UNIVERSITY OF BELGRADE
FACULTY OF MECHANICAL ENGINEERING

NOUREDDINE TOUMI

NUMERICAL AND EXPERIMENTAL DIAGNOSTICS OF
BUCKLING STRUCTURAL ELEMENT BEHAVIOR

DOCTORAL DISSERTATION

BELGARDE, 2017



YHUBEP3UTET Y BEOI'PAY

MAHINHCKHU ®AKYJITET

HOYPEJJIUHE TOYMHU

HyMepunuka-ekcriepuMeHTAJIHA AUjarHOCTUKA

MOHAIIAKA U3BUjalba CTPYKTYPHHUX €JIEMEHATA

JlokTopcka aucepraiyja

beorpan, 2017



Mentor:

Members of the

Committee

Date of defense:

Prof. Dr. Tasko Maneski, full professor

University of Belgrade, Faculty of Mechanical Engineering

Prof. Dr. Nina Andeli¢, full professor

University of Belgrade, Faculty of Mechanical Engineering.

Prof. Dr. Igor Bala¢, full professor

University of Belgrade, Faculty of Mechanical Engineering.

Prof. Dr. Vladimir Buljak, assistant professor

University of Belgrade, Faculty of Mechanical Engineering.

Prof. Dr. Dragan Ignjatovi¢, full professor

University of Belgrade, Faculty of Mining and Geology.



The thesis is dedicated to all of my parents, wife, children, brothers
and sister whose love, guidance, sacrifices and encouragement is

boundless



ACKNOWLEDGEMENTS

First of all, I am sincerely grateful to my supervisor Professor TaSko Maneski, for his
expertise, guidance and constructive suggestions over the last few years and the valuable

assistance in many ways.

I would like to thank the Libyan Ministry of Higher Education and Scientific Research
(www.highereducation.gov.ly) for providing me the financial support. Thanks also to the
all members of the Faculty of Mechanical Engineering at the University of Belgrade for

providing the necessary facilities and technical support.

Many thanks to the wonderful people who have supported me on this journey. Without
their help, I would not be able to finish my thesis successfully.

I would like to express my deep and sincere appreciation to all of my wife, children and
brothers and sister as well. They made a great part of this adventure possible and showed
me with patience and optimism all the way to the end. To all of my colleagues who studied

with me at the University of Belgrade for their measureless help during the journey.

Finally, a special word of appreciation to my parents and also to my friends, for their

endless support, encouragement and love throughout the duration of this study.

Author

Belgrade, 2017



TABLE OF CONTENTS

ACKNOWLEDGEMENTS .....oovunneesesmnsssssssssmsnsssssssssmsnsssssssssmssssssssssssnssssssssmsnssssses i
TABLE OF CONTENTS ..ouuuuniiveennessssmmsssssssssssssnssssssssmssssssssssssssssssssssssssssssssssssnses i
ABSTRACT a..ovveensessssmsssssssssmssssssssssmssssssssssmssssssssssmssssssssssssssssssssssssssssssssssssses vii
NOMENCLATURE c.u...covvumeenncessmsnssssssssesmssssssssssmssssssssssmanssssssssssssssssssssssnsssssssssssnnes xii
LIST OF FIGURES ..c....coouumeenneeeseensssssssssmssssssssssmsssssssssssmsnssssssssmsssssssssssmanssssssssmsnnes XV
LIST OF TABLES...cuuu..oovueneessssnssesssssmsssssssssssssssssssssmssssssssssssssssssssssssssssssssssssans xxii
1. INTRODUCTION oouuunvvveenessssssssssssssssssssssssssssssssssssssmsssssssssssssssssssssssssssssssssssens 1
1.1 GENERAL INTRODUCTION ... oo eeeeeeeeeeseeseeseeeessesseeseeessesssseeee 1
1.2 RESEARCH PURPOSE AND AIM ....coomorvvoeoeeeeeeeeeeeeseeseeeeeeesseseeeneesssesssseeee 5
1.3 CONTENTS OF THE THESIS. ... vvvecoeeeeeeeeeeeeseeeseeeeesessesseeeeeessesseesesessessssessens 6
2. LITERATURE REVIEW ......ooomeeeseesssssssssssssssssssssmsssssssssssssssssssssssnssssssssssanssses 8
2.1 THE CONCEPT OF BUCKLING ... eeeeseeeeeseseeesesseneeeeseseoons 8
2.2 AN OVERVIEW OF SHELL BUCKLING .......vvooeereeeoeeeeeeoseeeseeeeseeseeeeeeseseens 9
2.3 PLATE AND BEAM-COLUMN BUCKLING HISTORY ......cororreeerrrreereeeeen 10
24 ELASTIC PLATE BUCKLING «...ooovvoooeeeeeeeee e eeeeeeeseeeseeeeeessesseseeeeseessseeee 10
2.4.1 BUCKLING OF SIMPLY SUPPORTED PLATES UNDER UNIFORM
COMPRESSION (SSSS)...vccereerreeeereeseeseeeesesseesseeesessessseeessesssssseessessesseeeesssssesee 17
2.4.2 BUCKLING OF SIMPLY SUPPORTED-FREE PLATE UNDER
UNIFORM COMPRESSION (SSSF) w.ovvvvcormeeeeeeesseseeeeeeeeseeeeseeseeseeseessseeesssseesenee 23
2.4.3 LINEAR BUCKLING OF STIFFENED PLATES ......eoovvveeeseeeeereeeereeenene 24
2.4.3.1 TRANSVERSE STIFFENERS ......cesoooveeeeeseeeeeeereeeeeseeeessessesseeessene 25
2.4.3.2 LONGITUDINAL STIFFENERS ... oovooeceeeeeeeeeeseseeseeeeesseseseseeseen 26
2.5 LOCAL BUCKLING .....coeervoeeeoeeeeeeeeeeeeseeseeeesesseesssssssessessssesesssessssessesssessseene 27

i



2.6 GLOBAL BUCKLING......ccciiiiiiiiiiiiiicitcteeeee et 28

3. BUCKLING ANALYSES WITH FINITE ELEMENTS........ccccecceeninnensuensuesannene 30
3.1 INTRODUCTION ..ottt 30
3.2 FINITE ELEMENT METHODS SOLUTIONS ......cooiiiiiiiiiiieeeceeeeeene 32

3.2.1 LINEAR STATIC ANALYSIS ..o 32
3.2.2 LINEAR BUCKLING ANALYSIS METHOD ......ccccccccoviiiiiiiiiiiiiinne. 34
3.2.3 FINITE ELEMENT DISCRETIZATION ....cc.cooiiiiiiiniiiieeeceeeceeeee 37

3.2.4 FORMULATION AND CALCULATION OF FINITE ELEMENT

MATRICES ... 39
3.2.4.1 THE STIFFNESS MATRIX OF SHELL ELEMENT ........ccccccoevennene. 39
3.2.4.2 STIFFNESS MATRIX OF A BAR ELEMENT .....cccccoiiiiiiniiiiinen 40
3.2.4.3 STIFFNESS MATRIX OF A BEAM ELEMENT ......cccccccviiiiiiiiinne. 42
3.2.4.4 STIFFNESS MATRIX OF SPACE FRAME STRUCTURES .............. 44

3.3 CONCLUDING REMARKS .....cocoiiiiiiiiiiieiccntetceeeece e 46

4. THE BUCKLING BEHAVIOUR OF A THIN PLATE .....cocceevvveereninensnecssnecnnes 47
4.1 INTRODUCTION ...ttt 47
4.2 FINITE ELEMENT MODELLING OF THIN PLATE ....c.coooiiiiiiiiiiieeeee, 47
4.2.1 GEO-METRIC MODELLING AND NUMERICAL ANALYSIS .............. 47
4.2.2 BOUNDARY CONDITIONS AND FINITE ELEMENT MESH................. 48

4.2.3 FULLY SIMPLY SUPPORETED OF THIN PLATE EDGES UNDER
COM-PRESSIVE LOAD (SSSS)...vvvcererveeeeeeeeeeeeeeeeeeeeeeeseseessesseesseeseeesesesseseeeees 50

4.2.4 SIMPLY SUPPORETED FREE OF THE THIN PLATE UNDER EDGES
COMPRESSIVE LOAD (SSSF) ...ctiitiiiiiiieieeececereteeeeee et 53

4.2.5 SIMPLY SUPPORETED CLAMPED FREE OF THE THIN PLATE
UNDER EDGES COMPRESSIVE LOAD (SSCF) v 57

i1



4.2.6 CLAMPED FREE OF THE THIN PLATE UNDER EDGES
COMPRESSIVE LOAD (CFFF) wvvvooeeeeeoe oo eseesee e seeee s 61

4.3 CONCLUDING REMARKS ..ottt 65

5. THE BUCKLING BEHAVIOUR OF BEAM-COLUMN TRANSVERSELY

AND LONGITUDINALLY STIFFENED........ucuiniiininsnnsnensnesnsssesssssnsssesacsssssn 67
S.TINTRODUCTION ...coiiiiiiiiiiiiiiicietceeeee e 67
5.2 FINITE ELEMENT MODELLING OF STIFFENED BEAM-COLUMN............ 68

5.2.1 GEO-METRIC MODELLING AND NUMERICAL ANALYSIS .............. 68
5.2.2 BOUNDARY CONDITIONS AND FINITE ELEMENT MESH................. 70
5.3 MESH CONVERGENCY STUDY ...cooiiiiiiiiiiiiinieiceceeceeeeeee e 71

5.4 BUCKLING BEHAVIOUR OF THE BEAM-COLUMN WITH STIFFENERS. 72

5.4.1 A STIFFENED BEAM-COLUMN WITH ONLY TRANSVERSE
STIFFENERS ..ot 72

5.4.2 A STIFFENED BEAM-COLUMN WITH TRANSVERSE AND LONGITU-
DINAL STIFFENERS ... .ooiiiiteeee ettt 77

54.2.1 A STIFFENED BEAM-CLOUMN WITH TRANSVERSE AND TWO
LONGITUDINAL STIFFENERS .......cooiiiiiiiiiieeieeceeeeeeee e 77

5.4.2.2 A STIFFENED BEAM-COLUMN WITH TRANSVERSE AND FOUR
LONGITUDINAL STIFFENERS .......cooiiiiiiiiiieeieeceeeeeeee e 82

5.5 EFFECT OF TRANSVERSE STIFFENER'S THICKNESS ON THE CRIT-ICAL
BUCKLING LOAD ..ottt 87

5.5.1 CRITICAL LOCAL BUCKLING RESPONSE AT DIFFERENTTS THIC-
KINESSES et e 87

5.5.2 CRITICAL GLOBAL BUCKLING RESPONSE AT DIFFERENT TS THIC-
KINESSES .. 92

5.6 CONCLUDING REMARKS ..ot 96

v



6. THE BUCKLING BEHAVIOUR OF FRAME STRUCTURE
TRANSVERSELY AND LOGNITUDINALLY STIFFENED ........ccocceeneeesnecnnces 98

6.1 INTRODUCTION .....ooiiiiiiiiiiiiieeee ettt 98

6.2.1 GEO-METRIC MODELLING AND NUMERICAL ANALYSIS .............. 99
6.2.2 FRAME MODELS DESCRIPTION ........ccccoviiiiiiiniiiieienicieciceecece 102

6.2.3 FRAME BASE BOUNDARY CONDITIONS, LOAD AND FINITE
ELEMENT MESH ...coooiiiiii et 104

6.3.2 STIFFENED FRAME MODELS BY USING TRANSVERSE AND
LONGITUDINAL STIFFENERS .......ooiiiiiiiiiiinieceectceerce e 112

6.3.2.1 STIFFENED FRAME MODEL BY USING TRANSVERSE AND TWO
LONGITUDINAL STIFFENERS .......cooiiiiiieeeceeeeeeee e 112

6.3.2.2 STIFFENED FRAME MODELS BY USING TRANSVERSE AND
FOUR LONGITUDINAL STIFFENERS .......ccccoiiiiiiiiiiiniieeececeeeee 118

6.4 EFFECT OF TRANSVERSE STIFFENERS THICKNESS ON THE CRITICAL
BUCKLING LOAD....c..coitiiiiiiiiiteteeetee sttt 123

6.4.1 CRITICAL LOCAL BUCKLING RESPONSE AT DIFFERENT TS
THICKNESSES ... 123

6.4.1.1 CRITICAL GLOBAL BUCKLING RESPONSE AT DIFFERENT TS
THICKNESSES ... e 127



7.3 TEST SETUP......

7.4 LOAD AND BOUNDARY CONDITIONS .....ccociiiiiiiiiiiiiienicceeeeee

7.5 TEST RESULTS.

7.6 CONCLUDING REMARKS ..ot

8. CONCLUSIONS AND FUTURE WORK........cuoterinrrennnsnnnsnissnessesssessassanssasssaees

8.1 SUMMARY........

8.2 CONCLUSIONS

8.3 FUTURE WORK

REFERENCES

vi



ABSTRACT

The linear buckling phenomenon is obviously a failure in the stability of structural
systems. However, the performance and characteristic of any thin structural system are
known to be significantly influenced by a range of buckling modes. For instance, local
buckling, global buckling and distortional buckling. These buckling problems generally due
to some different factors which affect the buckling behaviour and characteristic. Therefore
the ultimate performance and capacity of the thin plate structural components, are effected
by load, boundary conditions, material properties and structural geometry. Therefore, it is
important to eliminate or delay these types of buckling problems in order to increase the
capacity resistance of the structure. Nowadays, the understanding of the local and global
buckling behaviour and its resistance capacity of any thin-walled plate structure is at a quite
complicated. The determination of buckling resistance is an important characteristic of the
design of steel structure.

This research contains a detailed description and contribution to the area of buckling by
developing finite element modeling strategies. A solution procedure has made by using the
advantages of the computational technology with commercially available FE package
ABAQUS.

The work of this thesis provides an in-depth understanding of the local and global buckling
failure mechanics associated with unstiffened and stiffened beam-column and frame
structures with thin plates that are subjected to axial compression load. Besides, the
presence of transverse and longitudinal stiffeners in structural plate elements has a vital role
in order to increase critical buckling load capacity. However, these stiffeners cause
redistribution in buckling behaviour in terms of local and global buckling. In this thesis the
transverse and longitudinal stiffeners were employed on a real beam-column and frame
structure to maximize the critical buckling loads. The objective function is to find the
optimum location and geometrical characteristics of stiffeners. The effect of stiffeners on
structural performance is detailed for beam-column and frame structures which called in
attached stiffeners. Based on the finite element method, numerical models are made in
order to observe the critical buckling capacity. Consequently, this thesis has enabled the

accurate prediction of the behaviour and capacity of the compression members with beam-
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column and frame structure and to be as a paved way for efficient and economical use of
these members in the design. The last part of this thesis is the experimental tests which are
used for validation by comparing with the theoretical or numerical solutions. Therefore,
some specific standard sections have been experimentally investigated in order to follow

their fail due to local or global critical buckling load before the plastic capacity is reached.
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AIICTPAKT

DeHOMEH JIMHEeapHOT U3BHUjamba j€ OUUTIICTHO CI1ab0CT CTPYKTYPHUX CHCTEMA Y FbUXOBO]
crabunHocTu. Mehyrum, nepdopmance n KapakTEpUCTUKA CBAKEe TAHKO3UIE CTPYKTYpe
3HAYajHO YTHUYYy Ha HEXKEJbCHY I0jaBy JIOKAIHOT W3BHjama, TJI00aTHOT H3BHjama U
u3BHjama Mpu yBujamy. OBH MpoOieMH M3BHjaba YIIaBHOM MOTHYY OJ Pa3IMYUTHX
¢akTopa Koju yTU4y Ha IOHAIIAKE CTPYKTYPHUX CUCTEMA U Ha Tep(opMaHce U KarauTeT
HOCHBOCTH TaHKHX CTPYKTYpHHX IUIo4a. Takohe, HaBeneHH NpoOieMH 3aBHUCE U Of
onrepehema, ocnamama U CBOjcTBa Marepujana. Ctora je BaXKHO Ja c€ eITUMHHHUIIE
MOryhHOCT 1ojaBe HaaBeACHNUX 00JIMKA N3BHjamba Y ITUJbY MoBehama HOCHBOCTH CTPYKTYPE.
Jlanac, 3Hame W pa3yMeBame JIOKAJTHOT W TNIOOATHOI TOHAIlaka W3BHjakba U HbEHE
OTHOPHOCTH Ha U3BHjame OMIIO KOje TAHKO3HUIHE CTPYKTYPE j€ Ha MPHIMYHO 3aXTEBHOM
HUBOY 300T MTHTEH3UBHUX UCTPA’KMBamba KOjU Cy MOCTUTHYTH Y OBOj 00JIacTU CTyIHja.
OTIOpHOCTH Ha U3BHjambE je BaYKHA KAPAKTEPUCTUKA TN3ajHA YETTMYHE KOHCTPYKIIN]E U BbY

je moTpedHO OPETUTH.

OBO UCTpaKUBamkE Ca/IP>KU JIeTajbaH OIUC U JIOTIPUHOC y 001acTH U3BHjama. Pa3BujeH je
IIpOLEC MOJENMpama U MpolLeaypa pelllaBarka MOHallamba TaHKO3UIANX CTPYKTypa Ha
u3BHjame kopuctehn komepuujanHu coprBep koHauHuX enemenata ABAQUS. Paj ose
Te3e Jaje nyOosbe pa3yMeBame JIOKATHUX W TJIOOAJHMX MeXaHW3aMa HW3BHjalkba Ha
HeykpyheHuM u ykpyheHum (ojayaHum) rpeiaMa ¥ OKBUPHUM KOHCTPYKLIMjamMa ca TAHKUM
Io4ama Koje cy U3J10KeHe akCHjaJIHOM pUTHCHOM ontepehemy. OcuM Tora, NpucycTBO
HOIMPEYHUX U y3Iy’)KHUX YKpyhema y CTpYKTYpHUM eJIeMEHTHMa IUIoue UMajy KIbYUHY
yJIory y nusby nosehamwa KpuTHUHE clile U3BHjamba. Melyytum, oBu ykpyhemwa n3azusajy

Mpepacoeny moHallama Ha U3BHjabe Y CMUCITY JIOKATHOT | TI100aTHOT W3BHjamba.

VY 0BOj Te3W yBelleHa Cy TpaHCBEp3ajHa M y3AY)KHA Ojadyama Ha peayiHoj Kako Ou ce
MaKCUMM3Hpalle KpUTHYHE cujie u3BHjama. DyHKIMja Iuiba je Omia aa ce mponabe
ONTUMAJIHO MeCTO yBohema ykpyhema U leroBe reoMeTprjcke kapaktepuctuke. Edexat
ykpyhema Ha iepopmaHce CTPYKTYpe ypaheH je 1eTaJbHO 3a pealTHUM CTpyKTypama rpeaa
U pamoBa. Ha 0CHOBY MeTO/ie KOHAYHUX €JIeMEeHaTa, HyMEpHUKU MOJIEIH Cy HAallpaBJ/bEHU U

TCHCPUCAHU Ca IUJBEM a CC OAPCAU MMOHAIALE CTPYKTYPEC HA I/ISBI/Ij amke. HpeMa TOMCEC, OBa

X



Te3a je oMoryhno npenusHe nporeHe MoHaama 1 HOCUBOCTH TAHKO3UIUX CTPYKTypa Ha

U3BHjambe.

[Tocnenmu 1e0 oBe Te3e Cy eKCIEPUMEHTATHH TECTOBHU KOjU Cy KOpIIheHH 3a BT Ialujy
TEOPHjCKUX WIIM HYMEPUYKUX pe3yiaTaTa. 300r Tora cy eKCIepHUMEHTAITHO HCTPAKEHE HEKe
cneunduyne cranaapane cekuuje. [Ipu Tome 3a cBe cekumje cy oapeheHa kpuruuHa

onrepehema Koja n3a31uBajy BUXOBO JIOKATHO U TI00aTHO U3BUjambe.
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CHAPTER 1

1. INTRODUCTION

1.1 GENERAL INTRODUCTION

The applications of thin-walled structures are widely utilized and have become increasingly
in various engineering technologies such as mechanical, civil, building and aerospace
engineering. Stiffened plates, beam-columns and frame structures can all be categorized as
thin-walled structures as long as the width-to-thickness ratios. These types of members are
commonly used as structural components which are jointed together by means of welding,
riveting or cold-formed. Thin-walled plates are mostly quite capable of carrying axial
tensile loads while when these structural members subject to axial compression loading are
at risk and failure due to the weakness of their axial-stiffness properties. Therefore, it is
significant to diagnostic and to be able to accurately predict the buckling capacities of the
plates, beam-columns and frame structures which have thin thicknesses in order to avoid any
unexpected breakdown. Some of the early development in thin flat plates and beam-column
has been made with the purpose of developing mathematical models which can work out
the strength and represent the real behaviour of the members under different applied loads
and boundary conditions throughout the loading process. Another type of buckling in which
the edges of members unloaded and subjected to different support boundary conditions, has
been examined by Rhodes & Harvey [1][2] in order to observe the behaviour of uniformly
and linearly plates. It is worth pointing out that the boundary conditions and member's
thickness should be taken into account in case of the analysis of buckling. From the
findings, the behaviour of the plates and beam-column are completely different compared
with each other. An exact solution procedure has been developed by Kang and Leiss [3] or
plates with simply supported edges and linearly varying load. The obtained results showed
that under these conditions, the plate behaved with more critical compared with the other
types of loading profiles. The behaviour of plates subjected to transversely and

longitudinally loaded have studied by Bakker et al. [4] who have developed a formula in

1
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order to describe the plate's behaviour. Alexandrov and Eisenberger [5] have examined
through the mathematical formulations, the behaviour of isotropic rectangular fully
compressed plates with varying thicknesses. Many researchers have been investigated the
subject of buckling during the years and a number of design specifications regarding to the
buckling of thin plates structural parts have been published. Most of the studies have been
performed with the aim of understanding the behaviour of thin plates and beam-column
with different kind of boundary conditions, end support conditions and loadings. In 1976 at
the University of Sydney, Hancock et al [6] has been described a comprehensive numerical
work in predicting the buckling behaviour of thin-walled structural members due to global,
local and distortional buckling. The study was to investigate the different buckling modes
and the interaction between modes by using the finite strip method where the theoretical
approaches have been successfully compared with the experiments tests. Since 1990 some
experimental works have been carried out for beam-column structures, plates and plate
structures by Hancock & Rasmussen and Rhodes [7][8][9]. The researchers presented and
provided a good continuation of history through the field of buckling analysis. Some others
of investigators have been expanded the research work of thin flat plates and the thin-
walled plate structures. For instance, Azhari et al. [10] and Tan et al. [11] who developed
mathematical equations and formulations on elastic buckling of triangular thin plates.
Currently, the concept of critical buckling in thin-walled structures must be understood to
any engineer and to be as the basic requirement of engineering knowledge. The buckling
behaviour of thin-walled structures under compressive load is mostly dependent on multi
parameters, such as the materials models, section geometries, boundary conditions and
geometrical imperfections in nonlinear buckling. Notably, the slenderness ratio is the most
important factor in thin-walled structures which are associated with the member width, the
member thickness, the member length. The buckling behaviour has different modes; hence
these modes could interfere with each other. Therefore, the coupled mode interference
might be formed, for instance, local buckling with global buckling or torsional buckling
with flexural buckling. This type of interference between the modes of buckling may
decrease the risk of failure load of the thin-walled structures if compared to other when
only one buckling mode. The first important analysis of thin-walled structure has been
made in the 18" century. In order to apply a suitable solution method to analyze the linear

behaviour of buckling of different structural systems depends mostly on the complexity of
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the problem. It is noticed during the analysis that the failure mechanism is developed after
the critical buckling load in particular when the stresses exceed the material yielding
criterion. As a result, the plate or the beam-column or frame structures become unable to
carry any additional load due to the development of the deformation which became a
permanent in plastic form. Therefore, the post-buckling should be considered to be
geometrically nonlinear problem due to the previous results that appear after the occurrence
of critical buckling, but in this research only linear analysis is considered. A set of methods
for buckling solution can be utilized in thin-walled compression members to find the failure
mechanisms and stability behaviour. For example the finite strip method, the analytical
mathematical method and finite element method are generally the numerical solution
procedure able to deal with complex problems. In spite analytical mathematical methods
have been evolved over the years, but these methods are still unable to solve the whole
complex problems in particular with the complexity of the nonlinear problems. The
complexities of the problems are associated with boundary conditions, geometry and etc.
However, the finite element methods are able to deal with all of these aspects which are
considered the most appropriate, powerful and flexible approach at the current time. Finite
element methods are employed by selecting the suitable analysis solution procedures and
finite element simulation packages are used to model the structural components. The task
of this thesis is to develop appropriate finite element modelling strategies, solution
procedures and to study the local buckling and global buckling modes of transversely and
longitudinally stiffened plates. A real structure is considered as shown in Figure 1.1 where
a transporter crane machine which used as a lifter upon the river in Bajina-Basta, Serbia has
taken as a sample of the analysis. It will illustrate in next sections various investigators
have carried out a considerable amount of work over the years on the plate, the beam-
column and the frame structures subjected to uniaxial compression load and thus the
knowledge of the subject is considered to be at a fairly sophisticated level. The newly
developed modelling strategies and finite element modelling in this thesis have enhanced
the knowledge of the buckling subject by improving the understanding of the buckling
failure mechanics of the thin plate, the beam-column and the frame structures. Therefore,
research mush be carried out to develop a finite element model for the same assembled

transporter crane as shown in Figure 1.2
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Figure 1.1 A transporter crane (Bajina-Basta, Serbia)

Figure 1.2 A FE model of the transporter crane
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1.2 RESEARCH PURPOSE AND AIM

The main purpose of this research was to diagnostic structural element behaviour of the
plate, the beam-column and the frame structures under buckling load conditions.
Furthermore, to develop adequate simplified numerical methods for the safe, economical
buckling analysis and design of stiffened beam-columns, similar to those that exist in the

frame steel structures.

