiffeners in structural plate elements has a vital role 

in order to increase critical buckling load capacity. However, these stiffeners cause 

redistribution in buckling behaviour in terms of local and global buckling. In this thesis the 

transverse and longitudinal stiffeners were employed on a real beam-column and frame 

structure to maximize the critical buckling loads. The objective function is to find the 

optimum location and geometrical characteristics of stiffeners. The effect of stiffeners on 

structural performance is detailed for beam-column and frame structures which called in 

attached stiffeners. Based on the finite element method, numerical models are made in 

order to observe the critical buckling capacity. Consequently, this thesis has enabled the 

accurate prediction of the behaviour and capacity of the compression members with beam-
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column and frame structure and to be as a paved way for efficient and economical use of 

these members in the design. The last part of this thesis is the experimental tests which are 

used for validation by comparing with the theoretical or numerical solutions. Therefore, 

some specific standard sections have been experimentally investigated in order to follow 

their fail due to local or global critical buckling load before the plastic capacity is reached.  
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АПСТРАКТ 

 

Феномен линеарног извијања је очигледно слабост структурних система у њиховој 

стабилности. Међутим, перформансе и карактеристика сваке танкозиде структуре 

значајно утичу на нежељену појаву  локалног извијања, глобалног извијања и 

извијања при увијању. Ови проблеми извијања углавном потичу од различитих 

фактора који утичу на понашање структурних система и на перформансе и капацитет 

носивости танких структурних плоча.  Такође, наведени проблеми зависе и од 

оптерећења, ослањања и својства материјала. Стога је важно да се елиминише 

могућност појаве нааведених облика извијања у циљу повећања носивости структуре. 

Данас, знање и разумевање локалног и глобалног понашања извијања и њене 

отпорности на извијање било које танкозидне структуре је на прилично захтевном 

нивоу због интензивних истраживања који су постигнути у овој области студија. 

Отпорности на извијање је важна карактеристика дизајна челичне конструкције и њу 

је потребно одредити.  

Ово истраживање садржи детаљан опис и допринос у области извијања. Развијен је 

процес  моделирања и процедура решавања понашања танкозидих структура на 

извијање користећи   комерцијални софтвер коначних елемената ABAQUS. Рад ове 

тезе даје дубље разумевање локалних и глобалних механизама извијања на 

неукрућеним и укрућеним (ојачаним) гредама и оквирним конструкцијама са танким 

плочама које су изложене аксијалном притисном оптерећењу. Осим тога, присуство 

попречних и уздужних укрућења у структурним елементима плоче имају кључну 

улогу у циљу повећања критичне силе извијања. Међутим, ови укрућења изазивају 

прерасподелу понашања на извијање у смислу локалног и глобалног извијања.  

У овој тези уведена су трансверзална и уздужна ојачања на реалној како би се 

максимизирале критичне силе извијања. Функција циља је била да се пронађе 

оптимално место увођења укрућења и његове геометријске карактеристике. Ефекат 

укрућења на перформансе структуре урађен је детаљно за реалним структурама греда 

и рамова. На основу методе коначних елемената, нумерички модели су направљени и 

генерисани са циљем да се одреди понашање структуре на извијање. Према томе, ова 
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теза је омогућио прецизне процене понашања и носивости танкозидих структура на 

извијање. 

Последњи део ове тезе су експериментални тестови који су коршћени за валидацију 

теоријских или нумеричких резултата. Због тога су експериментално истражене неке 

специфичне стандардне секције. При томе за све секције су одређена критична 

оптерећења која изазивају њихово локално и глобално извијање.  
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a Plate length 

A Element area 

b Plate width 
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 D
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e Element number 

E  Young’s modulus 

 E  Elastic stiffness matrix 

G Shear modulus 

 k  Element stiffness matrix 
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 
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m Number of the half wave 
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,x yn n
 

Number of half waves of the buckling mode along x and y direction 

Ncr 
Critical load 
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Nx 
Force per unit length in x direction 

Ny Force per unit length in x direction 

Nxy Shearing force per unit length 

 N  Shape function matrix 

 P
 

External load vector 

q  Nodal degree of freedom in the local coordinate system 

xQ , yQ  Shear force per unit length on x and y plane 

 R  
Internal load vector 

 refR
 

Arbitrary reference load 

t  Transverse stiffener thickness 

p
t

 
Plate thickness 

T
 

External work 

xu  Longitudinal displacement component along x-direction 

 u  
Nodal displacement vector 

U  
Strain energy 

v Transverse displacement component along y direction 

w  Vertical displacement component along z direction 

W Work done due to uniaxial loads 

, ,x y z
 Longitudinal, transverse and vertical axis (direction) of the coordinate 

system 

xzyzxy ,, 
 Shear strain in the xy, yz  and xz plane 

  Eigenvalue 

cr  Smallest eigenvalue 

  Measured deformation 
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v Poisson’s ratio 

zzyyxx ,, 
 Normal strains  in x, y and z direction 

cr
 

Critical stress 

yyxx ,  Normal stress on the x, y  

xy  Shear stress on the x plane and parallel to the y direction 

  Constant 

o  Domain occupied by the mid-plane of the plate  

  Integration boundary 


 

Potential energy 
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CHAPTER  1 

 

1. INTRODUCTION 

 

1.1 GENERAL INTRODUCTION 

The applications of thin-walled structures are widely utilized and have become increasingly 

in various engineering technologies such as mechanical, civil, building and aerospace 

engineering. Stiffened plates, beam-columns and frame structures can all be categorized as 

thin-walled structures as long as the width-to-thickness ratios. These types of members are 

commonly used as structural components which are jointed together by means of welding, 

riveting or cold-formed. Thin-walled plates are mostly quite capable of carrying axial 

tensile loads while when these structural members subject to axial compression loading are 

at risk and failure due to the weakness of their axial-stiffness properties. Therefore, it is 

significant to diagnostic and to be able to accurately predict the buckling capacities of the 

plates, beam-columns and frame structures which have thin thicknesses in order to avoid any 

unexpected breakdown. Some of the early development in thin flat plates and beam-column 

has been made with the purpose of developing mathematical models which can work out 

the strength and represent the real behaviour of the members under different applied loads 

and boundary conditions throughout the loading process. Another type of buckling in which 

the edges of members unloaded and subjected to different support boundary conditions, has 

been examined by Rhodes & Harvey ‎[1]‎[2] in order to observe the behaviour of uniformly 

and linearly plates. It is worth pointing out that the boundary conditions and member's 

thickness should be taken into account in case of the analysis of buckling. From the 

findings, the behaviour of the plates and beam-column are completely different compared 

with each other. An exact solution procedure has been developed by Kang and Leiss  ‎[3]  or 

plates with simply supported edges and linearly varying load. The obtained results showed 

that under these conditions, the plate behaved with more critical compared with the other 

types of loading profiles. The behaviour of plates subjected to transversely and 

longitudinally loaded have studied by Bakker et al. ‎[4] who have developed a formula in 
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order to describe the plate's behaviour. Alexandrov and Eisenberger ‎[5] have examined 

through the mathematical formulations, the behaviour of isotropic rectangular fully 

compressed plates with varying thicknesses. Many researchers have been investigated the 

subject of buckling during the years and a number of design specifications regarding to the 

buckling of thin plates structural parts have been published. Most of the studies have been 

performed with the aim of understanding the behaviour of thin plates and beam-column 

with different kind of boundary conditions, end support conditions and loadings. In 1976 at 

the University of Sydney, Hancock et al ‎[6] has been described a comprehensive numerical 

work in predicting the buckling behaviour of thin-walled structural members due to global, 

local and distortional buckling. The study was to investigate the different buckling modes 

and the interaction between modes by using the finite strip method where the theoretical 

approaches have been successfully compared with the experiments tests. Since 1990 some 

experimental works have been carried out for beam-column structures, plates and plate 

structures by Hancock & Rasmussen and Rhodes ‎[7]‎[8]‎[9]. The researchers presented and 

provided a good continuation of history through the field of buckling analysis. Some others 

of investigators have been expanded the research work of thin flat plates and the thin-

walled plate structures. For instance, Azhari et al. ‎[10] and Tan et al. ‎[11] who developed 

mathematical equations and formulations on elastic buckling of triangular thin plates. 

Currently, the concept of critical buckling in thin-walled structures must be understood to 

any engineer and to be as the basic requirement of engineering knowledge. The buckling 

behaviour of thin-walled structures under compressive load is mostly dependent on multi 

parameters, such as the materials models, section geometries, boundary conditions and 

geometrical imperfections in nonlinear buckling. Notably, the slenderness ratio is the most 

important factor in thin-walled structures which are associated with the member width, the 

member thickness, the member length. The buckling behaviour has different modes; hence 

these modes could interfere with each other. Therefore, the coupled mode interference 

might be formed, for instance, local buckling with global buckling or torsional buckling 

with flexural buckling. This type of interference between the modes of buckling may 

decrease the risk of failure load of the thin-walled structures if compared to other when 

only one buckling mode. The first important analysis of thin-walled structure has been 

made in the 18
th

 century. In order to apply a suitable solution method to analyze the linear 

behaviour of  buckling of different structural systems depends mostly on the complexity of 
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the problem. It is noticed during the analysis that the failure mechanism is developed after 

the critical buckling load in particular when the stresses exceed the material yielding 

criterion. As a result, the plate or the beam-column or frame structures become unable to 

carry any additional load due to the development of the deformation which became a 

permanent in plastic form. Therefore, the post-buckling should be considered to be 

geometrically nonlinear problem due to the previous results that appear after the occurrence 

of critical buckling, but in this research only linear analysis is considered. A set of methods 

for buckling solution can be utilized in thin-walled compression members to find the failure 

mechanisms and stability behaviour. For example the finite strip method, the analytical 

mathematical method and finite element method are generally the numerical solution 

procedure able to deal with complex problems. In spite analytical mathematical methods 

have been evolved over the years, but these methods are still unable to solve the whole 

complex problems in particular with the complexity of the nonlinear problems. The 

complexities of the problems are associated with boundary conditions, geometry and etc. 

However, the finite element methods are able to deal with all of these aspects which are 

considered the most appropriate, powerful and flexible approach at the current time. Finite 

element methods are employed by selecting the suitable analysis solution procedures and 

finite element simulation packages are used to model the structural components. The task 

of this thesis is to develop appropriate finite element modelling strategies, solution 

procedures and to study the local buckling and global buckling modes of transversely and 

longitudinally stiffened plates. A real structure is considered as shown in Figure ‎1.1 where 

a transporter crane machine which used as a lifter upon the river in Bajina-Bašta, Serbia has 

taken as a sample of the analysis. It will illustrate in next sections various investigators 

have carried out a considerable amount of work over the years on the plate, the beam-

column and the frame structures subjected to uniaxial compression load and thus the 

knowledge of the subject is considered to be at a fairly sophisticated level. The newly 

developed modelling strategies and finite element modelling in this thesis have enhanced 

the knowledge of the buckling subject by improving the understanding of the buckling 

failure mechanics of the thin plate, the beam-column and the frame structures. Therefore, 

research mush be carried out to develop a finite element model for the same assembled 

transporter crane as shown in Figure ‎1.2 
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Figure ‎1.1 A transporter crane (Bajina-Bašta, Serbia) 

 

 
 

Figure ‎1.2 A FE model of the transporter crane  
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1.2 RESEARCH PURPOSE AND AIM 

The main purpose of this research was to diagnostic structural element behaviour of the 

plate, the beam-column and the frame structures under buckling load conditions. 

Furthermore, to develop adequate simplified numerical methods for the safe, economical 

buckling analysis and design of stiffened beam-columns, similar to those that exist in the 

frame steel structures. 

The purpose of the work presented within this thesis regarding the local and global 

buckling resistance was: 

 To investigate the local and global buckling behaviour of structural elements 

subject to axial compression load using advanced numerical methods. The three 

governing cases are to be considered in this research, i.e., local and global buckling 

of unstiffened-stiffened elements for (a) plate element, (b) beam-column using 

transverse and longitudinal stiffeners, (c) frame structure using also transverse and 

longitudinal stiffeners. 

 To investigate if a buckling resistance of mentioned members will reinforce with 

only transverse stiffeners or with both.  

 To investigate the effect and applicability of stiffeners on the buckling behaviour 

for unstiffened and stiffened elements for previous members.  

The aim of this thesis was, regarding to both the local and global buckling resistance 

 To diagnose and develop a suitable method for previous compression members 

which are subject to both the local and global buckling.  

 To validate the finite element models of previous compression members by 

compression with experimental test results. 

 To develop accurate finite element models which are capable of simulating the 

local and global buckling behaviour of steel element structures. 

The work has focused upon the influence of transverse and longitudinal stiffeners on the 

buckling resistance of the plate, the beam-column and the frame structure. The members 

are subjected to uniformly distributed compressive load as mentioned earlier to improve the 

capacity and resistance of some specific structural elements to buckling loads with the aid 

of both advanced numerical analyses and experimental. In order to do so, finite element 



Doctoral thesis 

6 

models will be created for each case. A highly scientific based and internationally 

recognized software package in the field of structural analysis of engineering related 

applications is ABAQUS which will use in the analysis to obtain the numerical results of 

the elastic local and global buckling load and behaviour. 

1.3 CONTENTS OF THE THESIS 

Chapter one describes a brief general introduction to thin plate structures, the purpose and 

aim of research, and the contents of the thesis. Buckling behavior and finite element 

method in general are presented which identifies the need for the development of accurate 

linear buckling finite element modeling. 

Chapter two a summary of literature review relevant to the analysis of thin-walled 

structures subjected to uniaxial compressive load are provided. It includes some topics 

which relevant to the buckling analysis as follow: an overview of shell buckling, plate and 

beam-column buckling history and some important titles associated with linear buckling.  

Chapter three is about some of the basic concepts on which the linear finite element 

method. It includes the introduction of the basic sequential process in the finite element 

method, comprehensive introduction of the static and linear buckling analysis. The 

theoretical of finite element discretization, formulation of stiffness matrixes for the bar 

element, the beam element and the frame structures are described in this chapter.    

Chapter four the buckling behavior of finite element modelling strategies and solution 

procedures for the analysis of thin plate structural members are developed. The effects of 

different lengths, thicknesses and boundary conditions on the buckling in terms of buckling 

modes of thin plate are examined. The obtained results are demonstrated with each other, in 

order to show the influence of buckling and capability of developed finite element 

strategies. 

Chapter five finite element analyses of typical beam-column transversely and 

longitudinally stiffened are examined and presented to highlight the improvement in the 

structural performance of the beam-column due to the attachment of stiffeners. In order to 

examine the changes in the both the local and global buckling behavior, the influence of 

stiffeners parameters such as the stiffener location and thickness is varied. 
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Chapter six presents the application of the developed finite element simulation strategy to 

examine the local buckling and global buckling behavior of frame structures also 

transversely and longitudinally stiffened. As in chapter 5, the effects of the stiffeners on the 

buckling characteristics are examined, in order to develop an in-depth understanding of the 

load capabilities of the frame structures. 

Chapter seven presents the experimental steel elements in order to compare it with the 

finite element simulation solutions and to be considered as validation producers.  

Chapter eight presents a brief summary, general conclusion and a projection of future work 

that could be done in this field. 
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CHAPTER  2 

 

2. LITERATURE REVIEW 

 

In this section, a literature review of the buckling behaviour of rectangular plates, beam-

column and frame structures are presented to provide the background information for the 

present investigation. The review focused on published research work that has been carried 

out by many researchers over the years in the field of buckling. Moreover, the review 

focuses on homogenous isotropic thin plates, beam-columns and frame structures. 

2.1 THE CONCEPT OF BUCKLING 

The theory of elastic is usually applied and used in the majority of building structure by 

simply selected allowable stress values for the used materials and by giving ratios as limits 

to meet serviceability requirements. Figure ‎2.1 shows the first and second order elastic 

methods which used in (i.e. different paths of buckling), to analyze the behavior of load 

deflection of a structure. Galambos‎[11] ‎[12], Allen and Bulson ‎[13]  and Chen el al. ‎[14] 

have been discussed this issue to find out more details in it. It is clear and can be 

understood from the figure that the critical buckling load is important and also needed for 

the evaluation of the effective length of members. Therefore, the critical buckling load may 

be determined directly by the Eigenvalue analysis, which represents the simplest way 

instead of first or second order elastic analysis in which the solution can be worked out in a 

rather simple way. The load at which buckling occurs depends on the stiffness of a 

component, not upon the strength of its materials. Buckling refers to the loss of stability of 

a component and is usually independent of material strength. This loss of stability usually 

occurs within the elastic range of the material. Two phenomena are governed by different 

differential equations. Buckling failure is primarily characterized by a loss of structural 

stiffness and is not modeled by the usual linear finite element analysis, but by a finite 

element Eigenvalue-Eigenvector. 
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Figure ‎2.1 Load-displacement curve (Chen el al., 1996) 

 

2.2  AN OVERVIEW OF SHELL BUCKLING 

The buckling is a phenomenon of failure of a structure with a large deformation. A number 

of researchers state that the buckling phenomenon generally occurs before the large 

deformation which happens to the structures. Bushnell ‎[15] states that the structure may 

slightly deform or to be not deformed, in spite that buckling phenomena are appearing. In 

mechanics and civil engineering structures, the buckling is an important phenomenon to 

study, because this thing frequently leads to failure of structures. Calladine ‎[16] states that 

buckling occurs without any noticeable caution, especially in shell structures. The critical 

buckling load is an important parameter which was used as a primary design up to the end 

of the 1960s. The structural geometry, boundary conditions, material properties and the 

applied loading conditions are the factors which critical buckling load depends on it. Bryan 

‎[17] introduced the first equation in 1890, for determining the elastic buckling of flat plates 

under axial compression load. Shell structures are widely used in many fields. The buckling 

behaviour and stability analysis of shell structure are an active research area in recent years. 

Failure is supposed to be caused by either local buckling or global buckling of the shell. By 

contrast, failure controlled by loss of material strength is not very common in practical shell 

structures. Exploration of the buckling behaviour of plate, beam-column and frame shells 

involve many different aspects.  
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2.3 PLATE AND BEAM-COLUMN BUCKLING HISTORY 

Usually beam-column is an assembly of plates. It can be considered that buckling in beam-

column as plate buckling phenomenon where the specific boundary conditions caused by 

the restraint of stiffeners with the rest parts of the whole structure that intersect the web 

plate determine member strength. Plate buckling studying has a long story during the early 

time, in terms of critical buckling loads and stress. Bryan ‎[17] introduced the full analysis 

of the critical elastic stress for a plate under uniform axial compression stress in rectangular 

shape with simply supported boundary conditions at whole edges. Energy method is the 

method which used in the solution for plate stability cases, when Timoshenko ‎[18] used it 

for the plate to find the buckling stress at different conditions under compression stresses. 

The first study in the stability of rectangular plates in order to reinforce the plate by using 

the stiffeners as supports was studied theoretically by Timoshenko ‎[18]. In addition to that, 

Timoshenko has examined the producers and questions of the required and optimum 

stiffness of the stiffeners to avoid buckling of the plate. His results showed that the 

stiffeners subdivided the plate into short panels in which stress is redistributing, where the 

increase in critical buckling load is considerably appeared.  

2.4 ELASTIC PLATE BUCKLING 

The theory of plates says that the behaviour of a thin plate under compressive forces can 

be divided into two parts; firstly the calculation of the critical load and secondly the 

determination of the ultimate load level. The critical load level is by definition the load or   

a point where the ideal structure, or members, in question loses its stability. The buckling of 

an elastic plate is described by the partial differential equation which derived by St. Venant 

‎[19].The definition of the critical load of a structure is where it loses its stability that means 

the structure reached to a specific load to fail which called critical buckling load. In order to 

calculate the critical buckling load, the theory of elasticity can be done. Two analytical 

calculations can be used, either by of an energy method or by solving differential plate 

equation. Figure ‎2.2 represents a rectangular thin plate of length a, width b, and thickness t, 

subjected to uniaxial compressive load   Nx. By taking the rectangular coordinates x, y  and 

z in Cartesian system and where the uniaxial load Nx  is parallel to the x axis. Kirchhoff 

proposed a simple theory of the plate with some unique assumptions for the solution as follows: 

a) Deflections are small compared with the plate’s thickness, 
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b) During bending the middle plane of the plate remains neutral. 

c) During bending the plane sections rotate to remain normal to the neutral surface, 

and without distortion. 

d) The dimensions are high compared with the plate’s thickness.  

e) The effect of shearing forces is neglected and the bending moments are resisted by 

applied loads.  

 

Figure ‎2.2 Thin rectangular plate under uniaxial load 

 

According to the assumptions that mentioned above, the displacement functions may be 

expressed as the following: 
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Where u, v and w are the displacement components along the x, y and z directions, where w 

is the transverse deflection of a point on the mid-plane (i.e., z = 0). 

The linear strains (i.e., non-zero) related to the displacements are: 

2

2
_

x

w
z

x

u
xx









  (‎2.4) 



Doctoral thesis 

12 

2

2
_

y

w
z

y

v
yy









  (‎2.5) 

 

yx

w
z

x

v

y

u
xy
















2
__

2  (‎2.6) 

Where xx and 
yy  are the normal strains and 

xy is the shear strain. 

Based on the Kirchhoff plate theory that is given by Ugural ‎[20] for the virtual strain 
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Where 
o  denotes the domain occupied by the mid-plane of the plate, ),( yyxx  the 

normal stresses, 
xy the shear stress and ),,( xyyyxx MMM the moments per unit length, as 

shown in Figure ‎2.3. 

