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BATTERY TYPE HYBRID SUPERCAPACITOR BASED ON CONDUCTING 

POLYMERS 

 

 

ABSTRACT 

 

The electrochemically synthesized polypyrrole and lead-lead sulfate are 

examined as a potential electrodes for battery-type hybrid supercapacitors in acidic 

solution. Discharge in the specific current range of ∼0.6–2.27 A g−1 based on the active 

masses, can deliver capacity of 90–72 Ah kg−1, energy of 58–40 Wh kg−1 and power of 

40–1350 W kg−1, with the specific capacitance of the cell in the range of 300–250 F g−1. 

The device exhibits battery-type behavior at low discharge rate, e.g. <0.5 A g−1, and 

supercapacitors-type behavior at a higher discharge rate. It is estimated that cell will 

lose 20% of initial capacitance after ∼500-600 cycles. 

The electrochemically synthesized polyaniline and lead sulfate are investigated 

as a possible active material of the aqueous based hybrid asymmetric supercapacitors. 

The electrochemical characteristics of polyaniline (doping-dedoping reactions), as well 

as electrical characteristics (specific capacitance, capacity, energy, and power) of the 

PbSO4|PANI cell, are determined. The cell capacitance, ranging from 216 F g−1 to 230 F 

g−1 is determined. In the specific current range of 0.3–1.5 A g−1 based on the active 

masses, the specific energy decrease from 30 to 20 Wh kg−1, while specific power 

increased from 200 to ∼800 W kg−1. The specific capacity of the cell, slightly decreased 

from 47 Ah g−1 to 40 Ah g−1 by increasing the specific current. It is estimated that cell 

will lose 20% of initial capacitance after ∼550 cycles. 

Based on the estimated specific energy and power, it is suggested that 

investigated cells could be classified as hydride asymmetric battery type supercapacitors 

оr “supercapattery” type of electrochemical power sources. 
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HIBRIDNI SUPERKONDENZATORI AKUMULATORSKOG TIPA NA BAZI 

PROVODNIH POLIMERA 

 

REZIME 

Elektrohemijski sintetizovani polipirol i olovo-olovo sulfat ispitani su kao 

potencijalne elektrode za hibridne superkondenzatore akumulatora tipa u kiselom 

rastvoru. Pražnjenjem u strujnom opsegu od ~0,6-2,27 A g-1 na bazi aktivnih masa, 

određene su vrednosti specifični kapaciteti od 90-72 Ah kg-1, energija od 58-40 Wh kg-1 

i snaga od 40-1350 W kg-1, sa specifičnom kapacitivnošću ćelije u opsegu od 300-250 F 

g-1. Sistem pokazuje ponašanje tipa akumulatora pri malim strujama pražnjenja, npr. 

<0,5 A g-1 i superkondenzatorsko ponašanje pri većom strujama pražnjenja. Procenjeno 

je da će ćelija izgubiti 20% početnog kapaciteta posle ~ 500-600 ciklusa punjenja i 

pražnjenja. 

Elektrohemijski sintetizovani polianilin i olovo sulfat ispitani su kao mogući 

aktivni materijal hibridnih asimetričnih superkondenzatora. Određene su 

elektrohemijske karakteristike polianilina (reakcije dopovanja i dedopovanja), kao i 

električne karakteristike (specifična kapacitivnost, kapacitet, energija i snaga) ćelije. 

Određuene su kapacitivnosti ćelije, u opsegu od 216 F g-1 do 230 F g-1. Pri strujama 

pražnjenja u opsegu od 0.3-1.5 A g-1 na osnovu aktivnih masa, specifična energija se 

smanjuje sa 30 na 20 Wh kg-1, dok se specifična snaga povećana sa 200 na ~ 800 W kg-

1. Specifični kapacitet ćelije, malo je smanjen sa 47 Ah g-1 na 40 Ah g-1. Procenjeno je 

da će ćelija izgubiti 20% početne kapacitivnosti nakon ~550 ciklusa. 

Na osnovu procenjenih vrednosti specifične energije i snage, predloženo je da 

ispitane ćelije mogu biti klasifikovane kao asimetrični hibridni superkondenzatori 

akumulatorskog tipa ili a "superkapabaterijska" vrsta elektrohemijskih izvora energije. 

 

Klјučne reči: polianilin, polipirol, superkapabaterija, specifična energija, specifična 

snaga 

Naučna oblast: Tehnološko inženjerstvo 

Uža naučna oblast: Hemijsko inženjerstvo 
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1. INTRODUCTION REVIEW 

 

In response to the climate changes, energy has become a primary focus of the 

major world powers and scientific community [1]. There has been great interest in 

developing and refining more efficient energy storage devices. One such device, the 

supercapacitor, has matured significantly over the last decade and emerged with the 

potential to facilitate major advances in energy storage. Supercapacitors, also known as 

ultracapacitors or electrochemical capacitors, utilize high surface area electrode 

materials and thin electrolytic layer to achieve capacitances several orders of magnitude 

larger than conventional electrical capacitors [2,3,4,5]. Electrochemical supercapacitors 

are able to achieve greater energy densities while still maintaining the characteristic 

high power density of conventional capacitors. 

The performance improvement for a supercapacitor is shown in Figure 1.1, a 

graph conventionally called a “Ragone plot”. This type of graph presents the power 

densities of different energy storage devices, measured along the vertical axis, versus 

their energy densities, shown along the horizontal axis. In Figure 1.1, it can be seen that 

electrochemical supercapacitors occupy a region between conventional capacitors and 

batteries [3]. Regardless of greater capacitances than conventional capacitors, 

supercapacitors have yet to match the energy densities of mid to high-end batteries and 

fuel cells. 
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Figure 1.1. Ragone plot of energy storage devices [3]. 

 

Figure 1.2 shows the constant current discharge curves of battery, electrostatic 

capacitor and electrochemical supercapacitors (EC). It is obvious that the battery curve 

has discharge plateau, and the voltage keeps in invariant. The discharge curves of 

electrostatic capacitor and EC are similar, which are linear, the voltage decreases 

linearly with the increase of discharge charge. There is a linear relationship between 

voltage and time in the process of constant current discharge for the EC, the dU/dI 

keeps constant value. 

 

Figure. 1.2. Discharge characteristics of battery, electrostatic 

capacitor and electrochemical supercapacitors (EC) [6]. 
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In Table 1.1 are given in typical values of the basic parameters of the battery, classical 

and supercapacitors for comparison [7].  

 

Table 1.1. Typical values of the basic parameters of the battery, classic and 

electrochemical supercapacitor (EC) [7]. 

 Batteries Capacitors EC 

Charge time 1 – 5 h 10-3 – 10-6 s 0.3-30 s 

Discharge time 0.5 – 3 h 10-3 – 10-6 s 0.3-30 s 

Specific energy, Wh kg-1 10 - 100 <0.1 1 - 10 

Specific power, W kg-1 50 - 200 >10.000 ~1000 

Efficiency 0.7 - 0.85 ~1 0.85 – 0.95 

Cycle life 500 - 2000 >500.000 >100.000 

 

 

Based upon current R&D trends, supercapacitors can be divided into three 

general classes: electrochemical double-layer capacitors, pseudocapacitors, and hybrid 

capacitors, Fig. 1.3 [3]. Each class is characterized by its unique mechanism for storing 

charge. These are, respectively, non-Faradaic, Faradaic, and a combination of the two. 

Faradaic processes, such as oxidation-reduction reactions, involve the transfer of charge 

between electrode and electrolyte. A non-Faradaic mechanism, by contrast, does not use 

a chemical mechanism. Rather, charges are distributed on surfaces by physical 

processes that do not involve the making or breaking of chemical bonds. 

 

Figure 1.3. Division of supercapacitors by type [3]. 

 



4 

 

In Fig. 1.4, the typical cyclic voltammograms and galvanostatic charge-discharge 

response of pure capacitive, pseudocapacitive and pure battery type electrodes, are 

shown. The series shows the transition from a typical capacitive behavior (EDLC) (a, b) 

to a typical (two phase) battery electrode (e, f) with a pseudocapacitive oxide electrode 

as an intermediate case (c, d). It should be noted that even for the same Co3O4 material 

different degrees of capacitive and faradaic components can be appreciated depending 

on the specific microstructure of the active phase [8]  

 

 

Figure 1.4. Cyclic voltammograms (top) and charge–discharge cycles (bottom) for 

different types of electrode materials: (a, b), carbon-based double-layer supercapacitors; 

(c, d) Co3O4 pseudocapacitor; (e, f) LiFePO4 battery electrode [8].  

 

Among different types of supercapacitors, e.g. double-layer (EDLC) and 

pseudocapacitors, very promising type are hybrid supercapacitors [8]. Utilizing both 

faradaic and non-faradaic processes to store charge, hybrid supercapacitors have 

achieved energy and power densities greater than EDLC’s without the sacrifices in 

cycling stability and affordability that have limited the success of pseudocapacitors [9, 

10]. According to the recent review paper by Dubal et al. [8] characteristics of the 

hybrid supercapacitors are at the top of other types, and possess specific energy in the 

range of 30-100 Wh kg-1 and specific power ranging from 0.1 up to ~10 kW kg-1. 
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Research has focused on three different types of hybrid capacitors, distinguished by 

their electrode configuration: composite, asymmetric and battery-type, respectively. In 

order to improve characteristics of supercapacitors, different combinations of hybrid 

nanostructures were investigated, including binary and ternary combinations of various 

carbon and graphene materials, intrinsically conducting polymers (ICP’s) and metal 

oxides/hydroxides, such as RuO2, MnO2, NiO/Ni(OH)2, Co3O4/Co(OH)2, Fe2O3, Fe3O4 

etc. [8,9,10,11]. A hybrid device based on a battery type electrode and an 

electrochemical capacitor electrode defined by Cericola and Kötz [3] as an “internal 

serial hybrid” (ISH) in principle could combine good characteristics of supercapacitors 

and battery [8]. Recently, such configuration was named “supercapattery” (from: 

supercapacitors -batteries) [12, 13]. Practically, all the electrode materials of the 

commercial battery systems can be used for the battery-type electrode in the suitable 

electrolyte, from lead–acid batteries to metal/air systems, but in practice, metallic 

compounds like SnO2, MnO2 and LiFePO4 are usually investigated [12]. Although there 

is less experimental data on battery-type hybrids than on other types of hybrid 

supercapacitors, the data that is available suggests that these hybrids may be able to 

bridge the gap between supercapacitors and batteries [8]. The battery-type, usually 

combine one battery-type, faradaic electrode (as an energy source) with the other 

capacitive electrode (as a power source) in the cell [8, 14]. 

One example of such hybrid system based on electrodeposited PbO2 on graphite 

in combination with activated carbon negative electrode in 5.3 mol dm–3 H2SO4 aqueous 

solutions were recently investigated by Wang et al. [15]. The authors reported a specific 

capacitance of 63 F g–1 in the voltage window from 1.88 to 0.65 V at 5 C rate. The 

reported specific energy was in the range of 18 to 27 Wh kg–1 with a specific power in 

the range of 690 to 150 W kg–1. 

 

Supercapacitor that utilize conductive polymers, or from more recently 

intrinsically conductive polymers (ICP’s), as a representative of pseudocapacitive 

electrode materials [16], are envisaged to bridge the gap between existing carbon-based 

double-layer supercapacitors and batteries to form units of intermediate specific energy 

[17,18]. ICP’s could improve the device as they undergo a redox reaction to store 

charge in the bulk of the material, thereby, increase the stored energy, and reduce self-
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discharge. [17]. Intrinsically conducting polymers represents a distinct group of 

pseudocapacitive materials that can accumulate energy via both redox and pseudo-

capacitive properties [17,19,20,21,22]. The ability of ICP’s to store charges originate 

from a doping-dedoping process, and capability to provide the capacitive response 

through a fast redox reaction of the conjugated areas of the polymer matrix. The most 

extensively studied ICP’s, due to the low cost of the monomer, easy synthesis and 

environmental friendliness are polyaniline (PANI) and polypyrrole (PPy) with the wide 

range of the reported specific capacitance in both aqueous and non-aqueous electrolytes 

[13,21,22].  

 

Among different ICP’s, polypyrrole (PPy) is currently one of the preferred, due 

to its high electrical conductivity, facile synthesis in both aqueous and organic media, 

relatively good stability and reversibility at different pH [8, 23]. The theoretical specific 

capacitance of the PPy doped with single charged anions is 630 F g-1, while 

experimentally measured are in the range of 150 up to 500 F g-1, depending on 

morphology and synthesis conditions [8,11,19,24,25,26,27].  

 

The theoretical specific capacitance of PANI is as high as 750 F g−1 [22], while the 

experimentally obtained in the sulfuric acid based electrolytes were reported to be in the 

range of 200-550 F g-1 with potential windows of ~0.8 V [28,29]. 

 

Hence, the aim of this work is to test the possible characteristics of simple 

hybrid devices based on typical pseudocapacitive, polypyrrole and polyaniline, 

materials and lead-lead sulfate as typical battery materials, in the battery-type hybrid 

supercapacitor.  
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2. THEORETICAL PART 

 

2.1. Electrostatic capacitors 

 

 The classical capacitors are consisted of a dielectric materials, with thickness d, 

between two conducting plates with area, A, as shown in Fig. 2.1.   

 

 

Figure. 2.1. Schematic presentation of the classical capacitors. 

 

The capacitance of a capacitors is equivalent to stored charge, Q, divided by applied 

voltage, U [30]: 

 

 
U

Q
C            (2.1) 

 

On the other hand capacitance is given by: 

 

 
d

A
C r0          (2.2) 
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where, ε0 is dielectric constant (permittivity) of vacuum, 8.854 × 10−12 F·m−1, and εr is 

relative permittivity of isolating materials. The values of εr for the common isolating 

materials are given in Table 2.1. 

 

Table 2.1. The values of εr for the common isolating materials [31] 

Material Dielectric Constant 

Vacuum 1 

Glass 5-10 

Mica 3-6 

Neoprene 6.70 

Plexiglas 3.40 

Polyethylene 2.25 

Polyvinyl chloride 3.18 

Teflon 2.1 

Water 80.4 

Air (1 atm) 1.00059 

 

The unit of capacitance is the farad (F), while the SI system unit are s4A2m-2kg-1. 

Connection with other electric units is given by the following equation: 

 

J

C

V

C

V

Ws

V

J

V

As
F

2

22
       (2.3) 

 

Real capacitors is always connected with equivalent serial resistance (ESR) caused by 

Ohmic resistance of the used materials. The charge of capacitors with electrical circuit, 

shown in Fig. 2.2, is linear function of time. Discharge starts with small voltage drop, 

defined by value of ESR, and proceed linearly to zero voltage, Fig. 2.2. 

 The energy, W, stored in an electric capacitors can be evaluated [32]: 

 

q
C

Q
QUW ddd          (2.4) 

 

C

Q
QQ

C
Q

C

Q
W

QQ

2
d

1
dd

2

00
        (2.4) 
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or: 

 

2
2

)(
2

1

2

1

2
UCUQ

C

Q
W        (2.5) 

 

 

Figure. 2.2. Charge and discharge of electric capacitors with direct current. 

 

The power, P, of electric capacitors is dependent on time of discharge and can be 

estimated by following equation: 

 

2)(
2

1
UC

tt

W
P 





        (2.6) 

 

The maximum power is determined by the value of the equivalent serial resistor (ESR), 

when external resistance is zero (R = 0), according to the equation [30]: 

 

ESR4

)( 2

max

U
P


          (2.7) 

 

Electrical capacitors usually has capacitance between 1 pF to few hundred µF, and can 

store huge power depending on size, for example 10 kW. But the typical discharge 
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times are in the range of micro to milli-seconds, so the stored energy are relatively low, 

see Table 1.1, and does not have appropriate values to be used as energy sources.  

 

 

2.2. Electrochemical capacitors 

 

In principle, electrochemical capacitors or supercapacitors are governed by the same 

basic principles as conventional electrostatic capacitors. However, they incorporate 

electrodes with much higher surface areas A, and much thinner dielectrics that 

decreased distance, d, between the electrodes. By the development of electrochemistry, 

the new type of electrochemical supercapacitors were developed. The first 

electrochemical supercapacitors (or sometime ultracapacitor) were developed in the 

early 1950s, by General Electric, which engineers began experimenting with porous 

carbon electrodes and electrolytes, in the design of capacitors. The principle of these 

devices was based on existence of the electrochemical double layer which exist on 

every conductor – electrolyte interfaces due adsorption of different ions from the 

electrolyte, as shown in Fig. 2.3 [33]. Accumulated charge and potential drop across 

boundary layer provoke the capacitance of the electrode. The typical value of the 

electrochemical double layer capacitance for ideally smooth electrode is 20 µF cm-2. So, 

by using high surface area materials, the capacitance can dramatically increase. 

 

Figure. 2.3. Schematic representation of the electrochemical double layer [33]. 
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2.3. Types of electrochemical supercapacitor 

 

 In principle, electrochemical supercapacitors can be divided in a three main 

groups, as shown in Fig. 2.4 [30]: 

 

1) Electrochemical double layer capacitors (EDLC) 

2) Pseudocapacitors 

3) Hybrid (or asymmetric) capacitors 

 

Each group of supercapacitors is characterized by its unique mechanism for storing 

charge [30]. These are, respectively, non-Faradaic (double layer capacitors), Faradic 

(pseudocapacitors), and a combination of the two (hybrid capacitors). Non-Faradic 

mechanism, does not involve a chemical reaction mechanism. Rather, charges are 

distributed on surfaces by physical processes that do not involve the making or breaking 

of the chemical bonds. Faradic processes, such as oxidation-reduction reactions, contain 

the transfer of charge among electrode and electrolyte. 

 

 

Figure 2.4. Taxonomy of the supercapacitor materials [34] 
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Development of the supercapacitors was connected with development of the materials 

used for electrode preparations, Fig 2.5 [35]. 

 

 

Figure 2.5. Development of of the supercapacitor materials [35].  