The purpose of the work presented within this thesis regarding the local and global

buckling resistance was:

e To investigate the local and global buckling behaviour of structural elements
subject to axial compression load using advanced numerical methods. The three
governing cases are to be considered in this research, i.e., local and global buckling
of unstiffened-stiffened elements for (a) plate element, (b) beam-column using
transverse and longitudinal stiffeners, (¢) frame structure using also transverse and
longitudinal stiffeners.

e To investigate if a buckling resistance of mentioned members will reinforce with
only transverse stiffeners or with both.

e To investigate the effect and applicability of stiffeners on the buckling behaviour

for unstiffened and stiffened elements for previous members.
The aim of this thesis was, regarding to both the local and global buckling resistance

e To diagnose and develop a suitable method for previous compression members
which are subject to both the local and global buckling.

e To validate the finite element models of previous compression members by
compression with experimental test results.

e To develop accurate finite element models which are capable of simulating the

local and global buckling behaviour of steel element structures.

The work has focused upon the influence of transverse and longitudinal stiffeners on the
buckling resistance of the plate, the beam-column and the frame structure. The members
are subjected to uniformly distributed compressive load as mentioned earlier to improve the
capacity and resistance of some specific structural elements to buckling loads with the aid

of both advanced numerical analyses and experimental. In order to do so, finite element
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models will be created for each case. A highly scientific based and internationally
recognized software package in the field of structural analysis of engineering related
applications is ABAQUS which will use in the analysis to obtain the numerical results of

the elastic local and global buckling load and behaviour.
1.3 CONTENTS OF THE THESIS

Chapter one describes a brief general introduction to thin plate structures, the purpose and
aim of research, and the contents of the thesis. Buckling behavior and finite element
method in general are presented which identifies the need for the development of accurate

linear buckling finite element modeling.

Chapter two a summary of literature review relevant to the analysis of thin-walled
structures subjected to uniaxial compressive load are provided. It includes some topics
which relevant to the buckling analysis as follow: an overview of shell buckling, plate and

beam-column buckling history and some important titles associated with linear buckling.

Chapter three is about some of the basic concepts on which the linear finite element
method. It includes the introduction of the basic sequential process in the finite element
method, comprehensive introduction of the static and linear buckling analysis. The
theoretical of finite element discretization, formulation of stiffness matrixes for the bar

element, the beam element and the frame structures are described in this chapter.

Chapter four the buckling behavior of finite element modelling strategies and solution
procedures for the analysis of thin plate structural members are developed. The effects of
different lengths, thicknesses and boundary conditions on the buckling in terms of buckling
modes of thin plate are examined. The obtained results are demonstrated with each other, in
order to show the influence of buckling and capability of developed finite element

strategies.

Chapter five finite element analyses of typical beam-column transversely and
longitudinally stiffened are examined and presented to highlight the improvement in the
structural performance of the beam-column due to the attachment of stiffeners. In order to
examine the changes in the both the local and global buckling behavior, the influence of

stiffeners parameters such as the stiffener location and thickness is varied.
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Chapter six presents the application of the developed finite element simulation strategy to
examine the local buckling and global buckling behavior of frame structures also
transversely and longitudinally stiffened. As in chapter 5, the effects of the stiffeners on the
buckling characteristics are examined, in order to develop an in-depth understanding of the

load capabilities of the frame structures.

Chapter seven presents the experimental steel elements in order to compare it with the

finite element simulation solutions and to be considered as validation producers.

Chapter eight presents a brief summary, general conclusion and a projection of future work

that could be done in this field.
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CHAPTER 2

2. LITERATURE REVIEW

In this section, a literature review of the buckling behaviour of rectangular plates, beam-
column and frame structures are presented to provide the background information for the
present investigation. The review focused on published research work that has been carried
out by many researchers over the years in the field of buckling. Moreover, the review

focuses on homogenous isotropic thin plates, beam-columns and frame structures.
2.1 THE CONCEPT OF BUCKLING

The theory of elastic is usually applied and used in the majority of building structure by
simply selected allowable stress values for the used materials and by giving ratios as limits
to meet serviceability requirements. Figure 2.1 shows the first and second order elastic
methods which used in (i.e. different paths of buckling), to analyze the behavior of load
deflection of a structure. Galambos[11] [12], Allen and Bulson [13] and Chen el al. [14]
have been discussed this issue to find out more details in it. It is clear and can be
understood from the figure that the critical buckling load is important and also needed for
the evaluation of the effective length of members. Therefore, the critical buckling load may
be determined directly by the Eigenvalue analysis, which represents the simplest way
instead of first or second order elastic analysis in which the solution can be worked out in a
rather simple way. The load at which buckling occurs depends on the stiffness of a
component, not upon the strength of its materials. Buckling refers to the loss of stability of
a component and is usually independent of material strength. This loss of stability usually
occurs within the elastic range of the material. Two phenomena are governed by different
differential equations. Buckling failure is primarily characterized by a loss of structural
stiffness and is not modeled by the usual linear finite element analysis, but by a finite

element Eigenvalue-Eigenvector.
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Figure 2.1 Load-displacement curve (Chen el al., 1996)

2.2 AN OVERVIEW OF SHELL BUCKLING

The buckling is a phenomenon of failure of a structure with a large deformation. A number
of researchers state that the buckling phenomenon generally occurs before the large
deformation which happens to the structures. Bushnell [15] states that the structure may
slightly deform or to be not deformed, in spite that buckling phenomena are appearing. In
mechanics and civil engineering structures, the buckling is an important phenomenon to
study, because this thing frequently leads to failure of structures. Calladine [16] states that
buckling occurs without any noticeable caution, especially in shell structures. The critical
buckling load is an important parameter which was used as a primary design up to the end
of the 1960s. The structural geometry, boundary conditions, material properties and the
applied loading conditions are the factors which critical buckling load depends on it. Bryan
[17] introduced the first equation in 1890, for determining the elastic buckling of flat plates
under axial compression load. Shell structures are widely used in many fields. The buckling
behaviour and stability analysis of shell structure are an active research area in recent years.
Failure is supposed to be caused by either local buckling or global buckling of the shell. By
contrast, failure controlled by loss of material strength is not very common in practical shell
structures. Exploration of the buckling behaviour of plate, beam-column and frame shells

involve many different aspects.
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2.3 PLATE AND BEAM-COLUMN BUCKLING HISTORY

Usually beam-column is an assembly of plates. It can be considered that buckling in beam-
column as plate buckling phenomenon where the specific boundary conditions caused by
the restraint of stiffeners with the rest parts of the whole structure that intersect the web
plate determine member strength. Plate buckling studying has a long story during the early
time, in terms of critical buckling loads and stress. Bryan [17] introduced the full analysis
of the critical elastic stress for a plate under uniform axial compression stress in rectangular
shape with simply supported boundary conditions at whole edges. Energy method is the
method which used in the solution for plate stability cases, when Timoshenko [18] used it
for the plate to find the buckling stress at different conditions under compression stresses.
The first study in the stability of rectangular plates in order to reinforce the plate by using
the stiffeners as supports was studied theoretically by Timoshenko [18]. In addition to that,
Timoshenko has examined the producers and questions of the required and optimum
stiffness of the stiffeners to avoid buckling of the plate. His results showed that the
stiffeners subdivided the plate into short panels in which stress is redistributing, where the

increase in critical buckling load is considerably appeared.
2.4 ELASTIC PLATE BUCKLING

The theory of plates says that the behaviour of a thin plate under compressive forces can
be divided into two parts; firstly the calculation of the critical load and secondly the
determination of the ultimate load level. The critical load level is by definition the load or
apoint where the ideal structure, or members, in question loses its stability. The buckling of
an elastic plate is described by the partial differential equation which derived by St. Venant
[19].The definition of the critical load of a structure is where it loses its stability that means
the structure reached to a specific load to fail which called critical buckling load. In order to
calculate the critical buckling load, the theory of elasticity can be done. Two analytical
calculations can be used, either by of an energy method or by solving differential plate
equation. Figure 2.2 represents a rectangular thin plate of length a, width b, and thickness ¢,
subjected to uniaxial compressive load N,. By taking the rectangular coordinates x, y and
z in Cartesian system and where the uniaxial load N, is parallel to the x axis. Kirchhoff

proposed a simple theory of the plate with some unique assumptions for the solution as follows:

a) Deflections are small compared with the plate’s thickness,

10
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b) During bending the middle plane of the plate remains neutral.

¢) During bending the plane sections rotate to remain normal to the neutral surface,
and without distortion.

d) The dimensions are high compared with the plate’s thickness.

e) The effect of shearing forces is neglected and the bending moments are resisted by

applied loads.

Figure 2.2 Thin rectangular plate under uniaxial load

According to the assumptions that mentioned above, the displacement functions may be

expressed as the following:

ow

u(x,y,z)z—za, Q.1
v(x,y,2) = —z@

s Vs ay B (22)

V_V(xa%Z)ZW(xay,Z), (23)

Where u, v and w are the displacement components along the x, y and z directions, where w

is the transverse deflection of a point on the mid-plane (i.e., z = 0).

The linear strains (i.e., non-zero) related to the displacements are:

ou 0w
& :a:—Z¥ (24)
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- 2

Yy ay 8)}2
ou ov Fw
To = Tax . oxdy (2-6)

Where ¢, and &, are the normal strains and vy is the shear strain.

Based on the Kirchhoff plate theory that is given by Ugural [20] for the virtual strain

energy
t/2
sU= | [ [ (0.8, +o,0e,, +0,8r, )dz}dxdy @2.7)
QQ
2 2 2
SU:‘IiMmaSzWJfMWaSzW”MwMW xdy (2.8)
Q Ox o) ox0y

0

Where Q_ denotes the domain occupied by the mid-plane of the plate, (c,,,c ,)the
normal stresses, o, the shear stress and (M ,M , M )the moments per unit length, as

shown in Figure 2.3.

Figure 2.3 Stress resultants on a plate element

12
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Again, based on the Kirchhoff plate theory that the virtual strain energy related to the

transverse shear strain is equal to zero (i.e. y,. =7v,. =0).

There is a relationship between the moments and stresses where are given by:

M_=| o, zdz (2.9)
R Y
t/2

M, = _t/Znyzdz (2.10)
(2

M, =| o,2dz (2.11)

The uniaxial load N, produces the work W, due to displacement w only

1 owY
W= —ELO Nx(aj dxdy (2.12)

The virtual work W due to the uniaxial load N, is given by:

Ow OdOw
SW:IQO NX &de{dy (213)

The principle of virtual displacements requires that & I[1=0U—-0W=0, i.e.

o*ow o’ ow o’ ow ow Oow
oll=—| | M +M +2M +N ——ldxdy =0 2.14
1 J.Qo[ o oyt Yoxoy T ox ox i 2.14)

By using the divergence theorem, one obtains

0*w
Sl=- on [MW +2M,, +M, —N, . jﬁwdxdy

- {(Mxxn + M n, )% + (M n, + M, )%}ds 2.15)
+f KM +M, - N, g—:jnx (M, +M, }éwds -0

For clarifying, a comma followed by subscripts denotes differentiation with respect to the

o oM o . .
subscripts, i.e,M,, = TXX’ and so on, (n,,n,)denote the direction cosines of the unit

Normal » on the boundary I', and ds denotes the incremental length along the boundary.

13
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If the unit normal vector is oriented at an angle ¢ from the positive x-axis, then n_ = cos 6
and n, =sin . Since s is arbitrary in Q_, it is independent of dsiv/ ax , and 96w/ Gy on

the boundary T, it follows that

M, O°M, GZMW Fw
o’ 2 8x0y o’ N Oxzzo’mQ" (2.16)

The above equation represents the equilibrium equation for rectangular plates under
uniaxial load.
The kook's law can be applied to the isotropic material of the plate in this case, and by

applying the relation between stress and strain can write as follows:

O = EZ(EHWEW) (2.17)
1-v :
Oy = E2(8W+V8xx) (2.18)
1-v )
=G — E

Where E is the Young’s modulus, G the shear modulus, and v the Poisson’s ratio. By
substituting eqs. (2.17) into egs. (2.9) and carrying out the integration over the plate

thickness, one obtains

/2 E 2 o’w o*w
M, = /zaxedZ =1, .L/z (gm +ve, )zdz = —D( e +v P J (2.20)
t/2 E t/2 62w
Myy = ,,/2O-WZdZZ 1—1/2 J. (8 +ve )ZdZ— ( V—ax2 j (2_21)
12 12 0*w
M, =[" 0,2dz=G[  y,zdz=—(1-v)D (2.22)

oxoy

Where D is the flexural rigidity and is given by

14
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Er’

D= ) (2.23)

By substituting egs. (2.20), (2.21) and (2.22) into eq. (2.16), yields the governing equation

for buckling of plate subjected to a uniaxial load:

ow' o'w  ow' o*w
( J +N,—5=0 (2.24)

+ +
ox* ox*oy® oyt *ox?

The above equation was derived under certain assumptions where the behavior of the
material deals as ideally elastic way i.e., without imperfections such as geometrical defects
or residual stresses. In addition to that, the plate deformation is assumed to be small. As a
result, the plate shows that there is no lateral deformation till the critical load or stress.
Figure 2.4 shows that the deflection might be either negative or positive, according to the
coordinate system of the plate, and there are no lateral deformations till the critical stress

level.

v

Figure 2.4 System bifurcation at point A

The investigation of stability of thin plates is normally to achieve the equilibrium of the
system by using the energy method which is known as the principle of stationary value of
the total potential energy of the plate. According to the correlation between the internal
energy bending and the external work which done by the forces acting in the middle plane

of the plate the energy solution was built on them. The bending strain energy stored in a
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small element of linear elastic material due to the applied bending and twisting moments

are as follows:

1 o*w o*w
du, =_§(Mx P +M, > jdxdy (2.25)
) o*w
du, = Mxy% doxdy (2.26)

The bending moments and twisting moment can be expressed in terms of lateral

displacement and are as follows:

2 2
M, = —D[ ZXZ” + vgy—ﬂ (2.27)
o*w o*w
M, = —D[ 5 o ) (2.28)
o*w
M, =-D(1-v) - (2.29)

The substitution into eqs (2.27) by eqgs (2.25) and (2.26) yields the following equations:

2
_D|(dwdw 0'w o'w
dUb—gl(yy B | (30
) ow Y
dU;} = D(1- dxd
22 V)(axéyJ vy (2.31)

The superposition method that can be applied here in order to obtain the resultant of the

strain energy and is following
dU, =dU; +dU; (2.32)

After the integration the above equation over the plate,
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1 o’w 0w o’w o*w [ o*w ’
U, —EDI_[ (8}62 +§j2.(lv){ oy _(axéfyj } dxdy (2.33)

The foregoing equation (expression) represents the strain energy which stored in the

deformed plate, where the work conducted by the externally applied forces can be

describing by

2 2
T=ljj 9w oN, OV
2 oy Y oxoy

According to the previous assumptions, the two last equations are only valid for small

62
N, aTVZV +N, dxdy (2.34)

deformations. There are two cases concerning the stability of the plate in question at the

bifurcation point, according to Timoshenko and Gere [21]

a. if U>T, the flat form of equilibrium of the plate is stable,
b. if U<T, the plate is unstable and buckling occurs.

However, the critical load amplitude may be found by setting
T=U<U=T (2.35)

The change in energy potential must have a minimum value for a stable equilibrium to be
solved. This condition may be used for the differential equation derivation from of the
equilibrium, equation (2.24). Another method to solve the problem is to apply an

expression for the lateral deformation of the plate.

2.4.1 BUCKLING OF SIMPLY SUPPORTED PLATES UNDER UNIFORM
COMPRESSION (SSSS)

For the simply supported edges plate case, the equation has solved by Bryan [1][17].
Timoshenko [ 18] has solved different other cases with different boundary conditions. The
elastic critical load in a complex structure is one difficult part in calculation in particular
with stiffeners. Lundquist and Stowell [22] extended the work of Timoshenko and Gere
[21] for the elastic plate buckling, by introduced practical methods for working out the
stability of assembled plates. Kollbrunner and Hermann[23] have been examined the CSSS
plates. The results found that when the tension edge of the plate is clamped edge, the
critical load factors do not differ greatly compared with those which have both edges

simply supported. In order to solve the buckling problem of ESSS plates, the Lagrangian
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multiplier is employed by Schuette and Mcculloch [24]. The Galerkin’s method has been
used by Walker [25] to give precise values of critical load for a number of the edge
conditions as noted before. Xiang et al. [26] applied the Levy’s method to work out the
elastic buckling of uniaxially loaded rectangular plate with an internal line hinge. The
method succeeded in presenting the exact solution for several different boundary
conditions, for instant CSCS, SSCS, SSSS, FSSS, and FSFS plates. The variety of
boundary conditions considered include (i.e. CSCS, SSCS, SSSS, FSSS, ESSS,S- simply
supported edge, F-free edge, C-clamped edge and E-elastic). In addition to the buckling
analysis, some other researchers have also analyzed the vibration of plates which subjected
to in-plane stress field such as Bassily and Dickinson [27], Kielb and Han [28], Kaldas and
Dickinson [29], Leissa and Kang [30], Sukajit and Singhatanadgid [31]. Bifurcation
buckling may be seen as a particular instance of the vibration problem; that is, determining
the in-plane stresses which cause vibration frequencies to bring down to zero. The
“effective width” solution was based on von Karman et al. [32] and the experimental
corrections of Winter [33]. Notably, both Chilver and Harvey [34] properly included the
interaction of elements in determining the local buckling stress. As mentioned earlier,
Buckling phenomena often occur without advance warring to any structure which includes
different slender parts, cross sections that have to be dealt carefully to avoid unexpectedly
fail. According to some researchers, one Theodor von Karmén [32] states that the local
buckling is based on the effective width to length. George Winter [33] introduced a new
modified issue of the effective width concept followed to the original version of Theodor
von Karman. In determining the local buckling stress, the interaction of elements is included
Chilver and Harvey [34] Moreover, to increase local buckling Chilver [35] states that for
lipped open channels, the reinforcing lips should be sufficiently stiff. During the years, the
column research focused on the interaction between local and overall (i.e, global) buckling
modes. Kalyanaraman et al. [36] investigated a work on unstiffened elements while
Desmond [37] on intermediate and edge stiffeners. Figure 2.5 shows a plate subjected to
uniformly compressive distributed forces in x-direction. By applying a general case with
applied loads which are acting in all the in-plane direction. To determinate the critical load
of the plate in the equation is simplified to only with uniaxial forces which are acting in x-

direction. Since the only load applied to the plate, in the form of a uniform distributed
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compressive force, acting along the edges x =0 and x =a, the rest of the external applied
loads according to eq. (2.24) equals to zero:

N, =N, =0 (236)
The boundary condition which applied to constrain the plate leads to the following: along

four edges x=0 and x=a,

o*w
=——=0( 2.37
P (2.37)

w

Simply
supported

Figure 2.5 Simply supported plate under uniform compression load, a. Dubas & Gehri

[38], b. FE model

Along three edges y=0 and y=b,

82
- 6;2” -0 (2.38)

By applying a double trigonometric Fourier series on the deformed shape of simply

w

supported plate and the boundary conditions may be described on the following form

W:ZZ(IW sin@sin%, mn=123.... (2.39)
a

o0
m=1 n=1
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Eq. (2.39) represents the lateral deflection that can be substituted into eq. (2.33) and eq.
(2.34) based on the conditions in eq. (2.36) and (2.37) eq. (2.38) and by using eq. (2.35),

we get a new relation after some mathematical procedures,

2 2\? 2
plrt) . (ﬂj +N, (ﬂj a,, sin ™ 5in Y _ (2.40)
a b a a b '

In order to apply the eq. (2.40) for all positions on the plate, the simplified equation will be

D{[@JZ + (ﬂﬂ +N, (@T =0 (2.41)
a b a

as the following,

(2.42)

Timoshenko and Gere [21] state that the lowest value of critical load is reached when the

plate buckles in a form such that one half sinus wave, hence the integral parameter » =1.

