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Expression and activity of antioxidant enzymes in the liver of male and 
female fructose-fed rats 

Abstract 

Fructose overconsumption has been related to metabolic syndrome and 

its sequels. Oxidative stress has been proposed as a mechanism underlying 

adverse metabolic effects of fructose. The aim of this study was to learn whether 

fructose-rich diet induces hepatic oxidative stress, thus contributing to 

aggravation of metabolic disturbances in a gender-dependent manner.  

Toward that aim, we exposed male and female rats to moderate and high 

fructose diet over a period from weaning to adulthood, and subsequently 

evaluated: daily food, liquid and energy intake; physiological and biochemical 

parameters; expression and/or activity of hepatic antioxidant enzymes, and 

markers of lipid peroxidation and protein damage. 

A decrease in food intake; an increase in liquid intake, energy intake and 

triglyceridemia; and no changes in body mass, insulinemia and the level of 

hepatic triglycerides were observed in all fructose-fed rats as compared to 

controls, irrespectively of the gender and the diet regime. Females on moderate 

and males on high fructose diet displayed increased adiposity. Plasma levels of 

NEFA were increased only in males on moderate diet. The activity and level of 

hepatic antioxidant enzymes, and markers of lipid peroxidation and protein 

damage were not altered in rats of both genders in response to both diets, the 

only exception being mitochondrial SOD2 function in males. 

In conclusion, moderate fructose diet led to gender-specific metabolic 

disturbances in young rats, resulting from activation of adipose tissue lipolysis 

in males and lipogenesis in females. Fructose overconsumption did not provoke 

hepatic oxidative stress in the rats of any gender. Nevertheless, a possible 

mediatory role of mitochondrial SOD2 in development of insulin resistance 

needs further investigation.   



 

 

Key words: Antioxidant enzymes, fructose-fed rat, liver, oxidative stress, male 

rat, female rat.  
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Експресија и активност ензима антиоксидативне заштите у јетри 
мужјака и женки пацова након исхране обогаћене фруктозом 

Сажетак 

Прекомерно конзумирање фруктозе повезује се са метаболичким 

синдромом и његовим последицама, а оксидативни стрес је један од 

претпостављених механизама на којима се заснивају штетни ефекти 

фруктозе. Циљ ове студије био је да се испита да ли исхрана богата 

фруктозом индукује оксидативни стрес у јетри и на тај начин доприноси 

погоршању метаболичких поремећаја на полно специфичан начин. 

У том циљу, изложили смо мужјаке и женке пацова умерено- и 

високо-фруктозној исхрани током периода од одвајања од мајке до полне 

зрелости и потом измерили: дневни унос хране, течности и енергије; 

физиолошке и биохемијске параметре; експресију и активност 

антиоксидативних ензима, маркера липидне пероксидације и оштећења 

протеина у јетри. 

Код свих пацова храњених фруктозом, без обзира на пол и режим 

исхране, запажено је смањење уноса хране; повећање уноса течности и 

енергије, и триглицеридемије; као и непромењена телесна маса, 

инсулинемија и ниво триглицерида у јетри. Женке на умереној и мужјаци 

на високо-фруктозној исхрани имали су повећан индекс адипозности. 

Ниво масних киселина у плазми био је повећан само код мужјака на 

умереној дијети. Активност и ниво антиоксидативних ензима, као и 

маркера липидне пероксидације и протеинских оштећења нису били 

промењени у јетри пацова оба пола храњених фруктозом. Једини изузетак 

био је митохондријски ензим СОД2 код мужјака.  

У закључку, умерено-фруктозна исхрана довела је до полно 

специфичних метаболичких поремећаја код младих пацова, што је 

резултат активације липолизе у масном ткиву мужјака и липогенезе у 

масном ткиву женки. Прекомерни унос фруктозе исхраном није изазвао 

оксидативни стрес у јетри пацова оба пола. Ипак, потребно је даље 

испитати могућу медијаторну улогу митохондријске СОД2 у развоју 

инсулинске резистенције.  
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1 INTRODUCTION 

 

 

 

 

 

 

 

1.1 Fructose 

1.1.1 Chemical and physical properties of fructose 

Fructose, or fruit sugar is a 

monosaccharide discovered by French 

chemist Augustin-Pierre Dubrunfaut in 

1847 (Hewitt, 1940). In the past it was 

named levulose, after its levorotatory 

property of rotating plane polarized light 

to the left (in contrast to glucose which is 

dextrorotatory). Fructose and glucose 

molecules have the same molecular 

formula but differ structurally, as fructose 

has a keto-group on the second carbon 

while glucose has an aldehyde group on 

the first carbon (Figure 1.1).  

Figure 1.1 Structural 
formulae of glucose and 
fructose 
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Table 1.1 Physical properties of fructose 

 

 

 

 

Fructose is ketohexose, a reducing sugar that exists in at least five 

tautomers in solution (Figure 1.2). At tautomeric equilibrium (20 °C in H2O or 

D2O) the distribution of the β-pyranose, β-furanose, α-furanose, α-pyranose and 

the keto tautomers was found to be approximately 69%, 22%, 6%, 2.5% and 

0.50%, respectively (Shallenberger, 1978; Barclay et al., 2012).  

 

Figure 1.2 Tautomeric forms of D-fructose in solution.  
(reproduced from Shallenberger, 1978) 

  

Molecular Formula C6H12O6 

Molar mass 180.156 Da 

Density 1.694 g/cm3 

Melting point 103 °C 

Water Solubility 3750 g/L (20 ºC) 
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Pure, dry fructose is a very sweet, white, odourless, crystalline solid. 

Fructose has higher solubility as compared to other sugars, which makes it 

difficult to crystallize from an aqueous solution (Table 1.1). Because of its 

greater solubility, fructose-containing sugar mixes, such as candies, are softer 

than those containing other sugars. Fructose has a greater effect on freezing 

point depression than disaccharides or oligosaccharides, which may be 

undesirable in soft-serve or hard-frozen dairy desserts.  

Fructose is estimated to be approximately 1.2-1.8 times sweeter than 

glucose, although the perception of sweetness depends on a variety of factors, 

such as concentration, pH, temperature and individual taste buds. The 

sweetness of fructose is perceived earlier than that of sucrose or glucose, and 

the taste sensation reaches a peak, which is higher and diminishes more quickly 

than that of sucrose. Fructose can also enhance other flavours (Hanover & 

White, 1993). 

1.1.2 Fructose in our daily food 

Fructose was always a part of human diet. Free fructose, together with 

free glucose, is present in fruits and honey, and in smaller amounts in 

vegetables (Table 1.2). Fructose polymers - fructans can be found in some 

vegetables and wheat. The level of fructose consumption remained low until 

the 19th century, when sugar became widely available at a low cost due to 

colonial trade. The main part of today’s dietary fructose intake comes from 

sucrose, a disaccharide composed of one molecule of glucose linked to a 

molecule of fructose through an alpha 1-4 glycoside bond. In addition to natural 

sources, fructose may be found in commercially produced high fructose corn 

syrup. The production process of high fructose corn syrup was developed by 

Marshall and Kooi in 1957 (Marshall & Kooi, 1957). The industrial production 

process was refined by Dr. Takasaki from Japan up to 1970, and since that time 
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the syrup was rapidly introduced in many processed foods and soft drinks 

(Bray et al., 2004).  