 

In 1950’s double layer capacitor was first developed [35]. This devices usually 

used high surface carbon materials like: porous carbons, activated carbon, graphite, 

graphene, carbon onions, nanotubes, etc [36]. Following stage was development of 

pseudocapacitive materials in the beginning of 1970’s. Those materials can be divided 

in materials with fast surface redox pseudocapacitance due to adsorption and/or fast 

intercalation of ions, for examples: hydrated RuO2, birnessite MnO2, Ti3C2, NiO, Co2O3 

etc. After discovery of conducting polymer or intrinsically conducting polymers 

(ICP’s) in 1977. which was distinguished in the form of Nobel Prize in chemistry 

received by MacDiarmid, Heeger and Shirakawa [37,38,39], those materials was very 

fast introduced as materials for pseudocapacitors. The firs group suffer from low energy 

and possess high power density, and the second suffer from low cyclability, so the next 

stage which started at 1993. combine those two materials in the hybrid asymmetric 

devices. For example combination of negative carbon and positive metal oxide 

supercapacitors. During the time, for both electrode, composite materials has been 

investigated, for example combining conducting polymers deposited on the activated 

carbons. Recently, combination of ECDL or pseudocapacitive materials with battery 

type materials, with increased energy and moderate power density, like: Nb2O5, 

LiCoO2, LiFePO4 in the form of battery type supercapacitors so called “supercapattery”, 

have begun to examine [12,13,36].  
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2.4. Principles and materials of electrochemical supercapacitors 

 

2.4.1. Electrochemical double layer supercapacitors 

 

Electrochemical double layer supercapacitors use for both electrode the same material 

based mainly on some high surface carbon materials. Schematic presentation of an 

electrical double-layer supercapacitor is shown in Fig. 2.6 [40]. Because, both electrode 

are the same, such supercapacitors is usually named symmetric supercapacitors. Two 

electrode are in an electrolyte, and separated by a separator. Due high corrosion 

resistivity of the carbon materials many different electrolytes like: acid, strong bases or 

neutral solutions could be used.  

 

Figure 2.6. Representation of a charged electrochemical double layer capacitor [40]. 

 

In Fig. 2.7a the typical rectangular shape cyclic voltammogram recorded for a 

symmetric carbon/carbon electrochemical capacitor in 1 M H2SO4 electrolyte is shown 

[41]. The galvanostatic charge/discharge profile of the cell is nearly triangular with a 

Coulombic efficiency of over 97%, as can be seen in Fig 2.7b. The shape of the 

galvanostatic charge/discharge profile for each individual electrode is also nearly 

triangular, as can be seen in Fig. 2.7c. 
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Figure 2.7. Cyclic voltammogram (a), galvanostatic charge/discharge profiles for the 

cell (b, left axis) and separately for positive and negative electrodes (c, right axis) of a 

symmetric carbon/carbon electrochemical capacitor with 1 M H2SO4 electrolyte, at 

current density of 90 mA g−1. [41] 

 

Different forms of carbon materials that can be used to store charge in EDLC electrodes 

are: activated carbons, carbon aerogels, carbon nanotubes, carbon fibers, graphite and 

graphene as well as their functionalized, oxidized and reduced forms [40]. The 

capacitive properties of different carbon materials are given in Table 2.2. [42, 43]. 

 

Table 2.2. The capacitive performance for carbon electrodes [42, 43] 

Materials Specific surface area, m2 g-1 Density 

g cm-3 

Capacitance 

F g-1 

Capacitance 

F cm-3 

Activated carbon 1000-3500 0.4 - 0.7 < 200 < 80 

Functionalized porous carbon 300-2200 05 - 0.9 150 - 300 < 180 

Carbon nanotubes (CNT’s) 150 - 200 0.6 50 - 100 < 60 

Carbon cloth 2500 0.4 100-200 40-80 

Activated carbon fibers (ACF) 1000-3000 0.3-0.8 120 - 370 < 150 

Carbon aerogels 400-1000 0.1-0.7 100-125 < 80 

Graphene 900 0.1 - 2.0  

mg cm-2 

100-120 - 

 

Activated carbons are made from many different materials like coconut shell, peat, hard 

and soft wood, lignite coal, bituminous coal, olive pits and various carbonaceous 

specialty materials [43]. Activated carbon with highly porous adsorptive medium that 

has a complex structure composed primarily of carbon atoms. The networks of pores in 

the activated carbons are channels created within a rigid skeleton of disordered layers of 

carbon atoms, linked together by chemical bonds, stacked unevenly, creating a highly 

porous structure of nooks, crannies, cracks and crevices between the carbon layers, as 

can be seen in Fig. 2.8. The active carbons possess macro, mezzo and micro porosity. 
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Figure 2.8. SEM images of an activated carbon materials [43]. 

 

Carbon nanotubes. A significant nanoparticle discovery that came to light in 1991 by 

Japanese researcher Sumio Iijima [44] was carbon nanotubes (CNT’s). Where buck-

balls are round and nanotubes are cylinders [45]. Carbon nanotubes are composed of 

carbon atoms linked in hexagonal shapes, with each carbon atom covalently bonded to 

three other carbon atoms. Carbon nanotubes have diameters as small as 1 nm and 

lengths up to several centimeters. Although, like buck-balls, carbon nanotubes are 

strong, and they are not brittle. Carbon nanotubes that have only one cylinder are called 

single-walled carbon nanotubes (SWCTs) with diameters ranging from 0.5 to 1.5 nm 

and lengths ranging from 100 nm up to several micrometers, Fig. 2.9. Carbon nanotubes 

can occur as multiple concentric cylinders of carbon atoms, called multi-walled carbon 

nanotubes (MWCTs), Fig. 2.9 [45]. SWCNT is formed by only one rolled-up graphene 

sheet, while MWCNT is composed of more than one rolled-up concentric graphene 

sheet having larger diameters (more than 100 nm) and lengths ranging from 0.1 to 50 

µm. [44]. 

 

Figure 2.9. Schematic representation of single-walled carbon nanotubes (SWCNT) and 

multi-walled carbon nanotubes (MWCNT). [45] 

http://www.google.rs/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwiT2O78v8HQAhXDBBoKHfMxB7UQjRwIBw&url=http://jdr.sagepub.com/content/early/2013/05/15/0022034513490957/F1.expansion.html&psig=AFQjCNHMJUOiZ1Qp4lLLoGdxj94WpW9Kyw&ust=1480080122376750
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Graphene. is an allotrope of carbon in the form of a two-dimensional, atomic-scale, 

honey-comb lattice in which one atom forms each vertex, Fig 2.10a [46].The material 

was rediscovered, isolated from graphite and characterized in 2004 by Andre Geim and 

Konstantin Novoselov at the University of Manchester [47].  

 

Figure 2.10. a) Graphene is a single layer honeycomb lattice of carbon atoms. b) 

Graphite viewed as a stack of graphene layers [46]. 

 

2.4.2. Symmetric pseudo-supercapacitors  

Symmetric supercapacitors based on pseudocapacitive materials, are the similar 

constructions as the ECDL supercapacitors, Fig. 2.6, but use different metal oxides or 

conducting polymers for both electrodes. There is a numerous materials which shows 

pseudo-supercapacitive properties, with high variation in specific capacitance as can be 

seen in Fig. 2.11 [42].  

 

Figure 2.11. Comparisons of the capacitive performance for carbon  

and pseudocapacitor electrode materials [42]. 
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The charge-storage mechanism of metal based pseudocapacitive materials (e.g. RuO2
, 

MnO2, NiO, Co2O3, Fe2O3 etc. [48]) are based on surface adsorption of electrolyte 

cations C+ (K+, Na+, Li+…) as well as proton incorporation according to the reactions 

for example MnO2 [49]: 

 

MnO2 + xC+ + yH+ + (x+y)e–  MnOOCxHy     (2.8) 

 

or for RuO2 [50] 

 

RuOa(OH)b + δH+ + δe-  RuOa-δ(OH)b+δ      (2.9) 

 

Figure 2.12 shows a typical cyclic voltammogram of MnO2 electrode in neutral aqueous 

electrolyte. The fast, reversible successive surface redox reactions define the behavior 

of the voltammogram, whose shape is close to that of the EDLC [49].  

 

Figure 2.12. Cyclic voltammetry of MnO2 electrode in 0.1 M K2SO4, shows the 

successive multiple surface redox reactions leading to the pseudo-capacitive charge 

storage mechanism. The upper part is related to the oxidation from Mn(III) to Mn(IV) 

and the lower part refers to the reduction from Mn(IV) to Mn(III) [49].  
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Hydrous ruthenium dioxide is one of the best and most investigated 

pseudocapacitive materials. In acidic or neutral solution voltage window is almost 2 V. 

Xai et al. [51] investigated symmetrical supercapacitors based on two identical RuO2 

electrode in 1 M Na2SO4. In Fig. 2.13 the cyclic voltammogram of positive and negative 

electrode for different ending potentials is shown. 

 

 

Figure 2.13. CVs of RuO2 electrode in various positive and negative windows  

in 1 M Na2SO4 [51]. 

 

The CVs of the symmetric RuO2/RuO2 supercapacitor between 0 and 1.6 V at 

different scan rates from 20 to 200 mV s−1 is shown in Fig. 2.14a. The shape of the 

voltammograms are similar to ECDL capacitors. The galvanostatic charge/discharge 

curves at different current densities, Fig. 2.14b, shows practically ideal triangular shape. 

The specific capacitance was in the range of 50-40 F g-1, specific energy 19-15 Wh kg-1 

with corresponding power in the range of 1000 to 10.000 W kg-1, Fig. 2.14c. The cycle 

performance is investigated in the voltage window between 0 and 1.6 V at a current 

density of 2.5 A g−1, showing some deterioration characteristics after 2000 cycles, Fig. 

2.14d. Unfortunately, very promising results of the symmetric metallic compounds 

based pseudocapacitors, have huge drawback, very high price of ruthenium based 
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compounds, relatively small energy density, and deterioration of the characteristics of 

other compounds due irreversible crystal structures changes during cyclization [51]. 

 

 

 

Figure 2.14. (a) The CVs of the symmetric RuO2/RuO2 super-pseudocapacitors (b) The 

galvanostatic charge/discharge curves of the symmetric supercapacitor at different 

current densities. (c) The specific capacitance of the symmetric supercapacitor as a 

function of current density and the Ragone plot of the full cell. (d) The cycle 

performance of the symmetric supercapacitor in the voltage window between 0 and 1.6 

V at a current density of 2.5 A g−1 [51]. 

 

Second representatives of pseudocapacitive materials are conducting polymers 

or organic metals [52]. Their conductivity is connected with existence of conjugation 

over large length of polymer chain, in which polymer units are repeated. Conducting 

polymers have backbones of contiguous sp2 hybridized carbon centers. One valence 

electron on each center resides in a pz orbital, which is orthogonal to the other three 

sigma-bonds. All the pz orbitals combine with each other to a molecule wide 

delocalized set of orbitals. The electrons in these delocalized orbitals have high mobility 
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when the material is "doped" by oxidation, which removes some of these delocalized 

electrons. Thus, the conjugated p-orbitals form a one-dimensional electronic band, and 

the electrons within this band become mobile when it is partially emptied [53]. 

Oxidation (doping) or reduction (dedoping) is an electrochemical reaction involving 

anions (p-doping) or cations (n-doping), as shown in Fig. 2.15 [54].  

 

Figure 2.15. The p-doping (a) and n-doping (b) of polymers  

as they undergo charging and discharging [54]. 

 

The doping-dedoping reaction, Fig. 2.16, involve certain numbers of anions per polymer 

units, which usually contain tree or four monomer units. The number of anions per 

polymer units is called doping degree, y. Hence if polymer units contains three 

monomer units, and in doped state with one anions, the doping degree is y = 0.33.  

 

 

 

Figure 2.16. Polypyrrole structural formula (left) and dedoping reaction (right). 
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There is a numerous different conducting polymers [17], but the most investigates are 

polyaniline (PANI), polypyrrole (PPy), polythiophene (PTh) and poly(3,4-

ethylenedioxythiophene) (PEDOT), which structures are shown in Fig. 2.17 [55].  

 

Figure 2.17. Chemical structures of the most representative conducting polymers [55]. 

 

Some of the typical characteristics of common conducting polymers are given in Table 

2.3 [22].  

 

Table 2.3. Characteristics of most common conducting polymers [22]. 

ICP’s M (monomer) 

g mol-1 

Doping level 

y 

Ctheoretical 

F g-1 

Cexp 

F g-1 

PANI 93 0.5 750 240 

PPy 67 0.33 620 530 

PTh 84 0.33 485 - 

PEDOT 142 0.33 210 92 

 

 

Wu et a. [27] examined the behavior of polypyrrole film and nanowires (with an 

average diameter of 30 to 50 nm) in 1 M KCl for use as supercapacitors electrodes. 

Figure 2.18 shows the cyclic voltammograms of the electrodes, from which is seen that 

the nanowires have an increased capacity as compared to the film electrode. 
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Figure 2.18. Cyclic voltamograms (10 mVs−1): (a) of PPy nanowires and 

(b) PPy film (m = 3 mg) [27].  

  

Figure 2.19 shows the charging and discharging curve of the electrode at 

different currents, from which can be see that PPy in the form of nanowires have a 

somewhat longer charge and discharge time of than the film electrode. 

 

Figure 2.19. Typical charge and discharge curves of of the electrodes (a) PPy 

nanowires and (b) the PPy film (m = 3 mg), at different currents:  

(a) 1.5 mA, (b) 3 mA, i (c) 6 mA [27]. 

 

Comparing the characteristics of the film electrode and the electrode of the nanowires, 

Table 2.4, it can be seen that PPy nanowires generate capacitance of 282 F g-1 and 

specific energy of 31.8 Wh kg-1 at a specific current of 1 A g-1 that is about 30% more 

than in the film electrode, which is discussed more development areas of the nanowires. 
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Table 2.4. Comparison of capacitance and specific energy of PPy film electrode and 

PPy nanowires at different specific currents [27]. 

 C / F g-1 w / Wh kg-1 

I / A g-1 PPyF PPynw PPyF PPynw 

0.5 223 305 25.1 34.3 

1.0 204 282 23.0 31.8 

2.0 169 254 19.0 28.6 

 

Wang et al. [56] investigated PPy nanotubes and granules in 1 M KCl, with the 

accent on NT’s. Figure 2.20 shows the cyclic voltammograms of PPy nanotubes at 

different scan rates. The rectangular and symmetrical profiles of cyclic voltammograms 

indicated nearly ideal pseudocapacitive nature of PPy in KCl electrolyte. Authors noted 

the PPy nanotubes have higher current density than those of PPy granules at the same 

scan rate, indicating a much larger specific capacitance of PPy nanotubes. The 

galvanostatic charge–dischare curves of PPy nanotubes, Fig. 2.20b, and PPy granules, 

Fig. 2.20c, at different applied current densities confirm the good pseudocapacitive 

behavior. The specific capacitance obtained from discharging curves shows that 

nanotubes possess almost double capacitance, Fig. 2.20d. 

 

Figure 2.20. (a) CV curves of PPy nanotubes; galvanostatic charge–discharge plots of 

(b) PPy nanotubes and (c) PPy granules; (d) specific capacitance as a function of current 

density [56]. 
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Mu et al. [57] investigated chemically synthetized polyaniline using D-tartaric acid (D-

TA) as a dopant anion. They investigated PANI powder attached to glassy carbon 

electrode by Nafion, in 1 M H2SO4, using the cyclic voltammetry, Fig. 2.21a, and 

charge-discharge at constant current, Fig 2.21b. In the current density range from 1 to 

10 A g-1, specific capacitance decreases from 620 to 500 F g-1, Fig. 2.21c. Specific 

energy was in the range of 55 to 45 Wh kg-1 with the corresponding specific power in 

the range of ~100 up to 4000 W kg-1. It should be mentioned that Authors investigated 

behavior in both oxidation PANI states emeraldine and perningraniline, so fast 

deterioration of the characteristics was observed, ~30% after 500 cycles, Fig. 2.21d. 

 

Figure. 2.21. a) CV curves of PANI-(D-TA) nanotubes electrodes with the [D-

TA]/[An] ratio of 1:1 at various scan rates in 1 M H2SO4. b) Galvanostatic 

charge/discharge curves of PANI-(D-TA) electrodes at various current densities; (c) 

discharge capacitances at various current densities in 1 M H2SO4. Variations of the 

specific capacitances of PANI-(D-TA) electrodes as a function of cycle number 

measured at a scan rate of 50 mV s-1 and (inset) CV curves of PANI-(D-TA) at the first 

and 500th cycle. (Adopted from ref. [57]). 
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Symmetric conducting polymer pseudocapacitors are rarely investigated, mainly due to 

the small voltage windows. On such example is reported by Chen et al. [58] who 

investigated symmetric pseudocapacitors based on polyaniline nanofibers (NF) and 

nanotubes (NT) in 1 M H2SO4. The characterization of such device using different 

electrochemical techniques are shown in Fig. 2.22a)-f). Figures 2.22a and b show the 

cyclic voltammetry and galvanostatic charge – discharge curves of PANI-NT’s 

pseudocapacitors. The operating voltage range is limited to 0.7 V. The cyclic 

voltammogram tests demonstrate that some redox reactions occur during the charge and 

discharge process. A pair of redox peaks that appears during the charge and discharge 

process for different scan rates are resulted from Faradaic transformation of the 

emeraldine–pernigraniline form of polyaniline. Specific capacitance of PANI-NT’s are 

in the range of 500 F g-1 while for PANI-NFs around 400 F g-1, Fig. 2.22c. From Fig. 

2.22e it can be seen that NT’s shows some improvement in characteristics, with 

estimated energy density of 25 Wh kg-1, and specific power of ~3.6 kW kg-1 at current 

of 5 A g-1.  