Then the last equation may be eliminated, such as

N,

cr 2

m

2

_ a*m*.D ( m? 1
1 a

-+ b_Z] , Where m=123... (2.43)
Where the parameter m describes the number of the half waves over the plate length in x-
direction,

D
N, =k, E (2.44)

The parameter £, is the buckling load coefficient with dimensionless and is given by

L= mb a
o 74_% (245)
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By instating eq. (2.23) for the flexural rigidity of the plate in eq. (2.44), we get the critical

stress of the plate as,

o —k 7 .E (1)2
cr cr'12.(1_vz)' b (246)

From eq. (2.45) the buckling coefficient «_, is a function of the plate width b, length @ and

the number of sinus half waves over the length, m. Figure 2.6 shows different values of the

plate width to length ratio a/5 with &, .
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Figure 2.6 The buckling load coefficient for a simply supported thin plate, Timoshenko
and Gere [21]

As for a rectangular plate, having an aspect ratio a/b =3 (i.e. a=240mm, b=80mm), the

buckling mode in which the lowest value of the critical buckling stress (with £, =4.0)

will be divided the plate into three units of squares as shown in Figure 2.7, and having an

equally large buckling in each unit (i.e. m=3).
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Figure 2.7 Representative buckling mode of a rectangular plate, having an aspect ratio

a/b=3 by FE model
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2.4.2 BUCKLING OF SIMPLY SUPPORTED-FREE PLATE UNDER UNIFORM
COMPRESSION (SSSF)

As illustrated in Figure 2.8, a flat plate is simply supported along one longitudinal edge
and two transverse edges, and is free along the fourth edge. The buckling differential

equation of equilibrium of the plate is still the same as in eq. (2.45).

simply supported Simply supported

e

Figure 2.8 Buckled pattern of a plate free along one edge by FE model

The shape of the buckling which satisfies this difference, however, based on the
approximately square buckles of the simply supported plate as shown in Figure 2.7. The
dissimilar boundary conditions along the free edge reason, the plate buckles with a one
half wave along its length as shown in Figure 2.8. Although, the elastic buckling stress
solution may still be expressed in the form of eq. (2.24), in which the buckling coefficient
k., 1s estimated by eq. (2.47) and as shown in Figure 2.9.

b

2
k, =0.425+ (—j (2.47)
a
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Figure 2.9 Buckling coefficients of plate free along one edge

2.4.3 LINEAR BUCKLING OF STIFFENED PLATES

The main feature of buckling is that the load at which it occurs depends basically on some
parameters such as (elastic modulus E, the cross-section shape and properties), and it is
virtually independent of the material strength. Stiffened plates have been widely utilized as
essential auxiliary components for many basic frameworks subjected to compressive loads,
and are may be exposed against various types of buckling phenomena. Based on and
according to the investigative analysis of stiffened plates and structures, two essential sorts
of buckling modes may be considered. The global buckling mode is one possible mode,
which usually occurs for the entire stiffened plate, which the second one is called local
buckling mode which occurs for the stiffener or the main plate. Murray [39] and Bonello et
al. [40] have been discovered four largely familiar forms of structural failure in stiffened
plates: (1) major plate originated global buckling; (i1) stiffener originated global buckling;
(ii1) local buckling of the stiffener or the major plate and (iv) stiffener tripping, which is
connected with the plastic collapse of the stiffeners in a localized mechanism. Global
buckling is described by instantaneous buckling of the stiffener and the major plate

performing as one single curvature and usually referred to as Euler buckling.
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The shear buckling of infinitely long plates has studied by Cook and Rockey [41] with
clamped and simply supported boundary conditions. Their tests conducted on a closed
section of transverse stiffeners. The obtained results showed that the buckling resistance of
the web plates was significantly improved and the researchers proposed to use such as
stiffeners. With regard to the shear buckling of girders and in use of transverse stiffeners,
a sequence of tests conducted by Nishino and Okumura [44] in order to work out the safety
coefficients where the stiffeners placed at girders' boundaries. The depth-to-thickness was
one of their changing parameters and noticed that after the web buckling load all test
girders have significant excessive carrying capability. The collapse behaviour of the plate
girders with transversely and longitudinally attached stiffeners. The fail behaviour of plate
girders has discussed by Komatus [43] with use transverse and longitudinal stiffeners
where for four types of modes have provided in order to determinate the ultimate strength
of plates. The influence of flange stiffness on the buckling patterns demonstrated by
Skaloud [44] for the early work of Rockey and Skaloud [48] and also on the failure
mechanism of steel web at high with-to-thickness ratio. Another factor which has a crucial
effect on the buckling behaviour is the variation of stiffeners geometry. Plank and Williams
[46] have studied the behaviour of the stiffened panels with different stiffener geometries
subjected to combined shear and compressive loads. Consequently, the influence of the
different stiffener geometries on the panels was obvious through the interaction curves.
Consequently, in general, the purpose of both transverse and longitudinal stiffener is to
enhance the critical buckling load, stress and it has to be stiff enough to be able to remain

straight structure members.
2.4.3.1 TRANSVERSE STIFFENERS

Transverse stiffeners are often used to reinforce and support the plates or columns at their
webs to increase buckling capacity and to avoid rapid fails. The diagonal tension field
theory for stiffened webs has been developed by Wagner [44]. In order to use the transverse
stiffeners in the best manner in terms of increase the resistance of the structure to buckling,
there are some conditions should take into account: First, the moment of inertia of the
stiffeners must be minimized as possible to maintain the almost zero deflection of the line
when buckling is appeared. Secondly, the required stiffeners' area is minimized to give
sufficient strength. The influence of transverse stiffeners on the axial force due to tension

or compression field has been demonstrated by a number of studies which made by Lee et
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al. [48][49], Horne and Grayson [50], Stanway et al. [51], Rahal and Harding [52][53]. The
largest demand on transverse stiffeners according to Kim, Jung and White [54] in straight
curved plates were when the web panel has a square shape. Figure 2.10 shows the beam-

column with transverse stiffeners which used in this study.
2.4.3.2 LONGITUDINAL STIFFENERS

Longitudinal stiffeners are fundamental structural components in plates, beam-columns and
frames. The primary purpose of longitudinal stiffeners between two adjacent transverse
girders is to produce compressive longitudinal stresses by hull girder bending moment. The
location, dimensions of longitudinal stiffener and attached plates have an effect on the
buckling modes from local or global buckling of the panel could be occurring. Several
researchers were devoted to the buckling study of stiffened plates, beam-columns. A
research has made by Fujikubo and Yao [55] to study the restraining effect of the
longitudinal stiffeners on the edges of the plate between stiffeners. A series of Elasto-
plastic large deflection analyses has developed by Yao et al. [56] for stiffened panels with
flat stiffeners. Dubas [57] established that the optimum position of the longitudinal stiffener
on a plate subjected to uniform bending. The requirements of minimum stiffener were
defined by Chwalla and Kromm [58][59] where both of them considered longitudinally
stiffened plates under uniform bending. A series of charts have been provided by Kloppel
and Scheer [60], which include various stiffener positions and loading conditions for
simply supported longitudinally stiffened rectangular plates. Massonet [61] concluded that
an increase of 25% in the safety factor can be obtained in the resistance of the girders
using longitudinal stiffeners. The interactions of the web, plate, flexural and torsional
buckling of Z-stiffeners have studied by Van der Neut [62] where the strip theory is used.
In addition to Van Der Neut, Hughes and Ma [63] have also studied the interaction of plate,
web, beam-column type flexural buckling, and torsional buckling of stiffeners by the same
method. Figure 2.10 shows the beam-column with longitudinal stiffeners which used in this

study.
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Figure 2.10 Beam-column with transverse &longitudinal stiffeners [64]

2.5 LOCAL BUCKLING

As previously described the plate, beam-column or any assembled structure sections are
commonly have a thin thickness compared with their width or length and based on that the
local buckling may occur before section yielding. The fundamental phenomenon of local
buckling is shown in Figure 2.11 which shows the real local buckling behavior in an
unstiffened plate, beam-column and frame structure where refer to flexural displacement of
the plate elements. It is clear from the figure that the line junction between elements of the
plate remains still straight. Consequently, the local buckling may occur in compression,
shear or bending. As mentioned earlier, buckling phenomena often occur without advance
warring to any structure which includes different slender parts, cross sections that have to
be dealt carefully to avoid unexpectedly fail. In general, the local buckling is particularly
common and also is characterized by wavelength which relatively short and frequent of
thin-walled elements. An investigation has made by Nishino et al. [65] on the fabricated
square plates welded together. Research work was to clarify the effect of residual stresses
influence against local buckling. Dwight et al presented tests on the local buckling for
rectangular square boxes. The tests were in previously tested and reported by Dwight and

Moxham [66] with the aim of filling gaps.
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Figure 2.11 Typical local buckling modes of: a) plate, b) beam-column, c) frame structure

2.6 GLOBAL BUCKLING

Global buckling or overall buckling is another mode of buckling in which compression
members bend curvedly about its symmetric point. This type of buckling can be flexural,
torsional, or flexural-torsional. The member deflects laterally until the plate or column
becomes unstable as it approaches the critical buckling load. Some examples of global

buckling modes of the beam-column and the frame structure without stiffeners in pure
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compression predicted by finite element modelling are shown in Figure 2.11. In addition to

that, global buckling mostly occurs in long columns.

(b)

Figure 2.12 Typical global buckling modes of: a) beam-column, b) frame structure
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CHAPTER 3

3. BUCKLING ANALYSES WITH FINITE ELEMENTS

3.1 INTRODUCTION

The finite element method is one of powerful numerical methods and the most broadly used
for solving a lot of problems in different engineering fields. One of the basic purposes of
the finite element is to predict the behavior of the structure under consideration, to estimate,
understanding the strength of the structure and its failure mechanisms. In general, the finite
element with recent complications in engineering for solving problems such as geometries,
material behavior, loadings and constraints, has significantly improved. The computational
tools that perform specific tasks by using the finite element have widely developed with
very superb versatility. Finite element method is a numerical method that requires the
solution of various simultaneous algebraic equations in order to solve many different
complex engineering problems. During the years, the finite element method became more
common and it represented many different and significant developments in the history of
computational methods. The theoretical mechanics and science have changed into the
practical by applying the finite element method which became the essential tools for a huge
number of technological developments. At the beginning of the 1940s was born a theory
called FEM theory, where the first formula which was developed as matrix method for
structural analysis. The first assembly of triangular elements and the minimum of potential
energy to torsion problems was introduced by Courant [67]. Furthermore, the Finite
Element expression was introduced by Clough [68] in his paper which was cooperated with
Turner, Martin and Topp . Their study focused on the assembled complex structures in
terms of their stiffness and deflection. Twenty years thereafter, the finite element method
started again in enhancing by some researchers and scientists as Zienkiewicz [69][70],
Hinton and Owen [71] to more general for many different engineering problems. Laplace
and Poisson’s equations which used to solve problems have been applied by Zienkiewicz

and Cheung [72] in order to solve by finite element method. Crisfield [73] carried out the
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modeling and solution of nonlinear problems. In the finite element process, the first thing is
to simplify the actual structure. In order to do this, the structure is discretised or meshing
into a set of finite elements. The connecting points where finite elements may be connected
together are called nodes (nodal points). Afterwards, the mathematical model is made for
analysis. In the finite element model, the material properties, loads and constraints
represent the full and real structure. Usually the finite element methods are used to validate
or find a solution for the analytical methods or in case of complex problems for any type of
structures. Although, the basic assumptions for both analytical and numerical methods are
identical but the way of the solution is different. The basic step in the finite element
analysis of any structural problem is the formulation of the equations of problem which
called a shape function. In the finite element method, the shape function means the
deflection function which is usually assumed for each element as the first or second order
polynomial. The whole structure is the effect of displacement of each element of the final
deflection. In order to apply a program based on the finite element method as a numerical
solution or validate the theoretical analysis, it is essential to generate an appropriate model.
The last step is in this technique, the real structure is transformed into a finite element
model by employing pre-processor programs (e.g. ABAQUS, ANSYS etc.) to provide an
input file to a FEM solver program in order to perform the desired analysis. In this chapter
some basic knowledge of the finite element methods is described. The main aim of using
the advanced finite element solution procedures described in the next sections is to show
and develop the reliable and recent finite element simulation strategies. The novel
approaches are used in the subsequent chapters to generate various models for the thin
plate, the beam-column and frame elements structural in order to precisely predict their
buckling behavior with an in-depth understanding. Figure 3.1 illustrates the task's sequence
steps in finite element method, from the realization of a technological problem to
technological problems. As known, the numerical solution usually is an approximation
especially for a complex model, whereas for a simple problem, the analytical solution is an
exact. Therefore, in both cases the solution has to be understood or interpreted for the
original physical problem. The main part in finite element is the mathematical model task,

because the risk of the wrong model leading to incorrect results.
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Technological Physical (— Mathematical
Soluﬁo%l <:| interpretation solution

Figure 3.1 The sequence of steps in the solution of a technological, after Hattel in [74]

3.2 FINITE ELEMENT METHODS SOLUTIONS
3.2.1 LINEAR STATIC ANALYSIS

In order to analyze statically thin-walled structures, finite shell elements seem to be the
appropriate choice due to the flexibility in the degree of freedom in the shell element, so as
to map smoothly deformations. The connection between all elements to each other is at grid
points with six degrees of freedom in terms of rotations and translations. Finite element
method depends on chosen of element type, an efficient mesh density and appropriate
boundary conditions, all of these factors play a significant role in terms of obtaining the
most accurate results close to the reality. The linear FE method is most commonly applied
technological aid for buckling and stress analysis in the first step design stages of complex
structures. In the mechanic and also in all engineering fields the linear finite element
method considers the basic expressions and equations and has become an essential part in
the analysis. There are some advantages of linear analysis of the finite element method
which are usually fairly obvious. Without the need for complicated numerical iterative
schemes and increments, the simple direct solution may be obtained. Moreover, Hilton [74]
has made a study for superimposed various load cases, boundary conditions and the set of
constant material in order to illustrate and able to form the behaviour are kept at minimum.
Waullschleger [75] states that " The mostly applied FE method for structural stability
investigations consist of a linear static stress analysis with subsequent linear eigenvalue
extraction, although the scheme of this linear analysis method may be traced back to a
nonlinear FE formulation". In order to apply the static analysis on the structure some

assumptions are made in terms of motions under certain types of loadings and boundary
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conditions. The basic objective of static analysis is the equilibrium system or structure
between the applied and internal loads which should be equal to the each other and

expressed as;
{Py={R} > {P}—{R} =0 (3.1)

Where {P} and {R} are the external and internal load vectors respectively. As mentioned
before, the factors which effect on the structure to resist the applied loads depend on the
structure' material and its geometry. For static analysis, and regarding to the finite element,

the internal loads can be expressed:

{R} =[k{u} — {P} =[k]{u} (3.2)
Where {u} is the displacement vector and [k] is the stiffness of the material. With the
equilibrium of structure and when the stiffness property is known, the displacement of the

structure can be worked out as follows:

{u} =[k]"{P} (3.3)
In order to find a solution for the unknown parameters in the above equation, the finite
element program task is: to find the element stiffness matrices [k] by using the given data
for the geometry, material properties and element properties; to gather the entire stiffness
matrices [k] into a total stiffness matrix [K] of the structure and then to determine the
displacement {u} in equation (3.3). One thing is advantage in the linear static analysis, the
total stiffness of the structure does not change and also the stiffness matrix is done once. By
applying the loads and boundary conditions to constrain the mathematical model which is
generated the matrix equation can be solved. Once obtained the displacements, the rest of
the other unknowns can be calculated such as the reaction forces stresses and strains. The
post-processing program ABAQUS software is used to represent the obtained results to
create it easily visualized. This step is very important since the output data (i.e. results) can
be immense. Figure 3.2 shows the entire process of carrying out linear static analysis in

ABAQUS program.
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Figure 3.2 Linear static analysis in ABAQUS

3.2.2 LINEAR BUCKLING ANALYSIS METHOD

This section explains the types of finite element solution sequences of ABAQUS for linear
buckling, which are employed to analyze the thin plate structures and discusses in briefthe
formulation of linear buckling analysis. Linear buckling is the most common analysis of the
structural problems, and known as eigenvalue-based buckling analysis. The buckling mode
frequently presents the shape of the structure which used to evaluate the elastic stability
associated with the structural systems. Structural equilibrium is a main point in the
engineering design, and the load type which is applied in such way in terms of static or a
combination that produces the deflections in the structure leads to instability. From finite
element point of view Campbell et al. and Lee [76][77] state that the procedure when
performing a buckling analysis of a structure consists of three steps. First, a linear buckling
analysis is carried out and it describes by Cook et al. [78] as an eigenvalue problem which

involves the solution of a homogenous algebraic equation system whose smallest root
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eigenvalue corresponds to critical buckling load and the associated eigenvector represents
the first buckling mode. Using the standard finite element approach, the governing equation

for buckling, then takes the form of the standard eigenvalue problem:

[K{D} =1{R},, (3.4)
Where [K] is the stiffness matrix, {D} is the displacement and {R}¢ is an arbitrary load on
the structure. When the displacements are known, the stresses can be calculated for the
used forces, {R}s which can be used to form the stress stiffness matrix [Kg] ¢ . Since the
stress stiffness matrix [Kg].ef is proportional to the load vector {R},s , an arbitrary stress

stiffness matrix and an arbitrary load vector {R} may be defined by a constant A as:

[K,1=MK, ], when {R}=2A{R},, (3.5)

The conventional stiffness matrix [K] is unchanged by the applied load, because the

ref

problem is presumed linear. When the buckling displacement increment {6D} takes place
relative to displacements {D},.¢ of the reference configuration. Because, external loads do

not change at a bifurcation point,

((KI+ A KL )ADS oy = R AR (3.6)

((KI+ A, [K 1y )(AD} o +8D}) =1, ARG, (3.7)

By subtraction of eq. (3.6) from eq. (3.7), gives an eigenvalue problem of eq. (3.8) where

the smallest root A.. defines the smallest load and there is a bifurcation, eq. (3.9)
([K]+2,[K,].,){8D} = {0} (3.8)
R}, =\, {R},, (3.9)

Figure 3.3 shows the procedure steps of the buckling analysis which made by Felippa [80]
using finite element methods. The first input data to start the analysis is the number of load
combinations 7 that picked based on the given problem (i.e. compression forces, moments
or shear), subsequently the combination of load which indicates by i is applied to the
structure on specific positions. When the first phase is completed the second phase will
start for the static analysis. As previously mentioned that the solution loop will start to
solve the static analysis step in order to work out the unknown parameter in eq. (3.4).

The majority of commercial finite element programs are used two methods to work out the

integration element stiffness matrix which is usually performed numerically. These
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methods are Gauss integration or Simpson integrations, which have a good accuracy and
computational time. Once the static analysis is completed and to complete the solution loop

1s to calculate the stress stiffness matrix [K_ ]which is given by
[x:]= [[GT [sTGlav? (3.10)
Ve

Where the [G] is obtained from shape functions by appropriate differentiation, and [S]
contains the initial stresses which are obtained from the static analysis. Finally, the global
stress stiffness matrix is assembled as the global stiffness matrix. Therefore, two unknown
required parameter are now computed, the linear buckling problem is ready to determine

which is indicated by eq. (3.8).

__,-";Load.ing data ___.-":—H:'Select 7 mmmber load combinations;\j

I

{ J.AppI}r load combination i )

l

( Static analysis )
SEETRE

———————————————————— Numerical integration

[*]= (B [E]Blav

Ty

Assembly: [K] = i[lx']

¥

Factorization of [k];

Solve: [K]; {D}:i= {R}:

Apph load combination i+ 1/I

) ’ Numerical integration

: [x.]= i[k;] i [A_:]:;;[G}I[S][G]dl'l

Figure 3.3 Flowchart of a standard procedure for linear buckling analysis with multiple

load combinations », when using the finite element method.
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In order to solve eigenvalue problem, the built-in ABAQUS is used, which is quite quick
and reliable. However, it is always possible and sometimes desirable to create a faster
eigenvalue solver that is designed for the specific case to be solved. Two Eigen solvers are
available in ABAQUS to extract the eigenvalue, namely the Lanczos iteration and the
Subspace method. Lanczos and Subspace iteration methods are applied in ABAQUS to
solve Eigen value problem and also widely used in FE programs. The Lanczos method
[80], is generally faster when a large number of Eigen modes is required for a system with
many degrees of freedom while the Subspace method [81], be faster when only a few (less
than 20) Eigen modes are needed. The second step of the analysis is nonlinear buckling
analysis in which large deformations and geometrical and/or material non-linearities are
included. This type of analysis may include some imperfections after a linear buckling
analysis. Post buckling analysis is the third step that may be carried out for investigating if
the structure continues to carry the load after it has reached its critical limit or if it loses all
its stiffness and collapses. In a general eigenvalue buckling problem is looking for the loads
that lead to the model stiffness matrix to be singular and has nontrivial solutions. In this
study only a linear buckling analysis is considered, because the analysis is done for “stiff”
structures, so it is not necessary to include the effect of geometry change in establishing
equilibrium for the base state. As a result, the important point in this numerical solution of
a linear buckling analysis is the assumptions that assumed where a perfect geometry is used
and therefore the obtained critical buckling. The main thing that should be pointed out is to
understand that this numerical solution of a linear buckling analysis was assumed that the
geometry is perfect without any imperfections. Therefore, the obtained critical load will be

higher than the real critical load with geometry imperfection.

3.2.3 FINITE ELEMENT DISCRETIZATION

As is very common, the number and type of distribution of elements in FE method have a
significant influence on the obtained results of calculations. The model discretized with a
few or not sufficient number of elements is stiffer than the original structure, and this leads
to unreal or wrong results. On the other hand, a huge number of elements used for
discretization, needs to a high computer speed and leads to time-consuming calculations.
Another factor should be taken into account, is the convergence analysis, the number of

element density is chosen on the basis of the solution. As a result, an increase in the number

37



Doctoral thesis

of elements increases the number of nodes and degrees of freedom for the model, which
allows for mapping the highest buckling mode. Full three-dimensional FE model along
with finite element statistics for the flat plate developed in ABAQUS is shown in Figure
4.2. The element type in buckling analysis that used is S4R (linear reduced integration 4-
node doubly curved element). Figure 3.4 shows two and three dimensional shell elements
which mean that it could be used. A two dimensional element is used when forces or
moments are applied in one plane, while a three dimensional elements which can be used
when forces or moments are in three perpendicular directions. Further details about the

selected elements may be found in ABAQUS manual [82].

Linear elements for FEM

A
.

Figure 3.4 Typical two & three dimensional elements with nodes

3-D
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3.2.4 FORMULATION AND CALCULATION OF FINITE ELEMENT MATRICES

The calculation of the finite element matrices is a very important phase in the finite element
solution. The main idea of this section is to achieve the relationship between the element
displacements at any point and the element nodal point displacements directly by using the

interpolation functions.

3.2.4.1 THE STIFFNESS MATRIX OF SHELL ELEMENT
The relation between displacements and applied loads is given by the global stiffness
matrix[K]. As eq. (3.11) shows that stiffness matrix is defined with an integration of the

strain displacement matrix [B] and the matrix of elastic stiffness[E].

[k°1=[[B"ILEIBldV (3.11)
Where [k°]is the element stiffness matrix for one element only and [B] is a matrix that

defines the relation between the strain {€} , and the displacement {u}, for an element as

shown in eq. (3.12).

{et=[Blu} (3.12)
The global stiffness matrix [K] is represented for entire assembled elements. By a
coordinate transformation[ E]1=[7" ][ £ ][T], it can possible to obtain the matrix [ £] from
[E'], [T ]where is the transformation matrix. There is a case that leads to equality between

[E]=[E'], this condition is when all elements are planar and defined in the same plane.