Table 1.2 Sugar content of selected common plant foods (g/100g). 
 (reproduced from  http://fnic.nal.usda.gov/databases) 

 

 

Food Item 
Total 

Carbohydrate 

Total 

Sugars 

Free 

Fructose 

Free 

Glucose 
Sucrose 

Fructose/

Glucose 

Ratio 

Sucrose as a % 

of Total  Sugars 

Fruits 
       

Apple 13.8 10.4 5.9 2.4 2.1 2.0 19.9 

Apricot 11.1 9.2 0.9 2.4 5.9 0.7 63.5 

Banana 22.8 12.2 4.9 5.0 2.4 1.0 20.0 

Fig, dried 63.9 47.9 22.9 24.8 0.07 0.93 0.001 

Grapes 18.1 15.5 8.1 7.2 0.2 1.1 1.0 

Peach 9.5 8.4 1.5 2.0 4.8 0.9 56.7 

Pear 15.5 9.8 6.2 2.8 0.8 2.1 8.0 

Pineapple 13.1 9.9 2.1 1.7 6.0 1.1 60.8 

Plum 11.4 9.9 3.1 5.1 1.6 0.66 16.2 

Vegetables 
       

Beet, Red 9.6 6.8 0.1 0.1 6.5 1.0 96.2 

Carrot 9.6 4.7 0.6 0.6 3.6 1.0 70.0 

Corn, Sweet 19.0 6.2 1.9 3.4 0.9 0.61 15.0 

Red Pepper, 

Sweet 
6.0 4.2 2.3 1.9 0.0 1.2 0.0 

Onion, Sweet 7.6 5.0 2.0 2.3 0.7 0.9 14.3 

Sweet Potato 20.1 4.2 0.7 1.0 2.5 0.9 60.3 

Sugar Cane 
 

13 – 18 0.2 – 1.0 0.2 – 1.0 11 - 16 1.0 100 

Sugar Beet 
 

17 – 18 0.1 – 0.5 0.1 – 0.5 16 - 17 1.0 100 
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Until recently, fructose has not been present in large amounts in the 

human diet; however, since the introduction of high-fructose corn syrup in 

1970s its daily intake has largely increased. For example, before 1900 Americans 

consumed approximately 15 g of fructose per day (4 % of total cal), mainly 

through consumption of fruits and vegetables. By 1940s, fructose intake had 

increased to 24 g per day (5 % of total cal); by 1977, it was 37 g per day (7 % of 

total cal); and by 1994, 55 g per day (10 % of total cal). Between 2005 and 2010 

approximately 13% of adults' total caloric intake came from added sugars 

(Ervin & Ogden, 2013). Among adults, one-third of calories from added sugars 

came from beverages, while in children and adolescents, 40% of calories from 

added sugars came from beverages (Ervin et al., 2012). Interestingly, the most 

recent studies show that estimated dietary sugars intake is either stable or 

decreasing (Wittekind & Walton, 2014).  

Fructose exhibits numerous useful physical and functional attributes, 

which can be use in food and beverage industry, such as sweetness, flavour 

enhancement, colour and flavour development, freezing-point depression, and 

osmotic stability (Hanover & White, 1993). Therefore, fructose is usually added 

to foods and drinks in order to enhance palatability and taste, as well as for 

browning of some foods, such as baked goods. It is extensively used in 

breakfast cereals, baked goods, condiments, and prepared desserts sweetened 

with sucrose or high-fructose corn syrup.  

To date, high-fructose corn syrup represents approximately 40% of all 

added sweeteners used in production of soft drinks and fruit juices. The usage 

of high-fructose corn syrup in food industry was encouraged due to its 

functional advantages over sucrose such as greater sweetness and palatability, 

better solubility, better preservative features, liquid form enabling easier 

handling, etc. In addition, the preference for high-fructose corn syrup over 

glucose or sucrose in  commercial food production can also be attributed to low 

cost and high production efficiency (Hanover & White, 1993).  

http://en.wikipedia.org/wiki/Palatability
http://en.wikipedia.org/wiki/Taste
http://www.newworldencyclopedia.org/entry/Glucose
http://www.newworldencyclopedia.org/entry/Sucrose
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Since fructose metabolism is not dependent on insulin secretion, at least 

not in the initial steps, and because fructose ingestion causes only a limited rise 

in glycemia, fructose was initially proposed as a natural substitute of sucrose 

for diabetic patients. However, the data collected in the past decades, implied 

that increase in fructose consumption correlates with the rising prevalence of 

metabolic disorders, which prompted the research toward understanding the 

metabolic fate of fructose and the mechanisms underlying its possible harmful 

effects.   

1.1.3 Fructose metabolism 

Both glucose and fructose are hexoses, but due to structural difference 

they do not share the same metabolic fate and differ in digestion, absorption 

and metabolism. Namely, in the intestine, glucose is absorbed by sodium-

glucose cotransporter, while fructose absorption occurs further down in the 

duodenum and jejunum, and is facilitated by a non-sodium-dependent process. 

After absorption, glucose and fructose enter the portal circulation and either 

enter the liver, or pass into the general circulation. In the liver, fructose 

undergoes a specific metabolism which differs markedly from that of glucose. 

Namely, hepatic fructolysis, unlike glycolysis, is not regulated by insulin or 

inhibited by high concentrations of ATP or citrate. 

Glucose enters the cells by insulin dependent GLUT4 transporter. Inside 

the cell, glucose is phosphorylated by glucokinase to glucose-6-phosphate, from 

which the intracellular metabolism of glucose begins. Hepatic glucose 

metabolism is limited by the capacity of the liver to store glucose as glycogen 

and by the inhibition of glycolysis and further glucose uptake resulting from 

allosteric inhibition of phosphofructokinase by citrate and ATP.  
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Figure 1.3. Major metabolic pathways and flux of dietary glucose and 
fructose. P = phosphate. For enzymes numbered in circles: 
1 = hexokinase/glucokinase or glucose-6-phosphatase, 2 = phosphoglucose 
isomerase, 3 = hexokinase, 4 = fructokinase, 5 = glycogen synthase or 
phosphorylase, 6 = phosphofructokinase, 7 = aldolase, 8 = triose phosphate 
isomerase, 9 = triose kinase, 10 = several enzymes including pyruvate kinase, 
11 = pyruvate dehydrogenase complex, 12 = lactate dehydrogenase, 
13 = ketothiolase and other 3 enzymes, 14 = enzyme group related to citric acid 
cycle, 15 = acetyl CoA carboxylase, 16 = multienzyme complexes, 17 = acyl CoA 
synthase, 18 = glycerol-phosphate acyl transferase and triacylglycerol synthase 
complex. The dashed-lines and arrows represent minor pathways or will not 
occur under a healthy condition or ordinary sugar consumption. The 
compound names in bold would be major metabolic intermediates or end 
products of glucose or fructose metabolism.  
(reproduced from (Sun & Empie, 2012).  
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In contrast to glucose, fructose is rapidly and almost completely taken up 

from the portal vein by the liver, in order to be converted into glucose, 

glycogen, lactate and fat, or to be oxidized within hepatocytes. Fructose enters 

the cells predominantly through GLUT5 and/or GLUT2 transporters 

irrespective of energy needs, or circulating glucose levels. Once inside the cell, 

fructose carbons, like glucose, are utilized through glycolysis, gluconeogenesis, 

glycogenolysis, tricarboxylic acid cycle, lactate production (Cori cycle), pentose 

phosphate shunt and lipid synthesis pathways, to provide substrates for 

glycogen, amino acids, carbohydrates, fat, ATP, etc (Figure 1.3). However, 

fructose and glucose enter metabolic pathways differently. Fructose is 

phosphorylated by fructokinase to form fructose-1-phosphate, which can 

directly enter glycolysis. This unique characteristic of fructose metabolism 

enables bypassing tightly regulated glycolytic checkpoints, especially 

phosphofructokinase. Fructose-1-phosphate can be cleaved by aldolase to form 

trioses that are the backbone for phospholipid and triacylglycerol synthesis. 