 

Figure ‎2.3 Stress resultants on a plate element 
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Again, based on the Kirchhoff plate theory that the virtual strain energy related to the 

transverse shear strain is equal to zero (i.e. 0 xzyz
). 

There is a relationship between the moments and stresses where are given by: 

 
2/

2/

t

t
xxxx zdzM  (‎2.9) 

 

 
2/

2/

t

t
yyyy zdzM  (‎2.10) 

 

 
2/

2/

t

t
xyxy zdzM  (‎2.11) 

The uniaxial load Nx produces the work W, due to displacement w only 

dxdy
x

w
NW

o
x

2

2

1
 












  (‎2.12) 

 

The virtual work δW  due to the uniaxial load Nx is given by: 

dxdy
x

w

x

w
NW

o
x








   (‎2.13) 

 

The principle of virtual displacements requires that δ Π = δU−δW= 0, i.e. 
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By using the divergence theorem, one obtains 
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 (‎2.15) 

 

For clarifying, a comma followed by subscripts denotes differentiation with respect to the 

subscripts, i.e.,
x

M
M xx

x,xx



 , and so on, ),( yx nn denote the direction cosines of the unit 

Normal 
_

n  on the boundary  , and  ds  denotes the incremental length along the boundary. 
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If the unit normal vector is oriented at an angle   from the positive x-axis, then cosxn
 

and sinyn . Since w  is arbitrary in 
o , it is independent of xw  / , and yw  /  on 

the boundary  , it follows that 
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o  (‎2.16) 

 

The above equation represents the equilibrium equation for rectangular plates under 

uniaxial load. 

The kook's law can be applied to the isotropic material of the plate in this case, and by 

applying the relation between stress and strain can write as follows: 

 
yyxxxx

E



 




21
 (‎2.17) 
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E
G 


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)1(2 
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(‎2.19) 

 

Where E is the Young’s modulus, G the shear modulus, and ν the Poisson’s ratio. By 

substituting eqs. (‎2.17) into eqs. (‎2.9) and carrying out the integration over the plate 

thickness, one obtains 
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Where D is the flexural rigidity and is given by 
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)1(12 2
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D  (‎2.23) 

 

By substituting eqs. (‎2.20), (‎2.21) and (‎2.22) into eq. (‎2.16), yields the governing equation 

for buckling of plate subjected to a uniaxial load: 
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 (‎2.24) 

 

The above equation was derived under certain assumptions where the behavior of the 

material deals as ideally elastic way i.e., without imperfections such as geometrical defects 

or residual stresses. In addition to that, the plate deformation is assumed to be small. As a 

result, the plate shows that there is no lateral deformation till the critical load or stress. 

Figure ‎2.4 shows that the deflection might be either negative or positive, according to the 

coordinate system of the plate, and there are no lateral deformations till the critical stress 

level. 

 

Figure ‎2.4 System bifurcation at point A 

 

The investigation of stability of thin plates is normally to achieve the equilibrium of the 

system by using the energy method which is known as the principle of stationary value of 

the total potential energy of the plate. According to the correlation between the internal 

energy bending and the external work which done by the forces acting in the middle plane 

of the plate the energy solution was built on them. The bending strain energy stored in a 
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small element of linear elastic material due to the applied bending and twisting moments 

are as follows: 

dxdy
y
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 (‎2.25) 
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The bending moments and twisting moment can be expressed in terms of lateral 

displacement and are as follows:  
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The substitution into eqs (‎2.27) by eqs (‎2.25) and (2.26) yields the following equations: 
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The superposition method that can be applied here in order to obtain the resultant of the 

strain energy and is following 

2

b

1

bb dUdUdU   (‎2.32) 

After the integration the above equation over the plate, 
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The foregoing equation (expression) represents the strain energy which stored in the 

deformed plate, where the work conducted by the externally applied forces can be 

describing by 
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According to the previous assumptions, the two last equations are only valid for small 

deformations. There are two cases concerning the stability of the plate in question at the 

bifurcation point, according to Timoshenko and Gere ‎[21] 

a. if U>T, the flat form of equilibrium of the plate is stable, 

b. if U<T, the plate is unstable and buckling occurs. 

However, the critical load amplitude may be found by setting 

TUUT   (‎2.35) 
 

The change in energy potential must have a minimum value for a stable equilibrium to be 

solved. This condition may be used for the differential equation derivation from of the 

equilibrium, equation (‎2.24). Another method to solve the problem is to apply an 

expression for the lateral deformation of the plate. 

2.4.1 BUCKLING OF SIMPLY SUPPORTED PLATES UNDER UNIFORM 

COMPRESSION (SSSS) 

For the simply supported edges plate case, the equation has solved by Bryan ‎[1]‎[17]. 

Timoshenko ‎[18] has solved different other cases with different boundary conditions.  The 

elastic critical load in a complex structure is one difficult part in calculation in particular 

with stiffeners. Lundquist and Stowell ‎[22] extended the work of Timoshenko and Gere 

‎[21] for the elastic plate buckling, by introduced practical methods for working out the 

stability of assembled plates. Kollbrunner and Hermann‎[23] have been examined the CSSS 

plates. The results found that when the tension edge of the plate is clamped edge, the 

critical load factors do not differ greatly compared with those which have both edges 

simply supported. In order to solve the buckling problem of ESSS plates, the Lagrangian 
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multiplier is employed by Schuette and Mcculloch  ‎[24]. The Galerkin’s method has been 

used by Walker ‎[25] to give precise values of critical load for a number of the edge 

conditions as noted before. Xiang et al. ‎[26] applied the Levy’s method to work out the 

elastic buckling of uniaxially loaded rectangular plate with an internal line hinge. The 

method succeeded in presenting the exact solution for several different boundary 

conditions, for instant CSCS, SSCS, SSSS, FSSS, and FSFS plates. The variety of 

boundary conditions considered include (i.e. CSCS, SSCS, SSSS, FSSS, ESSS,S- simply 

supported edge, F-free edge, C-clamped edge and E-elastic). In addition to the buckling 

analysis, some other researchers have also analyzed the vibration of plates which subjected 

to in-plane stress field such as Bassily and Dickinson ‎[27], Kielb and Han ‎[28], Kaldas and 

Dickinson ‎[29], Leissa and Kang ‎[30], Sukajit and Singhatanadgid ‎[31]. Bifurcation 

buckling may be seen as a particular instance of the vibration problem; that is, determining 

the in-plane stresses which cause vibration frequencies to bring down to zero. The 

“effective width” solution was based on von Kármán et al. ‎[32] and the experimental 

corrections of Winter ‎[33]. Notably, both Chilver and Harvey ‎[34] properly included the 

interaction of elements in determining the local buckling stress. As mentioned earlier, 

Buckling phenomena often occur without advance warring to any structure which includes 

different slender parts, cross sections that have to be dealt carefully to avoid unexpectedly 

fail. According to some researchers, one Theodor von Kármán ‎[32] states that the local 

buckling is based on the effective width to length. George Winter ‎[33] introduced a new  

modified issue of the effective width concept followed to the original version of  Theodor 

von Kármán. In determining the local buckling stress, the interaction of elements is included 

Chilver and Harvey  ‎[34] Moreover, to increase local buckling Chilver ‎[35] states that for 

lipped open channels, the reinforcing lips should be sufficiently stiff. During the years, the 

column research focused on the interaction between local and overall (i.e, global) buckling 

modes. Kalyanaraman et al. ‎[36] investigated a work on unstiffened elements while 

Desmond ‎[37] on intermediate and edge stiffeners. Figure ‎2.5 shows a plate subjected to 

uniformly compressive distributed forces in x-direction. By applying a general case wi th  

applied loads which are acting in all the in-plane direction. To determinate the critical load 

of the plate in the equation is simplified to only with uniaxial forces which are acting in x-

direction. Since the only load applied to the plate, in the form of a uniform distributed 
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compressive force, acting along the edges 0x  and ax  , the rest of the external applied 

loads according to eq. (‎2.24) equals to zero: 

0 xyy NN  (‎2.36) 

The boundary condition which applied to constrain the plate leads to the following: along 

four edges 0x  and ax  , 
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Figure ‎2.5 Simply supported plate under uniform compression load, a. Dubas & Gehri 

‎[38], b. FE model 

Along three edges 0y  and by  , 
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By applying a double trigonometric Fourier series on the deformed shape of simply 

supported plate and the boundary conditions may be described on the following form   
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Eq. (‎2.39) represents the lateral deflection that can be substituted into eq. (‎2.33) and eq. 

(‎2.34) based on the conditions in eq. (‎2.36) and (‎2.37) eq. (‎2.38) and by using eq. (‎2.35), 

we get a new relation after some mathematical procedures,   

0sinsin.
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In order to apply the eq. (‎2.40) for all positions on the plate, the simplified equation will be 

as the following, 
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Timoshenko and Gere ‎[21] state that the lowest value of critical load is reached when the 

plate buckles in a form such that one half sinus wave, hence the integral parameter 1n . 

Then the last equation may be eliminated, such as 
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Where the parameter m  describes the number of the half waves over the plate length in x-

direction, 
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The parameter 
crk is the buckling load coefficient with dimensionless and is given by 
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By instating eq. (‎2.23) for the flexural rigidity of the plate in eq. (‎2.44), we get the critical 

stress of the plate as,   
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From eq. (‎2.45) the buckling coefficient 
crk  is a function of the plate width b, length a  and 

the number of sinus half waves over the length, m. Figure ‎2.6 shows different values of the 

plate width to length ratio ba /  with 
crk . 

 

Figure ‎2.6 The buckling load coefficient for a simply supported thin plate, Timoshenko 

and Gere ‎[21] 

 

As for a rectangular plate, having an aspect ratio 3/ ba  (i.e. a=240mm, b=80mm), the 

buckling mode in which the lowest value of the critical buckling stress (with 0.4crk ) 

will be divided the plate into three units of squares as shown in Figure ‎2.7, and having an 

equally large buckling in each unit (i.e. 3m ). 
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Figure ‎2.7 Representative buckling mode of a rectangular plate, having an aspect ratio 

a/b=3 by FE model 
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2.4.2 BUCKLING OF SIMPLY SUPPORTED-FREE PLATE UNDER UNIFORM 

COMPRESSION (SSSF) 

As illustrated in Figure ‎2.8, a flat plate is simply supported along one longitudinal edge 

and two transverse edges, and is free along the fourth edge. The buckling differential 

equation of equilibrium of the plate is still the same as in eq. (‎2.45). 

 

 

 

Figure ‎2.8 Buckled pattern of a plate free along one edge by FE model 

 

The shape of the buckling which satisfies this difference, however, based on the 

approximately square buckles of the simply supported plate as shown in Figure ‎2.7. The 

dissimilar boundary conditions along the free edge reason, the plate buckles with a one 

half wave along its length as shown in Figure ‎2.8. Although, the elastic buckling stress 

solution may still be expressed in the form of eq. (‎2.24), in which the buckling coefficient 

crk  is estimated by eq. (‎2.47) and as shown in Figure ‎2.9. 
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Figure ‎2.9  Buckling coefficients of plate free along one edge 

 

2.4.3 LINEAR BUCKLING OF STIFFENED PLATES 

The main feature of buckling is that the load at which it occurs depends basically on some 

parameters such as (elastic modulus E, the cross-section shape and properties), and it is 

virtually independent of the material strength. Stiffened plates have been widely utilized as 

essential auxiliary components for many basic frameworks subjected to compressive loads, 

and are may be exposed against various types of buckling phenomena. Based on and 

according to the investigative analysis of stiffened plates and structures, two essential sorts 

of buckling modes may be considered. The global buckling mode is one possible mode, 

which usually occurs for the entire stiffened plate, which the second one is called local 

buckling mode which occurs for the stiffener or the main plate. Murray ‎[39] and Bonello  et 

al. ‎[40] have been discovered four largely familiar forms of structural failure in stiffened 

plates: (i) major plate originated global buckling; (ii) stiffener originated global buckling; 

(iii) local buckling of the stiffener or the major plate and (iv) stiffener tripping, which is 

connected with the plastic collapse of the stiffeners in a localized mechanism. Global 

buckling is described by instantaneous buckling of the stiffener and the major plate 

performing as one single curvature and usually referred to as Euler buckling.  
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The shear buckling of infinitely long plates has studied by Cook and Rockey ‎[41] with  

clamped and simply supported boundary conditions. Their tests conducted on a closed 

section of transverse stiffeners. The obtained results showed that the buckling resistance of 

the web plates was significantly improved and the researchers proposed to use such as 

stiffeners. With regard to the shear buckling of  girders and  in use of transverse stiffeners, 

a  sequence of tests conducted by Nishino and Okumura ‎[44] in order to work out the safety 

coefficients where the stiffeners placed at girders' boundaries. The depth-to-thickness was 

one of their changing parameters and noticed that after the web buckling load all test 

girders have significant excessive carrying capability. The collapse behaviour of the plate 

girders with transversely and longitudinally attached stiffeners. The fail behaviour of plate 

girders has discussed by Komatus ‎[43] with use transverse and longitudinal stiffeners 

where for four types of modes have provided in order to determinate  the ultimate strength 

of plates. The influence of flange stiffness on the buckling patterns demonstrated by 

Skaloud ‎[44] for the early work of Rockey and Skaloud ‎[48] and also on the failure 

mechanism of steel web at high with-to-thickness ratio. Another factor which has a crucial 

effect on the buckling behaviour is the variation of stiffeners geometry. Plank and Williams 

‎[46] have studied the behaviour of the stiffened panels with different stiffener geometries 

subjected to combined shear and compressive loads. Consequently, the influence of the 

different stiffener geometries on the panels was obvious through the interaction curves. 

Consequently, in general, the purpose of both transverse and longitudinal stiffener is to 

enhance the critical buckling load, stress and it has to be stiff enough to be able to remain 

straight structure members.  

2.4.3.1 TRANSVERSE STIFFENERS 

Transverse stiffeners are often used to reinforce and support the plates or columns at their 

webs to increase buckling capacity and to avoid rapid fails. The diagonal tension field 

theory for stiffened webs has been developed by Wagner ‎[44]. In order to use the transverse 

stiffeners in the best  manner in terms of increase the resistance of the structure to buckling, 

there are some conditions should take into  account:  First, the moment of inertia  of the 

stiffeners must be minimized as possible to maintain the almost zero deflection of the line 

when buckling is appeared. Secondly, the required stiffeners' area is minimized to give 

sufficient strength. The influence of  transverse stiffeners on the axial force due to tension 

or compression field has been demonstrated by a number of studies which made by Lee et 
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al. ‎[48]‎[49], Horne and Grayson ‎[50], Stanway et al. ‎[51], Rahal and Harding ‎[52]‎[53]. The 

largest demand on transverse stiffeners according to Kim, Jung and White ‎[54] in straight 

curved  plates were when the web panel has a square shape. Figure ‎2.10 shows the beam-

column with transverse stiffeners which used in this study. 

2.4.3.2 LONGITUDINAL STIFFENERS 

Longitudinal stiffeners are fundamental structural components in plates, beam-columns and 

frames. The primary purpose of longitudinal stiffeners between two adjacent transverse 

girders is to produce compressive longitudinal stresses by hull girder bending moment. The 

location, dimensions of longitudinal stiffener and attached plates have an effect on the 

buckling modes from local or global buckling of the panel could be occurring. Several 

researchers were devoted to the buckling study of stiffened plates, beam-columns. A 

research has made by Fujikubo and Yao ‎[55] to study the restraining effect of the 

longitudinal stiffeners on the edges of the plate between stiffeners. A series of Elasto-

plastic large deflection analyses has developed by Yao et al. ‎[56] for stiffened panels with 

flat stiffeners. Dubas ‎[57] established that the optimum position of the longitudinal stiffener 

on a plate subjected to uniform bending. The requirements of minimum stiffener were 

defined by Chwalla  and Kromm ‎[58]‎[59] where both of them considered longitudinally 

stiffened plates under uniform bending. A series of charts have been provided by Kloppel 

and Scheer ‎[60], which include various stiffener positions and loading conditions for 

simply supported longitudinally stiffened rectangular plates. Massonet ‎[61] concluded that 

an increase of 25%  in the safety factor can be obtained in the resistance of the girders 

using longitudinal stiffeners. The interactions of the web, plate, flexural and torsional 

buckling of Z-stiffeners have studied by Van der Neut ‎[62] where the strip theory is used. 

In addition to Van Der Neut, Hughes and Ma ‎[63] have also studied the interaction of plate, 

web, beam-column type flexural buckling, and torsional buckling of stiffeners by the same 

method. Figure ‎2.10 shows the beam-column with longitudinal stiffeners which used in this 

study.  
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Figure ‎2.10 Beam-column with transverse &longitudinal stiffeners ‎[64] 

 

2.5 LOCAL BUCKLING 

As previously described the plate,  beam-column or any assembled structure sections are 

commonly have a thin thickness compared with their width or length and based on that the 

local buckling may occur before section yielding. The fundamental phenomenon of local 

buckling is shown in Figure ‎2.11 which shows the real local buckling behavior in an 

unstiffened plate, beam-column and frame structure where refer to flexural displacement of 

the plate elements. It is clear from the figure that the line junction between elements of the 

plate remains still straight. Consequently, the local buckling may occur in compression, 

shear or bending. As mentioned earlier, buckling phenomena often occur without advance 

warring to any structure which includes different slender parts, cross sections that have to 

be dealt carefully to avoid unexpectedly fail. In general, the local buckling is particularly 

common and also is characterized by wavelength which relatively short and frequent of 

thin-walled elements. An investigation has made by Nishino et al. ‎[65] on the fabricated 

square plates welded together. Research work was to clarify the effect of residual stresses 

influence against local buckling. Dwight et al presented tests on the local buckling for 

rectangular square boxes. The tests were in previously tested and reported by Dwight and 

Moxham ‎[66] with the aim of filling gaps.  
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(a) 
 

(b) 

 

(c) 

Figure ‎2.11 Typical local buckling modes of: a)  plate, b) beam-column, c) frame structure 

 

2.6 GLOBAL BUCKLING 

Global buckling or overall buckling is another mode of buckling in which compression 

members bend curvedly about its symmetric point. This type of buckling can be flexural, 

torsional, or flexural-torsional. The member deflects laterally until the plate or column 

becomes unstable as it approaches the critical buckling load. Some examples of global 

buckling modes of the beam-column and the frame structure without stiffeners in pure 
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compression predicted by finite element modelling are shown in Figure ‎2.11. In addition to 

that, global buckling mostly occurs in long columns. 

 

(a) 

 

(b) 

Figure ‎2.12 Typical global buckling modes of: a) beam-column, b) frame structure 
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CHAPTER  3 
 

3. BUCKLING ANALYSES WITH FINITE ELEMENTS 

 

3.1 INTRODUCTION 

The finite element method is one of powerful numerical methods and the most broadly used 

for solving a lot of problems in different engineering fields. One of the basic purposes of 

the finite element is to predict the behavior of the structure under consideration, to estimate, 

understanding the strength of the structure and its failure mechanisms. In general, the finite 

element with recent complications in engineering for solving problems such as geometries, 

material behavior, loadings and constraints, has significantly improved. The computational 

tools that perform specific tasks by using the finite element have widely developed with 

very superb versatility. Finite element method is a numerical method that requires the 

solution of various simultaneous algebraic equations in order to solve many different 

complex engineering problems. During the years, the finite element method became more 

common and it represented many different and significant developments in the history of 

computational methods. The theoretical mechanics and science have changed into the 

practical by applying the finite element method which became the essential tools for a huge 

number of technological developments. At the beginning of the 1940s was born a theory 

called FEM theory, where the first formula which was developed as matrix method for 

structural analysis. The first assembly of triangular elements and the minimum of potential 

energy to torsion problems was introduced by Courant ‎[67]. Furthermore, the Finite 

Element expression was introduced by Clough ‎[68] in his paper which was cooperated with 

Turner, Martin and Topp . Their study focused on the assembled complex structures in 

terms of their stiffness and deflection. Twenty years thereafter, the finite element method 

started again in enhancing by some researchers and scientists as Zienkiewicz ‎[69]‎[70], 

Hinton and Owen ‎[71] to more general for many different engineering problems. Laplace 

and Poisson’s equations which used to solve problems have been applied by Zienkiewicz 

and Cheung ‎[72] in order to solve  by finite element method. Crisfield ‎[73] carried out the 
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modeling and solution of nonlinear problems. In the finite element process, the first thing is 

to simplify the actual structure. In order to do this, the structure is discretised or meshing 

into a set of finite elements. The connecting points where finite elements may be connected 

together are called nodes (nodal points). Afterwards, the mathematical model is made for 

analysis. In the finite element model, the material properties, loads and constraints 

represent the full and real structure. Usually the finite element methods are used to validate 

or find a solution for the analytical methods or in case of complex problems for any type of 

structures. Although, the basic assumptions for both analytical and numerical methods are 

identical but the way of the solution is different. The basic step in the finite element 

analysis of any structural problem is the formulation of the equations of problem which 

called a shape function. In the finite element method, the shape function means the 

deflection function which is usually assumed for each element as the first or second order 

polynomial. The whole structure is the effect of displacement of each element of the final 

deflection. In order to apply a program based on the finite element method as a numerical 

solution or validate the theoretical analysis, it is essential to generate an appropriate model. 