 

Figure 2.22. Electrochemical performance of PANI pseudocapacitors in acidic aqueous 

electrolytes (1 M H2SO4). (a) Cyclic voltammograms of PANI-NT pseudocapacitors at 

different scan rates. (b) Galvanostatic charge–discharge curves of PANI-NT 

pseudocapacitors at different current densities. (c) Specific capacitance vs. current 

density for PANI-NF and PANI-NT pseudocapacitors. Comparison of (d) cyclic 

voltammetry, (e) galvanostatic charge–discharge, and (f) electrochemical impedance 

spectroscopy curves of PANI-NT and PANI-NF [58]. 

javascript:popupOBO('CMO:0000794','C3TA00499F')
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Recently, Wang et al. [59] reported a facile approach in fabrication of the mesoporous 

PANI film on ultra-thin graphene nanosheet (G-mPANI) hybrid by in situ 

polymerization using graphene-mesoporous silica composite as template, which cyclic 

voltammograms and charge-discharge curves are shown in Fig. 2.23a-b. Owing its 

mesoporous structure, over all conductive network, G-mPANI electrode displays a 

specific capacitance of 749 F g-1 at 0.5 A g-1 with excellent rate capability, remains 73% 

even at 5.0 A g-1, much higher than that of pristine PANI electrode, 315 F g-1 at  0.5 A 

g-1, 39% retention at 5.0 A g-1 in 1 mol L-1 H2SO4 aqueous solution. More interestingly, 

the G-mPANI hybrid can maintain 88% of its initial capacitance compared to 45% for 

pristine PANI after 1000 cycles, suggesting a superior electrochemical cyclic stability. 

They also reported capacitance and Ragone plot for symmetric device, Fig. 2.23c and d. 

 

Figure 2.23. (a) CV curves of the as-prepared G-mPANI electrode at different scan 

rates from 5 to 100 mV s-1. (b) Galvanostatic charge-discharge curves of G-mPANI 

electrode. (c) Specific capacitance at different current densities and (d) Ragone plots of 

PANI- and G-mPANI-based symmetric supercapacitors measured in 1.0 mol L-1 H2SO4 

aqueous electrolyte [59]. 
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The performance of some symmetric and asymmetric supercapacitors based on 

different materials with pseudocapacitive properties such as several conducting 

polymers (ICPs) and amorphous manganese dioxide (α-MnO2) is reported by 

Khomenko et al. [60], and shown in Table 2.4. Even the obtained maximum power 

density is in reasonable range, it is obvious that symmetric devices suffers from low 

energy contents. Improvement in energy is visible for the asymmetric configurations. 

 

Table 2.4. Electrochemical characteristics of symmetric and asymmetric 

capacitors based on different active materials, adopted from Ref. [60]. 

Positive materials Negative materials U  

V 

w  

Wh kg-1 

Pmax 

kW kg-1 

ESR 

Ω cm-2 

PANI PANI 0.5 3.13 10.9 0.36 

PPy PPy 0.6 2.3 19.7 0.32 

PEDOT PEDOT 0.6 1.13 23.8 0.27 

MnO2 MnO2 0.6 1.88 3.8 1.56 

MnO2 PANI 1.2 5.86 42.1 0.57 

MnO2 PPy 1.4 7.37 62.8 0.52 

MnO2 PEDOT 1.8 13.5 120.1 0.48 

 

 

2.4.3. Hybrid supercapacitors 

Hybrid supercapacitors attempt to exploit the relative advantages and mitigate the 

relative disadvantages of EDLCs and pseudocapacitors to realize better performance 

characteristics. Utilizing both Faradaic and non-Faradaic processes to store charge, 

hybrid capacitors have achieved energy and power densities greater than EDLCs 

without the sacrifices in cycling stability and affordability that have limited the success 

of pseudocapacitors. Research has focused on three different types of hybrid capacitors, 

distinguished by their electrode configuration [30]:  

 Asymmetric, 

 Composite, 

 Battery-type. 
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2.4.3.1. Asymmetric supercapacitors  

Asymmetric hybrids combine Faradaic and non-Faradaic processes by coupling an 

EDLC electrode with a pseudocapacitive electrode [3, 30]. In principle, as a negative 

electrode usually carbon based material is used, and as a positive some 

pseudocapacitive materials, as shown in Fig. 2.24 [61]. 

 

Figure 2.24. Schematic of an Ni(OH)2/NiOOH–porous carbon asymmetric 

supercapacitor [61]. 

 

The combination of an negative carbon electrode with a conducting polymer or metal 

oxide positive electrode received a great deal of attention [62,63,64,65]. Asymmetric 

hybrid capacitors that couple these two electrodes reduce the extent of this trade-off to 

achieve higher energy and power densities than comparable EDLCs. Also, they have 

better cycling stability than comparable symmetric pseudocapacitors [30]. 

 

For example, Park and Park [65] investigated activated carbon (AC)-polyaniline, 

hybrid asymmetric electrochemical capacitor in 6 M KOH. The capacitor is prepared by 

using polyaniline as a positive electrode and activated carbon as a negative electrode, 

which cyclic voltammograms are shown in Fig. 2.25a and b. From a constant current 

charge–discharge test, a specific capacitance of 380 F g-1 is obtained, Fig. 2.25c. The 

cycling behavior of the hybrid electrochemical capacitor is examined in a two-electrode 

cell by means of cyclic voltammetry, achieving the cycle-life of 4000 cycles. Values for 

the specific energy of 18 Wh kg-1, independent on power, and specific power in the 
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range of 20 to 1250 W kg-1, Fig. 2.25d, are obtained for a cell voltage between 1 and 1.6 

V. 

 

Figure 2.25. Cyclic voltammogram for (a) AC electrode and (b) PANI electrode at 

various potential sweep rates c) Specific capacitances of PANI–AC hybrid EC capacitor 

as function of charge–discharge current density, d) Ragone plot of PANI–AC hybrid EC 

capacitor, adopted from ref [65]. 

 

Zhou et al. [66] investigated the hierarchical CoMoO4/Co3O4 nano-composite, 

obtained using one-pot hydro-thermal method. In combination with activated carbon in 

the asymmetric supercapacitor in 3 M KOH aqueous solution as the electrolyte, an energy 

density of 31 Wh kg-1 is achieved at a power density of 7270 W kg-1. The characteristics 

cyclic voltammograms of each electrode and the cell are shown in Fig. 2.26a and b, 

while charge-discharge curve in Fig. 2.26c. From the life cycle test, it can be seen that 

no deterioration of the characteristics occurred over a 2000 cycles, Fig. 2.26d. 
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Figure 2.26. Electrochemical measurements of the asymmetric supercapacitor. Cyclic 

voltammetry (CV) curves of the CoMoO4/Co3O4 and active carbon as working 

electrodes in three-electrode system (a), cyclic voltammetry (CV) curves of the 

asymmetric supercapacitor at various scan rates (b), galvanostatic charge – discharge 

(GCD) curves of the asymmetric supercapacitor at different current densities (c), and 

cyclic performance of the asymmetric supercapacitor (d) [66].  

 

 

 In Tables 2.5 and 2.6, the summary of the asymmetric hybrid supercapacitors 

using an electrode based on activated carbon (AC) and manganese oxide in an aqueous 

electrolyte (adopted from ref. [62]), are given, it should be noted that values are given 

for device (packing factor 1/3), so for the active masses based values should be 

multiplied by 3 [62]. It can be seen that no significant improvement is achieved over ten 

year’s period. Maximum specific energy is smaller than ~10 Wh kg-1 of device with 

power in the range of 1 to 10 kW kg-1. 
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Table 2.5. Summary of the asymmetric hybrid using an electrode based on activated 

carbon (AC) and manganese oxide in an aqueous electrolyte [adopted from ref. 62] 
 Positive electrode Electrolyte U, 

V 

wa 

Wh kg-1 

Pa 

kW kg-1 

C.Lb Year 

AC Amorphous MnO2 KCl/H2O 2.0 9.6 2.7c  – 2002 

AC Amorphous MnO2 K2SO4/H2O  2.2  6.3  3.6   2004 

AC Amorphous MnO2 KNO3/H2O  2.0  7.0  4.1  –  2006 

AC MnO2 KOH/H2O 1.5 5.2d – + 2006 

AC Amorphous MnO2 K2SO4/H2O 2.2 5.8 6.3 + 2006 

AC MnO2 K2SO4/H2O 2.2 5.2d – + 2006 

AC Amorphous MnO2 K2SO4/ H2O 2.0 3.3 5.6 + 2007 

AC MnO2 nanorods Na2SO4 or K2SO4/H2O 1.8 5.7 0.7c + 2009 

AC Mesoporous MnO2 KOH/H2O 1.8 10.4 0.130c + 2009 

AC Nano-struct. MnO2 K2SO4/H2O 1.8 5.7 0.670c + 2009 

AC NaMnO2 Na2SO4/H2O 1.9 6.5 – + 2009 

AC MnO2 Neutral electrolyte 2.0 5.4d – + 2010 

AC MnO2 (NH4)2SO4/H2O 1.0 7.4d – – 2010 

AC MnO2 LiOH /H2O 1.8 6.8d 0.3d + 2010  

AC K-doped MnO2 K2SO4/H2O 1.8 5.9 0.7c + 2010 
a Values refer to the device mass. A packaging factor of 1/3 is assumed to estimate the device value whenever the values are provided for the active material mass. 

b Cycling stability is reported for a minimum of 1000 cycles. 

c Maximum power demonstrated. 

d Estimated from the available information. 

Table 2.6. Summary of the asymmetric supercapacitors using an electrode based on 

activated carbon (AC) and nickel oxide in an aqueous electrolyte [adopted from ref. 62] 
 Positive electrode Electrolyte U, V wa 

Wh kg-1 

Pa 

kW kg-1 

C.

Lb 

Year 

AC Ni oxide KOH/H2O 1.4 4.0 2.7c-

8.0d 

– 1997 

AC Ni oxide KOH/H2O 1.5–1.6 10 3 + 1997–1999 

AC Ni oxide KOH/H2O 1.23 3 6 – 1999 

AC Co/Zn doped NiOOH KOH/H2O 1.5 4.1 – – 2000 

AC Ni oxide KOH/H2O 1.3–1.4 2.8–6.2 1–1.5 + 2002 

AC Ni(OH)2 KOH/H2O 1.3 8.3 – – 2002 

AC Ni oxide KOH/H2O 1.5 – – + 2003 

AC Ni oxide KOH/H2O 1.5 4.3 6.6 + 2003 

AC Ni(OH)2 KOH/poly. 1.2 – – + 2006 

AC Ni(OH)2/CNT KOH/H2O 1.6 8.6 0.9c – 2006 

AC Ni KOH/H2O 1.0 3.9d – – 2006 

AC NiO KOH/H2O 1.0 1.6d – – 2006 

AC NiO KOH/poly. 1.6 7.3 – – 2006 

AC Co,Zn-doped Ni(OH)2 KOH/H2O 1.45 11.9 – – 2008 

AC NiO KOH/H2O 1.5 3.7 10c + 2008 

AC Porous NiO KOH/H2O 1.0–1.5 2.0d at 1.3 V – + 2008 

AC Al doped α-Ni(OH)2 KOH/poly. 1.6 14 0.4c + 2010 
a Values refer to the device mass. A packaging factor of 1/3 is assumed to estimate the device value whenever the values are provided for the active material mass. 

b Cycling stability is reported for a minimum of 1000 cycles. 

c Maximum power demonstrated. 

d Estimated from the available information. 
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2.4.3.2. Asymmetric composite supercapacitors  

 

Composite electrodes integrate carbon-based materials with either conducting polymer 

or metal oxide materials and incorporate both physical and chemical charge storage 

mechanisms together in a single electrode [30]. The carbon-based materials facilitate a 

capacitive double-layer of charge and also provide a high-surface-area backbone that 

increases the contact between the deposited pseudocapacitive materials and electrolyte. 

The pseudocapacitive materials are able to further increase the capacitance of the 

composite electrode through Faradaic reactions [30]. The synergetic mechanism could 

improve corrosion stability, increased the specific capacitance and the operating 

potential windows. For example, the composite of carbon nanotubes (CTN) and 

polypyrrole can accumulate both anions (at anodic scan) and cations (at cathodic scan), 

as can be seen in Fig. 2.27b, in contrast with pure polypyrrole [67. 

 

Figure 2.27. Cyclic voltammograms (a,b) and the simultaneously recorded mass 

changes (using quartz crystal microbalans) during the potential scan (c,d) of PPy (a,c) 

and CNT/PPy (b,d) films in aqueous KCl solution [67]. 

 



33 

 

Improvement in capacitive behavior of multiwall carbon nanotubes modified with 

different mass of the PANI, is reported by Cai et al. [68]. The improvement can be 

clearly seen in Fig. 2.28. 

 

Figure 2.28. 3 Electrochemical properties of supercapacitor wires. (a) Cyclic 

voltammogram (10 mV s-1) of a supercapacitor based on a PANI weight percentage of 

24%. (b) Galvanostatic charge–discharge (2 A g-1) curves of a supercapacitor based on a 

PANI weight percentage of 24%. (c) Dependence of specific capacitance and 

Coulombic efficiency on cycle number of a supercapacitor based on a PANI weight 

percentage of 34%. (d) Dependence of specific capacitance on the PANI weight 

percentage [68]. 

 

Many different materials have been investigated, mostly exotic [69,70,71,72] 

and very expensive (starting materials and preparation procedures) for asymmetric 

composite supercapacitors. For example, Deng et al. [73] investigated materials based 

on metal–organic frameworks-derived honeycomb-like Co3O4/three-dimensional 

graphene networks/Ni foam. Hybrid devices shows the maximum energy density of 7.5 

Wh kg−1 with the power density of 794 W kg−1 and remain 4.1 Wh kg−1 with the power 

density of 15 kW kg−1, with the decreases of 12% of the maximum capacitance after 

2000 charge-discharge cycles. Qiu et al. [74] investigated, nickel 

hexacyanoferrate/hexadecyl trimethyl ammonium bromide/graphene nanocomposites 

synthesized by reverse microemulsion. The device shows energy density of 37 Wh kg-1 
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but the power was only 80 W kg-1. Yang et al. [75] investigated asymmetric 

supercapacitor based on reduced graphene oxide/multi multiwall carbon nanotube 

(MWCNT) and carbon fiber paper/polypyrrole electrodes, Fig. 2.29. Even with such 

complex structures, they obtained specific energy in the range of ~30 to 15 Wh kg-1 

with corresponding specific power in the range of 0.7 to 7 kW kg-1, Fig. 2.29f. 

 

Figure 2.29. Electrochemical performance of CFP/PPy//RGO/cMWCNT asymmetric 

supercapacitors (a) Cyclic voltammograms of RGO/cMWCNT and CFP/PPy in three-

electrode systems (20 mV s−1). (b) Cyclic voltammograms at different potential 

windows at a scan rate of 20 mV s−1. (c) Galvanostatic charge/discharge curves at 

different potential windows at a current density of 1 A g−1. (d) Cycle performance. (e) 

Specific capacitance as a function of current density. (f) Ragone plot. [75]. 
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 Polypyrrole is also investigated by different Authors in hybrid-asymmetric 

composite supercapacitor. For examples, Song et al. [76] investigated a combination of 

functionalized partial-exfoliated graphite (FEG), polypyrrole film and nickel-cobalt 

hydroxide for asymmetric supercapacitor. In 1 M KOH, electrode based on FEG/PPy 

composites at a specific current in the range of 5-50 A g-1 shows the capacitance of 600-

400 F g-1, while cell FEG/PPy||FEG/NiCo(OH)x cell displays a specific capacitance of 

260 F g-1 at a current density of 1 A g-1, whit maximum energy density of 61 W h kg-1 at 

0.65 kW kg-1. Grote and Lein [77] studied SnO2-PPy//SnO2-MnO2 3D core/shell NT 

array as asymmetric supercapacitors in 1 M Na2SO4 which cyclic voltammograms of 

half cells reaction and complete cell, are shown in Fig. 2.30. The device exhibits a 

voltage window of 1.7 V, specific energy of 27.2 Wh kg-1 at 0.85 kW kg-1 and remains 

7.8 Wh kg-1 at 24.8 kW kg-1.  

 

Figure. 2.30. Cyclic voltammograms of half cells reaction and complete  

SnO2-PPy//SnO2-MnO2 3D core/shell NT array  

as asymmetric supercapacitors cell in 1 M Na2SO4 [77]. 

 

Liu et al. [78] investigated flexible asymmetric supercapacitors based on a new 

graphene foam/carbon nanotube hybrid film consisted of the GF/CNT/MnO2 positive 

electrode, 0.5 M Na2SO4 electrolyte-soaked separator and GF/CNT/Ppy negative 

electrode. A maximum energy density of 22.8 Wh kg-1 at 860 W kg-1 and a high power 

density of 2.7 kW kg-1 at 6.2 Wh kg-1 was obtained.  

Cheng et al. [79] investigated asymmetric composite supercapacitors made of 

activated carbon (AC) and carbon nanotubes, and an electrode made with complex 

composites Co0.5Ni0.5(OH)2/graphene/CNTs. After characterization, Figs. 2.31a-c., of 
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the half cells materials and whole asymmetric composite supercapacitors, they obtained 

a specific energy in the range of 40-25 Wh kg-1 and corresponding specific power in the 

range of 0.2-4 kW kg-1, Fig. 2.31d.  

 

 

Figure 2.31. (a) Comparative CV curves of an electrode made with activated carbon 

(AC) and carbon nanotubes and an electrode made with Co0.5Ni0.5(OH)2/ 

graphene/CNTs. (b) CV and (C) charge–discharge curves at different current densities 

of an asymmetric supercapacitor assembled using a Co0.5Ni0.5(OH)2/graphene/CNT 

positive electrode and an AC/CNT negative electrode, and (d) the corresponding 

Ragone plot of the asymmetric supercapacitor [79]. 
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2.4.3.3. Hybrids of supercapacitor and battery: “supercapattery” 

 

Similarly, to asymmetric hybrids, the battery-type hybrids couple two different 

electrodes; however, the battery-type hybrids are unique in combination of a 

supercapacitor electrode with a battery electrode. This particular configuration 

replicates the demand for higher energy supercapacitors and higher power batteries, 

combining the energy characteristics of batteries with the power, cycle life, and 

recharging times of supercapacitors [30]. From the diagram, given in Fig. 2.32, the 

possible combinations of battery type hybrid supercapacitors could be evaluated. 