The eq. (3.13) represents the [£ ] for an isotropic element,

'E VE 0 0 0 0]
vE E 0 0 0 0
, 0 0 0 0 0 0
E1= 3.13
L] 0 0 0 G 0 0 3-13)
0 0 0 0 G 0
0 0 0 0 0 G|
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Where E'=E/(1-*), G=E/2(1+v), G =5G/6 and E is the Young’s modulus while v
is the Poisson’s ratio. Based on the finite element, the variation of transverse shear strain
through the thickness direction is represented by a factor equal to 5/6 as shown in [83].
With the existence of the plane stress assumption of the shell element, this led to zero

values in the third column of the eq. (3.13).
3.2.4.2 STIFFNESS MATRIX OF A BAR ELEMENT

For a two node bar element as shown in Figure 3.5, the only possible variation of the

displacement u(x) is linear, and expressed by the interpolation formula:

»>q Ly () LE >

Localnode 1 4 b Local node 2

Figure 3.5 Two nodes bar element

Deflection (displacement) is approximated by

—>(e)

u(x)=[N] q (3.14)
Where[N] the shape function is
x x°
[N]—(7—l—2j (3.15)

This can be written as a scalar product

S0 g, (e)
q = (3.16)
q,

Where ¢, and ¢, represent the nodal degree of freedom in the local coordinate system, and

the superscript e denotes the element number.

For the calculation of element stiffness matrix, it needs to find the element strains
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ou
fa = (3.17)
Where
£, :_qzl—ql (3.18)
Or
¢, =[Blg™ (3.19)
Where
1 1
[B] = {—; ﬂ (3.20)

In general, the strain-displacement transformation matrix is a function of the natural
coordinates, and it therefore evaluates the stiffness matrix volume integral by integrating

over the natural coordinates.

Lo =I£J[B]T[D][B]dV (3.21)

Then, evaluating eq. (3.21), it obtain the well-known matrix as in eq. (3.22)

1
[k@]:Aj ! E{—
x=0 l l

| —

| p—
Hﬁ_J

=

; (3.22)
[
AE| 1 -1
k(@) _
[£] ZLI 1} (3.23)
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3.2.4.3 STIFFNESS MATRIX OF A BEAM ELEMENT

Consider a two-dimensional beam element with 2-nodes depicted in Figure 3.6. The
element has two nodes; each node has four degrees of freedom which are indicated by ¢,
q>, q3 and g4. Due to the existence of four nodal displacements, the cubic displacement is

assumed for »(x) as illustrated in Figure 3.6 and expressed as following,

7= v(x=0) v (x) 3= v(x=1)

dv d
q2=a(x=0)$ T q4=d—icx=0$

t ?
-v |
|

Local Node 2

Local Node 1

Figure 3.6 Two nodes beam element

v(xX)=a, + ax +ax’ +a,x (3.24)

Where ¢,,Q,,&;, and@, are constants and can be worked out by applying some boundary

conditions:
_ dv
At x=0 = V(X)—% and —=gq,
dx
And at x=/ = V(X)=¢, and ﬂ =q,
dx

By rewrite and substitution into eq. (3.24) by new symbols, it can be as following:

—(e)

v(x)=[N] ¢q (3.25)

Where [N] is given by

[N]=[N, N, N, N,]

Where
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2x* =3Ix* +°

Nl(x) = l3
x* =2Ix* + I’x
N, (x) = B (3.26)
x = Ix?
N,(x)=—7—
/
And also
q,
> 49,
q= 7, (3.27)
q,

Figure 3.7 of Figure 3.6 which shows the section plane of beam under deformation, where
the plane sections remained in the same plane after deformation based on the beam
theorem. Therefore, due to the transverse displacement v, it can be expressed on axial

displacement u as following:

ATy
B -

Figure 3.7 Deformation of a beam in x-y plane [84]

u :—y%‘: (3.28)

Where y is the distance from reference axis (i.e. neutral axis) for single element, then the

axial strain is:

. _Ou o’v
o ox y8x2

[B]g (3.29)
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Where the matrix [B] is defined as

[B] = —113{(12x —6l) I(6x—4l) — (12x—6[) [(6x—21)} (3.30)

When [D]=[E], the stiffness matrix of beam element can be written as following:

[k1=[[[[BY [DI[BldV = E j dx[[[B]'[BldA (3.31)

Ve x=0

The final approximate solution becomes

2 6 -12 6l
o EL| 64 -6l 2

Fl-12 -6l 12 —é6l
6/ 20° -6l 4

(3.32)

Where I, = H Aysz is the moment of inertia about z-axis.

3.2.4.4 STIFFNESS MATRIX OF SPACE FRAME STRUCTURES

A straight bar of an uniform cross section is formulated to model a frame element, which
has capability to resist not only the axial forces but also the bending moments in the
directions perpendicular to the axis of the bar. Therefore, a frame element is seen to have
the properties of both beam and truss elements. Figure 3.8 shows the frame element with
nodes labeled 1 and 2 at each end of the element. As mentioned above, a frame element
contains both the properties of the truss element and the beam element. To construct the
stiffness matrix for the frame element, it can be simply formulated by combining element
matrices for beam and truss elements, without going through the detailed process of
formulating shape functions and using the constitutive equations for a frame. In order to
obtain the stiffness matrix of the frame element, the superposition is applied. The same

steps which applied in previous cases for bar element will be done for space element.

[K]= HJ[B]T[D][B]d v (3.33)
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Figure 3.8 Frame element in space with twelve DOFs
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3.3 CONCLUDING REMARKS

This chapter has described an overview about the theoretical background of the finite
element method and plate theory with particular focused on the linear buckling analysis to
analyse the response of the buckling structural system. The main emphasis has been upon a
basic of finite element process by highlighting its various characteristics associated to
buckling analysis.

Linear static analysis and linear buckling analysis with finite element methods have been
briefly presented. In order to obtain the equilibrium between applied forces on the nodal
and internal generalized nodal forces, the linear static analysis has been applied. The linear
behaviour structure is able to hold any amount of loading before reaching to the critical
buckling point. Furthermore, before critical point any deformation in the structure
disappears and system returns to its original shape without generating any imperfections or
residual stresses. The linear static analysis has made upon some basic assumptions. The
relationship between the applied load and resulting deflections assumed to be linear. The
development of deflections is based on the theory of small displacement. Throughout the
static analysis, the behaviour of the material is supposed to remain elastic. In order to
determine the elastic stability of the element structures, the linear buckling analysis is
applied or used. The ability of ABAQUS program is applied to perform linear buckling

analysis.
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CHAPTER 4

4. THE BUCKLING BEHAVIOUR OF A THIN PLATE

4.1 INTRODUCTION

In this chapter, the finite element techniques and solution strategies, which are appropriate
for the linear buckling analysis of thin-walled plates, have been developed. The buckling
and ultimate strength of plates subjected to pure axial compression force is governed, to a
largely extent, by different aspect ratio and boundary conditions. Therefore, the right choice
of boundary conditions plays an important role in the analysis in order to get precise
results. Suitable constraints for each case of analysis will discuss in detail. Moreover, the
solution strategies involving the selection of suitable solution parameters such as the
element selection, load case and element discretization, etc. are comprehensively defined.
The findings for each thin-walled section are discussed at length. In order to develop a
detailed understanding of the critical buckling load of thin plates, the influence of different
support boundaries on the critical buckling loads of the thin plates is thoroughly examined.
In addition, the details of other important parameters involved in the simulation procedures
that could potentially affect the critical buckling analysis are also explained, for instance

aspect ratio of the plates and their thicknesses.
4.2 FINITE ELEMENT MODELLING OF THIN PLATE
4.2.1 GEO-METRIC MODELLING AND NUMERICAL ANALYSIS

In this section the procedures and strategies of the finite element simulation are described
which used to analyze the thin plate subjected to pure axial compression buckling load. In
order to develop a finite element solution of a thin plate structure subjected to axial
compressive load, three-dimensional finite elements should used because the model would
capture the real structural behaviour including not only global effects of the member but
also various local effects. Figure 4.1 shows fully geometry of the hollow beam-column,
which fully used in the analysis later and a chosen plate specimen. in order to analyse the

plate specimen, some parameters are varied. The length-to-width ratio (a/b) of the thin plate
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is changed from 0.5 to 2.5 where b is 1.2m (constant) and while the plate thickness is
changing from 15mm to 30mm to study their influence on the critical buckling load
characteristics. The plate thicknesses chosen were such as to illustrate local buckling and

global buckling behaviour of the thin plate under compression load.

Figure 4.1 Typical geometry of a thin plate using in the study

4.2.2 BOUNDARY CONDITIONS AND FINITE ELEMENT MESH

The boundary conditions play an important role in the finite element modeling of any type
of structures. However, both boundary conditions and load have very significant effects on
the critical buckling mode. The main purpose of applying appropriate boundary conditions
on the thin plates in both linear and nonlinear static analysis is to obtain the non-singular
global stiffness matrix. To achieve the no singularity of the global stiffness matrix is only if
the overall structure is motionless. Therefore, under applied load the movement of rigid
body of the structure is prevented in all directions by applying appropriate displacement
constraints at node (i.e. nodal displacement). However, when the boundary conditions
allow to the structural elements to move which means that the structure can be deformed
internally. However, when the boundary conditions allow to the structural elements to
move which means that the structure can be deformed internally. The different results of
the structural problems at different boundary conditions based on the change in support
conditions are presented. The general-purpose elastic shell element is used in numerical
simulations to discretise the model in order to build the finite element models for the Eigen
value. Four nodded doubly curved shell element with reduced integration S4R [81] and six

degrees of freedom per node were used. In order to obtain the most optimized, accurate
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solutions, the fine mesh has been chosen where the element size used for thicker plate is
chosen and kept to be 0.025m. This element size chose through the appropriate
convergence studies to ensure the accuracy of the solution. Figure 4.2 demonstrates the
discretised configuration of the thin plate with mesh size equal to 0.025m. This type of
element shows the accurate solution and satisfactory performance in verification work
previously described for both thin and thick shell elements [85][86]. The thin plate
structure is applied statically by a distributed compressive buckling load of 1(N/m) at plate
ends as shown in Figure 4.3, where the load has a load factor with a default value of 1.0
and the entire load case can be multiplied with any numerical or alternatively loads if
required. The simplified von-Mises elastic-perfectly material model is used for the isotropic
steel with an elastic modulus of 210 N/mm?, Poisson ratio of 0.3 and yield stress value of

350 N/mm?>.

———

Figure 4.2 Mesh generation on the model of square thin plate

Figure 4.3 A plate under uniform uniaxial compression load
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4.2.3 FULLY SIMPLY SUPPORETED OF THIN PLATE EDGES UNDER COM-
PRESSIVE LOAD (SSSS).

Thin plate subjected to a compressive loading is examined for the buckling analysis. The
length-to-width aspect ratio (a/b) and thickness (#,) of the plate are considered in the
analysis. The study was carried out to examine the effects of plate aspect ratio and its
thickness on the critical buckling load. Figure 4.4 shows the critical buckling load against
aspect ratio (a/b) for different thicknesses and it can clearly observe that a considerable
amount of the critical buckling is present for the case of the plate corresponding to the
width-to-thickness ratio (b/2,) in Figure 4.6. From the results that the critical buckling load
of the plate is seen to increase significantly with increase in the plate thickness. On the
other hand, the critical buckling load of the plate is also noted to increase substantially at
a/b = 1.5, but it is of some significance to mention that the critical buckling load of the
plate reduces with decrease in the plate thickness, due to essentially, to the higher critical
buckling stress. The results obtained from finite element simulations have been thoroughly
examined in order to develop a complete and in-depth understanding of the buckling

behaviour of the thin plate.
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Figure 4.4 Length-to-width vs. critical buckling load for SSSS with different thicknesses,

beonstant =1.2m
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Figure 4.5 shows the deformation shapes and development of von Mises stresses during the
loading in order to visualize the spread of elastic yielding with load and to determine the
possible mechanism of critical buckling load. The blue and red colours on the deformation
and stress spectrum represent the minimum and maximum respectively as shown in Figure
4.5. Firstly, deformation is seen to appear at the plate centres corresponding to loading for
all cases. However, the stresses are at the middle-centre surface for aspect ratio equal to
0.5. The Von-Mises stresses corresponding to the aspect ratios (a/b) from 1 to 2.5 are seen
to be at centres and edges corners of the plate on all surfaces. It is to be observed that the
stress distribution does not remain constant on middle and corners surfaces. It is clear that
the plate is not able to withstand any additional aspect ratio after 2.5 and with the increase
in its thickness. Furthermore, it is noticed that from the deformation images of aspect ratios
1.5 and 2 respectively, the number of buckling waves jumped from 1 to 2 as illustrated in
Figure 4.5. It is clear from this that aspect ratio also taken place through plate thickness as
well. From the observations made with respect to length-to-width aspect ratio (a/b) with
load, it is perhaps most relevant to point out that critical buckling behaviour is closely

associated with complete width-to-thickness.

t, = 15mm where (bconstant =1.2m)
a/b
0.5 __
a/b
1
(a) (b)
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t, = 25mm where (bconstant =1.2m)
a/b
1.5 ’
ion May 08 14:53: 17 Central Europe Daylght Time 2016 X o va _ 09 14;53:17 Central Europe Daybght Time 201
a/b
2
(a) (b)

Figure 4.5 Deformation images (a) and growth of von Mises stresses (b) with different

aspect ratios and thicknesses of Figure 4.4

The influence of change in the plate width-to-thickness ratio, (5/%,), on critical buckling
load is highlighted in detail in Figure 4.6. The critical buckling load is plotted against the
non-dimensional width-to-thickness, (#,/b), of the plate. Notable increase in the critical
buckling load (maximum value) occurred at a/b=0.5 for all different of (b/¢,) conditions is,
of course, due to the short length of the plate. However, it can noticed for the other cases
with (b/t,) greater than 1 to 2.5 that the finite element value of critical buckling load is
found lower and close to each other. The decline of critical buckling load of the plate is
seen to be quite slow with further increase in the plate length-to-width ratio, (a/b), and itis
noted that the value of the critical buckling load drops instantaneously to just over 87% of
its maximum buckling value at a/b=0.5. Consequently, thin plate with high width-to-
thickness ratio demonstrates buckling failure at very low levels of applied load. This is due
to the fact that the buckling failure for high plate width-to-thickness ratio is considered a

sudden geometrical phenomenon. Whereas on the other hand for low plate width-to-
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thickness ratio, the plate is not very flexible to permit the load easily unlike the slender

plate due to the high value of plate thickness.
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Figure 4.6 Width-to-thickness vs. critical buckling load for SSSS with different length-to-
width ratios, (beonstant =1.2m)

4.2.4 SIMPLY SUPPORETED FREE OF THE THIN PLATE UNDER EDGES
COMPRESSIVE LOAD (SSSF)

In this section the critical buckling load characteristics of three simply supported edges
with one free edge with different length-to-width (a/b) and width-to-thickness (/%) aspect
ratios are examined. Figure 4.7 shows the non-dimensional length-to-width vs. critical
buckling load for (SSSF) with different plate thicknesses. It is evident from the presented
curves in Figure 4.7 that the behavior of critical buckling of the plate with simply supported
and free edges boundaries is slightly different to that of fully simply supported boundary
conditions. It is of note that the critical buckling load of the plate is noticed to be almost at
same trend and level. However the critical buckling load of the plate is seen to be decreased
enormously for all considered (¢,) values compared to that with SSSS edges load boundary
conditions. Contrary to the case of SSSS with normal edges load boundary conditions, the

critical buckling load of the plate does not seem to increase significantly with increase in
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the plate thickness. For aspect ratio a/b = 1.5 and more, the critical buckling load seems to
be in steady condition without any notable increase or decrease due to the long length of
the plate. For instance the difference in critical buckling load between a/b = 0.5 to 2.5 and
att,=15mmis 1.29x10° N with drop down to 83% of its pre-value at a/b=0.5. As a result,
critical buckling load begins to decrease with further increase in the length-to-width (a/b)
ratio and it is to be observed that the loss of critical buckling load, is noticed to remain at
steady trend at later stages of (a/b) ratio. The results obtained from finite element
simulations have been thoroughly examined in order to develop a complete and in-depth
understanding of the buckling behaviour of the thin plate. Figure 4.8 shows the deformation
shapes and development of von Mises stresses during the loading in order to visualize the
spread of elastic yielding with load and to determine the possible mechanism of critical
buckling load. The blue and red colours on the deformation and stress spectrum represent
the minimum and maximum values respectively. Firstly, deformation is seen to appear at
the front plate centres corresponding to loading for all cases. However the stresses
concentrated on the front-middle surface but almost it cover the majority of the surface at
all aspect ratios. The Von-Mises stresses corresponding to the aspect ratios (a/b) from 0.5
to 2 are seen to be at centres and edge corners of the plate on all surfaces. It is to be
observed that the stress distribution does not remain constant on the middle surfaces. An
interesting point was mentioned in the Figure 4.8 that the stress distribution for a/b=2 and
greater than were on the free and load edges corners, of course, due to the long length of
plate. It is clear that the plate is not able to withstand any additional aspect ratio after
a/b=2.5 and with the increase in its thickness. It is noticed that from the deformation
images of aspect ratios 0.5 to 2.5 respectively, the number of buckling waves remained
only one wave as illustrated in the figure. It is clear from this that aspect ratio also taken
place through plate thickness as well. From the observations made with respect to length-
to-width aspect ratio (a/b) with the load it is perhaps most relevant to point out that critical

buckling behaviour is closely associated with complete width-to-thickness.
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Figure 4.7 Length-to-width vs. critical buckling load for SSSF with different thicknesses,
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t, = 25mm where (bconstant =1.2m)
a/b
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Figure 4.8 Deformation images (a) and growth of von Mises stresses (b) with different

aspect ratios and thicknesses of Figure 4.7

The influence of change in the plate width-to-thickness ratio (z,/b) on critical buckling load
is highlighted in detail in Figure 4.9. The critical buckling load is plotted against the non-
dimensional width-to-thickness, (#,/0), of the plate. Notable increases in the critical
buckling load (maximum value) occurred at a/b=0.5 for all different of (b/,) conditions is,
of course, due to the short length of the plate. However, it can notice for the other cases
with (b/t,) greater than 1 to 2.5 that the finite element value of critical buckling load has
found lower and close to each other. The decline of critical buckling load of the plate is
seen to be quite slow with further increase in the plate width-to-thickness ratio, (b/¢,), and it
is noted that the value of the critical buckling load drops instantaneously to just over 83%
of its maximum buckling value when a/b=0.5 and at all b/#, values. Consequently, thin
plates with high plate width-to-thickness ratios demonstrate buckling failure at very low

levels of applied load. This is due to the fact that the buckling failure for high plate width-
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to-thickness ratio is considered a sudden geometrical phenomenon. Whereas on the other
hand for small plate width-to-thickness ratios the plate is not very flexible to permit the
load easily, unlike the slender plate due to the high value of the plate thickness.
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Figure 4.9 Width-to-thickness vs. critical buckling load for SSSF with different length-to-

width ratios, (beonstant =1.2m)

4.2.5 SIMPLY SUPPORETED CLAMPED FREE OF THE THIN PLATE UNDER
EDGES COMPRESSIVE LOAD (SSCF)

In this section the critical buckling load characteristics of two simply supported edges and
one free- clamped edges with different length-to-width (a/b) and width-to-thickness (b/2,)
aspect ratios are examined. Figure 4.10 shows the length-to-width vs. critical buckling load
for (SSCF) with different plate thicknesses. It is evident from the presented curves in
Figure 4.10 that the behavior of critical buckling of the plate simply supported and free-
clamped edges boundaries is slightly different to that of fully simply supported boundary
conditions. It is of note that the critical buckling load of the plate is noticed to be almost at
same trend and level. However the critical buckling load of the plate is seen to be decreased
enormously for all considered (#,) values compared to that with SSSF and edges load
boundary conditions. Contrary to the case of SSSF with normal edges load boundary

conditions, the critical buckling load of the plate does not seem to increase significantly
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with increase in the plate thickness. For a/b=1.5 and greater than, the critical buckling load
seems to be in steady condition without any notable decrease due to the long length of the
plate. Asaresult, the critical buckling load for SSCF has almost similar behavior with the
case of SSSS, of course with some differences in its values in terms of maximum and
minimum.The results obtained from finite element simulations have been thoroughly
examined in order to develop a complete and in-depth understanding of the buckling
behaviour of the thin plate. Figure 4.11 shows the deformation shapes and development of
von Mises stresses during the loading in order to visualize the spread of elastic yielding
with load and to determine the possible mechanism of critical buckling load. The blue and
red colours on the deformation and stress spectrum represent the minimum and maximum
values respectively. Firstly, deformation is seen to appear at the front plate centres
corresponding to loading for all cases. However, the stresses concentrated on the front-
middle surface and on the back middle of the surface almost for all aspect ratios. It is to be
observed that the stress distribution does not remain constant on the middle surfaces. An
interesting point was mentioned in the Figure 4.11 that the stress distribution for a/b=2 and
greater than was maximum at back edges of the plate, of course, due to the long length of
plate. It is clear that the plate is not able to withstand any additional aspect ratio after
a/b=2.5 and with the increase in its thickness. It is noticed that from the deformation
images of aspect ratios 0.5 to 2.5 respectively, the number of buckling waves remained
only one wave as in the previous case and as illustrated in the figure. It is clear from this
that aspect ratio also has taken place through plate thickness as well. From the observations
made with respect to length-to-width aspect ratio (a/b) with the load it is perhaps most
relevant to point out that critical buckling behaviour is closely associated with complete

width-to-thickness.
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t, = 25mm where (bconstant =1.2m)
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Figure 4.11 Deformation images (a) and growth of von Mises stresses (b) with different

aspect ratios and thicknesses of Figure 4.10

The influence of change in the plate width-to-thickness ratio, (b/%,), on critical buckling
load is highlighted in detail in Figure 4.12. The critical buckling load is plotted against the
non-dimensional width-to-thickness, (¢,/0), of the plate. Figure 4.12 shows the obtained
results with different length-to-width aspect ratio, (a/b). Notable increase in the critical
buckling load (maximum value) occurred at a/b = 0.5 for all different of (b/¢,) conditions is,
of course, due to the short length of the plate. However, it can noticed for the other cases
with (b/t,) greater than 1 to 2.5 that the finite element value of critical buckling load is
found lower and close to each other. The decline of critical buckling load of the plate is
seen to be quite slow with further increase in the plate length-to-width ratio, (a/b), and itis
noted that the value of the critical buckling load drops instantaneously to just over 87% of
its maximum buckling value at all (b/#,) values. Consequently, thin plate with high width-

to-thickness ratio demonstrates buckling failure at very low levels of applied load. This is
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due to the fact that the buckling failure for high plate width-to-thickness ratio is considered
a sudden geometrical phenomenon. Whereas on the other hand for small plate width-to-
thickness ratio, the plate is not very flexible to permit the load easily unlike the slender

plate due to the high value of plate thickness.
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Figure 4.12 Width-to-thickness vs. critical buckling load for SSCF with different length-

to-width ratios, (beonstant =1.2m)