Fructokinase and aldolase B are not regulated by insulin and the energy status 

of the cell, therefore the majority of fructose is rapidly converted into triose-

phosphate. As a consequence, a transient ATP depletion occurs in hepatocytes, 

which can be followed by formation of AMP and its degradation to uric acid. 

Also formed triose-phosphates can be converted into lactate or glucose and 

released into the circulation; or directed to glycogen synthesis. Finally, fructose 

can be converted to acetyl coenzyme A and citrate to provide carbon for de novo 

lipogenesis (Havel, 2005; Tappy, 2012).  
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1.1.4 Fructose and metabolic disorders 

Since the introduction of high-fructose corn syrup in 1970s, daily 

consumption of this sugar has largely increased. Emerging body of evidence 

suggests that high-fructose diet promotes profound metabolic alterations in the 

liver and adipose tissue (Havel, 2005; Dekker et al., 2010). Epidemiological 

evidence suggest that increased intake of added sugars and/or sugar-

sweetened beverages is associated with dislypidemia, insulin resistance, fatty 

liver, visceral adiposity, type 2 diabetes, cardiovascular diseases, metabolic 

syndrome, chronic kidney diseases, hyperuricemia and gout (Bomback et al., 

2010; Hostmark, 2010; Perez-Pozo et al., 2010; Nomura & Yamanouchi, 2012; 

Stanhope et al., 2013; Bruun et al., 2015; Malik & Hu, 2015; Stanhope et al., 2015; 

Baena et al., 2016). Enhanced hepatic de novo lipogenesis, oxidative stress, 

inflammation and hyperuricemia have been proposed as underlying 

mechanisms responsible for adverse metabolic effects of fructose (Johnson et al., 

2013; Bruun et al., 2015; Keane et al., 2015).  

1.1.5 Gender differences in prevalence of metabolic disorders 

Previous studies reported gender differences in susceptibility and 

progression of metabolic disturbances (Vistisen et al., 2014; Rochlani et al., 2015). 

Although women seem to have higher risk of developing metabolic syndrome, 

less severe metabolic disturbances and/or later onset of adverse phenotypes 

were observed in females as compared to males. For instance, epidemiological 

studies indicate that prevalence of insulin resistance-related disorders is higher 

in men compared to women (Vistisen et al., 2014). Also, men display a higher 

cardiovascular risk due to differences in prevalence of individual components 

of metabolic syndrome (Geer & Shen, 2009; Rochlani et al., 2015). Studies 

examining differences in lipid profile patterns between men and women have 

shown that men tend to have more pathogenic lipid fraction pattern than 

women, which leads to an increased risk of cardiovascular diseases 
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 (Johnson et al., 2004; Rochlani et al., 2015). However, the prevalence of obesity is 

greater in women than in men, and it is accelerated after menopause (Meyer et 

al., 2011; Garawi et al., 2014). A fall in estrogen levels following menopause has 

been associated with increased visceral obesity, impaired glucose metabolism 

and increased risk of cardiovascular diseases, implying that postmenopausal 

women share the same risk category as men for development of metabolic 

diseases  (Wang et al., 2012).  

Although the underlying mechanisms responsible for fructose-mediated 

metabolic disturbances are not quite clear, previous studies have revealed a link 

between nutritional excess and oxidative stress, suggesting that redox 

disbalance may participate in development and progression of metabolic 

diseases (Nomura & Yamanouchi, 2012). Interestingly, gender-related 

dimorphism in oxidative capacity and activities of antioxidant enzymes points 

to a higher protection against oxidative damages in females (Vina et al., 2005a; 

Pajovic & Saicic, 2008; Giergiel et al., 2012). Namely, males were shown to be 

more prone to insulin resistance-related disorders as compared to females, and 

the later onset and less severe metabolic phenotypes in females have been 

related to the better antioxidative capacity of females (Busserolles et al., 2002; 

Borras et al., 2003; Baba et al., 2005).  
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1.2 Oxidative stress and antioxidant defence system 

1.2.1 Reactive oxygen species  

Free radicals were discovered by Moses Gomberg more than a century 

ago (https://www.acs.org/content/acs/en/education/whatischemistry/landmarks/ 

freeradicals.html). The scientific community began recognizing the importance 

of free radicals in 1929, when Friedrich Paneth and Wilhelm Hofeditz produced 

the methyl free radical (Commoner et al., 1954). Yet, due to their short life time 

and extremely high chemical activity their presence in biological systems 

remained undiscovered till the early 20th century. However, immediately upon 

the discovery of the presence of free radicals in biological systems they were 

linked to diverse human pathologies (Gerschman et al., 1954), and aging 

processes (Harman, 1956), which launched the field of free radical research in 

living organisms. In the 1970s, Sies and Chance evaluated catalase function in 

vivo, and provided information regarding the steady-state hydrogen peroxide 

levels in perfused rat liver (Sies & Chance, 1970). In the 1980s, it became clear 

that the generation and elimination of free radicals in living organisms is well-

balanced, while imbalances between their generation and elimination underlie 

various pathophysiological states. Subsequently, their role in numerous 

biochemical processes, including intracellular messaging, cellular 

differentiation, growth arrestment, apoptosis, immunity and defence against 

microorganisms has been revealed (Valko et al., 2007; Forman et al., 2010; 

Forman, 2016). Since their discovery the gathered knowledge on the 

involvement of free radicals in living processes has increased enormously.  

Radicals derived from oxygen are considered the most important class of 

radical species generated in living systems (Valko et al., 2007). Reactive oxygen 

species (ROS) are a highly reactive, short-lived free-radical and non-radical 

derivatives of oxygen metabolism, produced in all biological systems in 

response to extracellular and intracellular stimuli.  
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Mitochondria are a major source of cellular ROS generation, where ROS 

formation results from imperfectly coupled electron transport (Murphy, 2009). 

The primary ROS produced in aerobic organisms is superoxide anion radical 

(O2•−), derived by the addition of one electron to oxygen molecule. Hydrogen 

peroxide (H2O2) although not a free radical in itself, is a biologically important 

oxidant because of its ability to generate extremely reactive hydroxyl radical 

(HO•). Namely H2O2 is a powerful oxidizing agent, which in the presence of 

reduced transition metals such as Cu+ or Fe2+, can be converted to the highly 

reactive HO• through Fenton or Haber–Weiss reactions. HO• unspecifically 

reacts with all kinds of biomolecules at a diffusion-limited rate. Due to their 

unstable electron configurations ROS can react with cellular macromolecules. 

ROS are capable of initiating chain reactions, resulting in protein, lipid and 

nucleic acid damages (Aruoma et al., 1991; Imlay, 2003; Valko et al., 2007). 

1.2.2 Oxidative stress  

Oxidative stress is a condition that occurs when the balance between the 

formation and the removal of ROS is disturbed, thereby resulting in the 

accumulation of oxidized and damaged biomolecules. It is a consequence of 

either increased generation of free radicals or impaired antioxidant defense 

(Valko et al., 2007; Lushchak, 2014). The excess ROS can damage cellular lipids, 

proteins, or DNA, thus decreasing their biological activity, which can lead to 

alterations in cell signalling, metabolic dysregulations and other cellular 

functions. Oxidative stress was implicated in the pathogenesis of various 

disease states, including diabetes, obesity, atherosclerosis, cancer, 

neurodegenerative disorders, hypertension, cardiovascular diseases, and heart 

failure (Valko et al., 2007; Grattagliano et al., 2008; Reuter et al., 2010; Rains & 

Jain, 2011; Miljkovic & Spasojevic, 2013; Balmus et al., 2016). The potential role 

of oxidative stress in initiation and progression of metabolic disorders is rapidly 

evolving. 
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However, the delicate balance between beneficial and harmful effects of 

ROS represents an important aspect of living organisms. Namely, low levels of 

ROS as signaling molecules are necessary for proper cell functioning and 

biological effects of these highly reactive species are controlled by a wide 

spectrum of antioxidant mechanisms (Valko et al., 2007).  