ECDL materials
Pseudocapacitive
 materials

Battery
materials

Symmetric ECDL supercapacitors
High power
Low energy
Good cycle life

Symmetric pseudo-supercapacitors
Moderate power
Moderate energy
Low cycle life

Battery
High energy
Low power
Low cycle life

Asymmetric
supercapacitors

SUPECAPATTERY?
High energy 
High power
Good cycle life

Hybrid Hybrid

 

Figure 2.32. Merging the characteristics of ECDL, pseudocapacitive and battery 

materials in battery type hybrid supercapacitors. 

 

Recently, such configuration was named “supercapattery” (from: 

supercapacitors -batteries) [12, 13]. Practically, all the electrode materials of the 

commercial battery systems can be used for the battery-type electrode in the suitable 

electrolyte, from lead–acid batteries to metal/air systems. [12]. But in practice, research 

has focused primarily on using nickel hydroxide, lead dioxide, and LTO (Li4Ti5O12) and 

LFP (LiFePO4) as one electrode and activated carbon as the other [12,80,81,82,83,84]. 
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Each battery technology has its own advantages and drawbacks. For example, lead-acid 

is the inexpensive to produce, but has low cycle-life and energy density, Ni-MH has 

good power capability, but lower energy and lower cycle-life than Li-ion. 

Supercapacitor and Li-ion devices are interesting because they stand at two ends of the 

spectrum: Li-ion has the highest energy density of all systems, which can vary from 120 

to 200 Wh kg-1. Supercapacitors have the highest power density, which can range from 

2 to 5 kW kg-1 or more, combined with the highest cycle-life, on the order of hundreds 

of thousands to million cycles. But their energy density is low, from 2 to 5 Wh kg-1. 

Recently, Telcordia Technologies [85] has been developing a new device named 

nonaqueous asymmetric battery hybrid (Fig. 2.33). It aims at integrating the advantages 

of Li-ion batteries and supercapacitors, e.g. combining high energy density, high power 

capability and long cycle-life. Unfortunately, such devices are very expensive and use 

non-aqueous electrolytes. 

 

Figure 2.33. 1. Overview of the components used in the family of electrochemical 

storage devices developed by Telcordia Technologies [85]. 

 

Although there is less experimental data on battery type hybrids than on other 

types of supercapacitors, the data that is available suggests that these hybrids may be 

able to bridge the gap between supercapacitors and batteries. In spite of the promising 

results, the general consensus is that more research will be necessary to determine 
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the full potential of battery-type hybrids [30,82,83]. As a guidance in Fig. 2.34 the 

illustration comparison of the galvanostatic charging and discharging plots of a 

conventional supercapacitor, and a battery are shown, so the battery-type hybrids should 

have charge-discharge characteristics between those limiting cases. 

 

Figure 2.34. Illustrative comparison of the galvanostatic charging and discharging 

plots of a conventional supercapacitor (plot A, linear), and a battery (B nonlinear) [82]. 

 

 

2.4.3.4. Supercapattery and Supercabattery 

The electrochemical characterizations of the battery, supercapacitor and the so called 

supercapattery are illustrated in Fig. 2.35 by the schematically given response of the 

electrode materials using cyclic voltammograms (CV) and galvanostatic charging and 

discharging plots (GCD) [86]. In Fig. 2.35c, the supercapattery performance is 

presented at the device level with one electrode displaying battery like properties and 

the other displaying capacitor like properties. At the electrode materials level, one or 

both of the electrode materials can be the nanostructured composite of an EDLC 

material and a battery material. CV and GCD of the supercapattery in Fig. 2.35c are 

sufficiently similar to those of the supercapacitor. However, it is also possible that the 

battery electrode dominates over the supercapacitor electrode, and the hybrid device 

performs more like a battery as shown in Fig. 2.35a instead of Fig. 2.35c. In that case 

the energy storage capacity in a battery-like hybrid should be derived in the same way 
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as for a battery. To differentiate between capacitor-like and battery-like hybrids, 

and also to aid discussion, Chen et al. [86] propose to name the former as 

“supercapattery” and the latter “supercabattery”. 

 

Figure 2.35. Schematic illustration of the electrochemical characteristics of (a) battery, 

(b) supercapacitor, and (c) supercapattery represented by (left) the cyclic 

voltammograms and (right) galvanostatic charging and discharging plots. [86]. 

 

There are numerous combinations of capacitive, peseudocapapacitive and battery type 

electrodes in the configuration of the supercapattery and supercabattery, as can be 

evaluated from Fig. 2.36. Calculated electrode potential (black and blue lines) and cell 

voltage (dashed lines) as a function of normalized time for galvanostatic charging and 

discharging of three typical types of supercapattery [86,87,88] with Fig 2.36a a negative 
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electrode of the lithium metal or litheated carbon and a positive electrode of activated 

carbon, Fig 2.36b a lithium metal or litheated carbon as a negative electrode, and a 

pseudocapacitive positive electrode, and Fig 2.36c a negative electrode of the typical 

battery type and a pseudocapacitive positive electrode, are shown in. 

 

Figure 2.36. Calculated electrode potential (black and blue lines) and cell voltage (red 

dashed lines) as a function of normalised time for galvanostatic charging and 

discharging of three types of supercapattery [86,87,88]. 
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Up to date, there is a limited numbers of studies connected with battery type 

hybrid supercapacitors.  

Ni et al. [15] investigated system based on electrodeposited PbO2 on graphite 

substrate as a pozitive electrode, with activated carbon (AC) as a negative electrode in 

5.3 mol dm-3 H2SO4, Fig. 2.37. The AC/PbO2 supercapacitor operated from 1.88 to 

0.65V, Fig. 2.37b, and provides a specific capacitance in the range of 65 to 40 F g–1 

(based on the active masses) at a discharge currenst of 150 to 600 mAg–1. The hybrid 

system shows attractive energy and power performance. The specific energy ranges 

from 27 Wh kg–1 at a specific power of 152 W kg–1, and at a power of 691 W kg–1, the 

energy remains at 18 Wh kg–1. After 3000 deep cycles under 300 mA g-1, the capacity 

fades 20% from its initial value.  

 

Figure 2.37. Electrochemical performance of the AC/PbO2 hybrid supercapacitor in 5.3 

mol l–1 H2SO4 solution. (a) CV profiles of PbO2 film and AC electrodes at a scan rate of 

10mVs–1. (b) Charge-discharge profiles at various current rates of the hybrid capacitor. 

(c) The dependence of specific capacitance on the current densities; the inset shows a 

Ragone plot of the hybrid capacitor. (d) Cycle performance at a current of 300 mAg–1 

(10 C rate) [15]. 
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Hao et al. [89] investigated a hybrid supercapacitor based on spinel Li2Mn4O9 and 

activated carbon (AC), Fig. 2.38. The electrochemical performance of the capacitor was 

studied by cyclic voltammetry, electrochemical impedance spectroscopy and 

galvanostatic charge/discharge in different aqueous electrolytes such as 1 M LiNO3, 

Li2SO4, NaNO3 and KNO3 solution. A maximum specific capacitance of 261 F g−1 was 

obtained for the Li2Mn4O9 single electrode between 0 and 1.4 V. The AC/Li2Mn4O9 

hybrid supercapacitor showed a sloping voltage profile from 0 to 1.4 V and delivered an 

energy density of 53 Wh kg−1 based on the total weight of the active electrode materials. 

The hybrid capacitor exhibited a desirable profile and maintained over 80% of its initial 

energy density after 1000 cycles, indicating that Li2Mn4O9 has good cycling 

performance and structural stability in aqueous electrolyte. The hybrid supercapacitor 

also exhibited good rate capability, even at a power density of 1250 W kg−1, it had a 

specific energy 29 Wh kg−1 compared with 48 Wh kg−1 at the power density of about 

417 W kg−1. 

 

Figure 2.38. CV curves of (a) AC electrode and (b) the Li2Mn4O9 electrode at 5 mV s−1 

in 1 M LiNO3 solution [89]. 

 

 

Pseudocapacitive materials based on conducting polymers has been investigated 

as anode in aqueous based lithium intercalation battery but with no attempt to evaluate 

power of the system [22,90,91,92,93,94,95]. The principle of this system is based on 

anions doping/dedoping of PPy, or other ICP’s, as a negative electrode, and lithium ion 

intercalation/deintercalation of positive electrode (LiCoO2, Li2Mn2O4). During the 

charge, lithium ions deintercalate from the positive electrode into the solution and 

anions are dedoped from the negative electrode into the solution. During the discharge 
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process, lithium ions intercalate into the positive electrode, and anions are doped into 

the negative electrode [22]. For example, Wang et al. [91, 92] investigated PPy|Mn2O4 

and PPy|LiCoO2 cell in saturated Li2SO4 solution. For the PPy|Mn2O4 system, authors 

reported open circuit voltage of 1.6 V, and specific capacity of ~45 mAh g-1, while, for 

the PPy|LiCoO2 system, which cyclic voltammograms is shown in Fig. 2.39, reported 

the open circuit voltage of 1.2 V, average discharge voltage of 0.8 V, and specific 

capacity of ~30 mAh g-1. 

 
Figure 2.39. a) CVs of PPy, LiCoO2, and nickel mesh in saturated Li2SO4  

solution and b) principle of the system based on doping/undoping 

(negative) and deintercalation/intercalation (positive) electrodes [92] 

 

 

Liu et al. [96] investigated aqueous based rechargeable lithium battery consisting of a 

combination of polyaniline (PANI) anode, LiMn2O4 cathode, and a saturated LiNO3 
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electrolyte, Fig. 2.40. They obtained an average discharge voltage of the battery about 

1.1 V. Also it is observed that during 52 initial cycles, there is an activation process for 

this battery, Fig 2.40c. After the 52nd cycle, it continues to run 98 cycles, battery loses 

~20% of its discharge capacity. The can battery delivers a capacity of 90 mAh g−1 at the 

150th cycle.  

 
 

Figure 2.40.  a) CVs of PANI, LiMn2O4, and steel mesh in saturated LiNO3 solution. b) 

Charge and discharge profiles (b) and cycle life data (c) of the battery based on doping 

PANI and intercalation (LiMn2O4) compounds at a current density of 75 mA g−1 

[adopted from ref. 96]  

 

Unfortunately, lithium based systems are very expensive due high price of 

lithium salts. The classical battery systems based on, for example zinc or lead, and 

polypyrrole or polyaniline as the electrode materials in the aqueous electrolyte which 

could show supercapattery characteristics has been rarely reported [97,98,99,100,101] 

 

A schematic Ragone plot, Fig. 2.41 show the position of supercapattery relative 

to other energy technologies [35].The energy-power curve for the novel supercapattery 

concept is shown bridging the gap between the high power of conventional 

supercapacitors and the greater energy storage of batteries.  

To summarize, supercapacitors can deliver up to 10 Wh kg-1 of specific energy 

and up to 10 kW kg-1 of specific power. Battery can deliver more specific energy up to 

100 Wh kg-1, but with reduced specific power <100 W kg-1.  

Hence, the system which will have specific energy up to 100 Wh kg-1, and 

increased specific power >1000 W kg-1 could be considered as an supercapattery 

systems. 
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Figure 2.41. A schematic Ragone plot showing the position of supercapattery relative to 

other energy technologies [35].The energy-power curve for the novel supercapattery 

concept is shown bridging the gap between the high power of conventional 

supercapacitors and the greater energy storage of batteries. 
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2.5. Synthesis and characteristics of the polypyrrole and polyaniline 

 

As mentioned, the battery systems based on, for example zinc or lead, and polypyrrole 

or polyaniline as the electrode materials in the aqueous electrolyte which could show 

supercapattery characteristics has been rarely reported. So, the aim of this thesis is to 

investigate possible characteristics of classical battery well studied lead sulfate electrode 

in combination with polypyrrole and polyaniline. For that reasons in following chapters 

the characteristics of polypyrrole and polyaniline will be presented. 

 

2.5.1. Synthesis and characteristics of the polypyrrole 

 

Polypyrrole can be synthetized chemically using an oxidizing agents (for 

example ammonium persulfate) or electrochemically [102,103]. Electrochemical 

synthesis could be performed potetiodynammially (using cyclic voltammetry, CV), 

galvanostatically (under constant current, GS), and potentiostatically (at constant 

potential, PS) techniques, as shown in Fig. 2.42 [104].  

 

Figure 2.42. Synthesis of polypyrrole thin films by different electrodeposition modes: 

a) cyclic voltammetry (CV) mode by scanning between 0 and + 0.9 V for 12 cycles; b) 

galvanostatic (GS) mode at 10 mA/cm2 for 5 min; and c) potentiostatic (PS) mode at 0.8 

V (vs Ag/AgCl) for 3 min. 0.1 mol/L of distilled pyrrole and 0.5 mol/L H2SO4 [104] 

 

The mechanism of the electrochemical polymerization of the pyrrole, described 

by Diaz et al. [105,106] which was later supported by the theoretical studies of Waltman 

et al. [107,108] is the most often discussed mechanism in the literature [109,110]. 

According to Diaz's approach, schematically shown in Fig 2.43, following the first 
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electrochemical step (E), which consists of the oxidation of the monomer into a radical 

cation, the coupling of the two radicals cations results in the formation of a dihydro 

dimer-cation. Consecutively, the chemical step (C) occurs, which leads to dimer 

formation followed by the loss of two protons and rearomatization. Because of the 

extended conjugation over two rings, having lower oxidation potential than the 

monomer, the dimer readily oxidizes to form the radical cation (E) and undergoes 

coupling with a monomeric radical. Electropolymerization is proposed to proceed 

through to a general E(CE)n mechanism, in which consecutive electrochemical and 

chemical steps takes place until the oligomers become insoluble and precipitate onto the 

electrode surface as polypyrolle [111].  

 

Figure 2.43. Proposed mechanism for electropolymerization 

of pyrrole by Diaz et al. [105, 109] 

 

However, further studies have shown the presence of many other competitive 

multistep reactions, and the susceptible nature of the radical cation intermediates 
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regarding the nucleophilicity of the polymerization medium [112]. Typically, one 

electron is removed from the polymeric backbone for every three to four monomer 

units, which results in the intrinsic electrical conductivity and provides a delocalized p-

electron band structure. In the oxidized state, the polymer is charge balanced with 

anions, termed also as 'dopants', which are incorporated into the chain to maintain 

electrical neutrality.  

Schematic illustration of the electrochemical oxidation process in polypyrrole, 

starting from the neutral-insulating state (top) to a partially oxidized state (middle) to 

the fully oxidized conducting state (bottom) with corresponding cyclic voltammogram 

is presented in Fig. 2.44. To retain charge neutrality, an anion (A-) is inserted into the 

material for each positive charge on the chain. Fully doped, the dopant concentration in 

PPy is approximately 1 dopant for every 3-4 pyrrole rings [113]. 

 

 

 

 

Figure 2.44. PPy at different oxidation levels. Anionic dopants (A–) are incorporated 

to maintain charge neutrality in the oxidized state (right). Cyclic voltammogram of the 

PPy in 0.1 M HCl (right) 

 

The molecular structures of protonated polypyrrole (polypyrrole salt) proposed 

in the literature to a certain degree vary [114], but there is agreement about the structure 

of the polypyrrole base (undoped state) obtained after deprotonation, which is composed 
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of both the oxidized and reduced pyrrole constitutional units, Fig. 2.45. The localization 

of positive charges on polymer chain, as well as the presence of unpaired spins, 

polarons, detected by electron paramagnetic resonance, is still open to discussion.  

 

Figure 2.45. Conducting polypyrrole salt converts to non-conducting 

polypyrrole base under alkaline conditions.  

HA is an arbitrary acid, A− a corresponding counter-ion [114]. 

 

The rearrangement of electrons within polypyrrole chain that lead to the formation of 

charge carriers was proposed by Stejskal et al. [114] (Fig. 2.46). The rearrangement of 

electrons in polypyrrole salt may generate bipolarons and finally polarons by 

delocalization over the polymer chain, as shown in Fig. 2.46. Polarons act as charge 

carriers. 

 

Figure 2.46. The rearrangement of electrons in polypyrrole salt [114]. 
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Above the certain potentials, e.g. 0.5 V in Fig. 2.44, the undesirable reaction so 

called overoxidation, which leads to corruption of conjugation and loss of conductivity, 

could occur. The overoxidation is an irreversible degradation process that results in the 

shortening of the polymer chain length and/or formation of defects and pores along the 

PPy chain [115]. Figure 2.47 shows the sequence of reactions that occur during the 

overoxidation in the presence of small amount of the oxygen in the electrolyte. So, to 

avoid this phenomena the charging potentials must be limited to a certain value. 

 

 

Figure. 2.47. Reaction that occur during the overoxidation of the polypyrrole [115]. 

 

 

2.5.2. Synthesis and characteristics of the polyaniline 

 

Similarly like polypyrrole, polyaniline can be electrochemically synthetized applying 

mostly galvanostatic and cyclic voltammetry techniques, as shown in Fig. 2.48 [116]. 

During the cyclic voltammetry synthesis, throughout each step polyaniline film grow to 

the desirable thickness, which can be calculated by the determination of pased charge 

through each cycle. During the galvanostatic synthesis, after applying certain current 

density the polymerization occurred at constant potentials. Galvanostatic synthesis is 

favorable due easy control of film thickens simply by measuring the polymerization 

time. The film synthesis is usually performed on an inert electrode materials, like 

platinum, gold or different carbon based materials due high polymerization potentials. 
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Figure 2.48. Electrochemical synthesis of polyaniline at graphite electrode by cyclic 

voltammetry (v = 20 mV s-1) from 1.0 mol dm-3 HCl containing 0.25 mol dm-3 aniline.  