4.2.6 CLAMPED FREE OF THE THIN PLATE UNDER EDGES COMPRESSIVE
LOAD (CFFF)

So far the buckling behaviour results associated with fully simply supported, simply
supported free boundary conditions are discussed in detail however the critical buckling of
the plate with regard to the simply supported clamped boundary conditions is also
described for various web length-to-width and width-to-thickness ratios. In this section the
critical buckling characteristics of one clamped edge of thin plate with different length-to-
width a/b ratio at different thicknesses is examined. The length-to-width a/b is plotted
versus the critical buckling load as shown in Figure 4.13 for clamped free thin plate
boundary conditions. The results presented are for different plate length-to-width (a/b)
ratios and at different plate thicknesses. It is evident from the curves presented in Figure

4.13 that the critical buckling response of the plate with clamped free edges boundaries is
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entirely different to that of fully simply supported, simply supported-free and clamped
boundary conditions. It is of note that the critical buckling load of the plate with clamped
free boundary conditions is noticed to be almost at same level. However, the critical
buckling load is seen to be enhanced enormously for all considered plate thicknesses values
compared to that for previous cases of boundary conditions. An interesting point was
mentioned in the Figure 4.14 that as a/b progresses more than 2, the critical buckling load
would remain unchanged (i.e. constant). The results obtained from finite element
simulations have been thoroughly examined in order to develop a complete and in-depth
understanding of the buckling behaviour of the thin plate. Figure 4.14 shows the
deformation shapes and development of von Mises stresses during the loading in order to
visualize the spread of elastic yielding with load and to determine the possible mechanism
of critical buckling load. The blue and red colours on the deformation and stress spectrum
represent the minimum and maximum values respectively. Firstly, deformation is seen to
appear at the front plate corners corresponding to loading for a/b until 1.5. While at a/b=2
and more the deformation is seen to appear at both the front edges and centre of the plate.
Secondly, the images of the stress in Figure 4.15 are showing its growth and distribution on
the plate surface with different plate thicknesses. At each thickness which corresponds to
a/b, the von Mises stresses on surfaces can be visualized, where the location of the
maximum stress concentrated was at the back-corners of the plate (i.e. at clamped edge) for

all aspect ratios (a/b).
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Figure 4.13 Length-to-width vs. critical buckling load for CFFF with different

thicknesses, (beonstant =1.2m)
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Figure 4.14 Deformation images (a) and growth of von Mises stresses (b) with different

aspect ratios and thicknesses of Figure 4.13

The influence of change in the plate width-to-thickness ratio, (/%,), on critical buckling
load is highlighted in detail in Figure 4.15. The critical buckling load is plotted against the
non-dimensional width-to-thickness, (#,/b), of the plate. Figure 4.15 shows the obtained
results with different length-to-width aspect ratio, (a/b). Notable increase in the critical
buckling load (maximum value) occurred at a/b=0.5 for all different of (b/#,) conditions is,
of course, due to the short length of the plate. However, it can be noticed for the other
cases as (b/t,) progresses more than 1 that the change in critical buckling load is found
lower and close to each other. The decline of critical buckling load of the plate is seen to
be quite high with further decrease in the plate length-to-width ratio, (a/b), specially for b/%,
=40, and it is noted that the value of the critical buckling load increase instantaneously to
just over 46% of its minimum buckling value. Consequently, thin plate with low width-to-

thickness ratio demonstrates buckling failure at very high levels of applied load. This is due
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to the fact that the buckling failure for low plate width-to-thickness ratio is considered a
sudden geometrical phenomenon. Whereas on the other hand for high plate width-to-
thickness ratio, the plate is not very flexible to permit the load easily unlike the slender

plate due to the high value of plate thickness.
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Figure 4.15 Width-to-thickness vs. critical buckling load for CFFF with different length to-

width ratios, (beonstant =1.2m)

4.3 CONCLUDING REMARKS

This chapter presents the suitable finite element simulation strategies to investigate the
elastic buckling behaviour of thin plates subjected to the axial compression load. Moreover,
this chapter has examined the effect of different thickness and length on the critical
buckling loads and deformation behaviour of the square thin plate with different boundary
conditions subjected to axial compression loading. The critical buckling behaviour of
different thin plates is investigated to obtain an in-depth understanding with regard to the
critical buckling failure. Also, it has been in this chapter that the critical buckling load at
different boundary conditions is considerably decreased with change in the length to width
ratio as well as the width to thickness ratio. The visualization of deformation growth and
distribution of stress at the critical buckling load can be readily monitored and the

geometric influence. It is worth pointing out that the importance of this chapter is the fact
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that the critical buckling load of the thin plate has been shown to be closely associated with

complete thin column-beam as well as the thin frame structure.
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CHAPTER 5

5. THE BUCKLING BEHAVIOUR OF BEAM-COLUMN
TRANSVERSELY AND LONGITUDINALLY STIFFENED

5.1 INTRODUCTION

This chapter examines the local and global buckling response of stiffened beam-column
plates with plain flat outstands when subjected to pure axial compression load. The
buckling capacity and capabilities of beam-columns subjected to axial pure compressive
load can, of course, be improved through the introduction of stiffening elements such
Transverse and Longitudinal stiffeners (TS&LT respectively). Their flexural and torsional
rigidities can contribute to significantly increase towards a critical buckling load of
structural system. In order to see the effect of both stiffeners on the local and global
buckling of a beam-column a finite element modelling strategies and solution procedures
are developed, which enable the accurate determination of critical buckling loads and to
visualize the response of the stiffened beam-column. Transverse stiffeners in the form of
plain flat outstands are attached and distributed asymmetrically through the length of the
beam-column with a variation of the distance between each one in order to highlight the
significant influence of the stiffeners. The analysis is considered based on the equally
spaced between the stiffeners. The thickness of the stiffener is varied in order to investigate
the corresponding effect on the structural behaviour and performance. The modelling
procedures are able to describe the complete local and global buckling behaviour of the
stiffened beam-column structure. The critical buckling of stiffened beam-column was
investigated by employing a unit load to start the solution sequence of buckling while
giving due consideration to geometric and elastic material. Numerical simulations of the
stiffened beam-columns are able to provide an in-depth understanding of the buckling

analysis for such structural element. The results presented are for the case of beam-columns
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with transverse stiffeners only and longitudinal stiffeners which are located at half and one
third of the column's height. Furthermore, the results of critical buckling loads are
presented with respect to the thickness of transverse stiffeners and their distances. In the
buckling modes the stiffeners are heavily involved in both local and global types of
buckling along with the length of the beam-column. The obtained results are also presented
for the case of a beam-column with transverse stiffeners and longitudinal stiffeners which
are located at the top part of the column height. According to the buckling behaviour, there
is, of course, a transition region from local buckling to global buckling as the rigidity and
thickness of the stiffeners approaches the critical level. The results illustrated in this chapter
give an overview of a comprehensive detailed account of the complete critical buckling

loads of the stiffened beam-columns.
5.2 FINITE ELEMENT MODELLING OF STIFFENED BEAM-COLUMN
5.2.1 GEO-METRIC MODELLING AND NUMERICAL ANALYSIS

The critical buckling capacities of beam-columns are quite complex, especially when
approaching their ultimate failure. In this section the procedures and strategies of the finite
element simulation are described that are used to analyze the stiffened beam-column
subjected to pure axial compression load. In order to develop a finite element solution of
beam-column structure subjected to axial compressive load, three dimensional finite
elements must be used because the model would capture the real structural behaviour
including not only global effects of the member but also various local effects. Figure 5.1
shows fully dimensions of the used hollow beam-column, which is taken and reassembled
from the full frame as shown previously in Figure 1.2 for the analysis. The geometries of
the transverse and longitudinal stiffeners are illustrated in Figure 5.2 and Figure 5.3
respectively. The thickness of the transverse stiffeners is changed from 15mm to 30mm to
study the influence of the stiffener thickness on the critical buckling load characteristics,
while the longitudinal stiffeners thickness is fixed at 15mm. The transverse stiffener
thicknesses chosen were such as to illustrate local buckling and global buckling behaviour

of the stiffened under compression load.
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Figure 5.2 Geometry of transverse stiffener configuration (TS)
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Figure 5.3 Geometry of longitudinal stiffener configuration (LS)
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5.2.2 BOUNDARY CONDITIONS AND FINITE ELEMENT MESH

One of the important steps in the finite element modeling of structure is the boundary
conditions. The main point of the boundary conditions when applying them is to obtain the
non-singular global stiffness in linear or nonlinear static analysis. However, both boundary
conditions and load have very significant effects on the critical buckling mode. In order to
achieve the non-singularity of the global stiffness matrix is when the entire structure is
motionless. Therefore, under applied load the movement of rigid body of the structure is
prevented in all directions by applying appropriate displacement constraints at node (i.e.
nodal displacement). However, when the boundary conditions allow to the structural
elements to move which means that the structure can be deformed internally. The different
results of the structural problems at different boundary conditions based on the change in
support conditions are presented. As a result, the global stiffness matrix is either decreased
or increased for a given loading condition. A beam-column with simply supported at its
ends is considered in the analysis while the rest of the structure is left free to remain either
normal or straight. A rigid body constraint has been used to tie the beam-column ends via
node-to-node tie constraint relationship to reference points RP1 and RP2 which available in
ABAQUS [82]. The reference points used to accomplish the boundary conditions to be tied
to the end beam- column surfaces. The used boundary conditions are given in table 1 and
the beam-column is applied statically by a central buckling load of 1N at RP1 (Figure 5.4
and Figure 5.5). The simplified Von-Mises elastic-perfectly material model is used for the
isotropic steel with an elastic modulus of 210 N/mm?, Poisson ratio of 0.3 and yield stress
values of 350 N/mm2.The general purpose elastic shell element is used in numerical
simulations to discretise the model in order to build the finite element models for the
Eigenvalue. Four nodded doubly curved shell element with reduced integration S4R [81]
and with six degrees of freedom per node were used. In order to obtain the most optimised
accurate solutions, the fine mesh has been chosen where the element size used for the
beam-column and as well as for the stiffeners is chosen and kept to be 0.1 meters. This
element size is chosen through the appropriate convergence studies to ensure the accuracy
of the solution as shown in Figure 5.6. Figure 5.4 demonstrates the discretised
configuration of the beam -column without stiffeners. This type of element shows the
accurate solution and satisfactory performance in verification work previously described

for both thin and thick shell elements [85][86].
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Table 5.1 Boundary conditions of simply supported model.

Boundary conditions (Free: o , Constrained: ®)

u v w 0, 0y 0,
RP1 ° ° ) o) o °
RP2 ° ° ° O ° °

Figure 5.4 Typical FE model of a hollow beam-column

Axial force

::ﬁ‘

A

Figure 5.5 Loading configurations of a simply supported hollow beam-column

5.3 MESH CONVERGENCY STUDY

In order to choose the suitable size and to get the mesh independent results of finite element
across the beam-column that gives a solution with a reasonable accuracy, a convergence
study has been made. By applying the load and boundary conditions with suitably refined
finite element models were developed for simulation. Many different sizes and numbers of
elements have been considered, where the Figure 5.6 shows the obtained results. The figure

depicts the response of the column-beam covering the onset of critical buckling load
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through linear phase. Consequently, the chosen mesh is based on the mesh sensitivity
analysis performed for successive mesh refinements. The minimum critical buckling load
attained during the analysis is considered as the basis for mesh refinement. As shown in
Figure 5.6, it is clear that no further increase in minimum critical buckling load is achieved

if the number of elements is increased beyond 20x10°.
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Figure 5.6 Mesh convergence study of a compressed beam-column

5.4 BUCKLING BEHAVIOUR OF THE BEAM-COLUMN WITH STIFFENERS

In this section the local and global buckling behaviour of the stiffened beam column is
investigated in detail. A beam-column is considered with different cases for analysis, which
are involved both transverse and longitudinal stiffeners. The effect of a change in stiffener
locations and thicknesses on the buckling characteristics as well as the structural

performance of the stiffened beam-column is highlighted.
5.4.1 ASTIFFENED BEAM-COLUMN WITH ONLY TRANSVERSE STIFFENERS

The analysis in this section is done in the case of model-1, which is placed only transverse
stiffeners through the beam-column length at different distances between each one of the
transverse stiffeners as shown in Figure 5.7. The dimensions of the transverse stiffener have

been previously illustrated in section 5.2.1. The distance (d) is changing from 0.5 to 3
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meters with 0.5 increments. The first Eigen buckling modes on deformed shapes at critical
local & global buckling loads for one sample is shown in Figure 5.8 and Figure 5.9
respectively. Obviously, the onset of buckling modes can be seen along with distribution of

magnitude deformation over the surfaces.

\>d~

TS distance variation (d) = 0.5, 1, 1.5, 2, 2.5 and 3m.

Figure 5.7 A specimen section of the beam-column using TS only (model-15)

Figure 5.8 A sample of 1* local Eigen buckling mode of the beam-column (model-1,)

Figure 5.9 A sample of 1 global Eigen buckling mode of the beam-column (model-1)
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The stiffener's thickness t and its location are changed in order to investigate its influence
on the critical buckling load for local and global and structural response. The stiffened
beam-column is subjected to pure axial compressive load at its ends, which are simply
supported boundary conditions. The effect of a change in stiffener thickness and its
locations on the critical buckling load is illustrated in Figure 5.10, where the ratio of critical

local buckling load of stiffened to an unstiffened beam-column, (P, —unstiffened)/ P, , is

seen to be plotted against the distance d between transverse stiffeners.
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Figure 5.10 (P.— unstiffened) / P., vs. distance between TS for model-1;, (Local)

Figure 5.10 clearly manifests that the introduction of a stiffener considerably improves the
critical local buckling load performance of a beam -column. Initially, the rate of increase in
the critical buckling resistance of the stiffened beam-column is seen to be maximum
between 0.8 to 0.9 and with increase in the distance d between transverse stiffeners, it
became significant at 2 meters before beginning of the reduction phase. As a consequence,
the curves tend to the minimum value at 2 meters for all TS thicknesses and eventually
decrease in the critical buckling performance becomes almost without effect. Figure 5.11
shows the influence of an increase in the transverse stiffener distance with changing of its

thickness on the maximum and minimum critical local buckling load, where the effect of
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stiffeners becomes lower after 2 meters which represents the optimum location. In the
critical global buckling, termed as overall sometimes, the corresponding critical global
buckling mode as shown previously in Figure 5.9, is clear that the beam-column buckles
globally. In the global buckling mode, significant bending of the beam-column with
stiffeners which are involved considering the fact that the stiffeners are not effective

enough to increase the critical global buckling.
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Figure 5.11 Effect of TS on the critical local buckling load of the beam-column model-1,

The effect of a change in stiffener thickness and its locations on the critical global buckling
load is illustrated in Figure 5.12 where the ratio of critical global buckling load of stiffened

to unstiffened beam-column, (P, —unstiffened)/ P, is seen to be plotted against the

distance between stiffener. It is of note that the increase of critical global buckling load is
found to be a small order of unstiffened beam-column. As a result, it is seen that the effect
of transverse stiffeners on the critical global buckling are not clear and the variation of P,
ratio almost negligible at all distances and through all thicknesses according to the curves
values. Figure 5.13 shows the effect change of critical global buckling where gradually
begins to reduce before reaching to almost 2 meters of stiffener's distance. The stiffener
distance in d=2 meters is found to be capable of holding the critical global buckling at

optimum value based on critical local buckling and it seems useless to further increase the
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distance between stiffeners since it decrease the structural weight without any notable

improvement in the critical buckling.
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Figure 5.13 Effect of TS on the critical global buckling load of the beam-column model-1,,
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5.4.2 A STIFFENED BEAM-COLUMN WITH TRANSVERSE AND LONGITU-
DINAL STIFFENERS

5.4.2.1 A STIFFENED BEAM-CLOUMN WITH TRANSVERSE AND TWO
LONGITUDINAL STIFFENERS

In this case the effect of change in both transverse and longitudinal stiffeners for
model-2a, on the critical buckling load and buckling modes of the stiffened beam-column
with two longitudinal stiffeners is investigated. Figure 5.14 illustrates a detailed
geometrical assembly of a beam-column with both stiffeners where the longitudinal
stiffeners are mounted at h/2 of beam-column height. The dimensions of both the
transverse and longitudinal stiffeners have been previously illustrated in section 5.2.1.The
first Eigen buckling modes on deformed shapes at critical local and global buckling loads
for one sample are shown in Figure 5.15 and Figure 5.16 respectively. Obviously, the onset
of buckling modes can be seen along with distribution of magnitude deformation over the
surfaces. It is clearly manifest from Figure 5.15 that the effect of longitudinal stiffeners has
a pivotal role in terms of redistribution of the buckling mode in particular for the local
buckling. However, the behaviour of global buckling mode is in the same fashion to the

previous case in section 5.4.1 with a difference, of course, in the values.

TS distance variation (d) = 0.5, 1, 1.5, 2, 2.5 and 3m, LS distance variation (h/2)=1.2m.

Figure 5.14 Geometrical section of the beam-column for model-2,
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Figure 5.15 A sample of 1* local Eigen buckling mode of the beam-column for model-2,
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Figure 5.16 A Sample of 1** global Eigen buckling mode of the beam-column for model-2;,

Figure 5.17 shows a series of curves exhibiting the influence of change in the transverse
stiffener distance on the ratio of critical local buckling load of stiffened to unstiffened
beam-colum,, is seen to be plotted against the transverse stiffener distance (d). The
thickness of the transverse stiffener is varied to examine its influence on the critical
buckling load of the beam-column. In Figure 5.17 the equilibrium curves are plotted for

different TS thicknesses and it can be observed that a considerably amount of the critical
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buckling load reserve is present for the cases of the more short distances between TS. The
ratio of the beam-column is seen to increase significantly with an increase in the TS

thicknesses. With an increase in the distance between TS, the ratio (p, — unstiffenad)/ P, 18

also noted to decrease substantially especially after 2 meters. This is due, essentially, to the
proving influence of transverse stiffeners on the critical buckling load. As a result, this
improvement gives the beam-columns high buckling resistance and capacity compared to

unstiffened beam-column.
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Figure 5.17 (P, — unstiffened) / P vs. distance between TS for model-2;, (Local)

Figure 5.18 refers to the critical buckling loads versus the distance between transverse
stiffeners with the changing of its thickness on the maximum and minimum critical
buckling load. It is seen from the Figure 5.18 that the effect of stiffeners becomes lower
after 2 meters which represents the optimum location. By comparing the obtained results
with the previous case in section 5.4.1, it is seen that there is a clear difference between the
two cases. For instance, the maximum value for critical buckling was 139x10° N atd =0.5
and t=30mm to the same condition in section 5.4.1 was 82x10° N. Therefore, the gain of
critical local buckling is observed to be 41%. As a result, in this case which using
longitudinal stiffeners with transverse stiffeners design consideration; it is suggested to

increase the critical local buckling loads till a specific distance between stiffeners.
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Figure 5.18 Effect of TS & two LS on the critical local buckling load of the beam-

column (model-25)

Figure 5.19 shows a series of curves exhibiting the influence of change in the transverse
stiffener distance on the ratio of critical global buckling load of stiffened to unstiffened

beam-column,, is seen to be plotted against the transverse stiffener distance (d). With the
increase in the transverse stiffener distance, the ratio (P, —unstiffened)/ P, is decreased as

well till reaching the maximum value at 2 meters where were about 20% to lowest value.
This improvement gives the beam-columns high buckling resistance and capacity compared
to unstiffened beam-column. It is clear from Figure 5.20 that an increase in the distance
between stiffeners does not significantly improve the critical global buckling of the beam-
column to unstiffened beam column. The improvement in the critical global buckling
capacity of the stiffened beam-column as shown in Figure 5.19 was 28% between 0.5
meters to 2 meters of stiffeners distance and at t=30mm. The rate of change in the critical
global buckling load has decreased for short stiffeners distance and then gradually increases
with the increase in the stiffener distance and eventually approaches to steady state for long
stiffener distance. As a result, the curve tends to level out at an optimum stiffener distance
and a little increase in the critical buckling capacity of the stiffened beam-column becomes

almost useless zero with further increase in the stiffener distance.
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Figure 5.20 Effect of TS and two LS on the critical global buckling load of the beam-
column (Model-2;)
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5.4.2.2 A STIFFENED BEAM-COLUMN WITH TRANSVERSE AND FOUR
LONGITUDINAL STIFFENERS

In this section the effect of change in both transverse and longitudinal stiffeners for model-
3», on the critical buckling load and buckling modes of the stiffened beam-column with
four longitudinal stiffeners is investigated. Figure 5.21 illustrates a detailed geometrical
assembly of a beam-column with both stiffeners where the longitudinal stiffeners are
mounted at h/3 of beam's height. The dimensions of both the transverse and the longitudinal

stiffeners have been illustrated in section 5.2.

TS distance variation (d) = 0.5, 1, 1.5, 2, 2.5 and 3m, LS distance variation (h/3)=0.8m.

Figure 5.21 Geometrical section of the beam-column for model-3;

The first Eigen buckling modes on deformed shapes at critical local & global buckling
loads for one sample are shown in Figure 5.22 and Figure 5.23 respectively. Obviously, the
onset of buckling modes can be seen along with distribution of magnitude deformation over
the surfaces. It is clearly manifested from Figure 5.22 that the effect of longitudinal
stiffeners has a pivotal role in terms of redistribution the buckling mode in particular for the
local buckling. However, the behaviour of global buckling mode is as the same fashion to

the previous case in section 5.4.2.1with a difference, of course, in the values.
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Figure 5.22 A sample of 1* local Eigen buckling mode of the beam-column model-3,,
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Figure 5.23 A sample of 1* global Eigen buckling mode of the beam-column model-3;,

The influence of the critical buckling load and the distance between the transverse
stiffeners of the beam-column with different thicknesses is highlighted in detail in Figure
5.24 and Figure 5.25. The critical local buckling of stiffened to unstiffened beam-column,
(Pcr — unstiffened )/ P, , is seen to be plotted against the distance between transverse
stiffeners (d). With further increase in the transverse stiffener distance, the ratio

(Pcr - unsti]fened)/ P

T

is decreased as well till reaching the value in which critical
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buckling load sharply dropped to undesired values. The point at 2 meters distance between
transverse stiffeners is a transition point that afterward the effect of transverse stiffeners is
very low. As a result, the improvement in critical local buckling resistance and its capacity
for this case is only in a range between 0.5 meters and 2 meters. In Figure 5.25, the curves
are plotted for different transverse stiffener distances and it can be observed that a
considerable changing in amount of critical local buckling loads. The critical local buckling
load of the beam-column is seen to increase significantly with the increase of transverse
thickness and decrease in its distance between each one. The critical local buckling loads
of'the beam-column is also noted to decrease substantially after 2 meters distance between
transverse stiffeners This is due, essentially, to the higher distance between transverse
stiffeners and to the destabilizing influence of critical local buckling load to be lower as in
unstiffened beam-column. The difference between ultimate and minimum critical local

buckling load for one case as an example, at thickness 30mm is found to be 60%.
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Figure 5.24 (P..— unstiffened) / P., vs. distance between TS for model-3; (Local)
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Figure 5.25 Effect of TS and four LS on the critical local buckling load of the beam-

column (model-3;)

Regarding the critical global buckling loads and effect of four longitudinal stiffeners which
are added to the beam-column with the transverse stiffeners on it are presented in the next
figures. The results obtained from the simulation for the influence of transverse stiffener
thickness on the critical global buckling is detailed in Figure 5.26 and Figure 5.27. The
critical buckling load ratio of the stiffened to unstiffened beam-column,
(Pcr —unstiﬁ’ened)/Pc, is shown to be plotted against the distance between transverse
stiffeners. It is clear from Figure 5.26 that the addition of transverse stiffeners after 2
meters distance did not give obvious improvement in the ratio of critical buckling loads to
the stiffened beam-column where the lowest critical buckling load is at the maximum
distance between transverse stiffeners. Furthermore, it can be observed from Figure 5.27
that increase in the transverse stiffeners distance does not seem to add the substantial

amount of critical global buckling load to the stiffened beam-column.
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Figure 5.27 Effect of TS and four LS on the critical global buckling load of the beam-

column (model-35)
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5.5 EFFECT OF TRANSVERSE STIFFENER'S THICKNESS ON THE CRIT-ICAL
BUCKLING LOAD

Another criterion which should be taken into account and has an influence along the
general critical buckling load is the rigidity of the stiffener. Usually the rigidity of a
stiffener depends solely on its dimensions and the critical rigidity of a stiffener corresponds
to the optimum stiffeners thickness. In this section, the effect of change in transverse
stiffener thickness on the critical buckling load of the stiffened beam-column with three

models is investigated.