The last step is in this technique, the real structure is transformed into a finite element 

model by employing pre-processor programs (e.g. ABAQUS, ANSYS etc.) to provide an 

input file to a FEM solver program in order to perform the desired analysis. In this chapter 

some basic knowledge of the finite element methods is described. The main aim of using 

the advanced finite element solution procedures described in the next sections is to show 

and develop the reliable and recent finite element simulation strategies. The novel 

approaches are used in the subsequent chapters to generate various models for the thin 

plate, the beam-column and frame elements structural in order to precisely predict their 

buckling behavior with an in-depth understanding. Figure ‎3.1 illustrates the task's sequence 

steps in finite element method, from the realization of a technological problem to 

technological problems. As known, the numerical solution usually is an approximation 

especially for a complex model, whereas for a simple problem, the analytical solution is an 

exact.  Therefore, in both cases the solution has to be understood or interpreted for the 

original physical problem. The main part in finite element is the mathematical model task, 

because the risk of the wrong model leading to incorrect results. 
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Figure ‎3.1 The sequence of steps in the solution of a technological, after Hattel in ‎[74] 
 

 

3.2 FINITE ELEMENT METHODS SOLUTIONS 

3.2.1 LINEAR STATIC ANALYSIS 

In order to analyze statically thin-walled structures, finite shell elements seem to be the 

appropriate choice due to the flexibility in the degree of freedom in the shell element, so as 

to map smoothly deformations. The connection between all elements to each other is at grid 

points with six degrees of freedom in terms of rotations and translations. Finite element 

method depends on chosen of element type, an efficient mesh density and appropriate 

boundary conditions,  all of these factors play a significant role in terms of obtaining the 

most accurate results close to the reality. The linear FE method is most commonly applied 

technological aid for buckling and stress analysis in the first step design stages of complex 

structures. In the mechanic and also in all engineering fields the linear finite element 

method considers the basic expressions and equations and has become an essential part in 

the analysis. There are some advantages of linear analysis of the finite element method 

which are usually fairly obvious. Without the need for complicated numerical iterative 

schemes and increments, the simple direct solution may be obtained. Moreover, Hilton ‎[74]    

has made a study for superimposed various load cases, boundary conditions and the set of 

constant material in order to illustrate and able to form the behaviour are kept at minimum. 

Wullschleger ‎[75] states that " The mostly applied FE method for structural stability 

investigations consist of a linear static stress analysis with subsequent linear eigenvalue 

extraction, although the scheme of this linear analysis method may be traced back to a 

nonlinear FE formulation". In order to apply the static analysis on the structure some 

assumptions are made in terms of motions under certain types of loadings and boundary 
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conditions.  The basic objective of static analysis is the equilibrium system or structure 

between the applied and internal loads which should be equal to the each other and 

expressed as;  

0}{}{}{}{  RPRP  (‎3.1) 

Where {P} and {R} are the external and internal load vectors respectively. As mentioned 

before, the factors which effect on the structure to resist the applied loads depend on the 

structure' material and its geometry. For static analysis, and regarding to the finite element, 

the internal loads can be expressed: 

}]{[}{}]{[}{ ukPukR   (‎3.2) 

Where {u} is the displacement vector and [k] is the stiffness of the material. With the 

equilibrium of structure and when the stiffness property is known, the displacement of the 

structure can be worked out as follows: 

}{][}{ 1 Pku   (‎3.3) 

In order to find a solution for the unknown parameters in the above equation, the finite 

element program task is: to find the element stiffness matrices [k] by using the given data 

for the geometry, material properties and element properties; to gather the entire stiffness 

matrices [k] into a total stiffness matrix [K] of the structure and then to determine the 

displacement {u} in equation (‎3.3). One thing is advantage in the linear static analysis, the 

total stiffness of the structure does not change and also the stiffness matrix is done once. By 

applying the loads and boundary conditions to constrain the mathematical model which is 

generated the matrix equation can be solved. Once obtained the displacements, the rest of 

the other unknowns can be calculated such as the reaction forces stresses and strains.  The 

post-processing program ABAQUS software is used to represent the obtained results to 

create it easily visualized. This step is very important since the output data (i.e. results) can 

be immense. Figure ‎3.2 shows the entire process of carrying out linear static analysis in 

ABAQUS program. 
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Figure ‎3.2  Linear static analysis in ABAQUS 

 

3.2.2 LINEAR BUCKLING ANALYSIS METHOD 

This section explains the types of finite element solution sequences of ABAQUS for linear 

buckling, which are employed to analyze the thin plate structures and discusses in brief the 

formulation of linear buckling analysis. Linear buckling is the most common analysis of the 

structural problems, and known as eigenvalue-based buckling analysis. The buckling mode 

frequently presents the shape of the structure which used to evaluate the elastic stability 

associated with the structural systems. Structural equilibrium is a main point in the 

engineering design, and the load type which is applied in such way in terms of static or a 

combination that produces the deflections in the structure leads to instability. From finite 

element point of view Campbell et al. and Lee ‎[76]‎[77] state that the procedure when 

performing a buckling analysis of a structure consists of three steps. First, a linear buckling 

analysis is carried out and it describes by Cook et al. ‎[78] as an eigenvalue problem which 

involves the solution of a homogenous algebraic equation system whose smallest root 
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eigenvalue corresponds to critical buckling load and the associated eigenvector represents 

the first buckling mode. Using the standard finite element approach, the governing equation 

for buckling, then takes the form of the standard eigenvalue problem: 

ref
RDK }{}]{[   (‎3.4) 

Where  K  is the stiffness matrix,  D  is the displacement and  R ref   is an arbitrary load on 

the structure. When the displacements are known, the stresses can be calculated for the 

used forces,  R ref   which can be used to form the stress stiffness matrix [Kσ]ref  . Since the 

stress stiffness matrix  [Kσ]ref   is proportional to the load vector  {R}ref  , an arbitrary stress 

stiffness matrix and an arbitrary load vector {R} may be defined by a constant λ as: 

refKK ][][    when   
refRR }{}{ 

 
(‎3.5) 

The conventional stiffness matrix  K  is unchanged by the applied load, because the 

problem is presumed linear. When the buckling displacement increment  {δD}  takes place 

relative to displacements  {D}ref   of the reference configuration. Because, external loads do 

not change at a bifurcation point, 

refcrrefrefcr RDKK }{}){][]([  
 (‎3.6) 

 

refcrrefrefcr RDDKK }{}){})({][]([  
 (‎3.7) 

By subtraction of eq. (‎3.6)  from eq. (‎3.7), gives an eigenvalue problem of eq. (‎3.8) where 

the smallest root  λcr  defines the smallest load and there is a bifurcation, eq. (‎3.9) 

}0{}){][]([   DKK refcr
 (‎3.8) 

 

refcrcr RR }{}{   (‎3.9) 

Figure ‎3.3 shows the procedure steps of the buckling analysis which made by Felippa ‎[80]  

using finite element methods. The first input data to start the analysis is the number of load 

combinations n that picked based on the given problem (i.e. compression forces, moments 

or shear), subsequently the combination of load which indicates by i is applied to the 

structure on specific positions. When the first phase is completed the second phase will 

start for the static analysis. As previously mentioned that the solution loop will start to 

solve the static analysis step in order to work out the unknown parameter in eq. (‎3.4).  

The majority of commercial finite element programs are used two methods to work out the 

integration element stiffness matrix which is usually performed numerically. These 
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methods are Gauss integration or Simpson integrations, which have a good accuracy and 

computational time. Once the static analysis is completed and to complete the solution loop 

is to calculate the stress stiffness matrix ][ K which is given by  

      
Ve

Te dVGSGK 2


 (‎3.10) 

 

Where the [G] is obtained from shape functions by appropriate differentiation, and [S] 

contains the initial stresses which are obtained from the static analysis. Finally, the global 

stress stiffness matrix is assembled as the global stiffness matrix. Therefore, two unknown 

required parameter are now computed, the linear buckling problem is ready to determine 

which is indicated by eq. (‎3.8).  

 

Figure ‎3.3  Flowchart of a standard procedure for linear buckling analysis with multiple 

load combinations n, when using the finite element method. 
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In order to solve eigenvalue problem, the built-in ABAQUS is used, which is quite quick 

and reliable. However, it is always possible and sometimes desirable to create a faster 

eigenvalue solver that is designed for the specific case to be solved. Two Eigen solvers are 

available in ABAQUS to extract the eigenvalue, namely the Lanczos iteration and the 

Subspace method. Lanczos and Subspace iteration methods are applied in ABAQUS to 

solve Eigen value problem and also widely used in FE programs. The Lanczos method 

‎[80], is generally faster when a large number of  Eigen modes is required for a system with 

many degrees of freedom while the Subspace method ‎[81], be faster when only a few (less 

than 20) Eigen modes are needed. The second step of the analysis is nonlinear buckling 

analysis in which large deformations and geometrical and/or material non-linearities are 

included. This type of analysis may include some imperfections after a linear buckling 

analysis. Post buckling analysis is the third step that may be carried out for investigating if 

the structure continues to carry the load after it has reached its critical limit or if it loses all 

its stiffness and collapses. In a general eigenvalue buckling problem is looking for the loads 

that lead to the model stiffness matrix to be singular and has nontrivial solutions. In this 

study only a linear buckling analysis is considered, because the analysis is done for  “stiff” 

structures, so it is not  necessary to include the effect of geometry change in establishing 

equilibrium for the base state. As a result, the important point in this numerical solution of 

a linear buckling analysis is the assumptions that assumed where a perfect geometry is used 

and therefore the obtained critical buckling. The main thing that should be pointed out is to 

understand that this numerical solution of a linear buckling analysis was assumed that the 

geometry is perfect without any imperfections. Therefore, the obtained critical load will be 

higher than the real critical load with geometry imperfection. 

3.2.3 FINITE ELEMENT DISCRETIZATION 

As is very common, the number and type of distribution of elements in FE method have a 

significant influence on the obtained results of calculations. The model discretized with a 

few or not sufficient number of elements is stiffer than the original structure, and this leads 

to unreal or wrong results. On the other hand, a huge number of elements used for 

discretization, needs to a high computer speed and  leads to time-consuming calculations. 

Another factor should be taken into account, is the convergence analysis, the number of 

element density is chosen on the basis of the solution. As a result, an increase in the number 
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of elements increases the number of nodes and degrees of freedom for the model, which 

allows for mapping the highest buckling mode. Full three-dimensional FE model along 

with finite element statistics for the flat plate developed in ABAQUS is shown in Figure 

‎4.2. The element type in buckling analysis that used is S4R (linear reduced integration 4-

node doubly curved element). Figure ‎3.4 shows two and three dimensional shell elements 

which mean that it could be used. A two dimensional element is used when forces or 

moments are applied in one plane, while a three dimensional elements which can be used 

when forces or moments are in three perpendicular directions. Further details about the 

selected elements may be found in ABAQUS manual ‎[82]. 

 

Figure ‎3.4 Typical two & three dimensional elements with nodes 
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3.2.4 FORMULATION AND CALCULATION OF FINITE ELEMENT MATRICES 

The calculation of the finite element matrices is a very important phase in the finite element 

solution. The main idea of this section is to achieve the relationship between the element 

displacements at any point and the element nodal point displacements directly by using the 

interpolation functions.   

3.2.4.1 THE STIFFNESS MATRIX OF SHELL ELEMENT 

The relation between displacements and applied loads is given by the global stiffness 

matrix ][K . As eq. (‎3.11) shows that stiffness matrix is defined with an integration of the 

strain displacement matrix ][B  and the matrix of elastic stiffness ][E . 

 dVBEBk Te ]][][[][  (‎3.11) 

Where ][ ek is the element stiffness matrix for one element only and ][B  is a matrix that 

defines the relation between the strain }{ , and the displacement }{u , for an element as 

shown in eq. (‎3.12). 

}]{[}{ uB  (‎3.12) 

 The global stiffness matrix ][K  is represented for entire assembled elements. By a 

coordinate transformation ]][][[][ ' TETE T , it can possible to obtain the matrix ][E  from

][ 'E , ][T where is the transformation matrix. There is a case that leads to equality between

][][ 'EE  , this condition is when all elements are planar and defined in the same plane. 

The eq. (‎3.13) represents the ][ 'E for an isotropic element,  
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Where  )1/(' 2vEE  ,  )1(2/ vEG  , 6/5' GG   and E is the Young’s modulus while  v  

is the Poisson’s ratio. Based on the finite element, the variation of transverse shear strain 

through the thickness direction is represented by a factor equal to 5/6 as shown in ‎[83]. 

With the existence of the plane stress assumption of the shell element, this led to zero 

values in the third column of the eq. (‎3.13). 

3.2.4.2 STIFFNESS MATRIX OF A BAR ELEMENT 

For a two node bar element as shown in Figure ‎3.5, the only possible variation of the 

displacement u(x) is linear, and expressed by the interpolation formula: 

 

 

Figure ‎3.5  Two nodes bar element 

 

Deflection (displacement) is approximated by 
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Where ][N  the shape function is 
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This can be written as a scalar product 
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Where 1q
 and 2q

 represent the nodal degree of freedom in the local coordinate system, and 

the superscript e denotes the element number.  

For the calculation of element stiffness matrix, it needs to find the element strains 
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In general, the strain-displacement transformation matrix is a function of the natural 

coordinates, and it therefore evaluates the stiffness matrix volume integral by integrating 

over the natural coordinates.  


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Te dVBDBk ]][[][][ )(
 (‎3.21) 

Then, evaluating eq. (‎3.21), it obtain the well-known matrix as in eq. (‎3.22) 

dx
ll

E

l

lAk
l

x

e


 



























0

)( 11

1

1

][  (‎3.22) 

 















11

11
][ )(

l

AE
k e

 (‎3.23) 

 

 

 

 

 



Doctoral thesis 

42 

3.2.4.3 STIFFNESS MATRIX OF A BEAM ELEMENT 

Consider a two-dimensional beam element with 2-nodes depicted in Figure ‎3.6. The 

element has two nodes; each node has four degrees of freedom which are indicated by q1, 

q2, q3 and q4. Due to the existence of four nodal displacements, the cubic displacement is 

assumed for (x) as illustrated in Figure ‎3.6 and expressed as following, 

 

Figure ‎3.6  Two nodes beam element 
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Where 1 , 2 , 31  and 4   are constants and can be worked out by applying some boundary 

conditions: 
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By rewrite and substitution into eq. (‎3.24) by new symbols, it can be as following: 

)(

][)(
e

qNxv


  (‎3.25) 

Where ][N
 is given by  

][][
4321

NNNNN    

Where 
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And also 
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Figure ‎3.7 of  Figure ‎3.6 which shows the section plane of  beam under deformation, where 

the plane sections remained in the same plane after deformation based on the beam 

theorem. Therefore, due to the transverse displacement v, it can be expressed on axial 

displacement u as following: 

 

Figure ‎3.7 Deformation of a beam in x-y plane ‎[84] 

 

x

v
yu



  (‎3.28) 

Where y is the distance from reference axis (i.e. neutral axis) for single element, then the 

axial strain is: 


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Where the matrix [B] is defined as 

 )26()612()46()612(][
3

lxllxlxllx
l

y
B   (‎3.30) 

When ][][ ED  , the stiffness matrix of beam element can be written as following: 

  
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The final approximate solution becomes  
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Where 
Az

dAyI 2
 is the moment of inertia about z-axis. 

3.2.4.4 STIFFNESS MATRIX OF SPACE FRAME STRUCTURES 

A straight bar of an uniform cross section is formulated to model a frame element, which 

has capability to resist not only the axial forces but also the bending moments in the 

directions perpendicular to the axis of the bar. Therefore, a frame element is seen to have 

the properties of both beam and truss elements. Figure ‎3.8 shows the frame element with 

nodes labeled 1 and 2 at each end of the element. As mentioned above, a frame element 

contains both the properties of the truss element and the beam element. To construct the 

stiffness matrix for the frame element, it can be simply formulated by combining element 

matrices for beam and truss elements, without going through the detailed process of 

formulating shape functions and using the constitutive equations for a frame. In order to 

obtain the stiffness matrix of the frame element, the superposition is applied. The same 

steps which applied in previous cases for bar element will be done for space element.  


eV

Te dVBDBk ]][[][][ )(
 (‎3.33) 
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Figure ‎3.8  Frame element in space with twelve DOFs 
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3.3 CONCLUDING REMARKS 

This chapter has described an overview about the theoretical background of the finite 

element method and plate theory with particular focused on the linear buckling   analysis to 

analyse the response of the buckling structural system. The main emphasis has been upon a 

basic of finite element process by highlighting its various characteristics associated to 

buckling analysis.  

Linear static analysis and linear buckling analysis with finite element methods have been 

briefly presented. In order to obtain the equilibrium between applied forces on the nodal 

and internal generalized nodal forces, the linear static analysis has been applied. The linear 

behaviour structure is able to hold any amount of loading before reaching to the critical 

buckling point. Furthermore, before critical point any deformation in the structure 

disappears and system returns to its original shape without generating any imperfections or 

residual stresses. The linear static analysis has made upon some basic assumptions. The 

relationship between the applied load and resulting deflections assumed to be linear. The 

development of deflections is based on the theory of small displacement. Throughout the 

static analysis, the behaviour of the material is supposed to remain elastic. In order to 

determine the elastic stability of the element structures, the linear buckling analysis is 

applied or used. The ability of ABAQUS program is applied to perform linear buckling 

analysis. 
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CHAPTER  4 
4. THE BUCKLING BEHAVIOUR OF A THIN PLATE 

 

4.1 INTRODUCTION 

In this chapter, the finite element techniques and solution strategies, which are appropriate 

for the linear buckling analysis of thin-walled plates, have been developed. The buckling 

and ultimate strength of plates subjected to pure axial compression force is governed, to a 

largely extent, by different aspect ratio and boundary conditions. Therefore, the right choice 

of boundary conditions plays an important role in the analysis in order to get precise 

results.  Suitable constraints for each case of analysis will discuss in detail. Moreover, the 

solution strategies involving the selection of suitable solution parameters such as the 

element selection, load case and element discretization, etc. are comprehensively defined. 

The findings for each thin-walled section are discussed at length. In order to develop a 

detailed understanding of the critical buckling load of thin plates, the influence of different 

support boundaries on the critical buckling loads of the thin plates is thoroughly examined. 

In addition, the details of other important parameters involved in the simulation procedures 

that could potentially affect the critical buckling analysis are also explained, for instance 

aspect ratio of the plates and their thicknesses.  

4.2 FINITE ELEMENT MODELLING OF THIN PLATE 

4.2.1 GEO-METRIC MODELLING AND NUMERICAL ANALYSIS 

In this section the procedures and strategies of the finite element simulation are described 

which used to analyze the thin plate subjected to pure axial compression buckling load. In 

order to develop a finite element solution of a thin plate structure subjected to axial 

compressive load, three-dimensional finite elements should used because the model would 

capture the real structural behaviour including not only global effects of the member but 

also various local effects. Figure ‎4.1 shows fully geometry of the hollow beam-column, 

which fully used in the analysis later and a chosen plate specimen. in order to analyse the 

plate specimen, some parameters are varied. The length-to-width ratio (a/b) of the thin plate 



Doctoral thesis 

48 

is changed from 0.5 to 2.5 where b is 1.2m (constant) and while the plate thickness is 

changing from 15mm to 30mm to study their influence on the critical buckling load 

characteristics. The plate thicknesses chosen were such as to illustrate local buckling and 

global buckling behaviour of the thin plate under compression load. 

 

 

Figure ‎4.1 Typical geometry of a thin plate using in the study 

 

4.2.2 BOUNDARY CONDITIONS AND FINITE ELEMENT MESH 

The boundary conditions play an important role in the finite element modeling of any type 

of structures. However, both boundary conditions and load have very significant effects on 

the critical buckling mode. The main purpose of applying appropriate boundary conditions 

on the thin plates in both linear and nonlinear static analysis is to obtain the non-singular 

global stiffness matrix. To achieve the no singularity of the global stiffness matrix is only if 

the overall structure is motionless. Therefore, under applied load the movement of rigid 

body of the structure is prevented in all directions by applying appropriate displacement 

constraints at node (i.e. nodal displacement). However, when the boundary conditions 

allow to the structural elements to move which means that the structure can be deformed 

internally. However, when the boundary conditions allow to the structural elements to 

move which means that the structure can be deformed internally. The different results of 

the structural problems at different boundary conditions based on the change in support 

conditions are presented. The general-purpose elastic shell element is used in numerical 

simulations to discretise the model in order to build the finite element models for the Eigen 

value. Four nodded doubly curved shell element with reduced integration S4R ‎[81] and six 

degrees of freedom per node were used. In order to obtain the most optimized, accurate 
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solutions, the fine mesh has been chosen where the element size used for thicker plate is 

chosen and kept to be 0.025m. This element size chose through the appropriate 

convergence studies to ensure the accuracy of the solution. Figure ‎4.2 demonstrates the 

discretised configuration of the thin plate with mesh size equal to 0.025m.  This type of 

element shows the accurate solution and satisfactory performance in verification work 

previously described for both thin and thick shell elements ‎[85]‎[86]. The thin plate 

structure is applied statically by a distributed compressive buckling load of  1(N/m) at plate 

ends  as shown in Figure ‎4.3, where the load has a load factor with a default value of 1.0 

and the entire load case can be multiplied with any numerical or alternatively loads if 

required. The simplified von-Mises elastic-perfectly material model is used for the isotropic 

steel with an elastic modulus of 210 N/mm
2
, Poisson ratio of 0.3 and yield stress value of 

350 N/mm
2
.  

 

Figure ‎4.2 Mesh generation on the model of square thin plate 

 

 

Figure ‎4.3 A plate under uniform uniaxial compression load 
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4.2.3 FULLY SIMPLY SUPPORETED OF THIN PLATE EDGES UNDER COM-

PRESSIVE LOAD (SSSS). 