Insert: Chronopotenciometric curve (j = 2.5 mA cm-2) of electrochemical synthesis of 

polyaniline from the same electrolyte [116]. 

 

The most generalized polymerization mechanism of aniline was suggested by 

Wei et al. [117, 118] which schematic representation is shown in Fig. 2.49. According 

to the authors, the rate determining step in the polymerization of the aniline is the 

oxidation of aniline monomer to form dimeric species (i.e. p-aminodiphenylamine, 

PADPA, N-N9-diphenylhydrazine and benzidine), because the oxidation potential of the 

aniline is higher than those of dimers, subsequently formed oligomers and polymer. 

After formation, the dimers are immediately oxidized and then react with an aniline 

monomer via an electrophilic aromatic substitution, followed by further oxidation and 

deprotonation to afford the trimers. This process is repeated, leading to the formation of 

polyaniline. 
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Figure 2.49. Mechanism of the aniline polymerization, 

proposed by Wei et al. [117, 118]. 

 

Chemically, PANI consists of “y” reduced benzenoid diamine and “1-y” oxidized 

quinoid diamine repeating units, where the oxidation state of PANI depends on the 

value of “y.” as shown in the scheme below. Leucoemeraldine, emeraldine, and 

pernigraniline are the three different redox forms of PANI having y : (1-y) ratio as 1:0; 

1:1, and 0:1, respectively [119]. 

 

 

Predominately quinoid diamine repeating units groups in PANI chains can be further 

protonated in the presence of H+ (acidic) ion or the dopant (X-) anion to generate the 

cationic defects (polarons, bipolarons) that are responsible for the conductivity and 
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redox behavior of PANI. The shown stucture of the polyaniline is the only conducting 

and called emeraldine salt [119]. 

 

The unprotonated and protonated forms of PANI are known as base and salt, 

respectively. Figure 2.50 shows different base and salt forms of PANI in its three redox 

forms [119]. Conclusively, the conductivity of PANI can be tuned by using different 

doping agents, varying the extent of doping, and also by controlling the chain length and 

morphology including the dimensions and porosity of PANI. 

 

Figure 2.50. Basic structure of PANI and different redox forms 

of PANI with its doped states [119]. 

 

Even though the electrical properties of PANI are strongly related with the 

presence of polarons the bipolaron–polaron relationship, it is important to characterize 
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the doping state of PANI-based materials [120]. Figure 2.51 shows that further 

protonation of the polymeric chains (termed overdoping) may lead to the decrease of 

polaron population, due its conversion to bipolarons. Considering that the conduction 

mechanism is associated with polarons, the overdoping of polymeric chains is 

unfavorable for the electronic properties of PANI. This effect was reported for PANI 

doped in very high acidic media, such as 75% sulfuric acid. Besides protonation aspects, 

conformational changes of the polymeric chains may also occur, inducing the formation 

of a high number of polarons by the organization of the polymer backbone. Therefore, 

this effect (called secondary doping) may lead to a great improvement of the electrical 

properties of PANI and is one of the most desirable features for designing hybrid 

materials of PANI. 

 

Figure 2.51. Rearrangements between polarons and bipolarons in the polyaniline [120]. 

 

Cyclic voltammogram of the polyaniline electrode in 0.5 mol dm−3 HCl for 

different anodic potential limits are shown in Fig. 2.52 [121].First anodic peak 

occurring at potential of about 0.25 V could be connected to doping of polyaniline with 

chloride anions via transition of leucoemeraldine form of PANI to emeraldine salt, 

while further increase of the potential above 0.50 V represents transition of emeraldine 

salt to pernigraniline salt. Between these two well defined anodic peaks, small peak at 

potential of about 0.45 V could be assigned to degradation reaction of PANI. Different 

forms of PANI oxidation states wich exist in different potentials are schematically 

represented in Fig. 2.53 [121]. Leucemeraldine is fully reduced form with doping 
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degree, y = 0, emeraldine salt is half oxidized form (y = 0.5), while pernigraniline salt 

refers to fully oxidized form (y = 1). 

 

Figure. 2.52. Cyclic voltammograms of PANI electrode in 0.5 mol dm−3 HCl for anodic 

potential limits from 0.3 to 1.1 V (SCE), v = 20mVs−1 [121]. 

 

 

Figure 2.53. Generalized scheme of electrochemical reactions of various PANI 

oxidation forms [121]. 
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3. EXPERIMENTAL 

 

3.1. Polypyrrole - lead sulfate system 

 

Polypyrrole was synthesized galvanostatically with current density of 2 mA cm-2 

from electrolyte containing 0.1 M pyrrole (Aldrich p.a, previously distilled under 

reduced pressure), and 1 M H2SO4 (p.a., Merck) onto the plane 1.5 cm × 4 cm, A = 6 

cm2, graphite electrode with polymerization charges of 3.6 mAh, which corresponds to 

4.8 mg of the doped polypyrrole.  

Lead-lead sulfate electrode was prepared on pure lead (>99.9%, Alfa Aesar 

GmbH & Co KG, Germany) of 1.5 cm ×4 cm, A = 6 cm2, according to modified Planté 

formation process as previously reported [122]. In order to remove lead oxide, naturally 

formed in the air, the lead sample was dipped in 8 M HNO3 for 30 s, and rinsed with 

distilled water prior to immersion in 1 M H2SO4 and 0.05 M KClO4 (p.a. Merck) for the 

formation process. The lead electrode was initially pre-treated cathodically at constant 

current of 6 mA during 5 min, and then oxidized to PbO2 galvanostatically 750 s with 

current of 6 mA. Lead sulfate electrode was prepared galvanostatically by reduction of 

PbO2 to Pb and then oxidized to PbSO4 in the same electrolyte at a current of 6 mA. The 

corresponding synthesis charge was 1.25 mAh, with a calculated mass of PbSO4 of 7.1 

mg. 

Electrodes were from one side protected by the epoxy. Before experiments, the 

electrodes were mechanically polished with fine emery papers (2/0, 3/0 and 4/0, 

respectively) and degreased in acetone in an ultrasonic bath. 

All experiments were conducted in 1 M H2SO4 with 0.5 M (NH4)2SO4 (p.a. 

Merck) using saturated calomel electrode as the reference, and in some cases Pt-mesh as 

a counter electrode. Electrochemical cell was made from plexiglass, with a volume of 

100 cm3, equipped with Luggin capillary for reference electrode, as shown in Fig.3.1. 

Experiments were performed using Gamry PC3 potentiostat/galvanostat, and cell 
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voltage was acquired with digital voltmeter ISO-Tech IDM 73, interfaced to a PC via 

RS-232. 

 

Figure 3.1. Assembly of the electrochemical cell. 

 

 

3.2. Polyaniline - lead sulfate system 

Polyaniline (PANI) was synthesized from aniline monomer (ANI, p.a. Merck) with 

concentration of 0.25 M in 1 M H2SO4 aqueous solution. Prior to use aniline was 

distilled under reduced pressure. Synthesis was carried out by the galvanostatic method 

with the current of 15 mA for 1900 s (7.9 mAh) onto a plane graphite electrode with 

dimensions 1.5 cm (4 cm, A = 6 cm2, platinum gauze counter, and saturated calomel as 

the reference electrode. Lead sulfate was synthesized by the oxidation of one side of the 

thin lead foil with dimensions 1.5 cm  4 cm, A = 6 cm2, first to spongy lead dioxide, 

and then by reduction of lead dioxide to lead sulfate. Oxidation was conducted with a 

current of 9 mA over 450 s (1.125 mAh) in solution contained 1 M H2SO4 with the 

addition of 0.05 M KClO4 as an oxidizing agent. Formation of the Pb|PbSO4 electrode 

was performed in pure 1 M H2SO4, by the oxidation of lead sulfate to lead dioxide, and 

then by reduction of the dioxide to sulfate, and sulfate to pure spongy lead, with a 

current of 6 mA. Procedure of charge-discharge of lead sulfate to lead and vice versa, 

was repeated until stable charge-discharge curve was obtained, typically three times. 

The half-cells reactions, and the determination of the cell performances were conducted 

in 1 M H2SO4, because the addition of 0.5 M (NH4)2SO4 leads to the poorer 
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characteristics of the polyaniline electrode. 

 The electrochemical experiments were conducted using Gamry PC3 

potentiostat/galvanostat, in the Plexiglas cell with a volume of 100 cm3, equipped with 

saturated calomel electrode for potential measurement, as shown in Fig. 3.1. The 

voltage of the cell was recorded using Peak Tech 4390 USB DMM, digital voltmeter 

connected to PC via USB cable. 

 

 

3.3. Characterization methods 

 

For the UV–vis study of as synthesized polypyrole and polyaniline, the product 

was after synthesis scratched from the graphite electrode surface using a plastic knife, 

and well ground in an agate mortar. The small amounts of solid product, ∼3 mg was 

added to 10 ml of 1 M H2SO4, sonicated in an ultrasound bath for 30 min, and finally, 

after the precipitation of the larger particles that lasted one hour, 3 ml of the solution 

was analyzed with an UV–vis LLG uniSPEC 2 spectrometer.  

 

For the XRD study of as synthesized PbSO4, the same procedure as for the 

electrode preparation was applied, only the oxidation was conducted for 2000s, to 

minimize the influence of pure lead from the electrode bulk. The XRD pattern of the 

samples was recorded with an Ital Structure APD2000 X-ray diffractometer in a Bragg–

Brentano geometry using CuKα radiation and the step-scan mode (range: 15–65° 2θ, 

step-time: 0.50 s, step-width: 0.02°). 
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4. RESULTS AND DISCUSSION 

 

4.1. Supercapacitor based on polypyrrole and lead-lead sulfate 

 

 Figure 1 shows galvanostatic synthesis of the polypyrrole. Electro-

polymerization of the pyrrole occurred in the potential range of 0.55 to 0.65 V via 

following reaction: [123]: 

 

 nPy + nySO4
2- = [PPy2y+(SO4

2-)y]n + 2nH+ + (2 + zy)ne   (4.1) 

 

where y is dopping degree and z anion charge.  
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Figure 4.1. Galvanostatic synthesis of the polypyrrole in 1 M H2SO4 + 0.1 Py. 

 

The most widely accepted mechanism for pyrrole polymerization was proposed by Diaz 

et al. [105 , 106]. The first stage of the reaction is the oxidation of monomer molecules 

yielding radical cations with the radical state delocalized over the pyrrole ring. The 

radical cations dimerise, in the rate-controlling step, during which two protons are 
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expelled. The dimers, owing to stronger conjugation, are more readily oxidized under 

the given reaction conditions than the monomer. The chain growth proceeds by addition 

of a newly formed radical cation to an oligomeric one. The anodic oxidation, which 

results in the formation of conducting polymer, has the stoichiometry of (2+zy)F per 

mole of monomer. Of those, only 2F mol-1 are related to the polymerisation, and extra 

charge zyF, to the oxidation (doping) of the polymer film, usually in the PPy2y+, 

bipolaronic states [124]. Because the oxidation potential of the monomer is always 

markedly higher than that for the polymer, the two processes, the formation of polymer 

and its oxidation proceed in parallel and are accompanied by the incorporation of 

counterions into the polymer matrix [125]. The yield in charge terms is close to 100%; 

providing a possibility of controlling the mass and thickness of the film [125]. 

Figure 4.2. shows UV-vis spectra of dispersed as synthetized product in distilled water.  

In as synthetized PPy, two bands are present at 345 and 415 nm. The absorption at 345 

corresponds to bipolaron formation [126]. The absorption peaks at 415 nm, is assigned 

as transitions from the PPy valence band to an anti-bipolarons band. Intense, broad 

absorptions are also occurred above 550 nm [127]. This broad absorption is attributed to 

electron transitions from the polypyrrole valence band to a second bipolarons band in 

the band gap. So, as synthetized PPy has the well-defined features of a bipolaron 

formation, showing the film to be in a fully doped state [126, 127].  
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Figure 4.2. UV-vis spectra of dispersed as synthetized PPy in distilled water. 

 



62 

 

Hence, based on this findings, it could be proposed that structure of doped polypyrrole 

in the bipolaronic state as shown in Fig. 4.3, for the (a) single charged anions, X-, and 

divalent anions, e.g. SO4
2-, (b).  

 

Figure 4.3. Proposed structure of doped polypyrrole in the bipolaronic state for the 

single charged anions (a) and divalent anions, e.g. SO4
2-, (b). 

 

 Considering the polypyrrole electropolymerization reaction (Eq. 4.1), total 

polymerization charge, Qp, is given as: 

 

 Qp = Ip tp = (2+2y)neF        (4.2) 

 

On the other hand, for the p-doping/dedoping reaction with sulfate anions: 

 

 [PPy2y+(SO4
2-)y]n + 2yne = [PPy]n + nySO4

2-     (4.3) 

 

theoretically available capacity is given: 

 

Q = It = 2nyeF         (4.4) 

 

Combining Eqs. (4.2) and (4.4), available capacity is connected with polymerization 

charge with the following equation: 
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       (4.5) 

 

Therefore, for the polymerization charge of 3.6 mAh and theoretical doping degree of 

0.33 (one sulfate anions per polymer units) [125], taking into account that z is 2, 

available dedoping charge was estimated to 0.9 mAh. 

 

Lead sulfate was synthesized through the galvanostatic template of the PbO2 film 

electrode formation and reduction, as shown in Fig. 4.4. Initially electrode was 

cathodically treated 300 s, to remove eventually naturally formed oxides (1). After 

anodic current was applied, at potential of –0.55 V the oxidation of pure lead to lead 

sulfate occur, via following equation: 

 

 Pb(s) + SO4
2- = PbSO4 + 2e )Pb|PbSO( 4

θ

rE = –0.601 V (SCE)  (4.6) 

 

 Once, when most of the lead surface was converted into the PbSO4, sharp 

increase of the potential up to the ~1.85 V and followed by the potential plateau at 

~1.55 V (2) was connected with the transformation of PbSO4 to PbO2, given as:  

 

PbSO4 + 2H2O = PbO2 + SO4
2- + 4H+ + 2e 

)PbSO|PbO( 42

θ

rE = 1.449 V (SCE)      (4.7) 

 

After 750 s, electrode was completely discharged to the potential of –0.6 V with the 

same current density (3). Lead-lead sulfate was produced by three cycles of discharge to 

pure lead (4) and charge (5) to lead sulfate in the same electrolyte, according to Eq. 4.6. 

After formation, discharged, spongy lead electrode was washed with bi-distiled water, 

to remove perchlorate anions and transferred into the electrochemical cell for the further 

investigations. For the XRD characterization the same procedure was applied. 
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Figure 4.4. Galvanostatic synthesis of the lead - lead sulfate  

in 1 M H2SO4 + 0.05 M KClO4  

 

In Fig. 4.5 the XDR spectra of as synthesized lead sulfate was shown. The peaks 

positioned at 2 of: 31.21o; 36.16o; 52.11o and 62.09o corresponds to the pure lead 

(JCPDS No. 04-0686 Pb pdf), from the bulk of the electrode. The rest of the observed 

peaks were in excellent agreement with the peak positions of lead sulfate with anglesite 

structure (JCPDS No. 36-1461 Anglesite pdf).  

 

Figure 4.5. The XDR spectra of as synthesized lead sulfate. 
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 Figure 4.6 shows cyclic voltammograms of investigated materials. Polypyrrole 

electrode has pceudocapacitive behavior accompanied with doping-dedoping reaction in 

the broad range of studied potential. In anodic direction, doping (charge) with sulfate 

anions started at –0.2 V, and proceeds up to the potentials of ~0.6 V, followed by an 

increase of the current density due to the overoxidation processes [128]. Dedoping 

(discharge) occurred in the potential range of 0.45 to –0.45 V, with a well-defined peak 

at –0.3 V. Small broad peak at the potentials more negative then –0.45 V could be 

associated with cation insertion [129]. Lead-lead sulfate electrode shows the reversible 

behavior with sharp current peaks, typical for battery electrodes. Formal potentials of 

the lead-lead sulfate system was estimated to –0.58 V.  
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Figure 4.6. Cyclic voltammograms of lead-lead sulfate and polypyrrole electrodes.  

 

 Galvanostatic charge-discharge curves at different currents of investigated 

materials were shown in Fig. 4.7. From Fig. 4.7 it can be seen that lead-sulfate electrode 

shows typical battery charge-discharge behavior, practically, without polarization. On 

the other hand, polypyrrole electrode shows the typical pseudocapacitive behavior, 
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whereby the charge-discharge occurred in a broad potential region. Charge occur 

linearly from –0.1 V to 0.5 V, while discharge proceeded nonlinearly from 0.5 V to the 

–0.3 V, followed by a sharp decrease of the potential due counter-ions diffusion 

limitations.  
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Figure 4.7. Galvonostatic charge-discharge curves of polypyrrole and lead-lead sulfate 

electrode at different currents. 