5.5.1 CRITICAL LOCAL BUCKLING RESPONSE AT DIFFERENTTS THIC-
KNESSES

Figure 5.28 shows the first critical local buckling modes for three models with different TS
thicknesses. Regarding model- 1,, the shape and location of critical local buckling loads are
seen similar with each other. At tys = 15mm, the location of the buckling load is taking
place in the middle between stiffeners. At trs = 20mm, the location and shape of the
buckling are as the previous case, but with a difference in its value to be greater than. At
trs =25mm and trs = 25mm, the location and shape of the buckling are noted to be also
with the same behaviour and trend. Model-2, shows different shapes and locations due to
the adding of the longitudinal stiffeners. At all thicknesses of transverse stiffeners, the
behvaiour of the critical buckling shapes almost are the same with a difference of their
values. By examining the buckling on model-3, with the same procedures, it is worth
mentioning that the locations and shapes of the buckling are completely different compared
with the other models at different TS thicknesses. Consequently, it is of note that the

development in buckling has similar attitudes to changing of TS thicknesses.

Model trs =0.015m, d =0.5m trs = 0.02m, d = 0.5m
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Figure 5.28 Samples of critical local buckling modes for all models of the stiffened

beam-column at different TS thicknesses

The influence of transverse stiffener thickness on the critical local buckling loads of the
design space associated with different distances between the transverse stiffeners is shown
in Figure 5.29, Figure 5.30, Figure 5.31 and Figure 5.32. It can be observed from Figure
5.29 that the thickness of transverse stiffener has a significant effect on the critical local
buckling load for stiffened models. When the distance between transverse stiffeners is
between 0.5m to 1m, the results showed that the improvement in the critical local buckling
load can be seen clearly in figure for all models. For model-1,, model-2, and model-3;,
which have a 15mm of TS thickness, the critical local buckling load is increased to 72%,
81% and 87% respectively. It can see also from the Figure 5.30, Figure 5.31 and that
model-1, and model-2, and model-3; are improved in terms of the values of critical
buckling loads. An interesting point was mentioned in the Figure 5.32 that the value of
critical buckling load for model -3; is higher compared with model -1, and model -2;. As a

result, the change of transverse stiffeners has vital effects on the critical buckling loads.
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Figure 5.29 Effect of transverse stiffener thickness on the critical local buckling load

for all models of the beam-column at TS thickness equals tol Smm

160 For TS thickness = 20mm

140 } —O—Using TS only
E —+— Using TS+two LS
% 120 f —— Using TS+four LS
—‘3 100 F \ Unstiffened
o
£ 80
=~
Qo
B 60 t
=
o
h= 40
-
@)

20

O 1 1 1 1 1 1 J
0 0.5 1 1.5 2 2.5 3 3.5

Distance between transverse stiffenerse, d (m)

Figure 5.30 Effect of transverse stiffener thickness on the critical local buckling load

for all models of the beam-column at TS thickness equals to 20mm
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Figure 5.31 Effect of transverse stiffener thickness on the critical local buckling load
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Figure 5.32 Effect of transverse stiffener thickness on the critical local buckling load

for all models of the beam-column at TS thickness equals to 30mm
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5.5.2 CRITICAL GLOBAL BUCKLING RESPONSE AT DIFFERENT TS THIC-
KNESSES

Figure 5.28 shows the first critical global buckling modes for three models with different
TS thicknesses. The behaviour of the curves in all cases has behaved in the same trends and
to be quite identical. However, it gradually decreases in all cases with increasing in
distance between stiffeners and lead eventually to almost steady state after 2 meters. A
further increase in the stiffener distance does not affect the critical local buckling loads.
The improvement in critical global buckling loads for the case in which TS is used by very
close distance between stiffeners is found to be of the order of 4.5% corresponding to
unstiffened beam-column. Whereas in the case of intermediately distance stiffener (i.e. 2
meters), the critical global buckling load of the beam-column is seen to be enhanced by
3.9% to unstiffened beam-column. Consequently, for critical global buckling capacity
designs it is seen from results that global buckling is not sensitive to both stiffeners in terms
of'increasing in its values. Furthermore, it can say that for simply supported condition does

not affect by the stiffeners on global buckling.
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Figure 5.33 Critical global buckling modes for all models of the beam-column

different TS thicknesses
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The influence of transverse stiffener thickness on the critical global buckling loads of the
design space associated with different distances between the transverse stiffeners is shown
in Figure 5.34, Figure 5.35, Figure 5.36 and Figure 5.37. It can be observed from all figures
that the thickness of transverse stiffener has not a significant effect on the critical global
buckling load for stiffened models. When the distance between transverse stiffeners is
0.5m, the results showed that the improvement in the critical global buckling load can be
seen clearly in figures for all models. For Model - 1,, Model-2, and Model-3,, which have a
15mm of TS thickness, the critical global buckling load is increased to 0.5%, 0.47% and
0.45% respectively. It can see from the Figure 5.34, Figure 5.35 and Figure 5.36 that
Model-1, and Model-2, and Model-3, are improved in terms of the values of critical
global buckling loads. An interesting point was mentioned in all figures that the value of
critical global buckling load for all models is almost close to each other. As a result, the

change of transverse stiffeners has in general a vital effect on the critical buckling loads.
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Z
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) — —
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S
T 640 |
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630 1 1 1 1 1 1 J
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Distance between transverse stiffeners, d (m)

Figure 5.34 Effect of transverse stiffener thickness on the critical global buckling load

for all models of the beam-column at TS thickness equals tol Smm
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Figure 5.35 Effect of transverse stiffener thickness on the critical global buckling load

for all models of the beam-column at TS thickness equals to 20mm
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Figure 5.36 Effect of transverse stiffener thickness on the critical global buckling load

for all models of the beam-column at TS thickness equals to 25mm
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Figure 5.37 Effect of transverse stiffener thickness on the critical global buckling load

for all models of the beam-column at TS thickness equals to 30mm

5.6 CONCLUDING REMARKS

In this chapter the finite element analyses of simply supported beam-column with different
cases, unstiffened beam and stiffened beam by only transverse stiffeners and both
transverse and longitudinal stiffeners have been presented. Simulation strategies have been
applied to be able to investigate the behaviour of critical buckling load of the beam-column
subjected to axial compression load. The effects of the transverse and longitudinal
stiffeners on the local and global critical buckling have examined in depth on the critical
buckling loads with different distances between each stiffener and its thickness in order to
find the maximum and minimum distance. Three cases of stiffened beam-column applied to
a simply supported case were modeled under uniaxial compression load. Linear buckling
analyses of these element models predicted the critical buckling capacities and also to
provide the full picture of the buckling behaviour. The percentage of critical buckling load
versus the distance between stiffeners plots shows that the critical buckling load has
reached maximum at short distances between stiffeners. Once the distances goes afterl.5

meter, the critical buckling load clearly is decreased. The obtained results demonstrated

96



Numerical and experimental diagnostics of buckling structural element behaviour

that ultimate carrying capability of the beam-column has been shown to be significantly

raised by adding the transverse and longitudinal stiffeners.
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CHAPTER 6

6. THE BUCKLING BEHAVIOUR OF FRAME
STRUCTURE TRANSVERSELY AND LOGNITUDINALLY
STIFFENED

6.1 INTRODUCTION

In this chapter, the local and global buckling for a thin walled frame structure has been
analysed by using the finite element techniques and solution strategies which are
appropriate for such structures. The presence of local and global buckling for higher length
thin-walled compression frame structures along the frame length can be accompanied by
the overall instability. Longer frame columns will decrease in their global elastic Euler
buckling loads as a termination of the weakening effects of local buckling and the influence
of geometrical shapes, and that of unused stiffeners will, of course, further reduce the
ultimate carrying capability of the frame columns members. Generally, there are some
methods to determine the critical capacity of members in steel frame structures subject to
such loads (buckling), numerical, experimental and analytical investigations. One of the
analytical methods has been made by Ritter, who conducted the first work on the inelastic
buckling theory for compression members in frames. A graphical method of constructing
load-deflection curves of the column corresponding to the numerical procedures developed
by Ritter to be used in computer programs. Although, Thurlimann [88] has been made
another attempt to derive the connected columns load-deflection curves with double
integration of the curvature, but no adequate analytical solution has been developed after
Ritter's attempt. The local and global buckling behaviour of the frame structure as shown
in Figure 6.13 and Figure 6.14 have been determined using the linear static solution
sequence involving geometric changing by adding transverse and longitudinal stiffeners as

supporters at different locations. Each particular type of case has its own mesh distribution
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at the same boundary conditions. Moreover, the strategies of solution involving the
selection of right solution parameters such as the element type, solution sequences, iterative
procedures, load position, element discretization, etc. The results for each case will discuss
at length in the next sections. In order to find an accurate and reliable solution for frame
structures, a good understanding of the true structural behaviour of the frame structure
should be considered. For steel frame structures, many different solutions have been
provided to follow the buckling behaviour of the frames [1][89][90][91][92]. The objective
of the buckling analysis of steel frame structures introduced in this chapter was to develop a
numerical solution for steel frame subjected to the buckling load with transverse and
longitudinal stiffeners supports which can be used in analysis, frame designs and to
compare it to unstiffened frame structure. The same analysis procedures that have been
made in the beam-column analysis in the previous chapter will be repeated in this chapter

with a different in stiffeners distributions and locations.
6.2 FINITE ELEMENT MODELLING OF STIFFENED FRAME STRUCTURE
6.2.1 GEO-METRIC MODELLING AND NUMERICAL ANALYSIS

In this section the procedures and strategies of the finite element simulation are described
which used to analyse the stiffened frame structure subjected to pure axial compression
buckling load. Figure 6.1 shows fully dimensions of the unstiffened hollow frame structure
which is used in the analysis. The geometries of the transverse and longitudinal stiffeners
are illustrated in Figure 6.2, Figure 6.3, Figure 6.4 and Figure 6.5 respectively. The
thickness of the transverse stiffeners is changed from Smm to 15mm to study the influence
of the stiffeners thickness on the critical buckling load characteristics, while the
longitudinal stiffeners thickness are fixed at 10mm. The transverse stiffener thicknesses
have chosen to illustrate the local buckling and global buckling behaviour of the stiffened

under compression buckling load.

99



Doctoral thesis

19.35

Figure 6.1 Unstiffened hollow frame structure used in the study

The frame dimensions and thicknesses chosen were such as to illustrate the local buckling

and the global buckling behaviour of the stiffened frame webs. The thicknesses of the

frame skins are divided into different numbered as shown in Figure 6.1 to demonstrate the

real values as in the real frame. The four thicknesses of the frame skins are:

1) 10 mm
4) 15 mm

2) 20 mm
5) 30 mm

3) 12 mm

0.960 m t

1.2m

o)

0.440 m

Figure 6.2 Geometry of transverse stiffener configuration (TS) type-1
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Figure 6.4 Geometry of horizontal longitudinal stiffener configuration (LS) type-1

0.01m -

L = varnable

0.02m

Figure 6.5 Geometry of vertical longitudinal stiffener configuration (LS) type-2
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6.2.2 FRAME MODELS DESCRIPTION

The frames, which are used in this study can be categorised into three different models:
1) by adding only transverse stiffeners to unstiffened frame, 2) by adding transverse
stiffeners with two longitudinal stiffeners to unstiffened frame, 3) by adding transverse
stiffeners with four longitudinal stiffeners to unstiffened frame. The chosen frames in this
study include all these categories and are shown in Figure 6.6 and Figure 6.7. The distance
between transverse stiffeners (d) chosen for this study is varying from 0.5m to 3m as shown
in Figure 6.6, while the distance between longitudinal stiffeners (w/2) is at the middle of
the frame-beams as shown in Figure 6.7. The thickness of the transverse stiffeners is
changed from 5mm to 15mm to study its influence on the critical buckling load
characteristics, while the longitudinal stiffeners thickness is fixed at 10mm. In addition to
that and as shown in Figure 6.4 and Figure 6.5, the length (L) depends on the frame-beams
altitude. The transverse stiffener thicknesses chosen were such as to illustrate local

buckling and global buckling behaviour of the stiffened under compression load.

?d/\’/

Transverse
stiffeners

Figure 6.6 Geometry of stiffened frame Model-1,
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Figure 6.7 Geometries of stiffened frame Model-2;

Figure 6.8 Geometries of stiffened frame Model-3;
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6.2.3 FRAME BASE BOUNDARY CONDITIONS, LOAD AND FINITE ELEMENT
MESH

As mentioned before in pervious chapter, the boundary conditions have significant effects
on the analysis results when frame structure is isolated from its real condition. In order to
apply and replicate the boundary conditions on the models in this study with axial
compression force assumed in the analyses were used to simply support. The boundary
conditions in these models are suitable for the development such frame structures and for
the study of critical buckling capacity. The boundary conditions were simulated by simply
supported conditions which were assumed at the bottom of the frame structure as shown in
Figure 6.9. This was achieved by using single point constraints A and B which were
applied at the ends of the frame supporters to be more realistic with the original case as
shown in Figure 6.10. It was assumed to have some free, fixed translations and rotations
that are illustrated in Table 6.1.

Figure 6.11 shows the boundary conditions points where the frame model is fixed and
considered in the analysis while the rest of the structure left free to remain either normal or
straight. As shown in Figure 6.11 a rigid body constraint has been used to tie the top
surface of the frame via node-to-node tie constraint relationships to reference point RP1
which is available in ABAQUS [82]. The reference point RP1 used to accomplish the axial
load to be applied on the entire top surface of the frame. The frame structure is applied
statically by a central buckling load of 1 at RP1 (Figure 6.11) where the load has a load
factor with a default value of 1.0 and the entire load case can be multiplied with any
numerical or alternatively loads if required. The simplified von-Mises elastic-perfectly
material model is used for the isotropic steel with an elastic modulus of 210 N/mm?,
Poisson ratio of 0.3 and yield stress values of 350 N/mm?®. After defining the structural
geometry, the next step is to discretise the structure with suitable elements. As it is known
to all that the selection of appropriate finite elements is an essential feature in finite element
modelling, considering the fact that these elements represent the true physical structure.
With regard to Figure 6.11, it can be seen that the shell elements are used because they
provide sufficient degrees of freedom to the buckling model analysis for such frame
structure. Due to the large models, the element density of the frame models was increased
compared with the simply supported column-beam models. Four nodded doubly curved

shell element with reduced integration S4R [81] and six degrees of freedom per node were
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used in this type of geometry. S4R elements are doubly curved general-purpose, membrane
strain shell elements and R stand for reduced integration with hourglass control. For shell
structures which have thicknesses larger than 1/15 of the element length, the S4R is often
used. The mesh density choice is usually a function of the geometrical characteristic of
structures. Therefore, in order to obtain the most optimised accurate solutions, the fine
mesh has been chosen where the element size used for the frame structure and as well as for
the stiffeners is chosen and kept to be of 0.1m. This element size is chosen through the
appropriate convergence studies to ensure the accuracy of the solution as shown in Figure
6.12. Therefore, the shell elements have widely used in structural engineering and where
Avery and Kim [91][93] have used it to develop benchmark solutions for frame structures.
Many different benchmark solutions have been made by different researchers for steel

frame structures [94]

Table 6.1 Boundary conditions of supported frame model

Boundary conditions (Free: O, Constrained: ®)

u v w 0, 0, 0,
A ° ° ° @ ° O
B ° ° ° ®) ° 0

u, v, w are translations in x, y, z axes and 6,, 6, 6, are rotations about x, y, z axes

Figure 6.9 Frame connections of the model (FE model)
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Figure 6.10 Frame connections on site

e

Figure 6.11 Typical FE of the frame model
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Figure 6.12 Mesh sensitivity study on critical buckling load

6.3 BUCKLING RESPONSE OF THE STIFFENED FRAME MODELS

In this section, the local and global buckling behaviour of stiffened frame models is
investigated in detail. A frame model is considered in different cases for analysis, which is,
involved both transverse and longitudinal stiffeners. The effect of a change in stiffener
positions and its thicknesses on the critical buckling characteristics as well as the structural

performance of the stiffened frame model is highlighted.

6.3.1 STIFFENED FRAME MODELS BY USING TRANSVERSE STIFFENERS
ONLY

The results presented in this section are for the frame Model-1, that is stiffened by only
transverse stiffeners. The variation of distances between transverse stiffeners d, is varied
from 0.5m to 3m and the stiffeners configurations are shown as in Figure 6.6 and Figure 6.7
repectively. The stiffened frame Model -1, considered in this analysis is subjected to pure
axial compression load with transverse stiffeners thicknesses from Smm to 15mm in order
to investigate its influence on the frame structural response. The first Eigen buckling modes
on deformed shapes at critical local & global buckling loads for one sample are shown in
Figure 6.13 and Figure 6.14 respectively. Obviously, the onset of buckling modes can be

seen along with distribution of magnitude deformation over the surfaces.
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Figure 6.13 A sample of 1% local Eigen buckling mode of the frame for Model-1,

Figure 6.14 A sample of 1* global Eigen buckling mode of the frame (Model-1,)
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The obtained results of the influence of the stiffened frame models on both local and global
buckling capacity are illustrated in Figure 6.15 and Figure 6.17 respectively, where the
ratio of critical buckling load of the stiffened to unstiffened frame model,
(P, —unstiffened)/ P, , are shown to be plotted against the distance between transverse
stiffeners TS. Furthermore, the critical buckling loads corresponding to the various stiffener
thicknesses are shown in Figure 6.16. Figure 6.15 clearly appears that the addition of
transverse stiffeners considerably improves the local buckling performance of a frame
model. Initially the percentage of increase in the local buckling resistance of the stiffened
frame model is seen to be significant at 0.5m and with an increase in the distance between
transverse stiffeners; it becomes gradual reduced for the period up to 1.5m before
beginning of the reduction in steady state. As a result, it is clear that the addition of
stiffeners has given a clear improvement in the critical buckling resistance to the
unstiffened frame model and the curves trend to level down and eventually decrease in the
local buckling capacity as shown in Figure 6.16. For an instant, the case of a small stiffener
thickness Smm at a distance between TS is 0.5m, an increase in the critical local buckling
load is found to be of the order 58% of unstiffened frame model as shown in Figure 6.15.
On the other side, for the case of a high stiffener thickness 15mm at the same case increase
in the critical buckling load is found to be of the order 71% of unstiffened frame model.
Consequently, with an increase in the distance between stiffeners, it is of note that the

transverse stiffeners effect on the critical local buckling became effect less after 1.5m of

distance between TS.
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Figure 6.16 Effect of TS on the critical local buckling load of the frame for Model-1;
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The local buckling mode changes from local buckling to global buckling with increase in
applied load. Figure 6.17 highlights the structural response of the frame Model-1, that
corresponding to the critical global buckling capacity, throughout the loading. The ratio of

the critical global buckling capacity of stiffened to unstiffened frame model,
(PC,, —unstiffened)/ P, , is shown to be plotted against the distance between transverse

stiffeners. It can be noticed from the Figure 6.17 that the curves for different distance
between transverse stiffeners to critical global buckling tend to show similar behaviour
with an increase in the stiffeners distance. It is evident that initially the notable
improvement in the critical global buckling is seen at 0.5m is found to be 14.5%, 14.7%
and 15.5% at different TS thicknesses of unstiffened frame respectively. Afterwards, with
an increase in the distance between transverse stiffeners, the rate of change of critical
global buckling load eventually approached for a small period almost zero after 1.5m of
distance between transverse stiffeners as shown in Figure 6.18 and it seems useless to
further increase the stiffener distance since it increased the frame model (structural) weight
without any notable improvement. As a result, the global buckling performance of the
stiffened frame model is noted to be enhanced substantially for close distances between
transverse stiffeners, while it can be observed that does not seem to add a substantial

amount of the global buckling performance for short distances between transverse

stiffeners.
0.16 r
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Figure 6.17 (P.— unstiffened) / P., vs. distance between TS for Model-1, (Global)
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Figure 6.18 Effect of TS on the critical global buckling load of the frame for Model-1;

6.3.2 STIFFENED FRAME MODELS BY USING TRANSVERSE AND
LONGITUDINAL STIFFENERS

In this section, the critical local and global buckling behaviour of the frame models with
transverse stiffeners and longitudinal stiffeners are investigated in detail. The influence of
change in distance between transverse stiffeners and its thicknesses on the buckling
capacity characteristics as well as structural performance of the stiffened frame models is
illustrated. Frame models by adding longitudinal stiffeners are considered in the analysis
for instance an one centrally located 1.e. w/2 longitudinal stiffeners and of course with

transverse stiffeners.

6.3.2.1 STIFFENED FRAME MODEL BY USING TRANSVERSE AND TWO
LONGITUDINAL STIFFENERS

In this case, the effect of change in both transverse and two longitudinal stiffeners on the
critical buckling load and buckling mode of the stiffened frame model is investigated.
Figure 6.7 illustrates a detailed geometrical assembly of the frame Model-2, with both
stiffeners where the longitudinal stiffeners are fixed at w/2 of the frame-beams heights. The

dimensions of the longitudinal stiffeners have been previously illustrated in section 6.2.1.
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The results presented in this section are for the frame Model-2, which stiffened by both
types of stiffeners. The variation of distances between transverse stiffeners d, is varied from
0.5m to 3m and the stiffener configuration is that in Figure 6.2 and Figure 6.3 respectively.
The stiffened frame Model-2; considered in this analysis is subjected to pure axial
compression load with transverse stiffeners thicknesses from Smm to 15mm and 10mm for
longitudinal stiffener's thicknesses in order to investigate their influence on the structural
response. The first Eigen buckling modes on deformed shapes at critical local and global

buckling loads for one sample are shown in

Figure 6.19 and Figure 6.20 respectively. Obviously, the onset of buckling modes can be
seen along with distribution of magnitude deformation over the surfaces. It is clearly

manifest from

Figure 6.19 that the effect of longitudinal stiffeners has a vital role in terms of
redistribution the buckling mode in particular for the local buckling. However, the
behaviour of global buckling mode as illustrated in Figure 6.20, is almost as the same

fashion to the previous case in section 6.3.1 with a difference, of course, in its values.