1.2.3 Antioxidant defence system  

The main physiological mechanism, by which cells regulate ROS 

concentration within non-toxic homeostatic levels, thereby enabling appropriate 

signaling, as well as the protection of macromolecules from oxidative damage, 

includes a complex set of enzymes and non-enzymatic low-molecular weight 

endogenous and dietary antioxidant compounds (Figure 1.4). Cells maintain 

levels of antioxidants, often defined as their antioxidant potential, through 

dietary intake and/or de novo synthesis.  

The primary antioxidant enzymes include, but are not limited to: 

cytoplasmic copper-zinc superoxide dismutase (SOD1) and mitochondrial 

manganese superoxide dismutase (SOD2), which rapidly and specifically 

reduce superoxide anion radicals to hydrogen peroxide (Figure 1.4). Hydrogen 

peroxide is further decomposed to water by catalase (CAT) and glutathione 

peroxidase (GPx). Cytosolic GPx detoxifies hydrogen peroxide in the presence 

of reduced glutathione (GSH), which is thus converted to oxidized glutathione 

(GSSG) and subsequently recycled by glutathione reductase (GR) (Figure 1.4). 

The non-enzymatic compounds such as GSH, vitamins A, E, C, beta-carotene, 

uric acid, bilirubin, etc  play an essential role in maintaining redox balance by 

trapping free radicals and preventing chain reactions (Figure 1.4). Finally, 

numerous proteins including heath shock proteins Hsp70 and Hsp90, assist in 

reparation of oxidatively damaged cellular biomolecules.  
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1.2.4 Antioxidant enzymes  

Superoxide dismutase (SOD) (EC 1.15.1.1) is an antioxidant enzyme that 

catalyses the dismutation of O2•- to O2 and the less reactive ROS H2O2, with 

extremely high reaction rates (Fridovich, 1995). Humans express three types of 

SODs: mitochondrial Mn SOD, cytosolic Cu/Zn SOD and extracellular SOD 

(Mates et al., 1999). The dismutation of O2•- is achieved by successive oxidation 

and reduction of the transition metal ion at its active site in a Ping Pong type 

mechanism (Meier et al., 1998). The respiratory chain in mitochondria is a major 

source of oxygen radicals. Mn-SOD (SOD2) is a mitochondrial homotetrameric 

enzyme which contains one manganese ion per subunit. Cu/Zn-SOD is 

believed to play a major role in the first line of antioxidant defense. Cu/Zn-SOD 

(SOD1) is homodimer. Each subunit contains a metal cluster, containing copper 

and zinc ions bridged by a histamine residue in the active site.   

Catalase (EC 1.11.1.6) is a homotetrameric enzyme that reacts with H2O2 

to form water and molecular oxygen, or facilitates the reduction of organic 

hydroperoxides using hydrogen donors (methanol, ethanol, formic acid, or 

phenols). The enzyme consists of four identical tetrahedrally arranged subunits. 

Each subunit contains a single ferriprotoporphyrin group. Catalase has one of 

the highest turnover rates for all enzymes (Mates et al., 1999) 

Glutathione peroxidase (GPx) (EC 1.11.1.19) is a selenium-containing 

tetrameric enzyme that reduces H2O2, lipoperoxides and other organic 

hydroperoxides to their corresponding hydroxylated compounds using 

reduced glutathione (GSH) as a hydrogen donor. Each of the four identical 

subunits contains a single selenocysteine (Sec) residue (Chaudiere & Ferrari-

Iliou, 1999). Mammals express five GPx isoenzymes that differ in intracellular 

localization and substrate specificity. The distribution and the level of 

isoenzymes is regulated in a tissue specific manner.  
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Glutathione reductase (GR) (EC 1.8.1.7) is disulfide oxidoreductase that 

catalyzes the reduction of glutathione disulfide (GSSG) to the sulfhydryl form 

(GSH). GR is homodimer which utilizes an FAD prosthetic group and NADPH 

to reduce GSSG using a Ping-Pong mechanism. The enzyme has three 

substrates (NADPH, H+ and GSSG) and two products (GSH and GSH). It is 

crucial for maintaining a reducing intracellular milieu - high GSH and low 

GSSG levels (Couto et al., 2016).  
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Figure 1.4. Pathways of ROS formation, the lipid peroxidation process and 
the role of glutathione (GSH) and other antioxidants (Vitamin E, Vitamin C, 
lipoic acid) in the management of oxidative stress.  
Reaction 1: The superoxide anion radical is formed by the process of reduction 
of molecular oxygen mediated by NAD(P)H oxidases and xanthine oxidase or 
non-enzymatically by redox-reactive compounds such as the semi-ubiquinone 
compound of the mitochondrial electron transport chain.  
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Reaction 2: Superoxide radical is dismutated by the superoxide dismutase 
(SOD) to hydrogen peroxide. Reaction 3: Hydrogen peroxide is most efficiently 
scavenged by the enzyme glutathione peroxidase (GPx) which requires GSH as 
the electron donor. Reaction 4: The oxidised glutathione (GSSG) is reduced back 
to GSH by the enzyme glutathione reductase (Gred) which uses NADPH as the 
electron donor. Reaction 5: Some transition metals (e.g. Fe2+, Cu+ and others) 
can breakdown hydrogen peroxide to the reactive hydroxyl radical (Fenton 
reaction). Reaction 6: The hydroxyl radical can abstract an electron from 
polyunsaturated fatty acid (LH) to give rise to a carbon-centred lipid radical 
(L•). Reaction 7: The lipid radical (L•) can further interact with molecular 
oxygen to give a lipid peroxyl radical (LOO•). If the resulting lipid peroxyl 
radical LOO• is not reduced by antioxidants, the lipid peroxidation process 
occurs (reactions 18–23 and 15–17). Reaction 8: The lipid peroxyl radical (LOO•) 
is reduced within the membrane by the reduced form of Vitamin E (T-OH) 
resulting in the formation of a lipid hydroperoxide and a radical of Vitamin E 
(T-O•). Reaction 9: The regeneration of Vitamin E by Vitamin C: the Vitamin E 
radical (T-O•) is reduced back to Vitamin E (T-OH) by ascorbic acid (the 
physiological form of ascorbate is ascorbatemonoanion, AscH−) leaving behind 
the ascorbyl radical (Asc•−). Reaction 10: The regeneration of Vitamin E by 
GSH: the oxidised Vitamin E radical (T-O•) is reduced by GSH. Reaction 11: 
The oxidised glutathione (GSSG) and the ascorbyl radical (Asc•−) are reduced 
back to GSH and ascorbatemonoanion, AscH−, respectively, by the 
dihydrolipoic acid (DHLA) which is itself converted to α-lipoic acid (ALA). 
Reaction 12: The regeneration of DHLA from ALA using NADPH. Reaction 13: 
Lipid hydroperoxides are reduced to alcohols and dioxygen by GPx using GSH 
as the electron donor. Lipid peroxidation process: Reaction 14: Lipid 
hydroperoxides can react fast with Fe2+ to form lipid alkoxyl radicals (LO•), or 
much slower with Fe3+ to form lipid peroxyl radicals (LOO•). Reaction 15: 
Lipid alkoxyl radical (LO•) derived for example from arachidonic acid 
undergoes cyclisation reaction to form a six-membered ring hydroperoxide. 
Reaction 16: Six-membered ring hydroperoxide udergoes further reactions 
(involving β-scission) to from 4-hydroxy-nonenal. Reaction 17: 4-
hydroxynonenal is rendered into an innocuous glutathiyl adduct (GST, 
glutathione S-transferase). Reaction 18: A peroxyl radical located in the internal 
position of the fatty acid can react by cyclisation to produce a cyclic peroxide 
adjacent to a carbon-centred radical. Reaction 19: This radical can then either be 
reduced to form a hydroperoxide (reaction not shown) or it can undergo a 
second cyclisation to form a bicyclic peroxide which after coupling to dioxygen 
and reduction yields a molecule structurally analogous to the endoperoxide. 
Reaction 20: Formed compound is an intermediate product for the production 
of malondialdehyde. Reactions 21, 22, 23: Malondialdehyde can react with DNA 
bases Cytosine, Adenine, and Guanine to form adducts M1C, M1A and M1G, 
respectively. (reproduced from Valko et al, 2007).  
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1.2.5 Oxidative stress and metabolic syndrome  