Thin plate subjected to a compressive loading is examined for the buckling analysis. The 

length-to-width aspect ratio (a/b) and thickness (tp) of the plate are considered in the 

analysis. The study was carried out to examine the effects of plate aspect ratio and its 

thickness on the critical buckling load. Figure ‎4.4 shows the critical buckling load against 

aspect ratio (a/b) for different thicknesses and it can clearly observe that a considerable 

amount of the critical buckling is present for the case of the plate corresponding to the 

width-to-thickness ratio (b/tp) in Figure ‎4.6. From the results that the critical buckling load 

of the plate is seen to increase significantly with increase in the plate thickness. On the 

other hand, the critical buckling load of the plate is also noted to increase substantially at 

a/b = 1.5, but it is of some significance to mention that the critical buckling load of the 

plate reduces with decrease in the plate thickness, due to essentially, to the higher critical 

buckling stress. The results obtained from finite element simulations have been thoroughly 

examined in order to develop a complete and in-depth understanding of the buckling 

behaviour of the thin plate. 

 
Figure ‎4.4 Length-to-width vs. critical buckling load for SSSS with different thicknesses,  

bconstant =1.2m 
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Figure ‎4.5 shows the deformation shapes and development of von Mises stresses during the 

loading in order to visualize the spread of elastic yielding with load and to determine the 

possible mechanism of critical buckling load. The blue and red colours on the deformation 

and stress spectrum represent the minimum and maximum respectively as shown in Figure 

‎4.5. Firstly, deformation is seen to appear at the plate centres corresponding to loading for 

all cases. However, the stresses are at the middle-centre surface for aspect ratio equal to 

0.5. The Von-Mises stresses corresponding to the aspect ratios (a/b) from 1 to 2.5 are seen 

to be at centres and edges corners of the plate on all surfaces. It is to be observed that the 

stress distribution does not remain constant on middle and corners surfaces. It is clear that 

the plate is not able to withstand any additional aspect ratio after 2.5 and with the increase 

in its thickness. Furthermore, it is noticed that from the deformation images of aspect ratios 

1.5 and 2 respectively, the number of buckling waves jumped from 1 to 2 as illustrated in 

Figure ‎4.5. It is clear from this that aspect ratio also taken place through plate thickness as 

well. From the observations made with respect to length-to-width aspect ratio (a/b) with 

load, it is perhaps most relevant to point out that critical buckling behaviour is closely 

associated with complete width-to-thickness. 

tp = 15mm where (bconstant =1.2m) 

a/b 

= 

0.5 

 

(a) 

 

(b) 

tp = 20mm where (bconstant =1.2m) 

a/b 

=  

1 

 

(a) 

 

(b) 
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tp = 25mm where (bconstant =1.2m) 

a/b 

=  

1.5 

 

(a) 

 

(b) 

tp = 30mm where (bconstant =1.2m) 

a/b 

=  

2 

 

(a) 

 

(b) 

Figure ‎4.5 Deformation images (a) and growth of von Mises stresses (b) with different 

aspect ratios and thicknesses of Figure ‎4.4 

 

The influence of change in the plate width-to-thickness ratio, (b/tp), on critical buckling 

load is highlighted in detail in Figure ‎4.6. The critical buckling load is plotted against the 

non-dimensional width-to-thickness, (tp/b), of the plate. Notable increase in the critical 

buckling load (maximum value) occurred at a/b=0.5 for all different of (b/tp) conditions is, 

of course, due to the short length of the plate.  However,  it can noticed for the other cases 

with (b/tp) greater than 1 to 2.5 that the finite element value of critical buckling load is 

found lower and close to each other. The decline of critical buckling load of the plate is 

seen to be quite slow with further increase in the plate length-to-width ratio, (a/b),  and it is 

noted that the value of the critical buckling load  drops instantaneously to just over 87% of 

its maximum buckling value at a/b=0.5. Consequently, thin plate with high width-to-

thickness ratio demonstrates buckling failure at very low levels of applied load. This is due 

to the fact that the buckling failure for high plate width-to-thickness ratio is considered a 

sudden geometrical phenomenon. Whereas on the other hand for low plate width-to-
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thickness ratio, the plate is not very flexible to permit the load easily unlike the slender 

plate due to the high value of plate thickness. 

 

Figure ‎4.6  Width-to-thickness vs. critical buckling load for SSSS with different length-to-

width ratios, (bconstant =1.2m) 

 

4.2.4 SIMPLY SUPPORETED FREE OF THE THIN PLATE UNDER EDGES 

COMPRESSIVE LOAD (SSSF) 

In this section the critical buckling load characteristics of three simply supported edges 

with one free edge with different length-to-width (a/b) and width-to-thickness (b/tp) aspect 

ratios are examined. Figure ‎4.7 shows the non-dimensional length-to-width vs. critical 

buckling load for (SSSF) with different plate thicknesses. It is evident from the presented 

curves in Figure ‎4.7 that the behavior of critical buckling of the plate with simply supported  

and free edges boundaries is slightly different to that of  fully simply supported boundary 

conditions. It is of note that the critical buckling load of the plate is noticed to be almost at 

same trend and level. However the critical buckling load of the plate is seen to be decreased 

enormously for all considered (tp) values compared to that with SSSS edges load boundary 

conditions. Contrary to the case of SSSS with normal edges load boundary conditions, the 

critical buckling load of the plate does not seem to increase significantly with increase in 
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the plate thickness. For aspect ratio a/b = 1.5 and more, the critical buckling load seems to 

be in steady condition without any notable increase or decrease due to the long length of 

the plate. For instance the difference in critical buckling load between a/b = 0.5 to 2.5 and 

at tp = 15mm is 1.29x10
6
 N with drop down to 83% of its pre-value at a/b = 0.5. As a result, 

critical buckling load begins to decrease with further increase in the length-to-width (a/b) 

ratio and it is to be observed that the loss of critical buckling load, is noticed to remain at 

steady trend at later stages of (a/b) ratio. The results obtained from finite element 

simulations have been thoroughly examined in order to develop a complete and in-depth 

understanding of the buckling behaviour of the thin plate. Figure ‎4.8 shows the deformation 

shapes and development of von Mises stresses during the loading in order to visualize the 

spread of elastic yielding with load and to determine the possible mechanism of critical 

buckling load. The blue and red colours on the deformation and stress spectrum represent 

the minimum and maximum values respectively. Firstly, deformation is seen to appear at 

the front plate centres corresponding to loading for all cases. However the stresses 

concentrated on the front-middle surface but almost it cover the majority of the surface at 

all aspect ratios. The Von-Mises stresses corresponding to the aspect ratios (a/b) from 0.5 

to 2 are seen to be at centres and edge corners of the plate on all surfaces. It is to be 

observed that the stress distribution does not remain constant on the middle surfaces. An 

interesting point was mentioned in the Figure ‎4.8 that the stress distribution for a/b=2 and 

greater than were on the free and load edges corners, of course, due to the long length of 

plate. It is clear that the plate is not able to withstand any additional aspect ratio after 

a/b=2.5 and with the increase in its thickness. It is noticed that from the deformation 

images of aspect ratios 0.5 to 2.5 respectively, the number of buckling waves remained 

only one wave as illustrated in the figure. It is clear from this that aspect ratio also taken 

place through plate thickness as well. From the observations made with respect to length-

to-width aspect ratio (a/b) with the load it is perhaps most relevant to point out that critical 

buckling behaviour is closely associated with complete width-to-thickness. 
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Figure ‎4.7  Length-to-width vs. critical buckling load for SSSF with different thicknesses, 

(bconstant =1.2m) 
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tp = 25mm where (bconstant =1.2m) 

a/b 

=  

1.5 

 

(a) 

 

(b) 

tp = 30mm where (bconstant =1.2m) 

a/b 

=  

2 

 

(a) 

 

(b) 

Figure ‎4.8 Deformation images (a) and growth of von Mises stresses (b) with different 

aspect ratios and thicknesses of Figure ‎4.7 

 

The influence of change in the plate width-to-thickness ratio (tp/b) on critical buckling load 

is highlighted in detail in Figure ‎4.9. The critical buckling load is plotted against the non-

dimensional width-to-thickness, (tp/b), of the plate. Notable increases in the critical 

buckling load (maximum value) occurred at a/b=0.5 for all different of (b/tp) conditions is, 

of course, due to the short length of the plate. However, it can notice for the other cases 

with (b/tp) greater than 1 to 2.5 that the finite element value of critical buckling load has 

found lower and close to each other. The decline of critical buckling load of the plate is 

seen to be quite slow with further increase in the plate width-to-thickness ratio, (b/tp), and it 

is noted that the value of the critical buckling load drops instantaneously to just over 83% 

of its maximum buckling value when  a/b = 0.5  and at all  b/tp values. Consequently, thin 

plates with high plate width-to-thickness ratios demonstrate buckling failure at very low 

levels of applied load. This is due to the fact that the buckling failure for high plate width-
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to-thickness ratio is considered a sudden geometrical phenomenon. Whereas on the other 

hand for small plate width-to-thickness ratios the plate is not very flexible to permit the 

load easily, unlike the slender plate due to the high value of the plate thickness.  

 

Figure ‎4.9 Width-to-thickness vs. critical buckling load for SSSF with different length-to-

width ratios, (bconstant =1.2m) 

 

4.2.5  SIMPLY SUPPORETED CLAMPED FREE OF THE THIN PLATE UNDER 

EDGES COMPRESSIVE LOAD (SSCF) 

In this section the critical buckling load characteristics of  two simply supported edges and  

one free- clamped edges with different length-to-width (a/b) and width-to-thickness (b/tp) 

aspect ratios are examined. Figure ‎4.10 shows the length-to-width vs. critical buckling load 

for (SSCF) with different plate thicknesses. It is evident from the presented curves in 

Figure ‎4.10 that the behavior of critical buckling of the plate simply supported  and free-

clamped  edges boundaries is slightly different to that of  fully simply supported boundary 

conditions. It is of note that the critical buckling load of the plate is noticed to be almost at 

same trend and level. However the critical buckling load of the plate is seen to be decreased 

enormously for all considered (tp) values compared to that with SSSF and edges load 

boundary conditions. Contrary to the case of SSSF with normal edges load boundary 

conditions, the critical buckling load of the plate does not seem to increase significantly 
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with increase in the plate thickness. For a/b=1.5 and greater than, the critical buckling load 

seems to be in steady condition without any notable decrease due to the long length of the 

plate.  As a result, the critical buckling load for SSCF has almost similar behavior with the 

case of SSSS, of course with some differences in its values in terms of maximum and 

minimum.The results obtained from finite element simulations have been thoroughly 

examined in order to develop a complete and in-depth understanding of the buckling 

behaviour of the thin plate. Figure ‎4.11 shows the deformation shapes and development of 

von Mises stresses during the loading in order to visualize the spread of elastic yielding 

with load and to determine the possible mechanism of critical buckling load. The blue and 

red colours on the deformation and stress spectrum represent the minimum and maximum 

values respectively. Firstly, deformation is seen to appear at the front plate centres 

corresponding to loading for all cases. However, the stresses concentrated on the front-

middle surface and on the back middle of the surface almost for all aspect ratios. It is to be 

observed that the stress distribution does not remain constant on the middle surfaces. An 

interesting point was mentioned in the Figure ‎4.11 that the stress distribution for a/b=2 and 

greater than was maximum at back edges of the plate, of course, due to the long length of 

plate. It is clear that the plate is not able to withstand any additional aspect ratio after 

a/b=2.5 and with the increase in its thickness. It is noticed that from the deformation 

images of aspect ratios 0.5 to 2.5 respectively, the number of buckling waves remained 

only one wave as in the previous case and as illustrated in the figure. It is clear from this 

that aspect ratio also has taken place through plate thickness as well. From the observations 

made with respect to length-to-width aspect ratio (a/b) with the load it is perhaps most 

relevant to point out that critical buckling behaviour is closely associated with complete 

width-to-thickness.  
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Figure ‎4.10 Length-to-width vs. critical buckling load for SSCF with different thicknesses, 

(bconstant =1.2m) 
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tp = 25mm where (bconstant =1.2m) 

a/b 

= 

1.5 

 

(a) 

 

(b) 

tp = 30mm where (bconstant =1.2m) 

a/b 

=  

2 

 

 

(a) 

 

 

(b) 

Figure ‎4.11 Deformation images (a) and growth of von Mises stresses (b) with different 

aspect ratios and thicknesses of  Figure ‎4.10 

 

The influence of change in the plate width-to-thickness ratio, (b/tp), on critical buckling 

load is highlighted in detail in Figure ‎4.12.  The critical buckling load is plotted against the 

non-dimensional width-to-thickness, (tp/b), of the plate. Figure ‎4.12 shows the obtained 

results with different length-to-width aspect ratio, (a/b). Notable increase in the critical 

buckling load (maximum value) occurred at a/b = 0.5 for all different of (b/tp) conditions is, 

of course, due to the short length of the plate.  However,  it can noticed for the other cases 

with (b/tp) greater than 1 to 2.5 that the finite element value of critical buckling load is 

found lower and close to each other. The decline of critical buckling load of the plate is 

seen to be quite slow with further increase in the plate length-to-width ratio, (a/b),  and it is 

noted that the value of the critical buckling load  drops instantaneously to just over 87%  of  

its maximum buckling value at all (b/tp) values. Consequently, thin plate with high width-

to-thickness ratio demonstrates buckling failure at very low levels of applied load. This is 
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due to the fact that the buckling failure for high plate width-to-thickness ratio is considered 

a sudden geometrical phenomenon. Whereas on the other hand for small plate width-to-

thickness  ratio, the plate is not very flexible to permit the load easily unlike the slender 

plate due to the high value of plate thickness. 

 

Figure ‎4.12 Width-to-thickness vs. critical buckling load for SSCF with different length-

to-width ratios, (bconstant =1.2m) 

 

4.2.6 CLAMPED FREE OF THE THIN PLATE UNDER EDGES COMPRESSIVE 

LOAD (CFFF) 

So far the buckling behaviour results associated with fully simply supported, simply 

supported free boundary conditions are discussed in detail however the critical buckling of 

the plate with regard to the simply supported clamped boundary conditions is also 

described for various web length-to-width and width-to-thickness ratios. In this section the 

critical buckling characteristics of one clamped edge of thin plate with different length-to-

width a/b ratio at different thicknesses is examined. The length-to-width a/b is plotted 

versus the critical buckling load as shown in Figure ‎4.13 for clamped free thin plate 

boundary conditions. The results presented are for different plate length-to-width (a/b) 

ratios and at different plate thicknesses. It is evident from the curves presented in Figure 

‎4.13 that the critical buckling response of the plate with clamped free edges boundaries is 
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entirely different to that of fully simply supported, simply supported-free and clamped 

boundary conditions. It is of note that the critical buckling load of the plate with clamped 

free boundary conditions is noticed to be almost at same level. However, the critical 

buckling load is seen to be enhanced enormously for all considered plate thicknesses values 

compared to that for previous cases of boundary conditions. An interesting point was 

mentioned in the Figure ‎4.14 that as a/b progresses more than 2, the critical buckling load 

would remain unchanged (i.e. constant). The results obtained from finite element 

simulations have been thoroughly examined in order to develop a complete and in-depth 

understanding of the buckling behaviour of the thin plate. Figure ‎4.14 shows the 

deformation shapes and development of von Mises stresses during the loading in order to 

visualize the spread of elastic yielding with load and to determine the possible mechanism 

of critical buckling load. The blue and red colours on the deformation and stress spectrum 

represent the minimum and maximum values respectively. Firstly, deformation is seen to 

appear at the front plate corners corresponding to loading for a/b until 1.5. While at a/b=2 

and more the deformation is seen to appear at both the front edges and centre of the plate. 

Secondly, the images of the stress in Figure ‎4.15 are showing its growth and distribution on 

the plate surface with different plate thicknesses. At each thickness which corresponds to 

a/b, the von Mises stresses on surfaces can be visualized, where the location of the 

maximum stress concentrated was at the back-corners of the plate (i.e. at clamped edge) for 

all aspect ratios (a/b).        
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Figure ‎4.13  Length-to-width vs. critical buckling load for CFFF with different 

thicknesses, (bconstant =1.2m) 
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tP = 25mm where (bconstant =1.2m) 

a/b 

= 

1.5 

 

(a) 

 

(b) 

tp = 30mm where (bconstant =1.2m) 

a/b 

=  

2 

 

(a) 

 

(b) 

Figure ‎4.14 Deformation images (a) and growth of von Mises stresses (b) with different 

aspect ratios and thicknesses of Figure ‎4.13 

 

The influence of change in the plate width-to-thickness ratio, (b/tp), on critical buckling 

load is highlighted in detail in Figure ‎4.15. The critical buckling load is plotted against the 

non-dimensional width-to-thickness, (tp/b), of the plate.  Figure ‎4.15 shows the obtained 

results with different length-to-width aspect ratio, (a/b). Notable increase in the critical 

buckling load (maximum value) occurred at  a/b=0.5 for all different of (b/tp) conditions is, 

of course, due to the short length of the plate.  However,  it can be noticed for the other 

cases as (b/tp) progresses more than 1 that the change in critical buckling load is found 

lower and close to each other. The decline of  critical buckling load  of the plate is seen to 

be quite high with further decrease in the plate length-to-width ratio, (a/b), specially for b/tp 

=40, and it is noted that the value of the critical buckling load increase  instantaneously to 

just over 46% of its minimum buckling value. Consequently, thin plate with low width-to-

thickness ratio demonstrates buckling failure at very high levels of applied load. This is due 
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to the fact that the buckling failure for low plate width-to-thickness ratio is considered a 

sudden geometrical phenomenon. Whereas on the other hand for high plate width-to-

thickness ratio, the plate is not very flexible to permit the load easily unlike the slender 

plate due to the high value of plate thickness. 

 

Figure ‎4.15 Width-to-thickness vs. critical buckling load for CFFF with different length to-

width ratios, (bconstant =1.2m) 

 

4.3 CONCLUDING REMARKS 

This chapter presents the suitable finite element simulation strategies to investigate the 

elastic buckling behaviour of thin plates subjected to the axial compression load. Moreover, 

this chapter has examined the effect of different thickness and length on the critical 

buckling loads and deformation behaviour of the square thin plate with different boundary 

conditions subjected to axial compression loading. The critical buckling behaviour of 

different thin plates is investigated to obtain an in-depth understanding with regard to the 

critical buckling failure. Also, it has been in this chapter that the critical buckling load at 

different boundary conditions is considerably decreased with change in the length to width 

ratio as well as the width to thickness ratio. The visualization of deformation growth and 

distribution of stress at the critical buckling load can be readily monitored and the 

geometric influence. It is worth pointing out that the importance of this chapter is the fact 
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that the critical buckling load of the thin plate has been shown to be closely associated with 

complete thin column-beam as well as the thin frame structure. 
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CHAPTER  5 
 

5. THE BUCKLING BEHAVIOUR OF BEAM-COLUMN 

TRANSVERSELY AND LONGITUDINALLY STIFFENED 

 

 

5.1 INTRODUCTION 

This chapter examines the local and global buckling response of stiffened beam-column 

plates with plain flat outstands when subjected to pure axial compression load. The 

buckling capacity and capabilities of beam-columns subjected to axial pure compressive 

load can, of course, be improved through the introduction of stiffening elements such 

Transverse and Longitudinal stiffeners (TS&LT respectively). Their flexural and torsional 

rigidities can contribute to significantly increase towards a critical buckling load of 

structural system. In order to see the effect of both stiffeners on the local and global 

buckling of a beam-column a finite element modelling strategies and solution procedures 

are developed, which enable the accurate determination of critical buckling loads and to 

visualize the response of the stiffened beam-column. Transverse stiffeners in the form of 

plain flat outstands are attached and distributed asymmetrically through the length of the 

beam-column with a variation of the distance between each one in order to highlight the 

significant influence of the stiffeners. The analysis is considered based on the equally 

spaced between the stiffeners. The thickness of the stiffener is varied in order to investigate 

the corresponding effect on the structural behaviour and performance. The modelling 

procedures are able to describe the complete local and global buckling behaviour of the 

stiffened beam-column structure. The critical buckling of stiffened beam-column was 

investigated by employing a unit load to start the solution sequence of buckling while 

giving due consideration to geometric and elastic material. Numerical simulations of the 

stiffened beam-columns are able to provide an in-depth understanding of the buckling 

analysis for such structural element. The results presented are for the case of beam-columns 
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with transverse stiffeners only and longitudinal stiffeners which are located at half and one 

third of the column's height. Furthermore, the results of critical buckling loads are 

presented with respect to the thickness of transverse stiffeners and their distances. In the 

buckling modes the stiffeners are heavily involved in both local and global types of 

buckling along with the length of the beam-column. The obtained results are also presented 

for the case of a beam-column with transverse stiffeners and longitudinal stiffeners which 

are located at the top part of the column height. According to the buckling behaviour, there 

is, of course, a transition region from local buckling to global buckling as the rigidity and 

thickness of the stiffeners approaches the critical level. The results illustrated in this chapter 

give an overview of a comprehensive detailed account of the complete critical buckling 

loads of the stiffened beam-columns. 