ODB: Job-1910mm.odb  Abayu - tandard o140 1 FriApr 15 09:3

Figure 6.19 A sample of 1 local Eigen buckling mode of the frame (Model-2))
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Figure 6.20 A sample of 1** global Eigen buckling mode of the frame (Model-2))

The obtained results of the influence of the stiffened frame models on both local and global
buckling capacity are illustrated in Figure 6.21 and Figure 6.23 respectively, where the
ratio of critical buckling load of the stiffened to unstiffened frame model,

(P, —unstiffened)/ P,

)

are shown to be plotted against the distance between transverse

stiffeners TS. Furthermore, the critical buckling loads corresponding to the various stiffener
thicknesses are shown in Figure 6.22. Figure 5.18 clearly appears that the addition of
longitudinal stiffeners to transverse stiffeners considerably improves the local buckling
performance of a frame model. Initially the percentage of increase in the local buckling
capacity of the stiffened frame model is seen to be significant at 0.5m and with an increase
in the distance between transverse stiffeners; it becomes gradual reduced for the period up
to 1.5m before beginning of the reduction in steady state as shown in Figure 6.21. As a
result, it is clear that the addition of longitudinal stiffeners has given a clear improvement
in the critical local buckling capacity to unstiffened frame model and the curves trend to
level down and eventually decrease in the local buckling capacity. For an instant, at a small
TS thickness = Smm and at a distance between TS = 0.5m, increase in the critical local

buckling load is found to be of the order 65% of the unstiffened frame model.
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Figure 6.21 (P.— unstiffened) / P.. vs. distance between TS for Model-2, (Local)

In comparison with the Model-2, for the same condition, the percentage increased to 10%
for both. Consequently, as the distance between stiffeners increase, it is of note from Figure
6.22 that the transverse stiffeners effect on the critical local buckling load became effect
less after 1.5m of distance between TS . Although, similarly for distance between TS =3m
with regard to TS thicknesses = Smm and 15mm, the critical local buckling loads are noted
to be improved by 31% and 40% respectively compared with Model- 1. Therefore, it can
be observed that further increase in the distance between TS does not greatly improve the

critical buckling loads and is not recommended for designs.
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Figure 6.22 Effect of TS on the critical local buckling load of the frame for model-2,

Figure 6.23 and Figure 6.24 highlights the structural response of the frame Model-2; that
corresponding to the critical global buckling capacity, throughout the loading. The ratio of
the critical global buckling capacity of stiffened to unstiffened frame model,

(Pcr —unstiffened )/ P, is shown to be plotted against the distance between transverse

stiffeners. It can be noticed from the Figure 6.23 that the curves for different distance
between transverse stiffeners to critical global buckling tend to show similar behaviour
with an increase in the distance between TS. It is evident that initially the notable
improvement in the critical global buckling is seen for 0.5m is found to be 14.5%, 14.7%
and 15.5% at different TS thicknesses of unstiffened frame Model-2; respectively.
Afterward, as the distance between TS increase, the rate of change in critical global
buckling loads eventually approached for a small period (i.e. almost zero) after 2m of
distance between transverse stiffeners as shown in Figure 6.24. It seems useless to further
increase the stiffener distance since it increases the frame model (structural) weight without
any notable improvement. As a consequence, it can be observed that in comparison with

the results of Model-1; the critical global buckling remained unchanged for all cases.
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Figure 6.24 Effect of TS on the critical global buckling load of the frame Model-2,
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6.3.2.2 STIFFENED FRAME MODELS BY USING TRANSVERSE AND FOUR
LONGITUDINAL STIFFENERS

In this case, the effect of change in both transverse, four longitudinal stiffeners on the
critical buckling load and buckling mode of the stiffened frame Model-3; is investigated.
Figure 6.8 illustrates a detailed geometrical assembly of a frame model with both stiffeners
where the longitudinal stiffeners are fixed at w/2 of frame-beams height. The dimensions of
the longitudinal stiffeners have been previously illustrated in section 6.2.1. The results
presented in this section are for the frame Model-3 that is stiffened by both stiffeners. The
variation of distances between transverse stiffeners denoted by d, is varied from 0.5m to 3m
and the stiffener configuration is shown as in Figure 6.2 and Figure 6.3 respectively. The
stiffened frame model considered in this analysis is subjected to pure axial compression
load with variety of transverse stiffeners thicknesses from Smm to 15mm and only 10mm
for longitudinal stiffener's thicknesses in order to investigate their influence on the
structural response. The first Eigen buckling modes on deformed shapes at critical local and
global buckling loads for one sample are shown in and respectively. Obviously, the onset
of buckling modes can be seen along with distribution of magnitude deformation over the
surfaces. It is clearly manifest from that the effect of longitudinal stiffeners has a vital role
in terms of increase the buckling mode in particular for local buckling. However, the

behaviour of global buckling mode is a little bit as the same fashion to the previous case in

\J
< |

Figure 6.25 A sample of 1* local Eigen buckling mode of the frame Model-3;

6.3.2.1 with a difference, of course, in the its values.
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Figure 6.26 A sample of 1* global Eigen buckling mode of the frame Model-3;

The obtained results of the influence of the stiffened frame models on both local and global
buckling capacity are illustrated in Figure 6.25 and Figure 6.26 respectively, where the
ratio of critical buckling load of the stiffened to unstiffened frame model,

(Fir —unstiffened )/ P

cr?

are shown to be plotted against the distance between transverse

stiffeners TS. Furthermore, the critical buckling loads corresponding to the various stiffener
thicknesses are shown in Figure 6.28 and Figure 6.30, and clearly appears that the addition
of longitudinal stiffeners to transverse stiffeners considerably improves the local buckling
performance of the frame Model-3;. It is note worthy to point out that the percentage of
increase in the local buckling capacity of the stiffened frame model is seen to be significant
at all thicknesses of TS. While an increase in the distance between transverse stiffeners it
becomes gradual reduced for the period up to 1.5m, after this point the curves started
dramatically decreasing. As a result, it is clear that the model using four longitudinal
stiffeners has given a superb improvement and results in the critical buckling capacity to
unstiffened frame model. For an instant, at lower distances between TS, the critical local
buckling loads are found to be of order between 81% to 84.4% of the unstiffened frame

model.
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Figure 6.28 Effect of TS on the critical local buckling load of the frame for Model-3,
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In comparison with the Model-2; for the same condition, the percentage increased 16% and
4% respectively. Consequently, as the distance between stiffeners increase, it is of note
that the transverse stiffeners effect on the critical local buckling load became effect less.
Although, similarly for distance between TS is 3m with regard to TS thicknesses Smm and
15mm, the critical local buckling loads are improved 78.8% and 80.9% respectively.
Therefore, it can be observed that further increase in the distance between TS does not
greatly improve the critical buckling loads and is not recommended for designs. Again, the
buckling mode changes from local buckling to global buckling with increase in applied
load. Figure 6.29 highlights the structural response of the frame Model-2; that
corresponding to the critical global buckling capacity, throughout the loading. The ratio of
the critical global buckling capacity of stiffened to unstiffened frame model,

(Pcr — unstiffened)/ P,

)

is shown to be plotted against the distance between transverse

stiffeners. It can be noticed from the curves for different distance between transverse
stiffeners to critical global buckling tend to show similar behaviour almost linearly with an
increase in the distance between TS. It is evident that initially the notable improvement in
the critical global buckling is seen for 0.5m is found to be 16.9%, 18% and 18.6% at
different TS thicknesses of unstiffened frame Model-3; respectively. Afterwards, as the
distance between TS increase, the rate of change in critical global buckling loads eventually
approached for a small period, i.e. almost similar to the maximum values of model-2;. It
seems useless to further increase the stiffener distance since it increases the frame model
(structural) weight without any notable improvement. Consequently, it can be observed that
in comparison with the results of Model-1, and Model-2; the critical global buckling
slightly increased.
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6.4 EFFECT OF TRANSVERSE STIFFENERS THICKNESS ON THE CRITICAL
BUCKLING LOAD

Another element, which takes in an outcome and influence along the general critical
buckling capacity, is the rigidity of the stiffener. Usually the rigidity of a stiffener depends
solely on its dimensions and the critical rigidity of a stiffener corresponds to an optimum
stiffeners thickness. In this section, the effect of change in transverse stiffener thickness on

the critical buckling load of the stiffened frames with three models is investigated.

6.4.1 CRITICAL LOCAL BUCKLING RESPONSE AT DIFFERENT TS
THICKNESSES

Figure 6.31 shows the first critical buckling modes for three models with different TS
thicknesses. Regarding Model-1y, the shape and location of critical buckling loads are seen
differently with each other. At trg = Smm, the location of the buckling load is taking place
in the right top of the section frame on the outer surface. At trg = 10mm, the location and
shape of the buckling are changed to be less than the previous condition, but at trg = 15mm,
the location and shape of the buckling are noted to be at the bottom and in the vicinty of the
section junction. For the TS considered with tys = Smm and tts = 10mm, the location and
shape of the buckling are almost in the same trend on the left top section of the frame as
indicated in the figure. It is clear that with trs = 15mm for the same model, the propagation
of the buckling has not gone through the wall thickness on the right top of the frame
section. By examining the buckling on Model-3; with the same procedures, it is worth
mentioning that the locations and shapes of the buckling are closely of each other at
different TS thicknesses. Consequently, it is of note that the development in buckling has
different attitudes to changing of TS thicknesses. This change depends on the location and

thickness of transverse stiffener.

Model tts = Smm tts = 10mm ttg = 15mm

N
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3¢

Figure 6.31 Critical local buckling modes for the samples of all models at difference TS

thicknesses

The influence of transverse stiffener thickness on the critical local buckling loads of the
design space associated with different distance between the transverse stiffeners is shown
in Figure 6.32, Figure 5.33Figure 6.34 respectively. It can be observed from all figuresthat
the thickness of transverse stiffener has a significant effect on the critical local buckling
load for stiffened models. When the distance between transverse stiffeners is between 0.5m
to 1.5m, the results showed that the improvement in the critical local buckling load can be
seen clearly in Figure 6.32 for all models. For Model-1,, Model-2; and Model-3;, which
have a Smm of TS thickness, the critical local buckling load is increased to 55%, 64% and
80% respectively. It can see from Figure 6.32, Figure 6.33 and Figure 6.34 that Model-1;
and Model-2y is very close to each other in terms of the values of critical buckling loads.
An interesting point was mentioned in Figure 6.28 that the value of critical buckling load

for Model -3, is higher compared with Model-1, and Model-2; .
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With the increase in TS thickness to 10mm by the same procedures, it can see from Figure
6.33 that did not significantly increase in the critical local buckling load with Model-1, and
Model-2;. The values of these critical buckling loads compared to the values which found
earlier at TS=5mm and d=0.5m are improved as following 64% and 72% respectively.
Again, considering Model-3, the critical buckling load was increased to 84% where could
be the best increase. By looking at Figure 6.34 all models after 1.5m of distance between
transverse stiffeners d, and with the increase in TS thickness to 15mm, the critical buckling
loads are slightly changed. It can also see that the values of critical buckling loads are
almost similar to the previous cases when TS=5mm and 10mm. However, the critical
buckling load increases noticeably between 0.5m and 1.5m of distance between transverse
stiffeners due to the increase presence of transverse stiffener thickness. The curves with
high thickness of transverse stiffeners seem to approach the higher bound estimate of the

critical buckling load at small distances between transverse stiffeners.
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Figure 6.34 Effect of TS thickness on the critical local buckling load for all models
at TS thickness =15mm
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6.4.1.1 CRITICAL GLOBAL BUCKLING RESPONSE AT DIFFERENT TS

THICKNESSES

The influence of transverse stiffener thickness on the critical global buckling load for three

models with different TS thicknesses is depicted in Figure 6.35. For Model-1;, the

behaviour of critical buckling loads are seen similar with each other. At trs=5Smm, the

location of the maximum buckling load is taking place in the top of the frame. At tys =

10mm, also the behaviour and the shape of the buckling are changed to be more than the

previous condition, but at tys=15mm, the location and shape of the buckling are noted

incresed a little bit down. For the other models, the behaviour of the global buckling is

almost in the same trend with different values as indicated in the image (i.e. inside the

figure). Consequently, it is of note that the development in buckling has different attitudes

to changing of TS thicknesses. This change depends on location and thickness of the

transverse stiffener.

Model tts = Smm

tts = 10mm

tts = 15mm

P, =2.59x10' N

P, =2.61x10"N

P, =2.64x10'N

2¢

P, =2.62x10' N

P, =2.63x10" N

P, =2.64x10" N

127



Doctoral thesis

3¢

P, =2.64x10'N P, =2.66x10" N P, =2.69x10" N

Figure 6.35 Critical global buckling modes for all models at difference TS thicknesses

The influence of transverse stiffener thickness on the critical global buckling loads of the
design space associated with different distance between the transverse stiffeners is shown
in Figure 6.36, Figure 6.37 and Figure 6.38 respectively. It can be observed from all figures
that the thickness of transverse stiffener has an effect on the critical global buckling load
for stiffened models. When the distance between transverse stiffeners is between 0.5m to
1.5m, the results showed that the improvement in the critical global buckling load can be
seen clearly in Figure 6.36 for all models is limited. For Model -1, Model-2; and Model-3;,
which have a 5Smm of TS thickness, the critical local buckling load is increased to 12% ,

14% and 20% respectively.

128



Numerical and experimental diagnostics of buckling structural element behaviour

28 r |At TS thickness = 5mm|

27t
| DM

Sr ==
—O— Using TS only

—
Z
-
2
Na
e}
3
2
%0 24 F —/+— Using TS+ two LS
E —{1— Using TS+four LS
1 23 1 Unstiffened
B
g 22}
5
2.1 F
2 1 1 1 1 1 1 J
0 0.5 1 1.5 2 2.5 3 35

Distance between transverse stiffener, d (m)

Figure 6.36 Effect of TS thickness on the critical global buckling load for all models

at TS thickness = Smm

As the increase in TS thickness to 10mm by the same procedures, it can see from Figure
6.37 that there is no significantly increase in the critical global buckling load with all
models. The values of these critical buckling loads compared to the values which found
earlier at TS=5mm and d=0.5m were improved as following 17%, 30% and 73%

respectively.
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Figure 6.37 Effect of TS thickness on the critical global buckling load for all models at
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By looking at Figure 6.38 for all models after 1.5m of distance between transverse
stiffeners (d), with an increase of TS thickness to 15mm, the critical global buckling loads
are slightly changed. It can also see that the values of critical buckling loads are almost
similar to the previous cases when TS=5mm and 10mm. However, the critical buckling
load increases noticeably between 0.5m and 1.5m of distance between transverse stiffeners
due to the increase presence of transverse stiffener thickness. The curves with high
thickness of transverse stiffeners seem to approach the higher bound estimate of the critical

buckling load at small distances between transverse stiffeners.
6.5 CONCLUDING REMARKS

The objective of this chapter was to examine and develop finite element solutions for steel
structure subjected to a compressive load. The finite element simulation strategies as
described in chapter 5 were used to follow the behaviour of the frame structure in terms of
local and global buckling loads under simply supported boundary conditions.

Also with the use of transverse and longitudinal stiffeners as supports to enhance the
capacity of such frame structures models, these shell element models were effectively
captured the buckling behaviour modes. As is described in Figure 6.1, the frame structure
consists of more than one member and connections with different thicknesses. In this study,
the effects of transverse and longitudinal stiffeners on the frame structures were
investigated in detail. Although, it is noted that the role of both stiffeners on critical
buckling is significantly affected by the different configuration of geometrical shape, but
this analysis has made only on their locations. However, the charts showed that the critical
buckling loads of the frame structure degraded considerably with increase in the distance
between transverse stiffeners, while a lighter effect was noticed by using the longitudinal

stiffeners on the global buckling behaviour.
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CHAPTER 7

7. EXPERIMENTAL BEHAVIOR OF STEEL
STRUCTURAL ELEMENTS

7.1 INTRODUCTION

The experimental tests are usually the base and an important for any scientific research
even though are very costly and need to very long time. The numerical simulations are
normally to expect the capacities of perfect members or full structures where a set of
assumptions have been assumed. Therefore, the experimental tests are used for validation
and comparing with the theoretical or numerical solutions and sometimes to develop further
required formulas for the design. The purpose of this section is to study some specific
sections that fail due to local or global buckling before the plastic capacity is reached. In
the previous chapters, the basic and background of theoretical and finite element modeling
aspects of the buckling behavior during thin-walled plates were discussed in details. In
order to test the behaviour behind the buckling and validate the FE models, the
compression test experiments are carried out. The suitable technique to guarantee the
reliability of numerical simulations and to extend the utilization of the research work is by
conducting the full-scale experiments with proper instrumentation for data measurement.
Based on the experiments, corresponding finite element simulations have been undertaken
using the ABAQUS software without any geometric imperfection in the shell. The columns
were meshed using S4R, a 4-node reduced integration shell element. The compressive
buckling behaviour of steel columns with has been experimentally and numerically
investigated in this study. A total of 6 column tests were carried out to acquire the

compressive buckling strengths with different cross sections as shown in Table 7.1.
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7.2 TEST SPECIMENS

In order to investigate the buckling behavior of steel members with different types of test
sections were prepared under axial compression load; it is significant that some parameters
are chosen in terms of design. These parameters include the length, geometry of the cross
section and thickness. A number of specimens was chosen and tested at the Faculty of
Mechanical Engineering Laboratory in order to investigate the effect of these parameters.
As it is known that geometrical imperfections influence the ultimate resistance buckling,
but in these tests the effect of imperfection has not taken in the account. Table 7.1 and
Table 7.2 respectively show the typical cross-sections geometrical details for the entire
specimens which are used in the experimental tests. Generally, the lengths of specimens are
different in order to observe the local and global buckling phenomena. The material
considered is steel with actual stress-strain data and thus Young's modulus E = 200GPa,

yield stress oy = 218MPa and Poisson’s ratio v = 0.3.

Table 7.1 Models specimens

Specimen Cross-section Isometric projection
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Table 7.2 Geometrical details of test specimens
Main value
Soec Flange Web Flange
pecimen :
Section length | Web depth H | i qih (1) | thickness | thickness
L (mm) (mm) B b tw (mm) te(mm)
C1 1000 99 21 - 0.5 0.5
C2 960 40 20 - 1 1
C3 1000 19.5 - 20 0.5 0.5
C4 510, 900 26 27 - 0.5 0.5
Cs 530 14.5 - 17 2.2 2.2
Co 540 30 - - - 5.5
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7.3 TEST SETUP

The test was performed at the Structural Engineering Laboratory at the faculty using the
compression testing frame for carrying out the tests as illustrated in Figure 3.4. The test
frame was restrained by four supporting bolts on the floor which prevented any
movements. The load is transmitted by an axle through a single-ended of 20 Tons hydraulic
jack connected at the top of the test frame where is free in vertical direction and restrained
in horizontal direction. The axial compression load which is applied on the specimen is
measured by Force Sensor. The position of the force sensor is mounted at the top
connection between the specimen and jack as shown in Figure 7.2. In order to measure
value of the critical buckling load, the Force Sensor is connected with the computerized

controller as shown in Figure 7.3 to convert the signal into force and displacement.

(=}
(=g}
~
=
—d
~
nJ
(=]
-
=]
mnJ
-0
==
=

Figure 7.1 Test setup facility
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Figure 7.3 Data acquisition set-up

7.4 LOAD AND BOUNDARY CONDITIONS

The load was applied on the specimen by hydraulic jack piston which is controlled by a
hydraulic pump. The load is being introduced through two steel plates by simply contact
between the supports and load edge that means there is no structural connection between
each other. Figure 7.4 shows the boundary conditions which are applied for all specimens
in the experimental test and also during the FE simulation. The top plate is resting between
the Force Sensor and specimen to distribute the load, while the bottom plate is totally fixed
at the end of specimen and the base is movable to allow the specimens with various lengths

to be tested as shown in the Figures. The obtained data during the test sends to the
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computer as shown in Figure 7.3 where it could be read on the screen during the test and

after that the data converts to readable text file then to processing.

7//9/’"
G
: g : Upper plate
1| 8!
1@
1 1 Lower plate

.
W
Figure 7.4 The applied boundary conditions during testing

7.5 TEST RESULTS

The buckling experiments were conducted for all specimens on the prepared test frame for
validation comparison with the FE simulations results. Each specimen was positioned in the
set-up a lone due to that the expected mode of buckling was in a horizontal plane. In order
to firm and hold the specimen in place a small load was applied to start the test. The load
was then increased slowly intervals as the force approached critical load, the local and
global buckling load were noted. The results of the experiments tests are briefly described

as follows:

Specimen C1

Figure 7.5 shows the comparison of the local buckling behaviour for specimen C1 between
the experimental and numerical models under axial compression load, where the
experimental major deformation characteristic appeared similar to the FEM simulation. It
can be seen from the figure that the maximum local buckling occurred in the web members
than the flange members for local and global buckling. Figure 7.6 showed the global
buckling mode that has the same behavior in terms of comparison with FE simulation. As a
result, well agreement between the experimental and finite element models results for both

local and global buckling behaviour under axial compression load.
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Figure 7.5 First local buckling mode for specimen C1, a. Exp, b. FE.
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Figure 7.6 First global buckling mode for specimen C1; a. Exp. , b. FE.
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The obtained load-time curve of the specimen C1 from test is shown in Figure 7.7. It is
noted from the figure that before the occurrence of the local buckling, the compression load
increased almost linearly till the first mode of local buckling which is occurred at 2012N.
In the other hand of the solution which is made by FEM simulation and as shown in Figure
7.5, it can be seen that the first local buckling mode was at 1487.6 N. When the local
buckling occurred, the axial compression load is almost at the same level for a while. The
axial compression load increased further with increase of time of course until the maximum
value in which the global buckling occurred that was 3125N while by FEM simulation was
3882N as shown in Figure 7.6. Consequently, the comparisons of the critical buckling
modes for specimen C1 were agreed almost well with a little bit difference especially in the

local buckling modes where the error was 30%.
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Figure 7.7 Critical buckling load response for specimen C1

Specimen C2

The description of the model and geometrical details for the specimen C2 section has been
described in Table 7.1 and Table 7.2 respectively. In this specimen, another part has been
added with length b as shown in Table 7.1 Models specimens. Therefore, the function of
this part is to be as a longitudinal stiffer in an attempt to investigate its effect on the critical
buckling in terms of value and behaviour. In order to visualize the effect of the longitudinal
additional part to load and to determine the critical buckling load, there is a need to

investigate the deformation shape. Figure 7.8 and Figure 7.9 show the obtained deformation
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shapes and both local and global critical buckling for specimen C2. It can be seen from the
Figure 7.8 and Figure 7.9 respectively that the deformation which also represents the
location of the critical buckling load has occurred through and along the specimen for local
buckling and at the middle of specimen for the global buckling as shown for both

experimental and FE simulation.
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Figure 7.9 First global buckling mode for specimen C2; a. Exp. , b. FE.
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The load compression response of the specimen C2 is plotted against the time of the test
and is shown in Figure 7.10. The findings from the experimental test are indicated in the
figure by dotted circles and more viewing for both local and global buckling. Both sets of
values (i.e. Exp. & FE) demonstrate almost similar local buckling trends where are1800N
and 1641.2N respectively. The finite element simulation produced a more accurate
prediction in terms of load compressive response to global buckling load where was 5420N

while by experimental test was 6000N.
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Figure 7.10 Critical buckling load response for specimen C3
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Specimen C3

Figure 7.11 shows the local buckling behaviour between the experimental and numerical
models for specimen C3 also under axial compression load. It can be seen from Figure 7.11
that the experimental response of specimen C3 with load whose bottom edge is buckled, is

in close agreement with that of the numerical simulation solution.
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Y
SI;EJJ: Buckling
Mode 1: Eigenvalue = 238,73
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Deformed Var: U Deformation Scale Factor: +1.000e-01

b

Figure 7.11 First Local buckling mode for specimen C3, a. Exp, b. FE.