Oxidative stress is a condition that can occur when pro-oxidant challenge 

overwhelms the antioxidant defense. Recent studies support the concept that 

increased oxidative stress may play an important role in initiation and 

progression of metabolic syndrome related manifestations (Ceriello & Motz, 

2004; Hopps et al., 2010). Namely, the observation that oxidative stress was 

present in various metabolic disorders including insulin resistance, obesity, 

atherosclerosis, type 2 diabetes, has implied that it might be common unifying 

mechanism underlying development of metabolic dysfunction (Ceriello & 

Motz, 2004; Furukawa et al., 2004; Grattagliano et al., 2008; Henriksen et al., 2011; 

Yubero-Serrano et al., 2013; Manna & Jain, 2015).  

Previous studies have shown an increase in oxidative stress biomarkers 

in obese adults and children (Faienza et al., 2012; Kotani & Yamada, 2012; 

Gonzalez-Muniesa et al., 2013). In children, oxidative stress and adipokine 

levels worsen throughout the continuum of obesity and especially in the 

presence of the components of metabolic syndrome (Kelly et al., 2006). Fujita et 

al (2006) have demonstrated a strong association between systemic oxidative 

stress, visceral fat accumulation and metabolic syndrome. Biomarkers of 

oxidative stress were found to be elevated in individuals with metabolic 

syndrome as compared to individuals with no metabolic dysfunction (Armutcu 

et al., 2008; Rao et al., 2010; Demir et al., 2014; Sabir et al., 2016).  Van Gulinder et 

al, implied that increased oxidative and inflammatory stress may contribute to 

the greater risk of coronary heart disease and cerebrovascular disease in obese 

adults with metabolic syndrome (Van Guilder et al., 2006). Oxidative stress and 

obesity have also been related to insulin resistance and type 2 diabetes 

(Urakawa et al., 2003; Katsuki et al., 2004; Das et al., 2016). Boden et al have 

shown that acute excessive caloric intake can induce oxidative stress and a 

consequent oxidation and carbonylation of numerous proteins, including 
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GLUT4, which might be related to development of insulin resistance in healthy 

men (Boden et al., 2015).  

Previous studies on rodents have shown that fructose-rich diet can 

induce most features of metabolic syndrome, including hypertension, insulin 

resistance, abdominal obesity, hepatic steatosis, endothelial dysfunction and 

inflammation (Dekker et al., 2010; Tappy et al., 2010). Thus, fructose-fed rats 

appeared to be a commonly used animal model for studying diet-induced 

metabolic disturbances (Tran et al., 2009). 

The induction of some features of metabolic syndrome by chronic 

fructose feeding, and even by a single dose of fructose (Moreno & Hong, 2013), 

was associated with oxidative stress and the disruption of antioxidant 

mechanisms (Francini et al., 2010), suggesting a causative role of oxidative stress 

(Grattagliano et al., 2008; Rains & Jain, 2011). However, a large discrepancy in 

the course and the intensity of fructose-induced alterations in antioxidant 

enzyme functioning can be found. On the other hand, protective effects of 

fructose and its phosphorylated forms after short-term application were also 

demonstrated in oxidative stress-related conditions, and several studies have 

reported their antioxidative and cytoprotective effects (Frenzel et al., 2002; 

Spasojevic et al., 2009a; Semchyshyn & Lozinska, 2012; Semchyshyn, 2013). In 

general, it appears that negative effects of fructose emerge mostly after long-

term exposure, while its acute application seems to protect cells and can be 

beneficial under some pathophysiological conditions (Semchyshyn, 2013). In 

addition, the question whether fructose-induced oxidative stress represents an 

early event in the pathogenesis of metabolic diseases or a consequence of 

metabolic disturbances remains opened. 
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2 AIM 

 

 

 

 

 

 

 

 

 

Increased fructose consumption coincides with the rising incidence of 

obesity, metabolic syndrome and type 2 diabetes. The underlying mechanisms 

responsible for fructose-mediated metabolic disturbances are not quite clear, 

and previous studies revealed the link between nutritional excess and oxidative 

stress, suggesting that redox disbalance may participate in the initiation and/or 

progression of metabolic disorders, often in a gender-specific manner. 

However, the relationship between fructose consumption and oxidative stress 

has appeared to be complex, since both, prooxidant and antioxidant effects of 

fructose were reported. Moreover, the ability of antioxidant defence system to 

react efficiently under conditions of disturbed homeostasis is largely dependent 

on age, and the effects of fructose rich-diet on young population, which is at 

increased risk of developing metabolic disorders in the adulthood, have not 

been fully elucidated. 
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The general aim of this study is to investigate whether fructose-rich diet 

applied, over a period from weaning to adulthood, induces hepatic oxidative 

stress, thus contributing to the induction and/or aggravation of metabolic 

disturbances in later adulthood.  

 

 

The specific aims are: 

  To examine the effects of long-term moderate fructose-enriched diet  

(10% fructose in drinking water) or high-fructose diet (60% fructose in drinking 

water) on physiological and biochemical parameters in rats subjected to dietary 

regime immediately after weaning; 

  To determine whether long-term moderate fructose-enriched diet  

(10% fructose in drinking water) affects expression and activity of antioxidant 

enzymes in the liver of female and male rats;  

  To investigate the effects of high-fructose diet (60% fructose in drinking 

water) on expression and activity of antioxidant enzymes in the liver of male 

rats which are more prone to development of insulin-resistance related 

disorders as compared to females.  
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3 MATERIAL AND METHODS 

 

 

 

 

 

 

 

 

3.1 Animals and treatment 

To examine the effects of moderate fructose-rich diet, young male and 

female Wistar rats (21 days old) were randomly divided in 2 experimental 

groups (9 animals per group): control group (C) fed with commercial standard 

chow and drinking water, and fructose group (F10) fed with the same chow and 

10% (w/v) fructose solution instead of drinking water. Both experimental 

groups had ad libitum access to food and drinking fluid during 9 weeks. The 

choice of fructose concentration was based on the data that 10% fructose 

solution closely resembles the intake of sweet solutions characteristic for 

Western diet (Ventura et al., 2011). 

  



 26 

 

 

To examine the effects of high-fructose diet, male Wistar rats aged 

21 days at the beginning of the treatment, were randomly divided in 

2 experimental groups according to diet regime applied during 9 weeks 

(n = 9 animals per group). Control group (C) had standard commercial 

laboratory chow and drinking water available ad libitum, while fructose group 

(F60) had the same chow and both 60 % fructose solution and drinking water 

available ad libitum. Additional drinking water was provided for fructose group 

in order to prevent kidney hypertrophy, glomerular hypertension and cortical 

vasoconstriction, as possible consequences of disturbed water balance  

(Sanchez-Lozada et al., 2007). 