5.2 FINITE ELEMENT MODELLING OF STIFFENED BEAM-COLUMN 

5.2.1 GEO-METRIC MODELLING AND NUMERICAL ANALYSIS 

The critical buckling capacities of beam-columns are quite complex, especially when 

approaching their ultimate failure.  In this section the procedures and strategies of the finite 

element simulation are described that are used to analyze the stiffened beam-column 

subjected to pure axial compression load. In order to develop a finite element solution of 

beam-column structure subjected to axial compressive load, three dimensional finite 

elements must be used because the model would capture the real structural behaviour 

including not only global effects of the member but also various local effects. Figure ‎5.1 

shows fully dimensions of the used hollow beam-column, which is taken and reassembled 

from the full frame as shown previously in Figure ‎1.2 for the analysis. The geometries of 

the transverse and longitudinal stiffeners are illustrated in Figure ‎5.2 and Figure ‎5.3 

respectively. The thickness of the transverse stiffeners is changed from 15mm to 30mm to 

study the influence of the stiffener thickness on the critical buckling load characteristics, 

while the longitudinal stiffeners thickness is fixed at 15mm. The transverse stiffener 

thicknesses chosen were such as to illustrate local buckling and global buckling behaviour 

of the stiffened under compression load. 
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Figure ‎5.1 Typical geometry of a hollow beam-column using in the study 

 

 

 

Figure ‎5.2  Geometry of transverse stiffener configuration (TS) 

 

 

 

Figure ‎5.3  Geometry of longitudinal stiffener configuration (LS) 
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5.2.2 BOUNDARY CONDITIONS AND FINITE ELEMENT MESH 

One of the important steps in the finite element modeling of structure is the boundary 

conditions. The main point of the boundary conditions when applying them is to obtain the 

non-singular global stiffness in linear or nonlinear static analysis. However, both boundary 

conditions and load have very significant effects on the critical buckling mode. In order to 

achieve the non-singularity of the global stiffness matrix is when the entire structure is 

motionless. Therefore, under applied load the movement of rigid body of the structure is 

prevented in all directions by applying appropriate displacement constraints at node (i.e. 

nodal displacement). However, when the boundary conditions allow to the structural 

elements to move which means that the structure can be deformed internally. The different 

results of the structural problems at different boundary conditions based on the change in 

support conditions are presented. As a result, the global stiffness matrix is either decreased 

or increased for a given loading condition. A beam-column with simply supported at its 

ends is considered in the analysis while the rest of the structure is left free to remain either 

normal or straight. A rigid body constraint has been used to tie the beam-column ends via 

node-to-node tie constraint relationship to reference points RP1 and RP2 which available in 

ABAQUS ‎[82]. The reference points used to accomplish the boundary conditions to be tied 

to the end beam- column surfaces. The used boundary conditions are given in table 1 and 

the beam-column is applied statically by a central buckling load of 1N at RP1 (Figure ‎5.4 

and Figure ‎5.5). The simplified Von-Mises elastic-perfectly material model is used for the 

isotropic steel with an elastic modulus of  210 N/mm
2
, Poisson ratio of 0.3 and yield stress 

values of 350 N/mm2.The general purpose elastic shell element is used in numerical 

simulations to discretise the model in order to build the finite element models for the 

Eigenvalue. Four nodded doubly curved shell element with reduced integration S4R ‎[81]   

and with six degrees of freedom per node were used. In order to obtain the most optimised 

accurate solutions, the fine mesh has been chosen where the element size used for the 

beam-column and as well as for the stiffeners is chosen and kept to be 0.1 meters. This 

element size is chosen through the appropriate convergence studies to ensure the accuracy 

of the solution as shown in Figure ‎5.6. Figure ‎5.4 demonstrates the discretised 

configuration of the beam -column without stiffeners. This type of element shows the 

accurate solution and satisfactory performance in verification work previously described 

for both thin and thick shell elements ‎[85]‎[86]. 
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Table ‎5.1 Boundary conditions of simply supported model. 

 Boundary conditions  (Free: ⃝ , Constrained: ●) 

 u v w 𝜃𝑥  𝜃𝑦  𝜃𝑧  

RP1 ● ● ⃝ ⃝ ● ● 

RP2 ● ● ● ⃝ ● ● 

u, v, w are translations in x, y, z axes and 𝜃𝑥 , 𝜃𝑦 , 𝜃𝑧  are rotations about x, y, z axes. 

 

 

Figure ‎5.4  Typical FE  model of  a hollow beam-column 

 

 

Figure ‎5.5 Loading configurations of a simply supported hollow beam-column 

 

5.3 MESH CONVERGENCY STUDY 

In order to choose the suitable size and to get the mesh independent results of finite element 

across the beam-column that gives a solution with a reasonable accuracy, a convergence 

study has been made. By applying the load and boundary conditions with suitably refined 

finite element models were developed for simulation.  Many different sizes and numbers of 

elements have been considered, where the Figure ‎5.6 shows the obtained results. The figure 

depicts the response of the column-beam covering the onset of critical buckling load 
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through linear phase. Consequently, the chosen mesh is based on the mesh sensitivity 

analysis performed for successive mesh refinements. The minimum critical buckling load 

attained during the analysis is considered as the basis for mesh refinement. As shown in 

Figure ‎5.6, it is clear that no further increase in minimum critical buckling load is achieved 

if the number of elements is increased beyond 20x10
3
.  

 

Figure ‎5.6 Mesh convergence study of a compressed beam-column 

 

5.4 BUCKLING BEHAVIOUR OF THE BEAM-COLUMN WITH STIFFENERS 

In this section the local and global buckling behaviour of the stiffened beam column is 

investigated in detail. A beam-column is considered with different cases for analysis, which 

are involved both transverse and longitudinal stiffeners. The effect of a change in stiffener 

locations and thicknesses on the buckling characteristics as well as the structural 

performance of the stiffened beam-column is highlighted. 

5.4.1 A STIFFENED BEAM-COLUMN WITH ONLY TRANSVERSE STIFFENERS 

The analysis in this section is done in the case of model-1b which is placed only transverse 

stiffeners through the beam-column length at different distances between each one of the 

transverse stiffeners as shown in Figure ‎5.7. The dimensions of the transverse stiffener have 

been previously illustrated in section 5.2.1. The distance (d) is changing from 0.5 to 3 

3.15

3.2

3.25

3.3

3.35

3.4

3.45

3.5

3.55

3.6

0 20 40 60 80 100

C
ri

ti
ca

l 
b
u
ck

li
n

g
 l

o
ad

 (
x

1
0

7
N

)

No. of elements (x103)

chosen mesh 

size = 0.1m



Numerical and experimental diagnostics of buckling structural element behaviour 

73 

meters with 0.5 increments. The first Eigen buckling modes on deformed shapes at critical 

local & global buckling loads for one sample is shown in Figure ‎5.8 and Figure ‎5.9 

respectively. Obviously, the onset of buckling modes can be seen along with distribution of 

magnitude deformation over the surfaces. 

 

TS distance variation (d) = 0.5, 1, 1.5, 2, 2.5 and 3m. 

Figure ‎5.7  A specimen section of the beam-column using TS only (model-1b) 

 

 

 

Figure ‎5.8  A sample of 1
st
 local Eigen buckling mode of the beam-column (model-1b) 

 

 

Figure ‎5.9 A sample of 1
st
  global Eigen buckling mode of the beam-column (model-1b) 



Doctoral thesis 

74 

The stiffener's thickness t and its location are changed in order to investigate its influence 

on the critical buckling load for local and global and structural response. The stiffened 

beam-column is subjected to pure axial compressive load at its ends, which are simply 

supported boundary conditions. The effect of a change in stiffener thickness and its 

locations on the critical buckling load is illustrated in Figure ‎5.10, where the ratio of critical 

local buckling load of stiffened to an unstiffened beam-column,  
crcr

PdunstiffeneP / , is 

seen to be plotted against the distance d between transverse stiffeners. 

 

Figure ‎5.10  (Pcr– unstiffened) / Pcr vs. distance between TS for model-1b (Local) 

 

Figure ‎5.10 clearly manifests that the introduction of a stiffener considerably improves the 

critical local buckling load performance of a beam -column. Initially, the rate of increase in 

the critical buckling resistance of the stiffened beam-column is seen to be maximum 

between 0.8 to 0.9 and with increase in the distance d between transverse stiffeners, it 

became significant at 2 meters before beginning of the reduction phase. As a consequence, 

the curves tend to the minimum value at 2 meters for all TS thicknesses and eventually 

decrease in the critical buckling performance becomes almost without effect. Figure ‎5.11 

shows the influence of an increase in the transverse stiffener distance with changing of its 

thickness on the maximum and minimum critical local buckling load, where the effect of 
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stiffeners becomes lower after 2 meters which represents the optimum location. In the 

critical global buckling, termed as overall sometimes, the corresponding critical global 

buckling mode as shown previously in Figure ‎5.9, is clear that the beam-column buckles 

globally. In the global buckling mode, significant bending of the beam-column with 

stiffeners which are involved considering the fact that the stiffeners are not effective 

enough to increase the critical global buckling. 

 

Figure ‎5.11 Effect of TS on the critical local buckling load of the beam-column model-1b 

 

The effect of a change in stiffener thickness and its locations on the critical global buckling 

load  is illustrated in Figure ‎5.12 where the ratio of critical global buckling load of stiffened 

to unstiffened beam-column,  
crcr

PdunstiffeneP /  is seen to be plotted against the 

distance between stiffener. It is of note that the increase of critical global buckling load is 

found to be a small order of  unstiffened beam-column. As a result, it is seen that the effect 

of transverse stiffeners on the critical global buckling are not clear and the variation of Pcr  

ratio almost negligible at all distances and through all thicknesses according to the curves 

values. Figure ‎5.13 shows the effect change of critical global buckling where gradually 

begins to reduce before reaching to almost 2 meters of stiffener's distance. The stiffener 

distance in d=2 meters is found to be capable of holding the critical global buckling at 

optimum value based on  critical local buckling and it seems useless to further increase the 
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distance between stiffeners since it decrease the structural weight without any notable 

improvement in the critical buckling. 

 

Figure ‎5.12  (Pcr– unstiffened)/Pcr vs. distance between TS for model-1b (Global) 

 

 

Figure ‎5.13  Effect of TS on the critical global buckling load of the beam-column model-1b 
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5.4.2  A STIFFENED BEAM-COLUMN WITH TRANSVERSE AND LONGITU-

DINAL STIFFENERS 

5.4.2.1 A  STIFFENED BEAM-CLOUMN WITH TRANSVERSE AND TWO 

LONGITUDINAL STIFFENERS 

In this case the effect of change in both transverse and longitudinal stiffeners for 

model-2a, on the critical buckling load and buckling modes of the stiffened beam-column 

with two longitudinal stiffeners is investigated. Figure ‎5.14 illustrates a detailed 

geometrical assembly of a beam-column with both stiffeners where the longitudinal 

stiffeners are mounted at h/2 of beam-column height. The dimensions of  both the 

transverse and longitudinal stiffeners have been previously illustrated in section 5.2.1.The 

first Eigen buckling modes on deformed shapes at critical local and global buckling loads 

for one sample are shown in Figure ‎5.15 and Figure ‎5.16  respectively. Obviously, the onset 

of buckling modes can be seen along with distribution of magnitude deformation over the 

surfaces. It is clearly manifest from Figure ‎5.15  that the effect of longitudinal stiffeners has 

a pivotal role in terms of redistribution of the buckling mode in particular for the local 

buckling. However, the behaviour of global buckling mode is in the same fashion to the 

previous case in section 5.4.1 with a difference, of course, in the values. 

 

TS distance variation (d) = 0.5, 1, 1.5, 2, 2.5 and 3m, LS distance variation (h/2)=1.2m. 

Figure ‎5.14 Geometrical section of the beam-column for model-2b 
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 Figure ‎5.15 A sample of  1
st 

 local Eigen buckling mode of the beam-column for model-2b 

 

 

Figure ‎5.16 A Sample of 1
st 

 global Eigen buckling mode of the beam-column for model-2b 

 

Figure ‎5.17 shows a series of curves exhibiting the influence of change in the transverse 

stiffener distance on the ratio of critical local buckling load of stiffened to unstiffened 

beam-colum,, is seen to be plotted against the transverse stiffener distance (d). The 

thickness of the transverse stiffener is varied to examine its influence on the critical 

buckling load of the beam-column. In Figure ‎5.17  the equilibrium curves are plotted for 

different TS thicknesses and it can be observed that a considerably  amount of the critical 
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buckling load reserve is present for the cases of the more short distances between TS. The 

ratio  of the beam-column is seen to increase significantly with an increase in the TS 

thicknesses. With an increase in the distance between TS, the ratio   crcr PdunstiffeneP /  is 

also noted to decrease substantially especially after 2 meters. This is due, essentially, to the 

proving influence of transverse stiffeners on the critical buckling load. As a result, this 

improvement gives the beam-columns high buckling resistance and capacity compared to 

unstiffened beam-column. 

 

Figure ‎5.17 (Pcr – unstiffened)  / Pcr vs. distance between TS for model-2b (Local) 

 

Figure ‎5.18 refers to the critical buckling loads versus the distance between transverse 

stiffeners with the changing of its thickness on the maximum and minimum critical 

buckling load. It is seen from the Figure ‎5.18 that the effect of stiffeners becomes lower 

after 2 meters which represents the optimum location. By comparing the obtained results 

with the previous case in section ‎5.4.1, it is seen that there is a clear difference between the 

two cases. For instance, the maximum value for critical buckling was 139x10
6
 N at d = 0.5 

and t = 30mm to the same condition in section 5.4.1 was 82x10
6  

N. Therefore, the gain of 

critical local buckling is observed to be 41%. As a result, in this case which using 

longitudinal stiffeners with transverse stiffeners design consideration; it is suggested to 

increase the critical local buckling loads till a specific distance between stiffeners. 

0.65

0.7

0.75

0.8

0.85

0.9

0.95

0 0.5 1 1.5 2 2.5 3 3.5

(P
cr

-
u
n
st

if
fe

n
d
) 

/ 
P

cr

Distance between transverse stiffeners, d (m)

t=15mm

t=20mm

t=25mm

t=30mm

t = indictes to the

thickness of TS



Doctoral thesis 

80 

 

Figure ‎5.18  Effect of  TS & two LS on the critical local buckling load of the beam-

column (model-2b) 

 

Figure ‎5.19 shows a series of curves exhibiting the influence of change in the transverse 

stiffener distance on the ratio of critical global buckling load of stiffened to unstiffened 

beam-column,, is seen to be plotted against the transverse stiffener distance (d). With the 

increase in the transverse stiffener distance, the ratio   crcr PdunstiffeneP /
 is decreased as 

well till reaching the maximum value at 2 meters where were about 20% to lowest value. 

This improvement gives the beam-columns high buckling resistance and capacity compared 

to unstiffened beam-column. It is clear from Figure ‎5.20 that an increase in the distance 

between stiffeners does not significantly improve the critical global buckling of the beam-

column to unstiffened beam column. The improvement in the critical global buckling 

capacity of the stiffened beam-column as shown in Figure ‎5.19 was 28% between 0.5 

meters to 2 meters of stiffeners distance  and at t=30mm. The rate of change in the critical 

global buckling load has decreased for short stiffeners distance and then gradually increases 

with the increase in the stiffener distance and eventually approaches to steady state for long 

stiffener distance. As a result, the curve tends to level out at an optimum stiffener distance 

and a little increase in the critical buckling capacity of the stiffened beam-column becomes 

almost useless zero with further increase in the stiffener distance. 

0

20

40

60

80

100

120

140

160

0 0.5 1 1.5 2 2.5 3 3.5

C
ri

ti
ca

l 
 b

u
ck

li
n
g
  
lo

ad
 (

x
1
0

5
  
N

)

Distance between transverse stiffeners, d (m)

t=15mm

t=20mm

t=25mm

t=30mm

t = indictes to the

thickness of TS



Numerical and experimental diagnostics of buckling structural element behaviour 

81 

 

Figure ‎5.19 (Pcr- unstiffened)/Pcr vs. distance between TS for model-2b (Global) 
 

 

Figure ‎5.20  Effect of TS and two LS on the critical global buckling load of the beam-

column (Model-2b) 
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5.4.2.2 A STIFFENED BEAM-COLUMN WITH TRANSVERSE AND FOUR 

LONGITUDINAL STIFFENERS 

In this section the effect of change in both transverse and longitudinal stiffeners for model-

3b, on the critical buckling load and buckling modes of the stiffened beam-column with 

four longitudinal stiffeners is investigated. Figure ‎5.21 illustrates a detailed geometrical 

assembly of a beam-column with both stiffeners where the longitudinal stiffeners are 

mounted at h/3 of beam's height. The dimensions of both the transverse and the longitudinal 

stiffeners have been illustrated in section ‎5.2. 

 

 

TS distance variation (d) = 0.5, 1, 1.5, 2, 2.5 and 3m, LS distance variation (h/3)=0.8m. 

Figure ‎5.21  Geometrical section of the beam-column for model-3b 

 

The first Eigen buckling modes on deformed shapes at critical local & global buckling 

loads for one sample are shown in Figure ‎5.22 and Figure ‎5.23 respectively. Obviously, the 

onset of buckling modes can be seen along with distribution of magnitude deformation over 

the surfaces. It is clearly manifested from Figure ‎5.22 that the effect of longitudinal 

stiffeners has a pivotal role in terms of redistribution the buckling mode in particular for the 

local buckling. However, the behaviour of global buckling mode is as the same fashion to 

the previous case in section ‎5.4.2.1with a difference, of course, in the values.  
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Figure ‎5.22 A sample of 1
st
 local Eigen buckling mode of the beam-column model-3b 

 

 

Figure ‎5.23 A sample of 1
st
 global Eigen buckling mode of the beam-column model-3b  

 

The influence of the critical buckling load and the distance between the transverse 

stiffeners of the beam-column with different thicknesses is highlighted in detail in Figure 

‎5.24 and Figure ‎5.25. The critical local buckling of stiffened to unstiffened beam-column, 

  crcr PdunstiffeneP / , is seen to be plotted against the distance between transverse 

stiffeners (d). With further increase in the transverse stiffener distance, the ratio

  crcr PdunstiffeneP / , is decreased as well till reaching the value in which critical 
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buckling load sharply dropped to undesired values. The point at 2 meters distance between 

transverse stiffeners is a transition point that afterward the effect of transverse stiffeners is 

very low. As a result, the improvement in critical local buckling resistance and its capacity 

for this case is only in a range between 0.5 meters and 2 meters. In Figure ‎5.25, the curves 

are plotted for different transverse stiffener distances and it can be observed that a 

considerable changing in amount of critical local buckling loads. The critical local buckling 

load of the beam-column is seen to increase significantly with the increase of transverse 

thickness and decrease in its distance between each one. The critical local buckling loads  

of the beam-column  is also noted to decrease substantially after 2 meters distance between 

transverse stiffeners This is due, essentially, to the higher distance between transverse 

stiffeners  and to the destabilizing influence of  critical local buckling load to be lower as in 

unstiffened beam-column. The difference between ultimate and minimum critical local 

buckling load for one case as an example, at thickness 30mm is found to be 60%. 

 

Figure ‎5.24  (Pcr – unstiffened) / Pcr vs. distance between TS for model-3b (Local) 

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0 0.5 1 1.5 2 2.5 3 3.5

(P
cr

-
u
n
st

if
fe

n
ed

) 
/ 

P
cr

Distance between transverse stiffeners, d (m)

t=15mm

t=20mm

t=25mm

t=30mm

t = indictes to the

thickness of TS



Numerical and experimental diagnostics of buckling structural element behaviour 

85 

 

Figure ‎5.25  Effect of TS and four LS on the critical local buckling load of the beam-

column (model-3b) 

 

Regarding the critical global buckling loads and effect of four longitudinal stiffeners which 

are added to the beam-column with the transverse stiffeners on it are presented in the next 

figures. The results obtained from the simulation for the influence of transverse stiffener 

thickness on the critical global buckling is detailed in Figure ‎5.26 and Figure ‎5.27. The 

critical buckling load ratio of the stiffened to unstiffened beam-column, 

  crcr PdunstiffeneP / is shown to be plotted against the distance between transverse 

stiffeners. It is clear from Figure ‎5.26 that the addition of transverse stiffeners after 2 

meters distance did not give obvious improvement in the ratio of critical buckling loads to 

the stiffened beam-column where the lowest critical buckling load is at the maximum 

distance between transverse stiffeners. Furthermore, it can be observed from Figure ‎5.27 

that increase in the transverse stiffeners distance does not seem to add the substantial 

amount of critical global buckling load to the stiffened beam-column.  
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Figure ‎5.26 (Pcr– unstiffened) / Pcr vs. distance between for model-3b (Global) 

 

 

Figure ‎5.27 Effect of TS and four LS on the critical global buckling load of the beam-

column (model-3b) 
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5.5 EFFECT OF TRANSVERSE STIFFENER'S THICKNESS ON THE CRIT-ICAL 

BUCKLING LOAD 

Another criterion which should be taken into account and has an influence along the 

general critical buckling load is the rigidity of the stiffener. Usually the rigidity of a 

stiffener depends solely on its dimensions and the critical rigidity of a stiffener corresponds 

to the optimum stiffeners thickness. In this section, the effect of change in transverse 

stiffener thickness on the critical buckling load of the stiffened beam-column with three 

models is investigated.  