 

The charge-discharge cell voltage for different applied currents, in the range of 0.6 to 18 

mA, are shown in Fig. 4.8a) and b). Charge of the cell proceeds practically linearly from 

0.5 V to 1.15 V, and the discharge from ~1.15 V to 0.05 V, but without linearity. 

Coulombic efficiency (CE) of charge-discharge, shown in the inset of Fig. 4.8a), 

decrease from ~107 to 93%. CE higher than 100% for low current can be explained by 

cation insertion in negatively charged PPy at low potentials, as is observed in cyclic 

voltammogram, Fig 4.6. From the inset of Fig. 4.8b), it can be seen that the capacity of 

the charge-discharge process, linearly increase from 0.55 to 0.75 mAh with decreasing 

current from 18 to ~3 mA, followed by a further increase for low currents, to practically 

theoretical of ~0.9 mAh. From above presented results it could be suggested that 
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investigated cell behaves as a supercapacitive-like systems for high current discharge 

rate, and more battery-like for low current discharge rate. 
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Figure 4.8. The dependence of the Pb|PPy cell voltage over time for different applied 

currents marked in the figure. Inset in Fig 4.8a): Coulombic efficiency of charge-

discharge processes on applied current. Inset in Fig. 4.8b): Dependence of the capacity 

for charge-discharge process on applied current. 
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 Reactions taking place during discharge were: 

 

[PPy2y+(SO4
2-)y]n + 2yne = [PPy]n + nySO4

2-       (4.2) 

Pb + SO4
2- = PbSO4 + 2e        (4.6) 

______________________________________ 

[PPy2y+(SO4
2-)y]n + nyPb = [PPy]n + nyPbSO4  (overall reaction)  (4.8) 

 

From the overall reaction (Eq. 4.8) it can be seen that there are no changes in the 

composition of the electrolyte, or changing its concentration (rocking-chair systems). To 

determine the value of the specific capacity, capacitance, energy and power, the active 

masses of the participants in the reaction were determined. Applying Faraday’s law on 

Eq. 4.1, the mass of the PPy can be given as [130]: 

 

Fy

yMMMtI
m

)22(

])H(2[
)PPy(

AMpolpol








     (4.9) 

 

where MM and MA are molar mass of pyrrole monomer and sulfate anions. For the p-

doping of PPy with sulfate anions, and assumed doping degree of 0.33 [124], the 

estimated mass was 4.8 mg. The masses of the lead sulfate were calculated based on 

Faraday law and passed charges during every single discharge process. Knowing the 

active masses: 

 

mT = m(PPy) + m(PbSO4) 

 

specific discharge current was estimated by dividing actual current with the sum of the 

active masses.  

Owning that there was no linearity of the discharge curve, differential discharge 

capacitance, Cd, for constant discharge current can be calculated using the following 

equation: 

 

IU

q
C 












 d

dd          (4.10) 
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where specific discharge capacity was given in As g-1. Hence, by differentiation of qd 

over U curves presented in Fig. 4.9, the differential capacitance can be obtained, as 

shown as an example for specific current of 0.68 A g-1 (6 mA), in the inset of Fig. 4.9. 

During discharge, Cd nonlinearly increases from 100 to ~500 F g-1 with the maximum of 

600 F g-1 at 0.3 V.  
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Figure 4.9. The dependence of the specific capacity on the cell voltage. Inset: The 

dependence of the differential specific capacitance of the cells on the cell voltage. 

 

 

The average, integral specific discharge cell capacitance, can be calculated using the 

following equation: 
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and the values were shown in Fig. 4.10. Except for the low discharge current, the 

average capacitance was in the range of 300-250 F g-1.  
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Figure 4.10. Dependence of the specific capacitance calculated using (○) Eq. 4.11 and 

(●) Eq. 4.12 on the specific current. Inset: Dependence of the specific capacity of the 

cells on the specific current. 

 

In the literature, the following simplified equation is usually used [67]: 

 

U

tI

U

q
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
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




 ddd         (4.12) 
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Strictly, this equation can be applied only to the discharge of the EDLC’s, in which 

voltage is practically linear function over time. To compare results obtained using Eqs. 

4.11 and 4.12, specific discharge capacity, given in the inset of Fig. 4.10, was divided 

by ΔU = 1.15 V, Fig. 4.9, and results was shown in Fig. 4.10 together with data 

calculated using Eq. 4.11. The specific discharge cell capacitance obtained using Eq. 12, 

ranging from 275 to 245 F g-1 was smaller for ~10% than average integral capacity for 

moderate discharge current, Eq. 12, but become practically equals for high discharge 

rate. Hence, the approximations used in Eq. 4.12 allows a relatively fast way for the 

rough estimation of cell capacitance. 

 Specific discharge energy, wd, Wh kg-1, and power, Pd, W kg-1, was calculated 

according to the equations: 

 



t

Udt
I

w
0

d
3600

        (4.13) 

and 

 


t

Udt
t

I
P

0

d          (4.14) 

 

where, 3600 is to convert seconds in hours, and Δt is in seconds. 

Increasing specific discharge currents, a specific energy decrease from ~58 Wh 

kg-1 and stabilize to ~40 Wh kg-1, while specific power increases from ~40 to 1350 W 

kg-1, as shown in Ragone plot, Fig. 4.11. In the inset of Fig. 4.11, the dependence of the 

specific capacity, ranging from 92 to ~72 Ah kg-1, on specific discharge current was 

shown.  

The obtained values for specific capacity, energy and power, suggests that this 

system behave as a battery-like for low e.g. <0.5 A g-1, and supercapacitors-like for high 

discharge currents, >0.5 A g-1. 
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Figure 4.11.  Ragone plot of the PbSO4|PPy system. Inset: Dependence of the specific 

capacity on discharge current. 

 

Battery-type hybrid supercapacitor should allow fast charge and a combination 

of fast and low discharge rate operation. In that manner, the potential applicability of 

such a system, was examined as follow. The cell was first cycled during twenty cycles, 

Fig. 12a, of the fast charge rate (1.85 A g-1, 15 mA) keeping constant charge time of 140 

s and capacity of 0.58 mAh, and low discharge rate (0.27 A g-1, 3 mA (a) to the cutoff 

voltage of 0.1 V,) Fig. 12a. Discharge capacity gradually increases during first fourth 

cycles, and stabilizes to 0.59 mAh, reaching the Coulombic efficiency of 100%. After 

that, the cell was cycled fifty cycles with charge current of 15 mA (1.85 A g-1) for the 

fixed time of 135 s, and discharged with the same current to the cutoff voltage of ~0.1 

V, as shown in Fig. 12b).  
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Figure 4.12. Cycle performance of Pb-PbSO4|PPy cell. a) Batery-mode operation, 

(charge: 15 mA (1.85 A g-1) during constant charge time of 140 s, discharge (3 mA, 

0.27 A g-1) before (a) and after (b) supercapacitors-mode cycling. Inset: calculated 

discharge capacity over cycle number. b) Supercapacitor-mode operation (charge: 15 

mA, 1.85 A g-1) for fixed time of 135 s, and discharged with same current to the cut-off 

voltage of ~0.1 V. Insets: magnification of charge-discharge cycle and determination of 

ΔU and Δt (left); Calculated specific capacitance over cycle number (right). 
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The discharge capacitance was calculated using Eq. 4.12, with the determined 

ΔU and Δt, as shown in the left inset of Fig. 12b) for each cycle. The dependence of the 

discharge specific capacitance over cycle numbers was shown in the right inset of Fig. 

12b).. The specific capacitance gradually decreases from the initial, of ~215 F g-1 with 

the rate of ~0.08 F g-1 per cycle, caused by the increase of the voltage from 1.15 to ~1.2 

V. Knowing this, it is possible to estimate cycle life for cell, to ~500-550 cycles for the 

decrease of the capacitance to 80% of its initial values. Possible deterioration of the 

characteristics occurred if PPy electrode was charged above potentials of ~0.55 V vs. 

SCE (Uc > 1.15 V), for a longer period of time. To avoid this, cell capacity should be 

limited with a smaller active mass of lead-lead sulfate electrode, which is not sensitive 

to over-charge. In that case, charging voltage will sharply increase after all lead sulfate 

was converted to lead, without hydrogen evolution reaction, due to the extremely high 

hydrogen overvoltages on the lead. After fifty fast charge-discharge cycles, cell was 

again tested in the battery mod, Fig. 12a), during fourth cycles (b). Some increase of the 

capacity could be explained by the expansion of the PPy layer and increased numbers of 

the available sites for doping/dedoping reaction, or by the reduction of overoxidized 

polymer backbones. 

 

4.1.1. Comparison with the theoretical values 

 

 To compare obtained values with the theoretical one, the following analysis was 

performed. 

Gravimetric specific capacity of a single PPy electrode is calculated from the equation: 
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taking into account that qpol is: 
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Hence, for 1 g of PPy, doped with sulfate anions, z = 2, at doping degree of 0.33, 

theoretical specific discharge capacity is 183 mAh g-1. From Fig. 4.7, it can be seen that 

potential window for polypyrrole is 1 V. Accordingly, theoretical specific capacitance 

for polypyrrole doped with sulfate anions is: 

 

 1-ts,
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Theoretical specific capacitance for lead sulfate, for potential window of ~0.1 V, Fig. 

4.7, is:  
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For an asymmetric supercapacitor, the theoretical gravimetric cell capacitance Cm,t can 

be calculated from the specific electrode capacitances according to [131]: 
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where m is the total mass of active materials, C+, m+, C-, and m- denote the specific 

capacitances and the masses of the positive and negative electrodes, respectively. The 

corresponding mass of lead sulfate for a discharge capacity of 183 mAh, according to 

Faraday law is 1.03 g, so the theoretical gravimetric cell capacitance will be 296 F g-1. 

This value is, ~15% greater than obtained for faster discharge times, Fig. 4.10, but it 

was approached for battery-type operation, e.g. at low discharge currents. 

Corresponding theoretical specific energy, for the cell voltage of 1.15 V: 

 

6.32

2

tm,





UC
w          (4.20) 

 

will be 54 Wh kg-1. In our case, Fig 4.11, this value is obtained for low current 

discharge rate, but for the higher discharge rate is ~25% greater than observed. 
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Because specific power depends on discharge time: 
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3600tm,
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as an example, for specific discharge current of 2.27 A g-1 obtained discharge time is 

110 s, and specific power is 1330 W kg-1, Fig 4.11. Theoretically, according to Eq. 4.21 

specific power will be 1.77 kW kg-1, or ~25% greater than experimentally obtained. In 

an extreme case, discharge within 10 s, such device could deliver power as high as 19.5 

kW kg-1.  

 During the battery-type operation, theoretical specific capacity of the cell is 

defined: 
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and will be 90 mAh g-1, which was obtained value for low current discharge rates, Fig 

4.11. 

Considering the capacitive and battery type operation, according to Eq. 4.20, it 

can be concluded that energy limited electrode is mainly polypyrrole, due high potential 

drop during discharge, connected with solid state diffusion limitation of the anion 

doping/dedoping reaction. The influence of the electrode materials on the maximum 

power is more complex. It can be shown that maximum power obtained at a minimum 

discharge time, tmin, of the cell is proportional to 2CRsr, where Rsr is the equivalent series 

resistance of the cell [67]. Because C(PbSO4) is ten times higher than C(PPy), tmin is 

determined by the capacitance of PbSO4 electrode. On the other hand, the conductivity 

of the polypyrrole decrease with decrease of the doping degree, so increase in the 

equivalent series resistance during discharge, and decrease of power should be 

connected with polypyrrole electrode, as well. On more limitation on the power arise 
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from the slow recrystallization rate of the lead sulfate. Namely, at high currents during 

charge, lead sulfate crystalizes as large crystals, which are difficult to completely reduce 

to lead during fast discharge [132]. 

 Based on presented values, of the specific capacity, energy and power, and 

bearing in mind that the cell voltage is ~1 V, such inexpensive device could be 

considered for the energy storage obtained from low operation voltage converters, like 

different photoelectrochemical cells, biofuel cells and similar. 
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4.2. Supercapacitor based on polyaniline and lead-lead sulfate 

 

Figure 4.13 shows an electrochemical synthesis of polyaniline (PANI) and Pb-

PbSO4 active electrode materials on graphite and the thin film lead plane, respectively. 

Aniline electropolymerization from the aniline monomer (ANI) under galvanostatic 

conditions occurred at the potentials of ~0.75 V according to the following reaction: 

 

 nANI + n(y/2)SO4
2– → [PANIy+(SO4

2–)y/2]n + 2nH+ + (2 + y)ne  (4.24) 

 

where y corresponds to the degree of doping. It was generally accepted that the first step 

of the polymerization of the aniline, considered as the rate-determining, involves 

formation of aniline radical cation, followed by coupling and elimination of two 

protons. After the rearomatization firstly dimer was formed, and further oligomers. The 

chain propagation occurred by coupling oligomer radical cation with the anilinium 

radical cation, with simultaneous incorporation of the anions, doping, into the polymer 

chain [133,134, 135].  

Spongy lead sulfate was produced by the galvanostatic oxidation of pure lead to 

lead dioxide, PbO2, in 1 M H2SO4 with the addition of 0.05 M KClO4 as an oxidizing 

agent, as shown in Fig. 1 [136]. Formed lead dioxide was then reduced to the lead 

sulfate and lead in the same solution, according to the reactions: 

 

PbO2 + SO4
2- + 4H+ + 2e  PbSO4 + 2H2O      (4.25) 

PbSO4 + 2e  Pb + SO4
2-        (4.26) 

After washing, the electrode was again oxidized to spongy lead dioxide, but in pure 1 M 

H2SO4, inset in Fig. 4.13, and then few time reduced to pure lead and oxidized to lead 

sulfate at the potentials around ~–0.6 V.  
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Figure 4.13. Galvanostatic formation of the active materials. 

 

The UV-visible absorption spectra of the as synthesized PANI dispersions in 1 

M H2SO4 aqueous solution, from 190 to 1100 nm was shown in Fig. 4.14. Spectra 

exhibits the local absorption maximum at 341 nm that corresponds to π–π* transition of 

the benzenoid ring. The band observed in the visible region at 434 nm were associated 

with the presence of polaron state (charged cation radical, quinoid form) and assigned to 

polaron−π*, so called exciton [137]. Broad absorption above ~550 nm was associated 

with polaronic structures in the polyaniline, with theoretical absorption maximum at 

~850 nm, corresponding to π−polaron transitions. Hence, it can be concluded that as 

synthesized polyaniline was in the polaronic, emeraldine salt form [138].  
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Figure 4.14. UV-vis spectra of as synthetized polyaniline. 

 

In Fig. 4.15 the cyclic voltammograms of the examined materials were shown. Doping 

of the PANI in the emeraldine form starts at ~ –0.1 V, and proceed up to the potential of 

~0.35 V. Above that potential, possible degradation of the PANI could occurred [139 

140 141]. The dominant degradation product was proposed to be water soluble 

benzoquinone with the redox couple of the benzoquinone-hydroquinone [140]. 

Insoluble and inactive degradation products were suggested to remain on the electrode 

surface, like PANI strands containing quinoneimine end groups and ortho-coupled 

oligomers [140,141]. The dedoping reaction of the PANI occurred in the broad potential 

range, from 0.5 to –0.3 V.  

The formal potential of the lead sulfate-lead electrode of –0.55 V was estimated from 

Fig. 4.15. Below that potential reduction of the lead sulfate to spongy lead occurred, and 

above that potentials oxidation of lead to lead sulfate, Eq. 4.26. 
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Figure 4.15. Cyclic voltammograms of the investigated materials in 1 M H2SO4. 

 

In Fig. 4.16 the charge-discharge curves for investigated materials were shown. A 

charge of PANI electrode occurred in the potential range of 0.05 V to 0.4 V, and 

discharge from 0.4 to –0.15 V, followed by sharp potential decrease caused by diffusion 

limitations of sulfate anions in dedoping reaction to the –0.4 V. Coulombic efficiency of 

charge-discharge was around 100%, and obtained discharge electrode capacity depends 

on applied current ranging from 0.85 mAh for low currents to 0.7 mAh for higher 

currents, inset in Fig. 4.16. Reduction of lead sulfate occurred at potentials from ~–0.6 

to –0.8 V, while most of the lead oxidation to lead sulfate occurred at potential of ~–0.5 

V. The capacity of the charge-discharge was around 1 mAh, inset in Fig. 4.16. 
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Figure 4.16. Charge-discharge curves of the investigated materials for different 

currents. Inset: obtained charge (open symbols) and discharge (full symbols) capacity 

for PANI (cycles) and PbSO4 (squares) electrodes. 

 

The polyaniline structure strongly depends on applied potential [142 143]. The potential 

regions of dominant structures in 0.1 M H2SO4 were reported as: –0.2 to 0.075 V (SCE) 

leucoemeraldine (y = 0); 0.075 to 0.675 V emeraldine (y = 0.5), with substructures: 

0.075 to 0.19 V polaron, 0.19 to 0.55 V polaron lattice, 0.55 to 0.675 V bipolaron, and 

above 0.675 V pernigraniline (y = 1) [142]. It was also reported that most of the redox 

capacitance in 1 M H2SO4, ~76%, originated from the PANI polaron structure. 

Structural analysis of the doping of PANI with divalent anions, to the best of our 

knowledge, was not treated in the literature. For the single charged anions e.g. chloride, 

perchlorate etc. the connection of the available (Q) and polymerization charge (Qp) can 

be given by the following equation: 

Q = p
2

Q
y

y


         (4.27) 
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Hence, for the polymerization charge of 7.9 mAh, corresponding available charge for y 

= 0.5 (polaronic emeraldine state) will be 1.58 mAh, which was almost twice than 

obtained. Based on the average PANI doping-dedoping charge of ~0.85 to 0.7 mAh, it 

could be proposed that divalent sulfate anions were banded to crosslinked parallel 

polymer chains in the polaron state, as shown in Fig. 4.17. In that way one polymer 

units (consisted of four monomer units) will have a doping degree of 0.5 (emeraldine 

state), but whole polymer will be doped only with ny/2 anions. 

 

 

Figure 4.17. The proposed structure of polymer chain crosslinking with the sulfate 

anions in the emeraldine –polaron state of the polyaniline. 