All animals were kept under standard conditions, 22°C with a 12 h 

light/dark cycle. The detailed composition of the laboratory chow obtained 

from Veterinary Institute, Subotica, Serbia, is presented at Table 3.1. During the 

9 week treatment, food and liquid intake was measured daily. Energy intake 

was calculated as sum of calories ingested as food and liquid. Body mass was 

measured at the beginning and at the end of the treatment, while the livers and 

visceral adipose tissue were weighted immediately after sacrifice.  

The procedures were complied with the EEC Directive (86/609/EEC) on 

the protection of animals used for experimental and other scientific purposes, 

and were approved by the Ethical Committee for the Use of Laboratory 

Animals of the Institute for Biological Research “Siniša Stanković”, University 

of Belgrade.  
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Table 3.1. Composition of the laboratory chow (Veterinary Institute, 
Subotica, Serbia). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chemical composition of the standard diet  

Metabolizable energy, not less than 11000 kJ/kg 

Protein, not less than 20% 

Moisture, not more than 13 % 

Ash, not more than 10 % 

Cellulose, not more than 8 % 

Calcium, not less than 1 % 

Lysine, not less than 0.90 % 

Methionine + Cystine, not less than 0.75 % 

Phosphorus, not less than 0.50 % 

Sodium 0.15-0.25 % 

Vitamin A,  not less than 10 000 IU/kg 

Vitamin D3, not less than 1600 IU/kg 

Vitamin E, not less than 25 mg/kg 

Vitamin B12, not less than 0.02 mg/kg 

Zinc, not less than 100 mg/kg 

Iron, not less than 100 mg/kg 

Manganese, not less than 30 mg/kg 

Copper, not less than 20 mg/kg 

Iodine, not less than 0.5 mg/kg 

Selenium, not less than 0.1 mg/kg 

Antioxidant, not less than 100 mg/kg 
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3.2 Blood plasma preparation and tissue collection  

After overnight fasting, animals were sacrificed by rapid decapitation 

with a guillotine (Harvard-Apparatus, USA). Livers were perfused with cold 

0.9% NaCl, quickly excised and stored in liquid nitrogen until use. Visceral 

adipose tissue was carefully isolated and weighed. Adiposity index (%) was 

calculated as [(adipose tissue mass/body mass) x100].  

Trunk blood was rapidly collected into EDTA containing tube and 

agitated slowly. Blood plasma was isolated by centrifugation at 1600xg for  

10 min at room temperature and stored at -20ºC for subsequent processing.  

3.3 Determination of biochemical parameters  

Glucose and triglycerides concentrations were determined in the blood 

immediately after sacrifice using MultiCare strips (Biochemical Systems 

International, Italia).  

Plasma insulin level was determined by radioimmunoassay, using RIA 

kit for insulin (INEP, Zemun, Serbia). Radioactivity was counted in Rackbeta 

liquid scintillation counter (LKB). Assay sensitivity was 0.6 mIU/l and an 

intraassay coefficient of variation was 5.24 %.  

Level of nonesterified fatty acids (NEFA) was determined in the blood 

plasma using a modified version of Duncombe's (1964) method. Serial dilutions 

of palmitic acid were used for standard curve construction.   

Liver triglycerides were isolated from 100 mg of liver tissue by modified 

Folch method (1957) and analysed by modified colorimetric method by Fletcher 

(1968). 
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3.4 Determination of antioxidant enzymes activity 

For the preparation of whole cell extracts, livers were homogenized in 

10 vol. (w/v) of buffer (50 mM Tris, 0.25 M sucrose, 1 mM EDTA, pH 7.4), 

sonicated (3 x 10 s at 10 MHz on ice) prior to 60 min centrifugation at 

105000 x g. Final supernatants were used as whole cell extracts.  

Total SOD activity was determined in the whole cell extracts by the 

adrenaline method (Misra & Fridovich, 1972). SOD units were defined as the 

amount of the enzyme necessary to decrease the rate of adrenalin autooxidation 

by 50%, at pH 10.2. For determination of SOD2 activity, the assay was 

performed after preincubation with 8 mM KCN. The SOD1 activity was 

calculated as the difference between total SOD and SOD2 activities.  

CAT activity was determined according to Claiborne´s method (1985). 

One unit of CAT activity was defined as the amount of enzyme necessary to 

decompose 1  mmol H2O2  per minute at 25°C and pH  7.0.  

The activity of GPx was determined by the GSH reduction of t-butyl 

hydroperoxide, using a modification of the assay described by Paglia and 

Valenine (1967). One unit of GPx activity was defined as the amount of enzyme 

needed to oxidaze 1  mmol NADPH per minute at 25°C and pH  7.0.  

GR activity was determined by the method of Glatzle (1974). One unit of 

GR activity is defined as the amount of enzyme needed to oxidaze 1  nmol 

NADPH per minute at 25°C and pH  7.4.  

All enzyme activities are expressed as arbitrary units per mg of protein 

(AU/mg). Protein concentration was determined by the method of Spector 

(1978) using bovine serum albumin as a standard.  
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3.5 Assessment of TBARS 

For the measurement of lipid peroxidation products, livers were 

homogenized in 10  vol. (w/v) of Tris buffer pH 7.4 without sucrose, sonicated 

and centrifuged at 6 000 x g. The degree of lipid peroxidation was assessed by 

estimating the thiobarbituric acid reactive substances (TBARS) (Rehncrona et al., 

1980). The absorbance was measured at 530 nm. TBARS concentration was 

calculated using the molar extinction coefficient of malondialdehyde 

(ε530=15  600  M-1  cm-1), and expressed in nmol per mg of protein. 

3.6 SDS-PAGE and immunoblotting 

Proteins were resolved according to Laemmly (1970) on 12% 

SDS-polyacrylamide gels using Mini-Protean Electrophoresis Cell (Bio-Rad 

Laboratories, Hercules, CA). Western transfer of proteins from acrylamide gels 

to PVDF membranes (Amersham Pharmacia Biotech, UK) was performed in 

25  mM Tris buffer, pH 8.3 containing 192 mM glycine and 20% (v/v) methanol, 

at 135 mA overnight in Mini Trans-Blot Electrophoretic Transfer Cell (Bio-Rad 

Laboratories, Hercules, CA). The membranes were blocked by Phosphate-

buffered saline (PBS) comprised of 1.5 mM KH2PO4, 6.5 mM Na2HPO4, 2.7 mM 

KCl, 0.14 M NaCl, at pH 7.2 which contained 1% non-fat dry milk. After 

blocking, the membranes were incubated with primary antibody. The list of 

antibodies used for immunodetection of target proteins is presented in 

Table 3.2. 

  

https://www.google.rs/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwiRotyoztTMAhUmIpoKHeTaDXYQFggaMAA&url=http%3A%2F%2Fcshprotocols.cshlp.org%2Fcontent%2F2006%2F1%2Fpdb.rec8247&usg=AFQjCNF-hbdmO10HD9e8Kb7l2-WiXjKTWg&sig2=Qjmdzz35mIXEdZRI_sz6dg&bvm=bv.121658157,d.bGs
https://www.google.rs/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwiRotyoztTMAhUmIpoKHeTaDXYQFggaMAA&url=http%3A%2F%2Fcshprotocols.cshlp.org%2Fcontent%2F2006%2F1%2Fpdb.rec8247&usg=AFQjCNF-hbdmO10HD9e8Kb7l2-WiXjKTWg&sig2=Qjmdzz35mIXEdZRI_sz6dg&bvm=bv.121658157,d.bGs
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Table 3.2. Characteristics of primary antibodies used in Western blot 
detection. 

 

After washing with PBS containing 0.1% Tween 20 the membranes were 

incubated with appropriate alkaline phosphatase-conjugated secondary 

antibody (1:20000) under the same conditions, and subsequently washed with 

PBS containing 0.1% Tween 20. The immunoreactive proteins were visualized 

on STORM (Amersham Biosciences Limited, UK) using an enzyme-amplified 

chemifluoroscence (ECF) method (Amersham Biosciences Limited, UK). 