5.5.1 CRITICAL LOCAL BUCKLING RESPONSE AT DIFFERENTTS THIC-

KNESSES 

Figure ‎5.28 shows the first critical local buckling modes for three models with different TS 

thicknesses. Regarding model-1b, the shape and location of critical local buckling loads are 

seen similar with each other. At tTS = 15mm, the location of the buckling load is taking 

place in the middle between stiffeners. At tTS = 20mm, the location and shape of the 

buckling are as the previous case, but with a difference in its value to be greater than. At  

tTS = 25mm and  tTS = 25mm, the location and shape of the buckling are noted to be also 

with the same behaviour and trend. Model-2b shows  different shapes and locations due to 

the adding of the longitudinal stiffeners. At all thicknesses of transverse stiffeners, the 

behvaiour of the critical buckling shapes almost are the same with a difference of their 

values. By examining the buckling on model-3b with the same procedures, it is worth 

mentioning that the locations and shapes of the buckling are completely different compared 

with the other models at different TS thicknesses. Consequently, it is of note that the 

development in buckling has similar attitudes to changing of TS thicknesses. 

 

Model tTS = 0.015m, d = 0.5m tTS = 0.02m, d = 0.5m 

1b 
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2b 

  

3b 

  
 tTS = 0.025m, d = 0.5m tTS = 0.03m, d = 0.5m 

1b 

  

2b 
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3b 

  

Figure ‎5.28 Samples of critical local buckling modes for all models of the stiffened 

beam-column at different TS thicknesses 

 

The influence of transverse stiffener thickness on the critical local buckling loads of the 

design space associated with different distances between the transverse stiffeners is shown 

in Figure ‎5.29, Figure ‎5.30, Figure ‎5.31 and Figure ‎5.32. It can be observed from Figure 

‎5.29 that the thickness of transverse stiffener has a significant effect on the critical local 

buckling load for stiffened models. When the distance between transverse stiffeners is 

between 0.5m to 1m, the results showed that the improvement in the critical local buckling 

load can be seen clearly in figure for all models.  For model-1b, model-2b and model-3b, 

which have a 15mm of TS thickness, the critical local buckling load is increased to 72%, 

81% and 87% respectively. It can see also from the Figure ‎5.30, Figure ‎5.31 and that 

model-1b and model-2b and model-3b are improved in terms of the values of critical 

buckling loads. An interesting point was mentioned in the Figure ‎5.32 that the value of 

critical buckling load for model -3b is higher compared with model -1b and model -2b. As a 

result, the change of transverse stiffeners has vital effects on the critical buckling loads.   
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Figure ‎5.29  Effect of  transverse stiffener thickness on the critical local buckling load 

for all models of the beam-column at TS thickness equals to15mm 

 

 

Figure ‎5.30  Effect of  transverse stiffener thickness on the critical local buckling load 

for all models of the beam-column at TS thickness equals to 20mm 
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Figure ‎5.31  Effect of  transverse stiffener thickness on the critical local buckling load 

for all models of the beam-column at TS thickness equals to 25mm 

 

 

Figure ‎5.32  Effect of  transverse stiffener thickness on the critical local buckling load 

for all models of the beam-column at TS thickness equals to 30mm 
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5.5.2 CRITICAL GLOBAL BUCKLING RESPONSE AT DIFFERENT TS THIC- 

KNESSES 

Figure ‎5.28 shows the first critical global buckling modes for three models with different 

TS thicknesses. The behaviour of the curves in all cases has behaved in the same trends and 

to be quite identical. However, it gradually decreases in all cases with increasing in 

distance between stiffeners and lead eventually to almost steady state after 2 meters. A 

further increase in the stiffener distance does not affect the critical local buckling loads. 

The improvement in critical global buckling loads for the case in which TS is used by very 

close distance between stiffeners is found to be of the order of 4.5% corresponding to 

unstiffened beam-column. Whereas in the case of intermediately distance stiffener (i.e. 2 

meters), the critical global buckling load of the beam-column is seen to be enhanced by 

3.9% to unstiffened beam-column. Consequently, for critical global buckling capacity 

designs it is seen from results that global buckling is not sensitive to both stiffeners in terms 

of increasing in its values. Furthermore, it can say that for simply supported condition does 

not affect by the stiffeners on global buckling. 

Model tTS = 0.015m, d = 0.5m tTS = 0.02m, d = 0.5m 

1b 

 
 

2b 
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3b 

  

Model tTS = 0.025m, d = 0.5m tTS = 0.03m, d = 0.5m 

1b 

  

2b 

  

3b 

  

Figure ‎5.33 Critical global buckling modes for all models of the beam-column at 

different TS thicknesses 
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The influence of transverse stiffener thickness on the critical global buckling loads of the 

design space associated with different distances between the transverse stiffeners is shown 

in Figure ‎5.34, Figure ‎5.35, Figure ‎5.36 and Figure ‎5.37. It can be observed from all figures 

that the thickness of transverse stiffener has not a significant effect on the critical global 

buckling load for stiffened models. When the distance between transverse stiffeners is 

0.5m, the results showed that the improvement in the critical global buckling load can be 

seen clearly in figures for all models. For Model -1b, Model-2b  and Model-3b, which have a 

15mm of TS thickness, the critical global buckling load is increased to 0.5%, 0.47% and 

0.45% respectively. It can see from the Figure ‎5.34, Figure ‎5.35 and Figure ‎5.36 that 

Model-1b and  Model-2b and Model-3b  are improved in terms of the values of critical 

global buckling loads. An interesting point was mentioned in all figures that the value of 

critical global buckling load for all models is almost close to each other. As a result, the 

change of transverse stiffeners has in general a vital effect on the critical buckling loads.  

 

 

Figure ‎5.34  Effect of  transverse stiffener thickness on the critical global buckling load 

for all models of the beam-column at TS thickness equals to15mm 
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Figure ‎5.35  Effect of  transverse stiffener thickness on the critical global buckling load 

for all models of the beam-column at TS thickness equals to 20mm 

 

 

Figure ‎5.36  Effect of  transverse stiffener thickness on the critical global buckling load 

for all models of the beam-column at TS thickness equals to 25mm 
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Figure ‎5.37  Effect of  transverse stiffener thickness on the critical global buckling load 

for all models of the beam-column at TS thickness equals to 30mm 

 

5.6 CONCLUDING REMARKS 

In this chapter the finite element analyses of simply supported beam-column with different 

cases, unstiffened beam and stiffened beam by only transverse stiffeners and both 

transverse and longitudinal stiffeners have been presented. Simulation strategies have been 

applied to be able to investigate the behaviour of critical buckling load of the beam-column 

subjected to axial compression load. The effects of the transverse and longitudinal 

stiffeners on the local and global critical buckling have examined in depth on the critical 

buckling loads with different distances between each stiffener and its thickness in order to 

find the maximum and minimum distance. Three cases of stiffened beam-column applied to 

a simply supported case were modeled under uniaxial compression load. Linear buckling 

analyses of these element models predicted the critical buckling capacities and also to 

provide the full picture of the buckling behaviour. The percentage of critical buckling load 

versus the distance between stiffeners plots shows that the critical buckling load has 

reached maximum at short distances between stiffeners. Once the distances goes after1.5 

meter, the critical buckling load clearly is decreased. The obtained results demonstrated 
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that ultimate carrying capability of the beam-column has been shown to be significantly 

raised by adding the transverse and longitudinal stiffeners.  
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CHAPTER  6 
 

 

6. THE BUCKLING BEHAVIOUR OF FRAME 

STRUCTURE TRANSVERSELY AND LOGNITUDINALLY 

STIFFENED 

 

6.1 INTRODUCTION 

In this chapter, the local and global buckling for a thin walled frame structure has been 

analysed by using the finite element techniques and solution strategies which are 

appropriate for such structures. The presence of local and global buckling for higher length 

thin-walled compression frame structures along the frame length can be accompanied by 

the overall instability. Longer frame columns will decrease in their global elastic Euler 

buckling loads as a termination of the weakening effects of local buckling and the influence 

of geometrical shapes, and that of unused stiffeners will, of course, further reduce the 

ultimate carrying capability of the frame columns members. Generally, there are some 

methods to determine the critical capacity of members in steel frame structures subject to 

such loads (buckling), numerical, experimental and analytical investigations. One of the 

analytical methods has been made by Ritter, who conducted the first work on the inelastic 

buckling theory for compression members in frames.  A graphical method of constructing 

load-deflection curves of the column corresponding to the numerical procedures developed 

by Ritter to be used in computer programs. Although, Thurlimann ‎[88] has been made  

another attempt to derive the connected columns load-deflection curves with double 

integration of the curvature, but no adequate analytical solution has been developed after 

Ritter's  attempt. The local and global buckling behaviour of the frame structure as shown 

in Figure ‎6.13 and Figure ‎6.14 have been determined using the linear static solution 

sequence involving geometric changing by adding transverse and longitudinal stiffeners as 

supporters at different locations. Each particular type of case has its own mesh distribution 
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at the same boundary conditions. Moreover, the strategies of solution involving the 

selection of right solution parameters such as the element type, solution sequences, iterative 

procedures, load position, element discretization, etc. The results for each case will discuss 

at length in the next sections. In order to find an accurate and reliable solution for frame 

structures, a good understanding of the true structural behaviour of the frame structure 

should be considered. For steel frame structures, many different solutions have been 

provided to follow the buckling behaviour of the frames ‎[1]‎[89]‎[90]‎[91]‎[92]. The objective 

of the buckling analysis of steel frame structures introduced in this chapter was to develop a 

numerical solution for steel frame subjected to the buckling load with transverse and 

longitudinal stiffeners supports which can be used in analysis, frame designs and to 

compare it to unstiffened frame structure. The same analysis procedures that have been 

made in the beam-column analysis in the previous chapter will be repeated in this chapter 

with a different in stiffeners distributions and locations.  

6.2 FINITE ELEMENT MODELLING OF STIFFENED FRAME STRUCTURE 

6.2.1 GEO-METRIC MODELLING AND NUMERICAL ANALYSIS 

In this section the procedures and strategies of the finite element simulation are described 

which used to analyse the stiffened frame structure subjected to pure axial compression 

buckling load. Figure ‎6.1 shows fully dimensions of the unstiffened hollow frame structure 

which is used in the analysis. The geometries of the transverse and longitudinal stiffeners 

are illustrated in Figure ‎6.2, Figure ‎6.3, Figure ‎6.4 and Figure ‎6.5 respectively. The 

thickness of the transverse stiffeners is changed from 5mm to 15mm to study the influence 

of the stiffeners thickness on the critical buckling load characteristics, while the 

longitudinal stiffeners thickness are fixed at 10mm. The transverse stiffener thicknesses 

have chosen to illustrate the local buckling and global buckling behaviour of the stiffened 

under compression buckling load. 
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Figure ‎6.1   Unstiffened hollow frame structure used in the study 

 

The frame dimensions and thicknesses chosen were such as to illustrate the local buckling 

and the global buckling behaviour of the stiffened frame webs. The thicknesses of the 

frame skins are divided into different numbered as shown in Figure ‎6.1 to demonstrate the 

real values as in the real frame. The four thicknesses of the frame skins are: 

1) 10 mm 2) 20 mm 3) 12 mm 

4) 15 mm 5) 30 mm  

 

 

Figure ‎6.2  Geometry of transverse stiffener configuration (TS) type-1 
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Figure ‎6.3 Geometry of transverse stiffener configuration (TS) type-2 

 

 

Figure ‎6.4  Geometry of horizontal longitudinal stiffener configuration (LS) type-1 

 

 

Figure ‎6.5  Geometry of vertical longitudinal stiffener configuration (LS) type-2 
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6.2.2 FRAME MODELS DESCRIPTION 

The frames, which are used in this study can be categorised into three different models:          

1) by adding only transverse stiffeners to unstiffened frame, 2) by adding transverse 

stiffeners with two longitudinal stiffeners to unstiffened frame,  3) by adding transverse 

stiffeners with four longitudinal stiffeners to unstiffened frame. The chosen frames in this 

study include all these categories and are shown in Figure ‎6.6 and Figure ‎6.7. The distance 

between transverse stiffeners (d) chosen for this study is varying from 0.5m to 3m as shown 

in Figure ‎6.6, while the distance between longitudinal stiffeners (w/2) is at the middle of 

the frame-beams  as shown in Figure ‎6.7. The thickness of the transverse stiffeners is 

changed from 5mm to 15mm to study its influence on the critical buckling load 

characteristics, while the longitudinal stiffeners thickness is fixed at 10mm. In addition to 

that and as shown in Figure ‎6.4 and Figure ‎6.5, the length (L) depends on the frame-beams 

altitude. The transverse stiffener thicknesses chosen were such as to illustrate local 

buckling and global buckling behaviour of the stiffened under compression load. 

 

Figure ‎6.6 Geometry of stiffened frame Model-1f   
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Figure ‎6.7 Geometries of stiffened frame Model-2f 

 

 

Figure ‎6.8 Geometries of stiffened frame Model-3f 
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6.2.3 FRAME BASE BOUNDARY CONDITIONS, LOAD AND FINITE ELEMENT 

MESH 

As mentioned before in pervious chapter, the boundary conditions have significant effects 

on the analysis results when frame structure is isolated from its real condition. In order to 

apply and replicate the boundary conditions on the models in this study with axial 

compression force assumed in the analyses were used to simply support. The boundary 

conditions in these models are suitable for the development such frame structures and for 

the study of critical buckling capacity. The boundary conditions were simulated by simply 

supported conditions which were assumed at the bottom of the frame structure as shown in 

Figure ‎6.9. This was achieved by using single point constraints A and B which were 

applied at the ends of the frame supporters to be more realistic with the original case as 

shown in Figure ‎6.10. It was assumed to have some free, fixed translations and rotations 

that are illustrated in Table ‎6.1.  

Figure ‎6.11 shows the boundary conditions points where the frame model is fixed and 

considered in the analysis while the rest of the structure left free to remain either normal or 

straight. As shown in Figure ‎6.11 a rigid body constraint has been used to tie the top 

surface of the frame via node-to-node tie constraint relationships to reference point RP1 

which is available in ABAQUS ‎[82]. The reference point RP1 used to accomplish the axial 

load to be applied on the entire top surface of the frame. The frame structure is applied 

statically by a central buckling load of 1 at RP1 (Figure ‎6.11) where the load has a load 

factor with a default value of 1.0 and the entire load case can be multiplied with any 

numerical or alternatively loads if required. The simplified von-Mises elastic-perfectly 

material model is used for the isotropic steel with an elastic modulus of 210 N/mm
2
, 

Poisson ratio of 0.3 and yield stress values of 350 N/mm
2
. After defining the structural 

geometry, the next step is to discretise the structure with suitable elements. As it is known 

to all that the selection of appropriate finite elements is an essential feature in finite element 

modelling, considering the fact that these elements represent the true physical structure. 

With regard to Figure ‎6.11, it can be seen that the shell elements are used because they 

provide sufficient degrees of freedom to the buckling model analysis for such frame 

structure. Due to the large models, the element density of the frame models was increased 

compared with the simply supported column-beam models.  Four nodded doubly curved 

shell element with reduced integration S4R ‎[81] and  six degrees of freedom per node were 
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used in this type of geometry. S4R elements are doubly curved general-purpose, membrane 

strain shell elements and R stand for reduced integration with hourglass control. For shell 

structures which have thicknesses larger than 1/15 of the element length, the S4R is often 

used. The mesh density choice is usually a function of the geometrical characteristic of 

structures. Therefore, in order to obtain the most optimised accurate solutions, the fine 

mesh has been chosen where the element size used for the frame structure and as well as for 

the stiffeners is chosen and kept to be of 0.1m. This element size is chosen through the 

appropriate convergence studies to ensure the accuracy of the solution as shown in Figure 

‎6.12. Therefore, the shell elements have widely used in structural engineering and where 

Avery and Kim ‎[91]‎[93] have used it to develop benchmark solutions for frame structures. 

Many different benchmark solutions have been made by different researchers for steel 

frame structures ‎[94]  

  

Table ‎6.1  Boundary conditions of supported frame model 

 Boundary conditions  (Free: ⃝ , Constrained: ●) 

 u v w 𝜃𝑥  𝜃𝑦  𝜃𝑧  

A ● ● ● ⃝ ● ⃝ 

B ● ● ● ⃝ ● ⃝ 

u, v, w are translations in x, y, z axes and 𝜃𝑥 , 𝜃𝑦 , 𝜃𝑧  are rotations about x, y, z axes 

 

 

 
Figure ‎6.9 Frame connections of the model (FE model) 
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Figure ‎6.10 Frame connections on site 

 

 

 

Figure ‎6.11 Typical FE of the frame model 
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Figure ‎6.12 Mesh sensitivity study on critical buckling load 

 

6.3 BUCKLING RESPONSE OF THE STIFFENED FRAME MODELS 

In this section, the local and global buckling behaviour of stiffened frame models is  

investigated in detail. A frame model is considered in different cases for analysis, which is, 

involved both transverse and longitudinal stiffeners. The effect of a change in stiffener 

positions and its thicknesses on the critical buckling characteristics as well as the structural 

performance of the stiffened frame model is highlighted. 

6.3.1 STIFFENED FRAME MODELS BY USING TRANSVERSE STIFFENERS 

ONLY 

The results presented in this section are for the frame Model-1f  that is stiffened by only 

transverse stiffeners. The variation of distances between transverse stiffeners d, is varied 

from 0.5m to 3m and the stiffeners configurations are shown as in Figure ‎6.6 and Figure ‎6.7 

repectively. The stiffened frame Model -1f  considered in this analysis is subjected to pure 

axial compression load with transverse stiffeners thicknesses from 5mm to 15mm in order 

to investigate its influence on the frame structural response. The first Eigen buckling modes 

on deformed shapes at critical local & global buckling loads for one sample are shown in 

Figure ‎6.13 and Figure ‎6.14 respectively. Obviously, the onset of buckling modes can be 

seen along with distribution of magnitude deformation over the surfaces. 
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Figure ‎6.13 A sample of 1
st
 local Eigen buckling mode of the frame for Model-1f 

 

 

Figure ‎6.14  A sample of 1
st
 global Eigen buckling mode of the frame (Model-1f) 
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The obtained results of the influence of the stiffened frame models on both local and global 

buckling capacity are illustrated in Figure ‎6.15 and Figure ‎6.17 respectively, where the 

ratio of critical buckling load of the stiffened to unstiffened frame model, 

  crcr PdunstiffeneP / , are shown to be plotted against the distance between transverse 

stiffeners TS. Furthermore, the critical buckling loads corresponding to the various stiffener 

thicknesses are shown in Figure ‎6.16. Figure ‎6.15 clearly appears that the addition of 

transverse stiffeners considerably improves the local buckling performance of a frame 

model. Initially the percentage of increase in the local buckling resistance of the stiffened 

frame model is seen to be significant at 0.5m and with an  increase in the distance between 

transverse stiffeners; it becomes gradual reduced for the period up to 1.5m before 

beginning of the reduction in steady state. As a result, it is clear that the addition of 

stiffeners has given a clear improvement in the critical buckling resistance to the 

unstiffened frame model and the curves trend to level down and eventually decrease in the 

local buckling capacity as shown in Figure ‎6.16. For an instant, the case of a small stiffener 

thickness 5mm at a distance between TS is 0.5m, an increase in the critical local buckling 

load is found to be of the order 58% of  unstiffened frame model as shown in Figure ‎6.15. 

On the other side, for the case of a high stiffener thickness 15mm at the same case increase 

in the critical buckling load is found to be of the order 71%  of  unstiffened frame model. 

Consequently, with an increase in the distance between stiffeners, it is of note that the 

transverse stiffeners effect on the critical local buckling became effect less after 1.5m of 

distance between TS. 
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Figure ‎6.15 (Pcr– unstiffened) / Pcr vs. distance between TS for Model-1f (Local) 
 

 

Figure ‎6.16 Effect of TS on the critical local buckling load of the frame for Model-1f 
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The local buckling mode changes from local buckling to global buckling with increase in 

applied load. Figure ‎6.17 highlights the structural response of the frame Model-1f  that 

corresponding to the critical global buckling capacity, throughout the loading. The ratio of 

the critical global buckling capacity of stiffened to unstiffened frame model, 

  crcr PdunstiffeneP / , is shown to be plotted against the distance between transverse 

stiffeners. It can be noticed from the Figure ‎6.17 that the curves for different distance 

between transverse stiffeners to critical global buckling tend to show similar behaviour 

with an increase in the stiffeners distance. It is evident that initially the notable 

improvement in the critical global buckling is seen at 0.5m is found to be 14.5%, 14.7% 

and 15.5% at different TS thicknesses of unstiffened frame respectively. Afterwards, with 

an increase in the distance between transverse stiffeners, the rate of change of critical 

global buckling load eventually approached for a small period  almost zero after 1.5m of 

distance between transverse stiffeners as shown in Figure ‎6.18 and it seems useless to 

further increase the stiffener distance since it increased the frame model (structural) weight 

without any notable improvement. As a result, the global buckling performance of the 

stiffened frame model is noted to be enhanced substantially for close distances between 

transverse stiffeners, while it can be observed that does not seem to add a substantial 

amount of the global buckling performance for short distances between transverse 

stiffeners.  