 

 Based on these considerations, the total polymerization charge, Qp, of the 

polyaniline electropolymerization reaction, Eq. 4.21, was given as:  

 

 Qp = Ip tp = (2+y)neF        (4.28) 

 

where y is doping degree. The p-doping/dedoping reaction with sulfate anions was: 

 

 [PANIy+(SO4
2–)y/2]n + (y/2)ne  [PANI0]n + n(y/2)SO4

2–   (4.29) 

 

and the theoretical available doping/dedoping capacity was given as: 

 

Q = It = (y/2)neF        (4.30) 
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Relating equations (4.28) and (4.29), available capacity can be connected with 

polymerization charge with the following equation: 

 

 Q = ppp
2

)2/(

2

)2/(
tI

y

y
Q

y

y





       (4.31) 

Consequently, for the polymerization charge of 7.9 mAh, and for the theoretical doping 

degree of 0.5 (two sulfate anions per polymer units) [22, 144], available dedoping 

charge can be estimated to 0.8 mAh, which was in excellent agreement with 

experimentally obtained value. For the further calculations of the specific values, it was 

necessary to calculate the as synthesized PANI mass. The mass of the 

electropolymerized PANI was related to the total polymerization charge (Qp), and can 

be represented, according to the Faraday law, by the following equation: 

 

Fy

MyMMtI
m

)2(

])2/()H(2[
)PANI(

AMpp








    (4.32) 

 

where, F is the Faraday constant, MM and MA the molar masses of the aniline monomer 

unit (93.13 g mol-1) and the sulfate anion (96.09 g mol-1), respectively. The mass of the 

electropolymerized PANI for y = 0.5 was estimated to 13 mg. From Eqs. 4.31 and 4.32, 

it was possible to recalculate specific capacity (q) of the doped PANI in the range of 58 

mAh g–1. Accordingly, the PANI specific capacitance of 262 F g-1, can be obtained from 

the following equation: 

 

 
E

q
C






3600
)PANI(         (4.33) 

 

where 3600 is to convert Ah g-1 in C g-1, and E was discharge potential window, ~0.8 

V. On the other hand, the specific capacitance of the PbSO4 electrode in the range of 

1600 F g-1, could be estimated for 1 g of PbSO4 and using an equation: 

 

 
EM

nF
C






)PbSO(

3600
)PbSO(

4

4        (4.34) 
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where F is Faraday constant (26.8 Ah mol-1), and E was around 0.4 V. Consequently, 

for serial connection of PANI and PbSO4 electrode, the overall cell capacitance, given 

as: 

 
)PbSO(

1

)PANI(

11

4CCC
        (4.35) 

 

was in the range of 224 F g-1, suggesting that C(PbSO4) slightly contributed to the 

capacitance of the cell. In the same manner the theoretical specific capacity of the cell: 

 

F

M

qqqq 2

)PbSO(

)PANI(

1

)PbSO(

1

)PANI(

11 4

4cell

     (4.36) 

 

could be estimated to 44 mAh g-1. 

Figure 4.18 shows charge-discharge curves of the PbSO4|PANI cell for different 

currents, while limiting the potential of the PANI electrode to 0.4 V.  

 

Figure 4.18. Charge-discharge curves of the PbSO4|PANI cell for different currents. 

Inset: Coulombic efficiency of charge-discharge process. 

 



86 

 

Charge of the cell occurred above 0.5 V up to ~0.95 V, while beginning of the 

discharge voltage, Ud, nonlinearly decreases from 0.85 to 0.65 V with increased applied 

current, caused by Ohmic drop and polarization resistances of the electrodes, see Fig. 

4.16. Coulombic efficiency (C.E.) slightly decreases from 108% to 101%, inset in Fig. 

4.18, by increased current, probably due reduction of an overoxidized polyaniline 

products.  

 

In order to determine the nature of relatively high initial voltage drops, the 

followed analysis was performed. In Fig. 4.19a the electrochemical impedance spectra 

of the charged cell, using the counter spongy lead electrode as a reference, was shown. 

Impedance spectra was characterized with small semicircle at higher frequencies, and 

straight line with the slope near 90o characteristics for pseudocapacitive materials. From 

the high frequency intercept with Z’ axis, the cell resistance of 7.8 Ω was determined. 

The conductivity of 1 M H2SO4 was 26 10-2 Ω-1 cm-1, so the pure electrolyte resistance 

(for inter electrode distance of 2 cm and electrode area of 6 cm2) will be in the range of 

~1.3 Ω. Hence, the rest of the resistivity of ~6.5 Ω could be connected with PANI 

electrode, because resistance of the charged spongy lead can be neglected. Using the 

determined value of the cell resistance of 7.8 Ω, in Fig. 4.19 with dotted line was shown 

theoretical dependence of the voltage drop, IRΩ, caused only with the Ohmic resistance. 

Experimentally determined total voltage drop, IR, during discharge, also shown in Fig. 

4.19, point to Ohmic like behavior, with the slope of 13.3 Ω. The total cell resistance, 

Rcell, calculated using the Ohm law slightly depends on applied current, Fig. 4.19b. 

Hence, the total cell voltage drop can be given as I(Rp+RΩ), where Rp was polarization 

resistance. The value of Rp, to some extent depends on applied current, Fig. 4.19b, and 

can be mainly connected with the increased resistance of the outer surface PANI layer 

due fast dedoping (discharge) and slow diffusion of the dopant anion from the bulk of 

the polymer. Also, in some extent the voltage drop during discharge could be also 

connect with the initial transitions due diffusion controlled solid state reaction of the 

spongy lead transformation to the lead sulfate.  
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Figure 4.19. Experimentally determined voltage drop, IR, during initial cell discharge. 

Insets: a) Impedance spectra of charged cell. b) Calculated total cell resistance using the 

Ohms law. 

 

Usually, in the literature the simplified method was used to obtain values of 

specific capacitances, energy and power. From the determined slopes, dU/dt, during 

discharge in Fig. 4.18 the specific capacitance of the cell was estimated by applying the 

following equation: 

 
 )(PbSO(PANI))d/(d 4

cell
mmtU

I
C


      (4.37) 

where I, A, was discharge current, m(PANI) estimated PANI mass in a doped state of 13 

mg, and m(PbSO4) was valued by the each discharge current and corresponding times 

using the Faraday law. The calculated values of the specific capacitances of the 

PbSO4|PANI cell, ranging around 450 F g-1, shown in Fig. 4.20a), were practically 

independent on applied specific current. The obtained values using Eq 4.37, seem to be 

overestimated in the comparison with the theoretically calculated one of 224 F g-1. It is 

interesting to note that the specific capacitance of the cell practically did not vary with 
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applied current, as usually obtained [145]. From the determined values of the specific 

capacitances, the maximum specific energy, wcell, Wh kg-1, and power, Pcell, W kg-1, was 

obtained using equations: 

 
2

dcell
6.32

1
CUw


         and:   

d

cell

3600

t

w
P


     (4.38) 

where Ud - was taken from Fig. 4.18, and td was in seconds. The dependence of specific 

energy and power was shown in Fig. 4.20, with curve 2, in the form of Ragone plot. By 

increasing the current, specific energy decrease from 47 to 27 Wh kg-1, while specific 

power increased from 300 to ~1000 W kg-1.  

More reliable method for the determination of specific energy and power of such 

a cell, at constant specific discharge current, Id, A g-1, was to use the integral form of 

specific energy: 

 

t

tU
I

w
0

d
cell d

3600
        (4.39) 

and specific power: 




t

tU
t

I
P

0d

d
cell d         (4.40) 

The calculated values were given with line 1 in Fig. 4.20. The specific energy decrease 

from 30 to 20 Wh kg-1, while the specific power increased from 200 to ~800 W kg-1, by 

increasing specific current. The specific capacitance of the cell in the range of 215 to 

230 F g-1, were calculated using the following equation 

d

cell
U

tI
C dd          (4.41) 

where td was in seconds. These values were in good agreement with theoretically 

calculated of 224 F g-1. Specific capacity of the cell, Fig. 4.20b), slightly decrease from 

47 mAh g-1 to 40 mAh g-1 by increasing the specific current, which was in good 

agreement with the theoretical value of 44 mAh g-1. According to the obtained specific 

energy and power, such device could be classified as a supercapattery cell [12]. 

 



89 

 

 

Figure 4.20. Ragone plot for PbSO4|PANI cell, values calculate using 1) Eqs. 4.39 and 

4.40, 2) Eq. 4.38; a) The dependence of the specific discharge capacitance calculated 

using 3) Eq. 4.41 and 4) Eq 4.37; b) The dependence of the cell specific capacity on 

applied specific currents. 

 

The cycling performances of the cell were investigated over 44 cycles, Fig. 4.21, 

applying the current of 15 mA (0.864 A g-1), with duration of 200 s for charge and 

discharge cycle, respectively. For the each discharge curve the capacitance was 

determined, using the simplified method given by Eq. 4.12, from the linear part of the 

discharge curve, Fig. 4.21a). Plotting the dependence of the obtained specific 

capacitance over cycle number, the decrease of -0.16 F g-1 per cycle was determined. 

Hence, it could be estimated that from an initial value of 445 F g-1, 20% of capacitance 

loss will be achieved after ~550 to 600 cycles. Estimated cycle numbers were in good 

agreement reported for pure polyaniline electrode [146, 147, 148, 149] as well as for 

pure lead sulfate electrode [150]. 
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Figure 4.21. Cycling behavior of the PbSO4|PANI call. a) The determination of the 

specific discharge capacitance. b) The dependence of the specific capacitance on cycle 

number. 

 

Pure polyaniline electrode experience large volumetric swelling and shrinking during 

charge/discharge process as a result of ion doping and dedoping [151]. This volumetric 

interchange often leads to structural failure and thus relatively fast capacitance 

deterioration. Apparently, most polyaniline and polypyrrole based electrodes retain less 

than 50% of the initial capacitance after ~1000 cycles. Therefore, cycling instability is a 

major obstacle for practical applications of pure conductive polymer electrodes. 

Enormous stability improvement of the polyaniline and polypyrrole electrodes was 

recently achieved by Liu et al. [152] depositing a thin carbonaceous shell onto polymer 

surface, by a hydrothermal reaction using glucose as carbon precursor. Carbonaceous 

shell-coated polyaniline and polypyrrole electrodes reached remarkable capacitance 

retentions of ∼95 and ∼85% after 10.000 cycles. On the other hand, it was reported that 

80% of the capacity loss occurred after approximately 450 to 500 cycles of pure lead 

sulfate under deep discharge, ~100 DOD [150]. This could be significantly improved by 
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adding a small amount of the different carbon materials into the active mass of lead 

sulfate electrode [153 154]. Addition of the carbon materials could also have beneficial 

effect on the cell resistivity.  

 

 

4.3. Comparison with other electrochemical power source 

 Among batteries, electrochemical double layer supercapacitors (EDSC) and 

asymmetric hybrid systems, for asymmetric hybrid battery systems is expected to 

increase in specific power in comparison with battery and in specific energy in 

comparison with asymmetric hybrid supercapacitors. Typically, battery has specific 

energies and power up to 100 Wh kg-1 and 100 W kg-1 [87], asymmetric hybrid 

estimated from tables 2.5 and 2.6 [62] energy up to 30 Wh kg-1 and power in the range 

of 0.5-5 kW kg-1 while EDSC maximum energy up to 10 Wh kg-1 with power up to 20 

kW kg-1 [6]. In Fig. 4.22 the comparisons of the typical values of existing power sources 

with experimentally obtained for the PbSO4|PPy and PbSO4|PANI systems are shown. 
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Figure 4.22. Estimated Ragone plot of typical electrochemical power sources in 

comparison with experimentally determined for PbSO4|PPy and PbSO4|PANI systems 

[6,62,87]. 
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 It can be seen that an increase in the specific energy is achieved in comparisons 

with batteries, asymmetric hybrid and especially electrochemical double layer 

supercapacitors. For both investigated systems, specific power is significantly increased 

in comparison with batteries, but are in the medium range of asymmetric 

supercapacitors.  

The systems PbSO4|PPy shows very promising characteristics with specific 

energy of ~50 to 60 Wh kg-1, retaining specific power of ~100 to 200 W kg-1. On the 

other hand, for specific power of ~1 kW kg-1, the specific energy of 30 Wh kg-1 is 

sufficiently higher than asymmetric hybrids. 

Hence, a further modifications and improvement of both positive and negative 

electrode in the investigated systems should be performed, by the means of increase of 

the specific energy, power and especially cycle life (~600 cycles) which is in the range 

of a typical batteries, but lower than asymmetric hybrids. Such improvement could be 

achieved using the composite electrode materials. For example, modification of 

different carbon materials with high surface area with polypyrrole and lead sulfate, 

which will improve specific power and cycle life.  
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5. CONCLUSIONS 

 

 Polypyrrole as a positive and lead-lead sulfate electrode was investigated as a 

material of supercapacitors in acidic sulfate solutions. It was determined that operating 

cell voltage window is ~1.1 V, with the specific capacity of the cell in the range of 300-

250 F g-1. At low discharge rates, e.g. <0.5 A g-1, the device exhibits battery-type 

behavior, and at a higher discharge rate supercapacitors-type behavior. Obtained values, 

of the specific capacity of 90-72 Ah kg-1, energy of 58-40 Wh kg-1 and power of ~40-

1350 W kg-1, suggests that such inexpensive device, after further optimization, could be 

considered for energy storage obtained from low operation voltage converters, like 

different photoelectrochemical cells, biofuel cells and similar. Because, the theoretical 

values of experimentally determined parameters are, at least 20% higher, further 

optimization in the sense of the polypyrrole layer thickness, electrolyte concentration, 

internal resistance of the cell, possible problems with lead dendrite formations, etc. The 

main problem with such device could be degradation of polypyrrole if charged above 

voltage of 1.15 V (0.5 V vs. SCE). But this can be avoided with limitation of negative 

active mass weight. 

 

The charge-discharge reactions of the electrochemically formed polyaniline ad 

lead-lead sulfate in 1 M H2SO4 were investigated. It was proposed that divalent sulfate 

anions were banded to crosslinked parallel polyaniline chains in the polaron state. In 

that way one polymer units (consisted of four monomer units) will have a doping degree 

of y = 0.5 (emeraldine state), but whole polymer will be doped only with y/2 anions. 

The two mathematical methods for the determination of the cell electric characteristic 

were used: treating the slopes of the charge-discharge curves, and integral form of 

discharge characteristics. It was shown that integral form of treating was more reliable. 

The cell capacitance, ranging from 216 F g-1 to 230 F g-1 was determined, which were in 

good agreement with theoretically calculated of 224 F g-1. In the specific current range 

of 0.3 to 1.5 A g-1 based on the active masses, the specific energy decrease from 30 to 
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20 Wh kg-1, while specific power increased from 200 to ~800 W kg-1. The specific 

capacity of the cell, slightly decrease from 47 Ah g-1 to 40 Ah g-1 by increasing the 

specific current. From the cyclization experiments, it was estimated that cell will lose 

20% of initial capacitance after ~550 cycles. It could be also suggested that 

improvement of the cycling stability as well as the relatively high resistivity of the cell, 

can be further achieved preparing a carbonaceous based composite electrode materials.  

According to obtained specific energy and power, investigated devices could be 

classified as a hybrid asymmetric battery type supercapacitors or supercapattery cell. 
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Polymer-Based Organic Batteries, Chem. Rev., 116 (2016) 9438−9484. 

[102] Milica M. Gvozdenović, Branimir Z. Jugović, Jasmina S. Stevanović, Branimir N. 

Grgur, Electrochemical synthesis of electroconducting polymers, Hem. Ind. 68 (6) 

(2014) 673–684. 

[103] Leon A. P. Kane-Maguire, Gordon G. Wallace, Chiral conducting polymers, 

Chem. Soc. Rev., 39 (2010) 2545-2576 

[104] F. Wolfart, D.P. Dubal, M. Vidotti, R. Holze, P. Gómez-Romero, Electrochemical 

supercapacitive properties of polypyrrole thin films: influence of the 

electropolymerization methods, J Solid State Electrochem., 20 (2016) 901-910. 

[105] B. L. Funt, A. F. Diaz, Organic Electrochemistry: an Introduction and a Guide, 

Marcel Dekker, New York, 1991, pp. 1337. 

[106] E. M. Genies, G. Bidan, A. F. Diaz, Spectroelectrochemical study of polypyrrole 

films, J. Electroanal. Chem., 149 (1983) 101-113. 



104 

 

                                                                                                                                               

[107] R. J. Waltman, J. Bargon, Electrically conducting polymers: a review of the 

electropolymerization reaction, of the effects of chemical structure on polymer film 

properties, and of applications towards technology, Can. J. Chem., 64 (1985) 76-95. 

[108] R. J. Waltman, J. Bargon, Reactivity/structure correlations for the 

electropolymerization of pyrrole: An INDO/CNDO study of the reactive sites of 

oligomeric radical cations, Tetrahedron, 40 (1984) 3963-3970. 

[109] P. Camurlu, Polypyrrole derivatives for electrochromic applications, RSC Adv., 4 

(2014) 55832–55845 

[110] S. Sadki, P. Schottland, N. Brodie, G. Sabouraud, The mechanisms of pyrrole 

electropolymerization, Chem. Soc. Rev., 29 (2000) 283-293. 

[111] J. Roncali, Conjugated poly(thiophenes): synthesis, functionalization, and 

applications, Chem. Rev., 92 (1992) 711-738. 

[112] M. Zhou, J. Heinze, Electropolymerization of Pyrrole and Electrochemical Study 

of Polypyrrole. 2. Influence of Acidity on the Formation of Polypyrrole and the 

Multipathway Mechanism, J. Phys. Chem. B, 103 (1999) 8443-8450. 

[113] E. Smela, Conjugated polymer actuators for biomedical applications, Adv. Mater. 

15(6) (2003) 481-494 

[114] J. Stejskal, M. Trchova, P. Bober, Z. Morávková, D. Kopecký, M. Vrnata, J. 

Prokeš, M. Varga and E. Watzlova, Polypyrrole salts and bases: superior conductivity of 

nanotubes and their stability towards the loss of conductivity by deprotonation, RSC 

Adv., 6 (2016) 88382-88391. 

[115] Li Y, Qian R. Electrochemical overoxidation of conducting polypyrrole nitrate 

film in aqueous solutions. Electrochim. Acta., 45(11) (2000) 1727‑1731. 

[116] M. M. Gvozdenović , B. Z. Jugović, T. Lj. Trišović, J.S. Stevanović  and B. N. 

Grgur, Materials Chemistry and Physics, Electrochemical characterization of 

polyaniline electrode in ammonium citrate containing electrolyte, 125, 3 (2004) 601-

605. 