Quantitative analysis of immunoreactive bands was done by ImageQuant 

software (GE Healthcare). Probing for each protein was followed by stripping 

with 0.2 M NaOH and blocking. β-actin was used as equal load control. 

Target protein 
Molecular 

weight 
(kDa) 

Source 
ID number  

Manufacturer 
Dilution 

SOD1 18 Rabbit 
Ab13498 
Abcam 

1:5000 

SOD2 27 Rabbit 
Ab13533 
Abcam 

1:5000 

CAT 60 Rabbit 
Ab16731 
Abcam 

1:2000 

GPx 22 Rabbit 
Ab22604 
Abcam 

1:5000 

GR 58 Rabbit 
Ab16801 
Abcam 

1:2000 

Hsp70 73 Mouse 
SPA-820 
Stressgen 

1:1000 

Hsp90 90 Mouse 
SPA-830 
Stressgen 

1:1000 

β-actin 43 Mouse 
AC-15 

Sigma-Aldrich 
1:5000 
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3.7 Statistical analyses 

Each assay was performed in triplicate per sample. The morphological 

and biochemical parameters are given as means ± SD.  The enzyme activities 

and Western blot data are presented as means ± SEM.  Between-group 

differences were assessed by Student's unpaired t-test. A probability level of 

P<0.05 was considered statistically significant. Statistical analyses were 

performed by using GraphPad Prism v5 Software (GraphPad Software, Inc.  

La Jolla, CA,USA).   
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4.1 The effects of moderate fructose-rich diet  
(10% fructose in drinking water) on physiological 
parameters and hepatic antioxidant enzymes function 
in female rats 

4.1.1 Physiological and biochemical parameters of fructose-fed rats and 
rats on standard diet 

Daily food and liquid intake was measured during 9 weeks of 

application of the diet. A decrease in chow intake and increase in liquid intake 

were observed in fructose-fed female rats, as compared to controls (Table 4.1). 

Despite increased energy intake observed in fructose-fed rats, body mass 

remained unaltered. However, high-fructose diet led to an increase in visceral 

adipose tissue mass and adiposity index as compared to controls. Also, the diet 

regime led to an increase in the liver mass, but liver to body mass ratio 

remained unaltered (Table 4.1).  
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Table 4.1. Food, liquid and energy intake, and physiological parameters in 
female rats subjected to moderate fructose-rich diet. 

The data are presented as means ± SD (n = 9 animals per group). Comparisons 
between fructose-fed and control rats were made by unpaired Student's t-test. A 
value of P<0.05 was considered statistically significant. Asterisks indicate 
significant differences. *P<0.05, **P<0.01.   

 Control 10% Fructose 

Food intake 

(g/day/animal) 

17.41 ± 2.99 12.59 ± 0.67 ** 

Liquid intake 

(mL/day/animal) 

33.02 ± 6.58 56.19 ± 20.41 * 

Total energy intake 

(kJ/day/animal) 

191.51 ± 32.89 236.06 ± 30.21 * 

Body mass (g) 259.00 ± 28.66 271.23 ± 25.44 

Mass of liver (g) 7.93 ± 0.97 9.37 ± 1.69 * 

Liver-to-body mass ratio (x100) 3.07 ± 0.33 3.41 ± 0.89 

Mass of visceral adipose tissue (g)  3.20 ± 1.32 5.06 ± 2.48 * 

Adiposity index (%)  1.24 ± 0.52 1.82 ± 0.75 * 
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Fructose-rich diet led to a decrease in fasting blood glucose level while 

plasma insulin level remained unaltered after the treatment. At the same time, 

the diet has induced triglyceridemia while plasma NEFA level remained 

unchanged. The diet had no effect on the level of hepatic triglycerides 

(Table 4.2).  

 

Table 4.2. Biochemical and hormonal parameters in female rats subjected to 
moderate fructose-rich diet  

Blood glucose and triglyceride levels were determined at the end of the 
application of 9-week fructose-rich diet, after overnight fasting of animals. 
Insulin and NEFA levels were measured in isolated plasma samples. Liver 
triglycerides were isolated from fresh liver tissue. The data are presented as 
means ± SD (n = 9 animals per group). Comparisons between fructose-fed and 
control rats were made by unpaired Student's t-test. A value of P<0.05 was 
considered statistically significant. Asterisks indicate significant differences. 
*P<0.05, **P<0.01.  

 

  

 Control 10% Fructose 

Glucose (mmol/l) 5.38 ± 0.65 4.58 ± 0.84 * 

Insulin (mIU/l) 6.60 ± 2.50 8.87 ± 3.97 

NEFA (mmol/l) 0.84 ± 0.17 0.83 ± 0.18 

Triglycerides (mmol/l) 1.39 ± 0.29 1.87 ± 0.38** 

Triglycerides in the liver 
(mmol/l) 

1.45 ± 0.35 1.53 ± 0.22 
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4.1.2 Activity and expression of antioxidant enzymes in the liver of female 
rats exposed to moderate fructose-rich diet  

To explore possible pro-oxidative effects of long-term moderate-fructose 

diet we determined the activity and protein level of antioxidant enzymes SOD1, 

SOD2, CAT, GPx, and GR in the livers of control and fructose-fed rats. The 

activities of SOD1, SOD2, CAT, GPx and GR were determined 

spectrophotometricaly, and their protein levels were examined by Western 

blotting. As shown on Figure 4.1, both the activity and expression of SOD1 

remained unaltered after the treatment.  

 

 

 

 

 

 

 

Figure 4.1. Activity and expression of SOD1 in the liver of female rats 
exposed to moderate fructose-rich diet over a period from weaning to 
adulthood. (a) SOD1 activity in hepatic whole cell extracts of control (C) and 
fructose-fed rats (F10) was determined spectrophotometrically, and expressed 
in arbitrary units per mg protein (AU/mg). Values are means ± SEM (n=9). (b) 
Hepatic whole cell extracts (50 μg protein) were subjected to SDS-PAGE and 
Western blotting. 𝛽-Actin was used as loading control. Representative blots and 
relative quantification of SOD1 level in control (C) and fructose-fed rats (F10) 
are shown. Quantitative analysis was done by the ImageQuant software. Values 
are means ± SEM (n=9) and are expressed relative to Control taken as 1. 
Comparisons between fructose-fed and control rats were made by unpaired 
Student's t-test.   
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Mitochondria are the major source of ROS in the cells. When the activity and 

the expression of mitochondrial SOD2 were examined, it was found that both 

parameters remained unaltered after long-term moderate fructose-rich diet 

(Figure 4.2).  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2. Activity and expression of SOD2 in the liver of female rats 
exposed to moderate fructose-rich diet over a period from weaning to 
adulthood. (a) SOD2 activity in hepatic whole cell extracts of control (C) and 
fructose-fed rats (F10) was determined spectrophotometrically, and expressed 
in arbitrary units per mg protein (AU/mg). Values are means ± SEM (n=9). (b) 
Representative Western blots and relative quantification of SOD2 level in 
hepatic whole cell extracts (50 μg protein) of control (C) and fructose-fed rats 
(F10) are shown. Quantitative analysis was done by the ImageQuant software. 
𝛽-Actin was used as loading control. Values are means ± SEM (n=9) and are 
expressed relative to Control taken as 1. Comparisons between fructose-fed and 
control rats were made by unpaired Student's t-test.  
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Figure 4.3. Activity and expression of CAT in the liver of female rats exposed 
to moderate-fructose diet over a period from weaning to adulthood. (a) CAT 
activity was determined spectrophotometrically and expressed in arbitrary 
units per mg protein (AU/mg). Values are means ± SEM (n=9). (b) 
Representative Western blots and relative quantification of CAT level in hepatic 
whole cell extracts (50 μg protein) of control (C) and fructose-fed rats (F10) are 
shown.  Quantitative analysis was done by the ImageQuant software. 𝛽-Actin 
was used as loading control. Values are means ± SEM (n=9) and are expressed 
relative to Control taken as 1. Comparisons between fructose-fed and control 
rats were made by unpaired Student's t-test. 