 

Figure ‎6.17  (Pcr– unstiffened) / Pcr vs. distance between TS for Model-1f  (Global) 
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Figure ‎6.18  Effect of TS on the critical global buckling load of the frame for Model-1f 

 

6.3.2  STIFFENED FRAME MODELS BY USING TRANSVERSE AND 

LONGITUDINAL STIFFENERS 

In this section, the critical local and global buckling behaviour of the frame models with 

transverse stiffeners and longitudinal stiffeners are investigated in detail. The influence of 

change in distance between transverse stiffeners and its thicknesses on the buckling 

capacity characteristics as well as structural performance of the stiffened frame models is 

illustrated. Frame models by adding longitudinal stiffeners are considered in the analysis 

for instance an one centrally located i.e. w/2 longitudinal stiffeners and of course with 

transverse stiffeners. 

6.3.2.1 STIFFENED FRAME MODEL BY USING TRANSVERSE AND TWO 

LONGITUDINAL STIFFENERS 

In this case, the effect of change in both transverse and two longitudinal stiffeners on the 

critical buckling load and buckling mode of the stiffened frame model is investigated.  

Figure ‎6.7 illustrates a detailed geometrical assembly of the frame Model-2f  with both 

stiffeners where the longitudinal stiffeners are fixed at w/2 of the frame-beams heights. The 

dimensions of the longitudinal stiffeners have been previously illustrated in section ‎6.2.1. 
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The results presented in this section are for the frame Model-2f  which stiffened by both 

types of stiffeners. The variation of distances between transverse stiffeners d, is varied from 

0.5m to 3m and the stiffener configuration is that in Figure ‎6.2 and Figure ‎6.3 respectively. 

The stiffened frame Model-2f considered in this analysis is subjected to pure axial 

compression load with transverse stiffeners thicknesses from 5mm to 15mm and 10mm for 

longitudinal stiffener's thicknesses in order to investigate their influence on the structural 

response. The first Eigen buckling modes on deformed shapes at critical local and global 

buckling loads for one sample are shown in  

Figure ‎6.19 and Figure ‎6.20 respectively. Obviously, the onset of buckling modes can be 

seen along with distribution of magnitude deformation over the surfaces. It is clearly 

manifest from  

Figure ‎6.19 that the effect of longitudinal stiffeners has a vital role in terms of 

redistribution the buckling mode in particular for the local buckling. However, the 

behaviour of global buckling mode as illustrated in Figure ‎6.20, is almost as the same 

fashion to the previous case in section ‎6.3.1 with a difference, of course, in its values. 

 

 

 

 

 

Figure ‎6.19  A sample of 1
st
 local Eigen buckling mode of the frame (Model-2f) 
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Figure ‎6.20 A sample of 1
st
  global Eigen buckling mode of the frame (Model-2f) 

 

 

The obtained results of the influence of the stiffened frame models on both local and global 

buckling capacity are illustrated in Figure ‎6.21 and Figure ‎6.23 respectively, where the 

ratio of critical buckling load of the stiffened to unstiffened frame model, 

  crcr PdunstiffeneP / , are shown to be plotted against the distance between transverse 

stiffeners TS. Furthermore, the critical buckling loads corresponding to the various stiffener 

thicknesses are shown in Figure ‎6.22. Figure 5.18 clearly appears that the addition of 

longitudinal stiffeners to transverse stiffeners considerably improves the local buckling 

performance of a frame model. Initially the percentage of increase in the local buckling 

capacity of the stiffened frame model is seen to be significant at 0.5m and with an increase 

in the distance between transverse stiffeners; it becomes gradual reduced for the period up 

to 1.5m before beginning of the reduction in steady state as shown in Figure ‎6.21. As a 

result, it is clear that the addition of longitudinal stiffeners has given a clear improvement 

in the critical local buckling capacity to unstiffened frame model and the curves trend to 

level down and eventually decrease in the local buckling capacity. For an instant, at a small 

TS thickness = 5mm and at a distance between TS =  0.5m, increase in the critical local 

buckling load is found to be of the order 65% of  the unstiffened frame model. 
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Figure ‎6.21  (Pcr– unstiffened) / Pcr vs. distance between TS for Model-2f  (Local) 

 

In comparison with the Model-2f   for the same condition, the percentage increased to 10% 

for both. Consequently, as the distance between stiffeners increase, it is of note from Figure 

‎6.22 that the transverse stiffeners effect on the critical local buckling load became effect 

less after 1.5m of distance between TS . Although, similarly for distance between TS = 3m 

with regard to TS thicknesses = 5mm and 15mm, the critical local buckling loads are noted  

to be improved by  31% and 40% respectively compared with Model-1f. Therefore, it can 

be observed that further increase in the distance between TS does not greatly improve the 

critical buckling loads and is not recommended for designs.    
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Figure ‎6.22  Effect of TS on the critical local buckling load of the frame for model-2f 

 

 Figure ‎6.23 and Figure ‎6.24 highlights the structural response of the frame Model-2f  that 

corresponding to the critical global buckling capacity, throughout the loading. The ratio of 

the critical global buckling capacity of stiffened to unstiffened frame model, 

  crcr PdunstiffeneP / , is shown to be plotted against the distance between transverse 

stiffeners. It can be noticed from the Figure ‎6.23 that the curves for different distance 

between transverse stiffeners to critical global buckling tend to show similar behaviour 

with an increase in the distance between TS. It is evident that initially the notable 

improvement in the critical global buckling is seen for 0.5m is found to be 14.5%, 14.7% 

and 15.5% at different TS thicknesses of unstiffened frame Model-2f respectively. 

Afterward, as the distance between TS increase, the rate of change in critical global 

buckling loads eventually approached for a small period (i.e. almost zero) after 2m of 

distance between transverse stiffeners as shown in Figure ‎6.24. It seems useless to further 

increase the stiffener distance since it increases the frame model (structural) weight without 

any notable improvement. As a consequence, it can be observed that in comparison with 

the results of Model-1f  the critical global buckling remained unchanged for all cases.  
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Figure ‎6.23  (Pcr– unstiffened) / Pcr vs. distance between TS for Model-2f  (Global) 

 

 

Figure ‎6.24  Effect of TS on the critical global buckling load of the frame Model-2f 
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6.3.2.2 STIFFENED FRAME MODELS BY USING TRANSVERSE AND FOUR 

LONGITUDINAL STIFFENERS 

In this case, the effect of change in both transverse, four longitudinal stiffeners on the 

critical buckling load and buckling mode of the stiffened frame Model-3f  is investigated.  

Figure ‎6.8  illustrates a detailed geometrical assembly of a frame model with both stiffeners 

where the longitudinal stiffeners are fixed at w/2 of frame-beams height. The dimensions of 

the longitudinal stiffeners have been previously illustrated in section ‎6.2.1. The results 

presented in this section are for the frame Model-3f  that is stiffened by both stiffeners. The 

variation of distances between transverse stiffeners denoted by d, is varied from 0.5m to 3m 

and the stiffener configuration is shown as in Figure ‎6.2 and Figure ‎6.3 respectively. The 

stiffened frame model considered in this analysis is subjected to pure axial compression 

load with variety of transverse stiffeners thicknesses from 5mm to 15mm and only 10mm 

for longitudinal stiffener's thicknesses in order to investigate their influence on the 

structural response. The first Eigen buckling modes on deformed shapes at critical local and 

global buckling loads for one sample are shown in  and  respectively. Obviously, the onset 

of  buckling modes can be seen along with distribution of magnitude deformation over the 

surfaces. It is clearly manifest from  that the effect of longitudinal stiffeners has a vital role 

in terms of increase the buckling mode in particular for local buckling. However, the 

behaviour of  global buckling mode is a little bit as the same fashion to the previous case in 

‎6.3.2.1 with a difference, of course, in the its values. 

 

 

 

Figure ‎6.25  A sample of 1
st
 local Eigen buckling mode of the frame Model-3f 
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Figure ‎6.26  A sample of 1
st
 global Eigen buckling mode of the frame Model-3f 

 

The obtained results of the influence of the stiffened frame models on both local and global 

buckling capacity are illustrated in  Figure ‎6.25 and Figure ‎6.26 respectively, where the 

ratio of critical buckling load of the stiffened to unstiffened frame model, 

  crcr PdunstiffeneP / , are shown to be plotted against the distance between transverse 

stiffeners TS. Furthermore, the critical buckling loads corresponding to the various stiffener 

thicknesses are shown in Figure ‎6.28 and Figure ‎6.30, and clearly appears that the addition 

of longitudinal stiffeners to transverse stiffeners considerably improves the local buckling 

performance of the frame Model-3f . It is note worthy to point out that the percentage of 

increase in the local buckling capacity of the stiffened frame model is seen to be significant 

at all thicknesses of TS. While an increase in the distance between transverse stiffeners it 

becomes gradual reduced for the period up to 1.5m, after this point the curves started 

dramatically decreasing. As a result, it is clear that the model using four longitudinal 

stiffeners has given a superb improvement and results in the critical buckling capacity to 

unstiffened frame model. For an instant, at lower distances between TS, the critical local 

buckling loads are found to be of order between 81% to 84.4% of  the unstiffened frame 

model. 
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Figure ‎6.27  (Pcr– unstiffened) / Pcr vs. distance between TS for Model-3f  (Local) 

 

 

Figure ‎6.28  Effect of TS on the critical local buckling load of the frame for Model-3f 
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In comparison with the Model-2f  for the same condition, the percentage increased 16%  and 

4%  respectively. Consequently, as the distance between stiffeners increase, it is of note 

that the transverse stiffeners effect on the critical local buckling load became effect less.  

Although, similarly for distance between TS is 3m with regard to TS thicknesses 5mm and 

15mm, the critical local buckling loads are improved 78.8% and 80.9% respectively. 

Therefore, it can be observed that further increase in the distance between TS does not 

greatly improve the critical buckling loads and is not recommended for designs. Again,  the 

buckling mode changes from local buckling to global buckling with increase in applied 

load. Figure ‎6.29 highlights the structural response of the frame Model-2b that 

corresponding to the critical global buckling capacity, throughout the loading. The ratio of 

the critical global buckling capacity of stiffened to unstiffened frame model, 

  crcr PdunstiffeneP / , is shown to be plotted against the distance between transverse 

stiffeners. It can be noticed from the curves for different distance between transverse 

stiffeners to critical global buckling tend to show similar behaviour almost linearly with an 

increase in the distance between TS. It is evident that initially the notable improvement in 

the critical global buckling is seen for 0.5m is found to be 16.9%, 18% and 18.6% at 

different TS thicknesses of  unstiffened frame Model-3f  respectively.  Afterwards, as the 

distance between TS increase, the rate of change in critical global buckling loads eventually 

approached for a small period, i.e. almost similar to the maximum values of model-2f . It 

seems useless to further increase the stiffener distance since it increases the frame model 

(structural) weight without any notable improvement. Consequently, it can be observed that 

in comparison with the results of Model-1f  and Model-2f  the critical global buckling 

slightly increased. 
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Figure ‎6.29  (Pcr– unstiffened) / Pcr vs. distance between TS for Model-3f  (Global) 
 

 

Figure ‎6.30  Effect of TS on the critical global buckling load of the frame for Model-3f 
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6.4 EFFECT OF TRANSVERSE STIFFENERS THICKNESS ON THE CRITICAL 

BUCKLING LOAD 

Another element, which takes in an outcome and influence along the general critical 

buckling capacity, is the rigidity of the stiffener. Usually the rigidity of a stiffener depends 

solely on its dimensions and the critical rigidity of a stiffener corresponds to an optimum 

stiffeners thickness. In this section, the effect of change in transverse stiffener thickness on 

the critical buckling load of the stiffened frames with three models is investigated.  

6.4.1 CRITICAL LOCAL BUCKLING RESPONSE AT DIFFERENT TS 

THICKNESSES 

Figure ‎6.31 shows the first critical buckling modes for three models with different TS 

thicknesses. Regarding  Model-1f , the shape and location of critical buckling loads are seen 

differently with each other. At tTS = 5mm, the location of the buckling load is taking place 

in the right top of the section frame on the outer surface. At  tTS = 10mm, the location and 

shape of the buckling are changed to be less than the previous condition, but at tTS = 15mm, 

the location and shape of the buckling are noted to be at the bottom and in the vicinty of the 

section junction. For the TS considered with tTS = 5mm and tTS = 10mm, the location and 

shape of the buckling are almost in the same trend on the left top section of the frame as 

indicated in the figure.  It is clear that with tTS = 15mm for the same model, the propagation 

of the buckling has not gone through the wall thickness on the right top of the frame 

section. By examining the buckling on Model-3f with the same procedures, it is worth 

mentioning that the locations and shapes of the buckling are closely of each other at 

different TS thicknesses. Consequently, it is of note that the development in buckling has 

different attitudes to changing of  TS thicknesses. This change depends on the location and 

thickness of transverse stiffener. 

Model tTS = 5mm tTS = 10mm tTS = 15mm 

1f 
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2f 

   

3f 

 
  

Figure ‎6.31  Critical local buckling modes for the samples of all models at difference TS 

thicknesses 

 

The influence of transverse stiffener thickness on the critical local buckling loads of the 

design space associated with different distance between the transverse stiffeners is shown 

in  Figure ‎6.32, Figure ‎5.33Figure ‎6.34 respectively. It can be observed from all figuresthat 

the thickness of transverse stiffener has a significant effect on the critical local buckling 

load for stiffened models. When the distance between transverse stiffeners is between 0.5m 

to 1.5m, the results showed that the improvement in the critical local buckling load can be 

seen clearly in Figure ‎6.32 for all models. For Model-1f , Model-2f  and Model-3f , which 

have a 5mm of  TS thickness, the critical local buckling load is increased to 55%, 64% and 

80% respectively. It can see from Figure ‎6.32, Figure ‎6.33 and Figure ‎6.34 that Model-1f  

and  Model-2f  is very close to each other in terms of the values of critical buckling loads. 

An interesting point was mentioned in Figure ‎6.28 that the value of critical buckling load 

for Model -3f  is higher compared with Model-1f  and Model-2f . 
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Figure ‎6.32  Effect of TS thickness on the critical local buckling load for all models at 

TS thickness =5mm 

 

 

Figure ‎6.33  Effect of  TS thickness on the critical local buckling load for all models at 

TS thickness =10mm 
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With the increase in TS thickness to 10mm by the same procedures, it can see from Figure 

‎6.33 that did not significantly increase in the critical local buckling load with Model-1f  and 

Model-2f. The values of these critical buckling loads compared to the values which found 

earlier at TS=5mm and d=0.5m are improved as following 64% and 72% respectively. 

Again, considering Model-3f, the critical buckling load was increased to 84% where could 

be the best increase. By looking at Figure ‎6.34 all models after 1.5m of distance between 

transverse stiffeners d, and with the increase in TS thickness to 15mm, the critical buckling 

loads are slightly changed. It can also see that the values of critical buckling loads are 

almost similar to the previous cases when TS=5mm and 10mm. However, the critical 

buckling load increases noticeably between 0.5m and 1.5m of distance between transverse 

stiffeners due to the increase presence of transverse stiffener thickness. The curves with 

high thickness of transverse stiffeners seem to approach the higher bound estimate of the 

critical buckling load at small distances between transverse stiffeners.  

 

Figure ‎6.34  Effect of  TS thickness on the critical local buckling load for all models 

at TS thickness =15mm 
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6.4.1.1 CRITICAL GLOBAL BUCKLING RESPONSE AT DIFFERENT TS 

THICKNESSES 

The influence of transverse stiffener thickness on the critical global buckling load for three 

models with different TS thicknesses is depicted in Figure ‎6.35. For Model-1f, the 

behaviour of critical buckling loads are seen similar with each other. At tTS=5mm, the 

location of the maximum buckling load is taking place in the top of the frame. At tTS = 

10mm, also the behaviour and the shape of the buckling are changed to be more than the 

previous condition, but at tTS=15mm, the location and shape of the buckling are noted 

incresed a little bit down. For the other models, the behaviour of the global buckling is 

almost in the same trend with different values as indicated in the image (i.e. inside the 

figure). Consequently, it is of note that the development in buckling has different attitudes 

to changing of TS thicknesses. This change depends on location and thickness of the 

transverse stiffener.  

Model tTS = 5mm tTS = 10mm tTS = 15mm 

1f 

   

Pcr = 2.59x10
7
 N Pcr = 2.61x10

7
 N Pcr = 2.64x10

7 
N 

2f 

   

Pcr = 2.62x10
7
 N Pcr = 2.63x10

7
 N Pcr = 2.64x10

7
 N 
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3f 

   

Pcr = 2.64x10
7 

N Pcr = 2.66x10
7
 N Pcr = 2.69x10

7
 N 

Figure ‎6.35 Critical global buckling modes for all models at difference TS thicknesses 

 

The influence of transverse stiffener thickness on the critical global buckling loads of the 

design space associated with different distance between the transverse stiffeners is shown 

in Figure ‎6.36, Figure ‎6.37 and Figure ‎6.38 respectively. It can be observed from all figures 

that the thickness of transverse stiffener has an effect on the critical global buckling load 

for stiffened models. When the distance between transverse stiffeners is between 0.5m to 

1.5m, the results showed that the improvement in the critical global buckling load can be 

seen clearly in Figure ‎6.36 for all models is limited. For Model -1f , Model-2f  and Model-3f, 

which have a 5mm of TS thickness, the critical local buckling load is increased to 12% , 

14%  and 20% respectively.  

 

 

 

 

 

 

 

 

 



Numerical and experimental diagnostics of buckling structural element behaviour 

129 

 

Figure ‎6.36  Effect of  TS thickness on the critical global buckling load for all models 

at TS thickness = 5mm 

 

As the increase in TS thickness to 10mm by the same procedures, it can see from Figure 

‎6.37  that there is no significantly increase in the critical global buckling load with all 

models. The values of these critical buckling loads compared to the values which found 

earlier at TS=5mm and d=0.5m were improved as following 17%, 30% and 73% 

respectively. 
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Figure ‎6.37 Effect of  TS thickness on the critical global buckling load for all models at 

TS thickness equals 10mm 

 

 

Figure ‎6.38 Effect of  TS thickness on the critical global buckling load for all models at 

TS thickness = 15mm 
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By looking at Figure ‎6.38 for all models after 1.5m of distance between transverse 

stiffeners (d), with an increase of TS thickness to 15mm, the critical global buckling loads 

are slightly changed. It can also see that the values of critical buckling loads are almost 

similar to the previous cases when TS=5mm and 10mm. However, the critical buckling 

load increases noticeably between 0.5m and 1.5m of distance between transverse stiffeners 

due to the increase presence of transverse stiffener thickness. The curves with high 

thickness of transverse stiffeners seem to approach the higher bound estimate of the critical 

buckling load at small distances between transverse stiffeners. 

6.5 CONCLUDING REMARKS 

The objective of this chapter was to examine and develop finite element solutions for steel 

structure subjected to a compressive load. The finite element simulation strategies as 

described in chapter 5 were used to follow the behaviour of the frame structure in terms of 

local and global buckling loads under simply supported boundary conditions. 

Also with the use of transverse and longitudinal stiffeners as supports to enhance the 

capacity of such frame structures models, these shell element models were effectively 

captured the buckling behaviour modes.  As is described in Figure ‎6.1, the frame structure 

consists of more than one member and connections with different thicknesses. In this study, 

the effects of transverse and longitudinal stiffeners on the frame structures were 

investigated in detail. Although, it is noted that the role of both stiffeners on critical 

buckling is significantly affected by the different configuration of geometrical shape, but 

this analysis has made only on their locations. However, the charts showed that the critical 

buckling loads of the frame structure degraded considerably with increase in the distance 

between transverse stiffeners, while a lighter effect was noticed by using the longitudinal 

stiffeners on the global buckling behaviour. 
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CHAPTER  7 

 

7. EXPERIMENTAL BEHAVIOR OF STEEL 

STRUCTURAL ELEMENTS 

 

7.1 INTRODUCTION 

The experimental tests are usually the base and an important for any scientific research 

even though are very costly and need to very long time. The numerical simulations are 

normally to expect the capacities of perfect members or full structures where a set of 

assumptions have been assumed. Therefore, the experimental tests are used for validation 

and comparing with the theoretical or numerical solutions and sometimes to develop further 

required formulas for the design. The purpose of this section is to study some specific 

sections that fail due to local or global buckling before the plastic capacity is reached. In 

the previous chapters, the basic and background of theoretical and finite element modeling 

aspects of the buckling behavior during thin-walled plates were discussed in details. In 

order to test the behaviour behind the buckling and validate the FE models, the 

compression test experiments are carried out. The suitable technique to guarantee the 

reliability of numerical simulations and to extend the utilization of the research work is by 

conducting the full-scale experiments with proper instrumentation for data measurement. 

Based on the experiments, corresponding finite element simulations have been undertaken 

using the ABAQUS software without any geometric imperfection in the shell. The columns 

were meshed using S4R, a 4-node reduced integration shell element. The compressive 

buckling behaviour of steel columns with has been experimentally and numerically 

investigated in this study. A total of 6 column tests were carried out to acquire the 

compressive buckling strengths with different cross sections as shown in Table ‎7.1.   
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7.2 TEST SPECIMENS 

In order to investigate the buckling behavior of steel members with different types of test 

sections were prepared under axial compression load; it is significant that some parameters 

are chosen in terms of design. These parameters include the length, geometry of the cross 

section and thickness. A number of specimens was chosen and tested at the Faculty of 

Mechanical Engineering Laboratory in order to investigate the effect of these parameters. 