[117] Y. Wei, X. Tang, Y. Sun, W.W. Focke, A study of the mechanism of aniline 

polymerization, J. Polym. Sci., 27 (1989) 2385–2396. 

[118] Y. Wei, G-W Jang, Ch-Ch. Chan, K.F. Hsuen, R. Hariharan, S,A, Patel, C.K. 

Whitecar, Polymerization of aniline and alkyl ring-substituted anilines in the presence 

of aromatic additives, J. Phys. Chem., 94 (1990) 7716–7721. 



105 

 

                                                                                                                                               

[119] Chetna Dhand, Neeraj Dwivedi, Sachin Mishra, Pratima R Solanki, Venkatesh 

Mayandi, Roger W Beuerman, Seeram Ramakrishna, Rajamani Lakshminarayanan, 

Bansi D Malhotra, Polyaniline-based biosensors: A review, Nanobiosensors in Disease 

Diagnosis, 4 (2015) 25—46. 

[120] Claudio H. B. Silva, Ana M. Da Costa Ferreira, Vera R. L. Constantino and 

Marcia L. A. Temperini, Hybrid materials of polyaniline and acidic hexaniobate 

nanoscrolls: high polaron formation and improved thermal properties, J. Mater. Chem. 

A, 2014, 2, 8205–8214 

[121] B. Jugović, M. Gvozdenović, J. Stevanović, T. Trišović, B. Grgur, 

Characterization of electrochemically synthesized PANI on graphite electrode for 

potential use in electrochemical power sources, Mat. Chem. Phys., 114(2-3) (2009) 939-

942. 

[122] B.N. Grgur, A. Žeradjanin, M.M. Gvozdenovć, M.D. Maksimović, T.Lj. Trišović, 

B.Z. Jugović, Electrochemical characteristics of rechargeable polyaniline/lead dioxide 

cell, J. Power Sources 217 (2012) 193-198. 

[123] S. Suematsu, Y. Oura, H. Tsujimoto, H. Kanno, K. Naoi, Conducting polymer 

films of cross-linked structure and their QCM analysis, Electrochim. Acta, 45 (2000) 

3813-3821. 

[124] T.V. Vernitskaya, O.N. Efimov, Polypyrrole: a conducting polymer; its synthesis, 

properties, and applications, Russ. Chem. Rev., 66 (5) (1997) 443-457. 

[125] P.M. Carrasco, M. Cortazar, E. Ochoteco, E. Calahorra, J.A. Pomposo, 

Comparison of surface and bulk doping levels in chemical polypyrroles of low, medium 

and high conductivity, Surf. Interface Anal. 39 (2007) 26–32. 

[126] H. Masuda, D. K. Asano, Preparation and properties of polypyrrole, Synth. Met. 

135-136 (2003) 43-44. 

[127] J.V. Thombare, M.C. Rath, S.H. Han, V.J. Fulari, Synthesis of hydrophilic 

polypyrrole thin films by SILAR method, Materials Physics and Mechanics, 16 (2013) 

118-125 

[128] R. Mazeikiene, A. Malinauskas, Kinetics of the electrochemical degradation of 

polypyrrole, Polym. Degrad. Stab., 75 (2002) 255–258. 



106 

 

                                                                                                                                               

[129] C. Weidlich, K.-M. Mangold, K. Jüttner, EQCM study of the ion exchange 

behaviour of polypyrrole with different counterions in different electrolytes, 

Electrochim. Acta, 50 (2005) 1547–1552. 

[130] B. N. Grgur, Metal | polypyrrole battery with the air regenerated positive 

electrode, J. Power Sources, 272 (2014) 1053-1060. 

[131] P. Tammela, Z. Wang, S. Frykstrand, P. Zhang, I.-M. Sintorn, L. Nyholm, M. 

Strømme, Asymmetric supercapacitors based on carbon nanofibre and 

polypyrrole/nanocellulose composite electrodes, RSC Adv. 5 (2015) 16405–16413. 

[132] M. Huck, J. Badeda, D.U. Sauer, Modeling the crystal distribution of lead-sulfate 

in lead-acid batteries with 3D spatial resolution, J. Power Sources, 279 (2015) 351-357.  

[133] G. Wallace, G. Spinks, L. Kane-Maguire, P. Teasdale. Conductive Electroactive 

Polymers, CRC Press, Taylor & Francis Group, ISBN 978-1-4200-6709-5, Boca Raton, 

2009. 

[134] G. Ćirić-Marjanović, Recent advances in polyaniline research: Polymerization 

mechanisms, structural aspects, properties and applications, Synth. Met. 177 (2013) 1– 

47. 

[135] M.M. Gvozdenović, B.Z. Jugović, J.S. Stevanović, T.Lj. Trišović, B.N. Grgur, 

Electropolymerization, Chapter 4: Electrochemical Polymerization of Aniline, Ewa 

Schab-Balcerzak (Ed.), InTech publ, 2011, pp 77-96. 

[136] Petersson, B. Berghult, E. Ahlberg, Thin lead dioxide electrodes for high current 

density applications in semi-bipolar batteries, J. Power Sources, 74 (1998) 68–76. 

[137] H. Xia, Q. Wang, Synthesis and characterization of conductive polyaniline 

nanoparticles through ultrasonic assisted inverse microemulsion polymerization, J. 

Nanopart. Res., 3 (2001) 401–411. 

[138] H. Xia, Q. Wang, Synthesis and characterization of conductive polyaniline 

nanoparticles through ultrasonic assisted inverse microemulsion polymerization, J. 

Nanopart. Res., 3 (2001) 401–411. 

[139] H.N. Dinh, J. Ding, S.J. Xia, V.I. Birss, Multi-technique study of the anodic 

degradation of polyaniline films, J. Electroanal. Chem. 459 (1998) 45-56. 

[140] D.E. Stilwell, S.-M. Park, Electrochemistry of conductive polymers IV: 

Electrochemical studies on polyaniline degradation - Product identification and 

coulometric studies, J. Electrochem. Soc. 135 (1988) 2497-2502. 



107 

 

                                                                                                                                               

[141] A.Q. Zhang, C.Q. Cui, J.Y. Lee, Electrochemical degradation of polyaniline in 

HClO4 and H2SO4, Synth. Met. 72 (1995) 217-223. 

[142] A.Q. Contractor, V.A. Juvekar, Estimation of equilibrium capacitance of 

polyaniline films using step voltammetry, J. Electrochem. Soc., 162 (7) (2015) A1175-

A1181. 

[143] L. Zhuang, Q. Zhou, J. Lu, Simultaneous electrochemical–ESR–conductivity 

measurements of polyaniline, J. Electroanal. Chem., 493 (2000) 135–140. 

[144] M. Magnuson, J.-H. Guo, S. M. Butorin, A. Agui, C. Såthe, J. Nordgren, The 

electronic structure of polyaniline and doped phases studied by soft X-ray absorption 

and emission spectroscopies, J. Chem. Phys., 111, (1999) 4756-4764 

[145] Y. Zhao, C.-A. Wang, Nano-network MnO2/polyaniline composites with 

enhanced electrochemical properties for supercapacitors, Mater. Design., 97 (2016) 

512–518. 

[146] J. Mu, G. Ma, H. Peng, J. Li, K. Sun, Z. Lei, Facile fabrication of self-assembled 

polyaniline nanotubes doped with D-tartaric acid for high-performance supercapacitors, 

J. Power Sources, 242 (2013) 797-802. 

[147] H. Wang, D. Liu, X. Duan, P. Du, J. Guo, P. Liu, Facile preparation of high-

strength polyaniline/polyvinyl chloride composite film as flexible free-standing 

electrode for supercapacitors, Mater. Design., 108 (2016) 801–806. 

[148] D. Gui, C. Liu, F. Chen, J. LiuSchool, Preparation of polyaniline/graphene oxide 

nanocomposite for theapplication of supercapacitor, Appl. Surf. Sci., 307 (2014) 172–

177. 

[149] S. Saranyaa, R. Kalai Selvana, N. Priyadharsinia, Synthesis and characterization 

of polyaniline/MnWO4 nanocomposites as electrodes for pseudocapacitors, Appl. Surf. 

Sci., 258 (2012) 4881– 4887. 

[150] Y. Liu, P. Gao, X. Bu, G. Kuang, W. Liu, L. Lei, Nanocrosses of lead sulphate as 

the negative active material of lead acid batteries, J. Power Sources, 263 (2014) 1-6. 

[151] G. Wang, L. Zhang, J. Zhang, A review of electrode materials for electrochemical 

supercapacitors, Chem. Soc. Rev., 41 (2) (2012) 797−828. 

[152] T. Liu, L. Finn, M. Yu, H. Wang, T. Zhai, X. Lu, Y. Tong, Y. Li, Polyaniline and 

polypyrrole pseudocapacitor electrodes with excellent cycling stability, Nano Lett., 14 

(2014) 2522−2527. 



108 

 

                                                                                                                                               

[153] E. Ebner, D. Burow, A. Börger, M. Wark, P. Atanassova, J. Valenciano, Carbon 

blacks for the extension of the cycle life in flooded lead acid batteries for micro-hybrid 

applications, J. Power Sources, 239 (2013) 483-489. 

[154] D. Pavlov, P. Nikolov, Capacitive carbon and electrochemical lead electrode 

systems at the negative plates of lead–acid batteries and elementary processes on 

cycling, J. Power Sources, 242 (2013) 380-399. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



109 

 

                                                                                                                                               

 
BIOGRAFIJA 

 

Alsadek Ali Alguail, master inženjer tehnologije, je rođen 1977 godine u mestu 

Melsata, Libya. Osnovne akademske studije je završio na Alfateh University, Tripoli, 

Libya, 1999 godine, na smeru za Hemijsko inženjerstvo. Master studije završio na 

Malaysian National University, Malaysia, 2006 godine na smeru za Hemijsko i 

procesno inženjerstvo. Bio je zaposlen na poslovima inženjera u postrojenju za 

desalinaciju u Alkhoms Power Station, Alkhoms, Libya (2001-2003). U periodu od 

2006-2007 godine radio je kao saradnik u nastavi pri Departmanu za Hemijsku 

tehnologiju, na Higher Technical Institute, Msallatah, Libya, a u periodu od 2008-2011 

godine je radio je kao saradnik u nastavi na Departmentu Zaštitu okoline na Faculty of 

Science, Nation Nasir University, Tripoli, Libya. Školske 2014/2015 upisao je 

doktorske studije na Tehnološko-metalurškom fakultetu, Univerziteta u Beogradu, 

odsek za Hemijsko inženjerstvo. Do sada je autor jednog rada u međunarodnom 

časopisu izuzetnih vrednosti (M21a) i autor i koautor dva rada u istaknutom 

međunarodnom časopis (M22) i koautor rada u međunarodnom časopisu (M23). 

 

BIOGRAPHY 

 

Alsadek Ali Alguail, Master Technology Engineer, was born in 1977 in Melsat, Libya. 

He completed his basic academic studies at Alfateh University, Tripoli, Libya, in 1999, 

in the Department of Chemical Engineering. He completed his MA in Malaysian 

National University, Malaysia, in 2006 on the direction of Chemical and Process 

Engineering. He was employed as an engineer at a desalinization plant in Alkhoms 

Power Station, Alkhoms, Libya (2001-2003). In the period 2006-2007 he worked as a 

teaching assistant at the Department of Chemical Technology at the Higher Technical 

Institute, Msallatah, Libya, and in the period 2008-2011 he worked as a teaching 

assistant at the Department of Environmental Protection at the Faculty of Science, 

Nation Nasir University, Tripoli, Libya. School year 2014/2015 he enrolled in doctoral 

studies at the Faculty of Technology and Metallurgy, University of Belgrade, 

Department of Chemical Engineering. He is the author and coauthor of four scientific 

papers. 

 
Radovi proistekli iz doktorske disertacije/Papers from doctoral dissertation 

Međunarodni časopis izuzetnih vrednosti, M21a. 

1. Alguail Alsadek A., Al-Eggiely Ali H., Gvozdenović Milica M., Jugović Branimir 

Z., Grgur Branimir N., Battery Type Hybrid Supercapacitor Based on Polypyrrole and 

Lead-Lead Sulfate, - Journal of Power Sources, vol. 313, , pp. 240-246, 2016  (IF= 

6.395) (ISSN: 0378-7753). 

 

Istaknuti međunarodni časopis M22. 

1. Alguail Alsadek A., Al-Eggiely Ali H., Grgur Branimir N., Polyaniline–Lead Sulfate 

Based cell with Supercapattery Behavior, - Journal of Saudi Chemical Society, vol. 21, 

no. 10, pp. 2769-2777, 2017 (IF= 2.316)   (ISSN 1319-6103). 

 



110 

 

                                                                                                                                               

 
Прилог 1. 

Изјава о ауторству 

 

 

 

Потписани-a    Alsadek Ali Alguail 

број индекса 4041/2014 

 

Изјављујем 

да је докторска дисертација под насловом  

BATTERY TYPE HYBRID SUPERCAPACITOR BASED ON CONDUCTING 

POLYMERS 

 резултат сопственог истраживачког рада, 

 да предложена дисертација у целини ни у деловима није била предложена 

за добијање било које дипломе према студијским програмима других 

високошколских установа, 

 да су резултати коректно наведени и  

 да нисам кршио/ла ауторска права и користио интелектуалну својину 

других лица.  

 

                                                                        Потпис докторанда 

У Београду, 07.11.2017 

 
_________________________ 

 
 

 
 
 



111 

 

                                                                                                                                               
Прилог 2. 

 

Изјава o истоветности штампане и електронске 

верзије докторског рада 

 

Име и презиме аутора Alsadek Ali Alguail  

Број индекса 4041/2014 

Студијски програм  Хемијско инжењерство 

Наслов рада BATTERY TYPE HYBRID SUPERCAPACITOR BASED ON 

                      CONDUCTING POLYMERS  

Ментор  Др Бранимир Гргур, ред. проф. 

 

Потписани/а  Alsadek Ali Alguail 

 

Изјављујем да је штампана верзија мог докторског рада истоветна електронској 

верзији коју сам предао/ла за објављивање на порталу Дигиталног 

репозиторијума Универзитета у Београду.  

Дозвољавам да се објаве моји лични подаци везани за добијање академског 

звања доктора наука, као што су име и презиме, година и место рођења и датум 

одбране рада.  

Ови лични подаци могу се објавити на мрежним страницама дигиталне 

библиотеке, у електронском каталогу и у публикацијама Универзитета у Београду. 

 

            Потпис докторанда  

У Београду, 07.11.2017 

 
_________________________ 

 



112 

 

                                                                                                                                               

 
Прилог 3. 

Изјава о коришћењу 

 

Овлашћујем Универзитетску библиотеку „Светозар Марковић“ да у Дигитални 

репозиторијум Универзитета у Београду унесе моју докторску дисертацију под 

насловом: 

BATTERY TYPE HYBRID SUPERCAPACITOR BASED ON CONDUCTING 

POLYMERS  

која је моје ауторско дело.  

Дисертацију са свим прилозима предао/ла сам у електронском формату погодном 

за трајно архивирање.  

Моју докторску дисертацију похрањену у Дигитални репозиторијум Универзитета 

у Београду могу да користе  сви који поштују одредбе садржане у одабраном типу 

лиценце Креативне заједнице (Creative Commons) за коју сам се одлучио/ла. 

1. Ауторство 

2. Ауторство - некомерцијално 

3.  Ауторство – некомерцијално – без прераде 

4. Ауторство – некомерцијално – делити под истим условима 

5. Ауторство –  без прераде 

6. Ауторство –  делити под истим условима 

(Молимо да заокружите само једну од шест понуђених лиценци, кратак опис 

лиценци дат је на полеђини листа). 

 

  Потпис докторанда 

У Београду,  07.11.2017 

   
  ____________________ 
 



113 

 

                                                                                                                                               
 

1. Ауторство - Дозвољавате умножавање, дистрибуцију и јавно саопштавање 

дела, и прераде, ако се наведе име аутора на начин одређен од стране аутора 

или даваоца лиценце, чак и у комерцијалне сврхе. Ово је најслободнија од свих 

лиценци. 

2. Ауторство – некомерцијално. Дозвољавате умножавање, дистрибуцију и јавно 

саопштавање дела, и прераде, ако се наведе име аутора на начин одређен од 

стране аутора или даваоца лиценце. Ова лиценца не дозвољава комерцијалну 

употребу дела. 

3. Ауторство - некомерцијално – без прераде. Дозвољавате умножавање, 

дистрибуцију и јавно саопштавање дела, без промена, преобликовања или 

употребе дела у свом делу, ако се наведе име аутора на начин одређен од 

стране аутора или даваоца лиценце. Ова лиценца не дозвољава комерцијалну 

употребу дела. У односу на све остале лиценце, овом лиценцом се ограничава 

највећи обим права коришћења дела.  

 4. Ауторство - некомерцијално – делити под истим условима. Дозвољавате 

умножавање, дистрибуцију и јавно саопштавање дела, и прераде, ако се наведе 

име аутора на начин одређен од стране аутора или даваоца лиценце и ако се 

прерада дистрибуира под истом или сличном лиценцом. Ова лиценца не 

дозвољава комерцијалну употребу дела и прерада. 

5. Ауторство – без прераде. Дозвољавате умножавање, дистрибуцију и јавно 

саопштавање дела, без промена, преобликовања или употребе дела у свом делу, 

ако се наведе име аутора на начин одређен од стране аутора или даваоца 

лиценце. Ова лиценца дозвољава комерцијалну употребу дела. 

6. Ауторство - делити под истим условима. Дозвољавате умножавање, 
дистрибуцију и јавно саопштавање дела, и прераде, ако се наведе име аутора на 
начин одређен од стране аутора или даваоца лиценце и ако се прерада 
дистрибуира под истом или сличном лиценцом. Ова лиценца дозвољава 
комерцијалну употребу дела и прерада. Слична је софтверским лиценцама, 
односно лиценцама отвореног кода. 

 
 
 
 
 

 

 
 