Based on the experimental results which are obtained for specimen C3, the critical local
buckling value is 250N. It has been noted during the test that there was not any global
buckling for specimen C3 it might due to the shape of the specimen. The obtained load-
time curve of the specimen C3 from test is shown in Figure 7.12. It is noted from the figure
that before the occurrence of the local buckling, the compression load increased linearly till
the first mode of local buckling which is occurred at 250N. On the other hand of the
solution which is made by FE simulation and as shown in Figure 7.11, it can be seen that
the first local buckling mode was occurred at 238.5 N. When the local buckling occurred
and with increasing in the axial compression load, the critical local buckling load was
almost at the same value with a little difference in its value. Consequently, the comparisons
of the critical buckling modes for specimen C3 were agreed almost well with a little bit
difference especially in the local buckling modes where the error was 4.6% and this value

is very acceptable in design.
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Figure 7.12 Critical buckling load response for specimen C3

Specimen C4

The specimen C4 of lengths of 900 mm and 510 mm respectively have been chosen to
represent long and short columns. Other different modifications have been made on the
specimen C4 as shown in Table 7.1 as zags which represent as supports in order to see its
role on the buckling behaviour. Specimen C4 has two different lengths (i.e. L = 900 mm
and L = 510 mm) with the same other dimensions. Figure 7.13 and Figure 7.15 also show
the comparison results of the local buckling behaviour for specimen C4 at two lengths
between the experimental and numerical models under axial compression load. The
obtained results showed that the experimental major deformation characteristic appeared
similar to the FEM simulation for two different lengths of specimen C4 as shown in the
figures. It can be seen that the maximum local buckling occurred in the web member than
the flange members in both cases. Figure 7.14 also shows the finite element test of the
global buckling behaviour for specimen C4 at L = 900mm which was very small through
the experimental test and due to this reason does not show in experimental figure. It is
noted from the experimental and finite element simulation that there is no global buckling
for specimen C4 at length L = 510 mm, because of the short length. Again and as a result,
well agreement between the experimental and finite element models results for both local

and global buckling behaviour under axial compression load for two cases.
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Figure 7.13 First local buckling mode for specimen C4 (L =900 mm), a. Exp, b. FE
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Figure 7.14 First global buckling mode for specimen C4 (L =900 mm) by FE

144



Numerical and experimental diagnostics of buckling structural element behaviour

WY 25:01 L102/L0LLD,

U, Magnitude
+1.000e+00

+8.335-02
+0.000e+00

ODB: L=510mm.odb Abaqus/Standard 6.14-1 Sat Aug 05 11:

I Step: Buckling
7 x Mode 1: EigenValue = 2960.7
Primary Var: U, Magnitude

Nafarmnd Vars 11 Nnfarmatinn @rala Fackar: L1 O00A-N7

b
Figure 7.15 First local buckling mode for specimen C4 (L = 510 mm) by FE

The load compression response of the specimen C4 when L =900mm and L = 510mm is
plotted against the time of the test and are shown in Figure 7.16 and Figure 7.19
respectively. The results from the experimental test are represented by more viewing at
length L =900 mm and for both local and global buckling in Figure 7.17 and Figure 7.18
respectively. Both sets of values (i.e. Exp. & FE) demonstrate almost similar local buckling
trends where 1500N and 2800N for two lengths respectively were. However, the finite
element simulations produce more accurate predictions in terms of load compressive
response where were 1945N and 2960N as shown in Figure 7.13 and Figure 7.15

respectively.
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Figure 7.16 Critical buckling load response for specimen C4, L =900 mm
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Figure 7.17 Critical local buckling load location of Figure 7.16
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Figure 7.18 Critical global buckling location of Figure 7.16
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Figure 7.19 First global buckling mode for specimen C4, L=510mm
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Specimen 5

Figure 7.20 shows the local buckling response from the experimental and finite element
simulation for specimen C5 and the major deformation characteristic is as indicated in the
figure. For specimen C5, the first local mode by FE simulation and the major deformation
characteristic have been appeared similar as the experimental form and the maximum
critical local buckling load for each mode are 3985N and 3500N with a difference is in the
order of 12% as shown in Figure 7.20 and Figure 7.22. Figure 7.21 shows the full scale of
global buckling mode that has been obviously appeared identical in two cases (i.e. Exp. and
FE). The critical buckling load for specimen C5 from finite element simulation is found to
be 5082N and this compares well with the test value of SO00N as indicated in Figure 7.21
and Figure 7.22.
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Figure 7.20 First local buckling mode for specimen CS5, a. Exp, b. FE
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Figure 7.21 First global buckling mode for specimen C5, a. Exp, b. FE
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Figure 7.22 Critical local & global buckling load locations for specimen C5
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Specimen 6

The specimen C6 has been chosen to represent a thick plate with t=5.5 mm in order to
examine its influence on the critical buckling behaviour. The simply supported boundary
conditions are used as previous cases with axial compression load. Figure 7.23 shows the
comparison results of the global buckling behaviour for specimen C6 between the
experimental and numerical models under axial compression load. The results obtained
from the experimental and FE simulation showed that the major deformation characteristic
appeared similar in both cases. It is noted from the experimental and finite element
simulation that there is no local buckling for specimen C6. Therefore, further increase in
the applied loading results a second global buckling mode as shown in Figure 7.24 which is

examined by FE simulation.
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Figure 7.23 First global buckling mode for specimen C6, a. Exp, b. FE
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Figure 7.24 Second global buckling mode for specimen C6 by FE

The change in the load compression on the behaviour of the specimen C6 with L = 540mm
is plotted against the time of the test and is highlighted in Figure 7.25. The dotted circle line
represents the critical global buckling load in which the specimen has been buckled
globally, and is almost 3750N. The value of global buckling load which has been obtained
by FE simulation is 3134.4N and in comparison with the Exp. value, the difference is 616N
about 61kg with 16% of error. Consequently, the finite element simulations produce more
accurate predictions in terms of load compressive response where is 3134N as shown in

Figure 7.23 and this value is safer than Exp. value.
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Figure 7.25 Critical buckling load response for specimen C6

7.6 CONCLUDING REMARKS

The purpose of this chapter was to experimentally examine and develop finite element
solutions for different steel elements subjected to a compressive load. As mentioned early,
the finite element simulation strategies as described in chapter 3 were used to follow the
behaviour of the steel elements in terms of local and global buckling loads and compare the
obtained results with the experimental tests as a validation. One boundary condition is used
for the analyses in this study. This boundary condition is simply supported with restraints
along two end edges of specimen expect the displacement in the load direction. The

following conclusions are drawn based on the results and observations presented herein.

¢ In the case of short length columns, the existence of global buckling in columns
whose local buckling is higher can result unavailable.

e Incase of long longer columns whose initial buckling is in the local buckling mode
can result that the global buckling available.

e [t can be concluded that the obtained experimental results have been shown good

agreement with the finite element simulation solutions.
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CHAPTER 8

8. CONCLUSIONS AND FUTURE WORK

8.1 SUMMARY

The purpose of this work was, basically to develop suitable finite element modelling
strategies and solution procedures for the investigation of the local and global buckling
failure behaviour of the structural elements which are subjected to uniaxial compression
load. The work was carried out by adding the transverse stiffeners and longitudinal
stiffeners in order to examine their influence and effect on the critical buckling loads. In the
course of this work, the finite element simulation approaches were developed to be able to
examine the buckling characteristics of the thin plates and to deal easily with different
boundary conditions. In the initial stage, the thin plate structure under consideration is
modeled as an individual plate element in order to validate the numerical simulation. The
plate width-to-length ratio with different thicknesses was changed in order to monitor its
influence on the critical buckling behaviour under classical boundary conditions as well as
on the development of the elastic deformation. The width-to-thickness ratio of the thin plate
with has been examined in order to observe its effect also on the critical buckling loads.

The work has been developed to study the buckling behaviour of the beam-column
structural with the simply supported in uniaxial compression load. The transverse and
longitudinal stiffeners have been included in the beam-column in order to increase its
critical buckling loads. A range of different distances between transverse stiffeners has
been distributed through the beam-column with simply supported boundary conditions.
The effect of changes in the distances between the stiffeners on the critical buckling loads
of the stiffened beam-column has been studied for the different thicknesses of stiffeners
considered. Moreover, the longitudinal stiffeners have been added as well to the beam-
column with centrally located and equally one and two spaced between each other in order

to investigate their role with transverse stiffeners on the critical buckling resistance.
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The finite element techniques have also been carried out in order to examine the buckling
behaviour and possible failure of the frame structural. Different dimensions and thickness
of the frame are used during the numerical simulation analysis by using the same previous

configurations.
8.2 CONCLUSIONS

This thesis has studied and presented the response of critical local and global buckling
capacity of thin plates, beam-column and frame structural systems subjected to axial
compression load. Finite element modelling strategies and solution procedures have been
developed in order to investigate the local and global buckling behaviour for un-stiffened
and stiffened structural systems. The investigation on the structural member's axial
compression buckling behaviour, length to width and width to thickness response involved
a large of finite element analyses of simply supported beam-column and frame structure.
Furthermore, the study computationally investigated the effect of transverse and
longitudinal stiffeners on the beam-column and frame structural systems to increase their
local and global buckling resistance.

Some important points summarized from the presented work regarding the diagnostic

analysis of the buckling behaviour of element structural in some detail as follows:

e The obtained results from this study throughout the development of the finite
element modelling strategies and solution procedures employed in all cases,
demonstrate that the effectiveness and uniqueness of using of the finite element
method in being able to describe the critical buckling behaviour of thin plate, beam-
column and frame structures subjected to uniaxial compression load.

e The used finite element approach that processed in the work has been shown to be
able to efficiently and consistently capture all aspects of the critical local-global
buckling loads of the thin plate, beam-column and frame structural systems
analyzed. The distributed elastic analysis based on the shell elements is able to
capture the development of buckling behaviour of the system under elastic buckling
up to ultimate conditions.

e The finite element modelling technique which used for thin plate has been
developed with regard to the uniaxial compressed load at different boundary

conditions which has been termed as classical method or approach by previous
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researchers. This simple method has been used to simplify the numerical
procedures in the analysis of thin plate sections.

e Inthe case of the thin plate analysis, the obtained results have been shown that the
highest value of critical buckling load P, occurred at short lengths of the plates
which represented the highest critical buckling load where the plate may be fails.

e Inthe case of stiffened beam-column subjected to uniaxial compression load, three
situations were investigated in the finite element analysis of simply supported
beam-column. They are: 1) by using only transverse stiffeners, 2) by using
transverse and two longitudinal stiffeners, 3) by using transverse and four
longitudinal stiffeners. The beam-column examined without any stiffeners and with
stiffeners with stiffeners positioned at specified locations as shown in chapter 5.

o Effects of transverse and longitudinal stiffeners were examined in this study. The
results have been shown that the transverse stiffeners have a significant effect on
the beam-column critical buckling load. The longitudinal stiffeners, on the other
hand, do not have a significant effect on the beam-column critical buckling load.

e The critical buckling load versus length-to-width ratio curve of simply supported
beam-column indicates that the maximum critical buckling is at the shorter
distances between transverse stiffeners. The beam-column buckling drops
dramatically between 0.5 to 1 meters where afterwards 1m there is no any
noticeable change in critical buckling load.

e With regard to the local deformation shape of the beam-column condition, it has
been shown from the figures that the local deformation crest occurs at the center of
the beam-column.

e The analysis of frame structure with simply supported condition was also developed
in the finite element analysis. Appropriate transverse and longitudinal stiffeners
were included in the model for elastic buckling analysis. The two basic buckling
modes (i.e. local and global buckling) as observed and investigated in the frame
structure.

e The effect of both stiffeners in terms of distribution was also investigated in the
finite element analysis. The buckling behaviour and results showed that the effect
of the both stiffeners is significant. However, the transverse stiffeners have had a

better effect in particular on the local buckling load than longitudinal stiffeners.
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The buckling behaviour shows that the expected position of critical local buckling
load is unknown that means may be occurring on any beam on the frame.

In a frame structure, the critical buckling loads were generally higher for short
distances between transverse stiffeners than those of the long distance in both
buckling modes. Namely, critical buckling loads decrease with increasing of the
distance between the stiffeners.

As aresult, the finite element analyses that have been made of the frame structures
show when one of the beams (members) in the frame fails in critical local and
global buckling mode, the frame is not able to carry further loads.

The finite element method is able to visualize the growth and the redistribution of
stresses after local buckling, as well as the initiation of buckling throughout
loading.

The development of the von Mises stresses through the buckling behaviour can be
monitored.

the best improvement is obtained in the critical buckling load when transverse and
longitudinal stiffeners are defined together.

The main increase in the critical buckling load is obtained when the distance
between the stiffeners is short.

The study showed that the critical buckling loads are very sensitive to the location
of stiffener.

The compressive buckling behaviour of steel columns with simply supported
conditions has been experimentally and numerically investigated in this study.
Regarding the experimental results that have been obtained from the simply
supported steel elements tests were used as solutions to validate with finite element

simulation.

8.3 FUTURE WORK

The aim of the finite element modelling techniques and solution steps to diagnose the

buckling behaviour of the structural element's behaviour in terms of local and global

buckling has been successfully presented. In order to broaden the scope of the current

research work, the author proposes some further opinions. Thus, the following

recommendations are suggested for future work:
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e The application of the finite element simulation techniques highlighted in the thesis
can be further extended to study different thin plate structural configurations.

e The presented finite element for the beam-column can be utilized to extend the
work of a stiffened beam-column by employing different stiffener’s dimensions and
shapes.

e Similarly the work of stiffened frame structural can be investigated further by
changing the shapes of attached stiffeners.

e The work can be developed to study the behaviour of unstiffened and stiffened plate
structures taking into account the geometrical imperfections and material

nonlinearity.
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IIpuor 1.

UsjaBa o ayTopcTBY

[Tornucanu-a : HOYPEJIJIMHE TOYMU

Opoj unaekca: [14-2013

H3jaBibyjem

Jla je TOKTOpCKa JqrcepTalja Mo HaCJIOBOM

Hymepunuka-ekcnepuMeHTANHA IMjarHOCTHKA MOHALIAKA

HU3BHjalkba CTPYKTYPHHUX eJIeMeHATA

NUMERICAL AND EXPERIMENTAL DIAGNOSTICS OF
BUCKLING STRUCTURAL ELEMENT BEHAVIOR

® pe3yiTaT COINCTBEHOI UCTPAKMBAYKOT paja,

® Ja IpeJIoKeHa AUcepTalyja y HeJIMHU HU Y JIeJIOBUMa HUje Onia MpeiokKeHa 3a
nolujame OWIO KoOje IUIUIOME IIpeMa CTYAMJCKUM IMporpamuma Jpyrux
BHCOKOIIKOJICKMX YCTaHOBA,

® Jia Cy pe3yJITaTu KOPCKTHO HABECACHHU U

e Jla HUCAM KpIIIMO/Ja ayTOpCKa MpaBa U KOPUCTHO UHTENEKTYaIHY CBOJUHY IPYTHX
JULIA.

HHornuc 1oxkTopanga

V¥ Bbeorpany, 17.10.2017 roa.
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IIpuuor 2.

I/I3jaBa O UICTOBETHOCTMU LUTamMnaHe U eNeKTpPpoOHCKe Bep3V|je

AOKTOPCKOr paga

Nwme u npesmme aytopa: HOYPEOONHE TOYMW
Bpoj nHgekca: 14-2013

Ctyawnjckn nporpam: [lokTopcka gucepTauuja

Hacnos paga Hymepuyka-ekcnepumeHTanHa anjarHocTuka rnoHallawa u3Bsujatba
CTPYKTYPHUX enemMeHaTa
NUMERICAL AND EXPERIMENTAL DIAGNOSTICS OF BUCKLING
STRUCTURAL ELEMENT BEHAVIOR

Mentop mpod.ap Tamko Manecku

Mornucanuw/a HOYPEOAOVWHE TOYMWU

W3jaBipyjeM J1a je mTaMIiaHa Bep3Hja MOI JIOKTOPCKOT paja MCTOBETHA €JIEKTPOHCKO]
BEP3HjH KOJy caM Ipeao/yia 3a 00jaB/bUBake Ha MOPTATY JMTMTAIHOT peno3uTopujyma
Yuusep3urtera y beorpany.

Jlo3BosbaBaM aa ce 00jaBe MOjU JTUYHHU MOJAIM BE3aHU 3a J00Hjamhe aKaJeMCKOT 3Bamba
JIOKTOpa HayKa, Kao IITO Cy UMe U Mpe3uMe, TOANHA U MecTO poljema U 1aTyM oJ0paHe
pana.

OBH TUYHHU NOAAIM MOTY C€ 00jaBUTH Ha MPEKHUM CTpaHHIlaMa JUTHTaTIHEe OUOIHOTEKE, Y

€JIGKTPOHCKOM KaTaJlory U y myOiukanujama YHuBep3ureta y beorpany.

MMornuc noxkropanaa

V¥ Bbeorpany, 17.10.2017 rog.
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IIpuor 3.

UsjaBa o kopuwhemwy

Opnanthyjem YHuBep3utercky oubamorexy ,,CBeto3ap MapkoBuh® na y JururamHu
peno3uTopujyM YHHUBEp3UTeTa y beorpany yHece Mojy AOKTOPCKY TUCEpPTAaIU]y IO

HacJIO0BOM:

HymepwqKa-eKcnepumeHTanHa AvjarHoCTMKa noHalwakwa
MSBMjal'ba CTPYKTYPHUX eJfileMeHaTa

NUMERICAL AND EXPERIMENTAL DIAGNOSTICS OF
BUCKLING STRUCTURAL ELEMENT BEHAVIOR

KOja je MOje ayTOpCKO JeIIO.

JlucepTanujy ca CBUM MPUJIO3MMAa IIPEAao/lia caM y elIeKTPOHCKOM (JOpMaTy MOTr0THOM 32

TPajHO apXUBUPAHE.

Mojy AIOKTOPCKY IHcCepTaln]jy MoXpameHy y JIuruTannu peno3uTopujym Y HUBEp3uTeTa y
Bbeorpany mory na KOpucTe CBH KOjH MOIITY]Y OJApeade caapikaHe y 0Jla0paHOM THUITY

munennie Kpearusne 3ajequuiie (Creative Commons) 3a K0jy caM ce OJTy4Ho/Ja.
@AmYTOpCTBO

2. AyTOpCTBO - HEKOMEPIIH]aTHO

3. AyTOpCTBO — HEKOMEPIIHjaTHO — O€3 mpepajie

4. AyTOpCTBO — HEKOMEPIIUJAITHO — JICJUTH 11OJ] UCTUM yCIIOBUMA

5. AyropctBo — 0e3 mpepajie

6. AyTOpCTBO — JI€IUTH O]l UCTUM YCIIOBUMA

(MonuMo 1a 3a0KpYKUTE CaMo JeTHY O7] IIeCT MOHYHeHUX JINIICHIIN, KpaTaK OTHC JIUIIEHITH

JIaT je Ha ToJiehHY JIHCTA).

Hornuc 1okTOopanga

V¥ beorpany, 17.10.2017
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1. AyTopcTBO - [lo3BorbaBaTe yMHOXaBake, AUCTpubyLmjy 1 jaBHO caoniwuTaBane aena, u
npepage, ako ce HaBee UMe ayTopa Ha HauuH ogpeneH o cTpaHe ayTopa unun gasaoua
nuueHue, Yak 1 y komepumjanHe cspxe. OBO je HajcnobogHuja og CBUX NTMLEHLMN.

2. AytopcTtBO — HekomepuwmjanHo. [lo3BorbaBaTe yMHOXaBake, AUCTPUBYLMjy 1 jaBHO
caornwTaBawe Aena, v npepage, ako ce HaBee MMe ayTopa Ha HadvH ofpeneH of
CTpaHe ayTopa vunu gasaoua nuueHue. OBa nuueHua He O03BOSfbaBa KoOMepuujarHy
ynoTpeby gena.

3. AyTtopcTBO - HekomepumjanHo — 6e3 npepage. [Jo3BorbaBaTe yMHOXaBahE,
AncTpubyunjy 1 jaBHO caonwiTaBake gena, 6e3 npomeHa, npeobnmkoBara nm ynotpede
Aenay cBOM Jeny, ako ce HaBee MMe ayTopa Ha HauvH ogpefneH o4 cTpaHe aytopa unu
Aasaoua nuueHue. OBa nuueHua He J03BOSbaBa komepumjanHy ynotpeby gena. Y ogHocy
Ha cBe ocTane nuueHue, OBOM IMLEHUOM ce orpaHuyaBa Hajsehm obum npasa
Kopuwhemna gena.

4. AyTOpCTBO - HEKoMepuwujanHo — Jenutn nog Uctum ycrosuma. [osBorbaBaTte
YMHOXaBare, ANCTpnbyuujy 1 jaBHO caonLuTaBakbe Aena, u npepage, ako ce HaBeae ume
ayTopa Ha HauuH ogpefeH o cTpaHe ayTopa unu gasaola nvueHue 1 ako ce npepaga
anctpnbympa nog MCTOM MM CnNMYHOM nuueHuom. OBa nuueHua He [03BOrbaBa
KomepuujanHy ynotpeby nena v npepaga.

5. AytopctBo — 6e3 npepage. [Jo3BorbaBate yMHOXaBakwe, OUCTPUOYLM)Y U jaBHO
caonwTaBake gena, 6e3 npomeHa, npeobnvkoBara nnu ynotpebe genay cBom geny,
aKo ce HaBefe MMe ayTopa Ha Ha4yuH oapeheH of cTpaHe ayTopa unmn gasaola fnvueHLe.
OBa nuueHua 0o3BosbaBa koMmepuumjanHy ynotpeby gena.

6. AyTOpCTBO - AENUTU NoA UCTUM ycroBMMa. [lo3BorbaBaTe yMHOXaBawe, AUCTprbyLnjy
1 jaBHO caomnLwiTaBakwe Aena, 1 npepage, ako ce HaBeae me aytopa Ha HaumH ogpeheH
Of CTpaHe ayTopa unv gasaoLia nvLeHLLEe 1 ako ce npepaga auctpnbympa nog uCTom unm
cnnyHoMm nuueHuom. OBa nyueHua Ao3BorbaBa KoMmepuujanHy ynotpeby aena v npepaga.

CnunyHa je codpTBEpCKMM NiLieHLIaMa, 0AHOCHO N1LEHLLamMa OTBOPEHOr koaa.
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