As it is known that geometrical imperfections influence the ultimate resistance buckling, 

but in these tests the effect of imperfection has not taken in the account. Table ‎7.1 and 

Table ‎7.2 respectively show the typical cross-sections geometrical details for the entire 

specimens which are used in the experimental tests. Generally, the lengths of specimens are 

different in order to observe the local and global buckling phenomena. The material 

considered is steel with actual stress-strain data and thus Young's modulus E = 200GPa, 

yield stress σY = 218MPa and Poisson’s ratio ν = 0.3. 

Table ‎7.1 Models specimens 

Specimen  Cross-section Isometric projection 

C1 

  

C2 

 

 

C3 
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C4 

  

C5 

  

C6 

 
 

 

 

Table ‎7.2 Geometrical details of test specimens 

Specimen 

Main value 

Section length  

L (mm) 

Web depth H 

(mm) 

Flange 

Width (mm) 

Web 

thickness 

tw (mm) 

Flange 

thickness 

tf (mm) B b 

C1 1000 99 21 - 0.5 0.5 

C2 960 40 20 - 1 1 

C3 1000 19.5 - 20 0.5 0.5 

C4 510, 900 26 27 - 0.5 0.5 

C5 530 14.5 - 17 2.2 2.2 

C6 540 30 - - - 5.5 
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7.3 TEST SETUP 

The test was performed at the Structural Engineering Laboratory at the faculty using the 

compression testing frame for carrying out the tests as illustrated in Figure 3.4. The test 

frame was restrained by four supporting bolts on the floor which prevented any 

movements. The load is transmitted by an axle through a single-ended of 20 Tons hydraulic 

jack connected at the top of the test frame where is free in vertical direction and restrained 

in horizontal direction. The axial compression load which is applied on the specimen is 

measured by Force Sensor. The position of the force sensor is mounted at the top 

connection between the specimen and jack as shown in Figure ‎7.2. In order to measure 

value of the critical buckling load, the Force Sensor is connected with the computerized 

controller as shown in Figure ‎7.3 to convert the signal into force and displacement.  

 

 

Figure ‎7.1 Test setup facility  
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Figure ‎7.2  General view of the test stand with mounted sample and Force sensor 

 

 

Figure ‎7.3  Data acquisition set-up 

 

7.4 LOAD AND BOUNDARY CONDITIONS 

The load was applied on the specimen by hydraulic jack piston which is controlled by a 

hydraulic pump. The load is being introduced through two steel plates by simply contact 

between the supports and load edge that means there is no structural connection between 

each other. Figure ‎7.4 shows the boundary conditions which are applied for all specimens 

in the experimental test and also during the FE simulation. The top plate is resting between 

the Force Sensor and specimen to distribute the load, while the bottom plate is totally fixed 

at the end of specimen and the base is movable to allow the specimens with various lengths 

to be tested as shown in the Figures. The obtained data during the test sends to the 
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computer as shown in Figure ‎7.3 where it could be read on the screen during the test and 

after that the data converts to readable text file then to processing. 

 

Figure ‎7.4   The applied boundary conditions during testing 
 

7.5 TEST RESULTS 

The buckling experiments were conducted for all specimens on the prepared test frame for 

validation comparison with the FE simulations results. Each specimen was positioned in the 

set-up a lone due to that the expected mode of buckling was in a horizontal plane. In order 

to firm and hold the specimen in place a small load was applied to start the test. The load 

was then increased slowly intervals as the force approached critical load, the local and 

global buckling load were noted. The results of the experiments tests are briefly described 

as follows: 

Specimen C1 

Figure ‎7.5 shows the comparison of the local buckling behaviour for specimen C1 between 

the experimental and numerical models under axial compression load, where the 

experimental major deformation characteristic appeared similar to the FEM simulation. It 

can be seen from the figure that the maximum local buckling occurred in the web members 

than the flange members for local and global buckling. Figure ‎7.6 showed the global 

buckling mode that has the same behavior in terms of comparison with FE simulation. As a 

result, well agreement between the experimental and finite element models results for both 

local and global buckling behaviour under axial compression load. 



Doctoral thesis 

138 

 

 

a. 

 

 

b. 

Figure ‎7.5  First local buckling mode for specimen C1, a. Exp, b. FE. 

 

 

a.  b.  

 

Figure ‎7.6  First global buckling mode for specimen C1; a. Exp. , b. FE. 
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The obtained load-time curve of the specimen C1 from test is shown in Figure ‎7.7. It is 

noted from the figure that before the occurrence of the local buckling, the compression load 

increased almost linearly till the first mode of local buckling which is occurred at 2012N. 

In the other hand of the solution which is made by FEM simulation and as shown in Figure 

‎7.5, it can be seen that the first local buckling mode was at 1487.6 N. When the local 

buckling occurred, the axial compression load is almost at the same level for a while. The 

axial compression load increased further with increase of time of course until the maximum 

value in which the global buckling occurred that was 3125N while by FEM simulation was 

3882N as shown in Figure ‎7.6. Consequently, the comparisons of the critical buckling 

modes for specimen C1 were agreed almost well with a little bit difference especially in the 

local buckling modes where the error was 30%.  

 
Figure ‎7.7  Critical buckling load response for specimen C1 

 

Specimen C2 

The description of  the model and geometrical details for the specimen C2 section has been 

described in Table ‎7.1 and Table ‎7.2 respectively.  In this specimen, another part has been 

added with length b as shown in Table ‎7.1 Models specimens.  Therefore, the function of 

this part is to be as a longitudinal stiffer in an attempt to investigate its effect on the critical 

buckling in terms of value and behaviour. In order to visualize the effect of the longitudinal 

additional part to load and to determine the critical buckling load, there is a need to 

investigate the deformation shape. Figure ‎7.8 and Figure ‎7.9 show the obtained deformation 
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shapes and both local and global critical buckling for specimen C2. It can be seen from the 

Figure ‎7.8 and Figure ‎7.9 respectively that the deformation which also represents the 

location of the critical buckling load has occurred through and along the specimen for local 

buckling and at the middle of specimen for the global buckling as shown for both 

experimental and FE simulation.   

 

a 

 

 

b 

Figure ‎7.8  First local buckling mode for specimen C2; a. Exp. , b. FE. 
 

 
a 

 

b 

 

Figure ‎7.9  First global buckling mode for specimen C2; a. Exp. , b. FE. 
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The load compression response of the specimen C2 is plotted against the time of the test 

and is shown in  Figure ‎7.10. The findings from the experimental test are indicated in the 

figure by dotted circles and more viewing for both local and global buckling. Both sets of 

values (i.e. Exp. & FE) demonstrate almost similar local buckling trends where are1800N 

and 1641.2N respectively. The finite element simulation produced a more accurate 

prediction in terms of load compressive response to global buckling load where was 5420N 

while by experimental test was 6000N.  

 

Figure ‎7.10  Critical buckling load response for specimen C3 
 

 

 

 

 

 

 

 

 

0

1000

2000

3000

4000

5000

6000

7000

8000

0 10 20 30 40 50 60

C
ri

ti
ca

l 
b
u
ck

li
n

g
 l

o
ad

 (
N

)

Time (ms)



Doctoral thesis 

142 

Specimen C3  

Figure ‎7.11 shows the local buckling behaviour between the experimental and numerical 

models for specimen C3 also under axial compression load. It can be seen from Figure ‎7.11 

that the experimental response of specimen C3 with load whose bottom edge is buckled, is 

in close agreement with that of the numerical simulation solution.  

 
a 

 

b 

Figure ‎7.11  First Local buckling mode for specimen C3, a. Exp, b. FE. 
 

Based on the experimental results which are obtained for specimen C3, the critical local 

buckling value is 250N. It has been noted during the test that there was not any global 

buckling for specimen C3 it might due to the shape of the specimen. The obtained load-

time curve of the specimen C3 from test is shown in Figure ‎7.12. It is noted from the figure 

that before the occurrence of the local buckling, the compression load increased linearly till 

the first mode of local buckling which is occurred at 250N. On the other hand of the 

solution which is made by FE simulation and as shown in Figure ‎7.11, it can be seen that 

the first local buckling mode was occurred at 238.5 N. When the local buckling occurred 

and with increasing in the axial compression load, the critical local buckling load was 

almost at the same value with a little difference in its value. Consequently, the comparisons 

of the critical buckling modes for specimen C3 were agreed almost well with a little bit 

difference especially in the local buckling modes where the error was 4.6% and this value 

is very acceptable in design. 
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Figure ‎7.12  Critical buckling load response for specimen C3 
 

Specimen C4 

The specimen C4 of lengths of 900 mm and 510 mm respectively have been chosen to 

represent long and short columns. Other different modifications have been made on the 

specimen C4 as shown in Table ‎7.1 as zags which represent as supports in order to see its 

role on the buckling behaviour. Specimen C4 has two different lengths (i.e. L = 900 mm 

and L = 510 mm) with the same other dimensions. Figure ‎7.13 and Figure ‎7.15  also show 

the comparison results of the local buckling behaviour for specimen C4 at two lengths 

between the experimental and numerical models under axial compression load. The 

obtained results showed that the experimental major deformation characteristic appeared 

similar to the FEM simulation for two different lengths of specimen C4 as shown in the 

figures. It can be seen that the maximum local buckling occurred in the web member than 

the flange members in both cases. Figure ‎7.14 also shows the finite element test of the 

global buckling behaviour for specimen C4 at L = 900mm which was very small through 

the experimental test and due to this reason does not show in experimental figure. It is 

noted from the experimental and finite element simulation that there is no global buckling 

for specimen C4 at length L = 510 mm, because of the short length. Again and as a result, 

well agreement between the experimental and finite element models results for both local 

and global buckling behaviour under axial compression load for two cases.  
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a 

 

b 

Figure ‎7.13  First local buckling mode for specimen C4 (L = 900 mm), a. Exp, b. FE 

 

 

Figure ‎7.14  First global buckling mode for specimen C4 (L = 900 mm) by FE  
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a 

 
b 

Figure ‎7.15  First local buckling mode for specimen C4 (L = 510 mm) by FE 
 

The load compression response of the specimen C4 when L = 900mm and L = 510mm is 

plotted against the time of the test and are shown in Figure ‎7.16 and Figure ‎7.19  

respectively. The results from the experimental test are represented by more viewing at 

length L =900 mm and for both local and global buckling in Figure ‎7.17 and Figure ‎7.18 

respectively. Both sets of values (i.e. Exp. & FE) demonstrate almost similar local buckling 

trends where 1500N and 2800N for two lengths respectively were. However, the finite 

element simulations produce more accurate predictions in terms of load compressive 

response where were 1945N and 2960N as shown in Figure ‎7.13 and Figure ‎7.15 

respectively. 
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Figure ‎7.16  Critical buckling load response for specimen C4, L = 900 mm 

 

 

 

 

Figure ‎7.17  Critical local buckling load location of  Figure ‎7.16 
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Figure ‎7.18  Critical global buckling location of Figure ‎7.16 

 

 

Figure ‎7.19  First global buckling mode for specimen C4, L=510mm 
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Specimen 5 

Figure ‎7.20 shows the local buckling response from the experimental and finite element 

simulation for specimen C5 and the major deformation characteristic is as indicated in the 

figure. For specimen C5, the first local mode by FE simulation and the major deformation 

characteristic have been appeared similar as the experimental form and the maximum 

critical local buckling load for each mode are 3985N and 3500N with a difference is in the 

order of 12% as shown in Figure ‎7.20 and Figure ‎7.22. Figure ‎7.21 shows the full scale of 

global buckling mode that has been obviously appeared identical in two cases (i.e. Exp. and 

FE). The critical buckling load for specimen C5 from finite element simulation is found to 

be 5082N and this compares well with the test value of 5000N as indicated in Figure ‎7.21 

and Figure ‎7.22. 

 

 
 

 

 
 

b 

 

 

 
a 

Figure ‎7.20  First local buckling mode for specimen C5, a. Exp, b. FE 
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b 

 

Figure ‎7.21  First global buckling mode for specimen C5, a. Exp, b. FE 
 

 

Figure ‎7.22  Critical local & global buckling load locations for specimen C5 
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Specimen 6 

The specimen C6 has been chosen to represent a thick plate with t=5.5 mm in order to 

examine its influence on the critical buckling behaviour. The simply supported boundary 

conditions are used as previous cases with axial compression load. Figure ‎7.23 shows the 

comparison results of the global buckling behaviour for specimen C6 between the 

experimental and numerical models under axial compression load. The results obtained 

from the experimental and FE simulation showed that the major deformation characteristic 

appeared similar in both cases. It is noted from the experimental and finite element 

simulation that there is no local buckling for specimen C6. Therefore, further increase in 

the applied loading results a second global buckling mode as shown in Figure ‎7.24 which is 

examined by FE simulation.  

 

 
a 

 
 

 

b 

 

Figure ‎7.23  First global buckling mode for specimen C6, a. Exp, b. FE 
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Figure ‎7.24  Second global buckling mode for specimen C6 by FE 
 
 

The change in the load compression on the behaviour of the specimen C6 with L = 540mm 

is plotted against the time of the test and is highlighted in Figure ‎7.25. The dotted circle line 

represents the critical global buckling load in which the specimen has been buckled 

globally, and is almost 3750N. The value of global buckling load which has been obtained 

by FE simulation is 3134.4N and in comparison with the Exp. value, the difference is 616N 

about 61kg with 16% of error. Consequently, the finite element simulations produce more 

accurate predictions in terms of load compressive response where is 3134N as shown in 

Figure ‎7.23 and this value is safer than Exp. value.  
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7.6 CONCLUDING REMARKS 

The purpose of this chapter was to experimentally examine and develop finite element 

solutions for different steel elements subjected to a compressive load. As mentioned early, 

the finite element simulation strategies as described in chapter 3 were used to follow the 

behaviour of the steel elements in terms of local and global buckling loads and compare the 

obtained results with the experimental tests as a validation. One boundary condition is used 

for the analyses in this study. This boundary condition is simply supported with restraints 

along two end edges of specimen expect the displacement in the load direction. The 

following conclusions are drawn based on the results and observations presented herein. 

 

 In the case of short length columns, the existence of global buckling in columns 

whose local buckling is higher can result unavailable.   

 In case of long longer columns whose initial buckling is in the local buckling mode 

can result that the global buckling available. 

 It can be concluded that the obtained experimental results have been shown good 

agreement with the finite element simulation solutions. 

 

  

 

Figure ‎7.25  Critical buckling load response for specimen C6 
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CHAPTER  8 

 

8. CONCLUSIONS AND FUTURE WORK  

 

8.1 SUMMARY 

The purpose of this work was, basically to develop suitable finite element modelling 

strategies and solution procedures for the investigation of the local and global buckling 

failure behaviour of the structural elements which are subjected to uniaxial compression 

load. The work was carried out by adding the transverse stiffeners and longitudinal 

stiffeners in order to examine their influence and effect on the critical buckling loads. In the 

course of this work, the finite element simulation approaches were developed to be able to 

examine the buckling characteristics of the thin plates and to deal easily with different 

boundary conditions. In the initial stage, the thin plate structure under consideration is 

modeled as an individual plate element in order to validate the numerical simulation. The 

plate width-to-length ratio with different thicknesses was changed in order to monitor its 

influence on the critical buckling behaviour under classical boundary conditions as well as 

on the development of the elastic deformation. The width-to-thickness ratio of the thin plate 

with has been examined in order to observe its effect also on the critical buckling loads.  

The work has been developed to study the buckling behaviour of the beam-column 

structural with the simply supported in uniaxial compression load. The transverse and 

longitudinal stiffeners have been included in the beam-column in order to increase its 

critical buckling loads. A range of different distances between transverse stiffeners has 

been distributed through the beam-column with simply supported boundary conditions.  

The effect of changes in the distances between the stiffeners on the critical buckling loads 

of the stiffened beam-column has been studied for the different thicknesses of stiffeners 

considered. Moreover, the longitudinal stiffeners have been added as well to the beam-

column with centrally located and equally one and two spaced between each other in order 

to investigate their role with transverse stiffeners on the critical buckling resistance.  



Doctoral thesis 

154 

The finite element techniques have also been carried out in order to examine the buckling 

behaviour and possible failure of the frame structural. Different dimensions and thickness 

of the frame are used during the numerical simulation analysis by using the same previous 

configurations. 

8.2 CONCLUSIONS 

This thesis has studied and presented the response of critical local and global buckling 

capacity of thin plates, beam-column and frame structural systems subjected to axial 

compression load. Finite element modelling strategies and solution procedures have been 

developed in order to investigate the local and global buckling behaviour for un-stiffened 

and stiffened structural systems. The investigation on the structural member's axial 

compression buckling behaviour, length to width and width to thickness response involved 

a large of finite element analyses of simply supported beam-column and frame structure. 

Furthermore, the study computationally investigated the effect of transverse and 

longitudinal stiffeners on the beam-column and frame structural systems to increase their 

local and global buckling resistance.  

Some important points summarized from the presented work regarding the diagnostic 

analysis of the buckling behaviour of element structural in some detail as follows: 

 

 The obtained results from this study throughout the development of the finite 

element modelling strategies and solution procedures employed in all cases, 

demonstrate that the effectiveness and uniqueness of using of the finite element 

method in being able to describe the critical buckling behaviour of thin plate, beam-

column and frame structures subjected to uniaxial compression load. 

 The used finite element approach that processed in the work has been shown to be 

able to efficiently and consistently capture all aspects of the critical local-global 

buckling loads of the thin plate, beam-column and frame structural systems 

analyzed. The distributed elastic analysis based on the shell elements is able to 

capture the development of buckling behaviour of the system under elastic buckling 

up to ultimate conditions. 

 The finite element modelling technique which used for thin plate has been 

developed with regard to the uniaxial compressed load at different boundary 

conditions which has been termed as classical method or approach by previous 
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researchers. This simple method has been used to simplify the numerical 

procedures in the analysis of thin plate sections. 

  In the case of the thin plate analysis, the obtained results have been shown that the 

highest value of critical buckling load Pcr occurred at short lengths of the plates 

which represented the highest critical buckling load where the plate may be fails.   

 In the case of stiffened beam-column subjected to uniaxial compression load, three 

situations were investigated in the finite element analysis of simply supported 

beam-column. They are: 1) by using only transverse stiffeners, 2) by using 

transverse and two longitudinal stiffeners, 3) by using transverse and four 

longitudinal stiffeners. The beam-column examined without any stiffeners and with 

stiffeners with stiffeners positioned at specified locations as shown in chapter 5. 

 Effects of transverse and longitudinal stiffeners were examined in this study. The 

results have been shown that the transverse stiffeners have a significant effect on 

the beam-column critical buckling load. The longitudinal stiffeners, on the other 

hand, do not have a significant effect on the beam-column critical buckling load.  

 The critical buckling load versus length-to-width ratio curve of simply supported 

beam-column indicates that the maximum critical buckling is at the shorter 

distances between transverse stiffeners. The beam-column buckling drops 

dramatically between 0.5 to 1 meters where afterwards 1m there is no any 

noticeable change in critical buckling load.  

 With regard to the local deformation shape of the beam-column condition, it has 

been shown from the figures that the local deformation crest occurs at the center of 

the beam-column.  

 The analysis of frame structure with simply supported condition was also developed 

in the finite element analysis. Appropriate transverse and longitudinal stiffeners 

were included in the model for elastic buckling analysis. The two basic buckling 

modes (i.e. local and global buckling) as observed and investigated in the frame 

structure.  

 The effect of both stiffeners in terms of distribution was also investigated in the 

finite element analysis. The buckling behaviour and results showed that the effect 

of the both stiffeners is significant. However, the transverse stiffeners have had a 

better effect in particular on the local buckling load than longitudinal stiffeners.   
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 The buckling behaviour shows that the expected position of critical local buckling 

load is unknown that means may be occurring on any beam on the frame. 

 In a frame structure, the critical buckling loads were generally higher for short 

distances between transverse stiffeners than those of the long distance in both 

buckling modes. Namely, critical buckling loads decrease with increasing of the 

distance between the stiffeners. 

 As a result, the finite element analyses that have been made of the frame structures 

show when one of the beams (members) in the frame fails in critical local and 

global buckling mode, the frame is not able to carry further loads.   

 The finite element method is able to visualize the growth and the redistribution of 

stresses after local buckling, as well as the initiation of buckling throughout 

loading.  

 The development of the von Mises stresses through the buckling behaviour can be 

monitored. 

 the best improvement is obtained in the critical buckling load when transverse and 

longitudinal stiffeners are defined together.   

 The main increase in the critical buckling load is obtained when the distance 

between the stiffeners is short.  

 The study showed that the critical buckling loads are very sensitive to the location 

of stiffener.  

 The compressive buckling behaviour of steel columns with simply supported 

conditions has been experimentally and numerically investigated in this study. 

 Regarding the experimental results that have been obtained from the simply 

supported steel elements tests were used as solutions to validate with finite element 

simulation.      

 

8.3 FUTURE WORK 

The aim of the finite element modelling techniques and solution steps to diagnose the 

buckling behaviour of the structural element's behaviour in terms of local and global 

buckling has been successfully presented. In order to broaden the scope of the current 

research work, the author proposes some further opinions. Thus, the following 

recommendations are suggested for future work: 
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 The application of the finite element simulation techniques highlighted in the thesis 

can be further extended to study different thin plate structural configurations. 

 The presented finite element for the beam-column can be utilized to extend the 

work of a stiffened beam-column by employing different stiffener’s dimensions and 

shapes. 

 Similarly the work of stiffened frame structural can be investigated further by 

changing the shapes of attached stiffeners. 

 The work can be developed to study the behaviour of unstiffened and stiffened plate 

structures taking into account the geometrical imperfections and material 

nonlinearity. 
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