 

Similarly, no significant differences in the activity and expression of 

CAT, GPx and GR between fructose-fed rats and rats on standard diet were 

observed (Figure 4.3 and 4.4).  

For the measurement of lipid peroxidation products the level of TBARS 

was determined. Unchanged levels of TBARS suggest that the moderate 

fructose-rich diet did not affect the level of lipid peroxidation in the liver 

(Figure 4.5). 

The level of Hsp70 and Hsp90 as markers of accumulation of damaged 

proteins was determined by semi-quantitative Western blot. Unaltered levels of 

Hsp70 and Hsp90 after the applied diet regime imply that the levels of 

damaged proteins in the liver were not increased (Figure 4.5).  
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Figure 4.4. Activity and expression of GPx and GR in the liver of female rats 
exposed to moderate-fructose diet over a period from weaning to adulthood.  
(a) Enzyme activities were determined spectrophotometrically and expressed in 
arbitrary units per mg protein (AU/mg). Values are means ± SEM (n=9). (b) 
Representative Western blots and relative quantification of GPx and GR level in 
hepatic whole cell extracts (50 μg protein) of control (C) and fructose-fed rats 
(F10) are shown. Quantitative analysis was done by the ImageQuant software. 
𝛽-Actin was used as loading control. Values are means ± SEM (n=9) and are 
expressed relative to Control taken as 1. Comparisons between fructose-fed and 
control rats were made by unpaired Student's t-test.  
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Figure 4.5. Levels of TBARS, Hsp70 and Hsp90 in the liver of female rats 
subjected to moderate fructose-rich diet in a period from weaning to 
adulthood. (a) The level of TBARS was determined spectrophotometrically and 
expressed as nmol per mg of protein. Relative protein levels of Hsp70 (b) and 
Hsp90 (c) were determined by Western blotting. Representative Western blots 
of Hsp70 and Hsp90 in in the hepatic whole cell extracts of control (C) and 
fructose-fed rats (F10) are shown. Quantitative analysis was done by the 
ImageQuant software. 𝛽-Actin was used as loading control. Values are means ± 
SEM (n=9) and are expressed relative to Control taken as 1. Comparisons 
between fructose-fed and control rats were made by unpaired Student's t-test.   
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4.2 The effects of moderate fructose-rich diet  
(10% fructose in drinking water) on physiological 
parameters and hepatic antioxidant enzymes function 
in male rats 

4.2.1 Physiological and biochemical parameters of fructose-fed rats and 
rats on standard diet 

As shown in Table 4.3, moderate fructose-rich diet led to a decrease in 

chow intake and increase in liquid intake and total energy intake in fructose-fed 

male rats, as compared to controls. Despite increased energy intake observed in 

fructose-fed rats, body mass remained unaltered. Also, visceral adipose tissue 

mass and adiposity index, as well as liver mass and liver to body ratio remained 

unaltered after the 9-week fructose-rich diet (Table 4.3).  
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Table 4.3. Food, liquid and energy intake, and physiological parameters in 
male rats subjected to moderate fructose-rich diet. 

The data are presented as means ± SD (n = 9 animals per group). Comparisons 
between fructose-fed and control rats were made by unpaired Student's t-test. A 
value of P<0.05 was considered statistically significant. Asterisks indicate 
significant differences. *P<0.05.   

 Control 10% Fructose 

Food intake 

(g/day/animal) 

20.57 ± 2.63 14.20 ± 2.01 * 

Liquid intake 

(mL/day/animal) 

49.33 ± 5.39 74.10 ± 11.36 * 

Total energy intake 

(kJ/day/animal) 

226.23 ± 28.90 283.65 ± 24.51 * 

Body mass (g) 338.89 ± 40.45 311.25 ± 37.58 

Mass of liver (g) 12.48 ± 1.82 10.77 ± 1.46 

Liver-to-body mass ratio (x100) 3.67 ± 0.25 3.48 ± 0.41 

Mass of visceral adipose tissue (g)  2.59 ± 1.14 3.16 ± 1.80 

Adiposity index (%)  0.75 ± 0.28 1.01 ± 0.48 
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The blood glucose concentration and plasma insulin level in male rats 

exposed to moderate fructose-rich diet did not differ between the groups  

(Table 4.4). An increase in blood triglycerides and plasma NEFA level was 

observed in male rats subjected to moderate fructose-rich diet as compared to 

controls. The level of hepatic triglycerides remained unaltered after the 

treatment (Table 4.4).  

 

Table 4.4. Biochemical and hormonal parameters in male rats subjected to 
moderate fructose-rich diet  

Blood glucose and triglyceride levels were determined at the end of the 
application of 9-week fructose-rich diet, after overnight fasting of animals. 
Insulin and NEFA levels were measured in isolated plasma samples. Liver 
triglycerides were isolated from fresh liver tissue. The data are presented as 
means ± SD (n = 9 animals per group). Comparisons between fructose-fed and 
control rats were made by unpaired Student's t-test. A value of P<0.05 was 
considered statistically significant. Asterisks indicate significant differences. 
*P<0.05.  

 

 

  

 Control 10% Fructose 

Glucose (mmol/l) 5.20 ± 0.42  4.84 ± 0.62 

Insulin (mIU/l) 12.68 ± 6.33  7.51 ± 4.94 

NEFA (mmol/l) 0.61 ± 0.08 0.70 ± 0.08* 

Triglycerides (mmol/l) 1.63 ± 0.30 2.07 ± 0.27* 

Triglycerides in the liver 
(mmol/l) 

2.04 ± 0.31 1.63 ± 0.38 
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4.2.2 Activity and expression of antioxidant enzymes in the liver of male 
rats exposed to moderate-fructose rich diet  

To further examine possible gender differences in prooxidative effects of 

long term fructose consumption we determined the activity of antioxidant 

enzymes SOD1, SOD2, CAT, GPx, and GR in the livers of male rats subjected to 

moderate fructose-enriched diet in the period from weaning to adulthood. 

There were no significant differences in the activity and the expression of SOD1 

between fructose-fed and control rats (Figure 4.6).  

 

 

 

 

 

 

 

 

 

Figure 4.6. Activity and expression of SOD1 in the liver of male rats exposed 
to moderate-fructose diet over a period from weaning to adulthood. (a) SOD1 
activity in hepatic whole cell extracts of control (C) and fructose-fed rats (F10) 
was determined spectrophotometrically, and expressed in arbitrary units per 
mg protein (AU/mg). Values are means ± SEM (n=9). (b) Representative 
Western blots and relative quantification of SOD1 level in hepatic whole cell 
extracts (50 μg protein) of control (C) and fructose-fed rats (F10) are shown. 
Quantitative analysis was done by the ImageQuant software. 𝛽-Actin was used 
as loading control. Values are means ± SEM (n=9) and are expressed relative to 
Control taken as 1. Comparisons between fructose-fed and control rats were 
made by unpaired Student's t-test.   
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On the other hand, moderate fructose-rich diet has affected SOD2 

function. The expression of SOD2 was significantly elevated by 50% in fructose-

fed group, as compared to control, while the activity of SOD2 remained 

unaltered (Figure 4.7).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7. Activity and expression of SOD2 in the liver of male rats exposed 
to moderate-fructose diet over a period from weaning to adulthood. (a) SOD2 
activity in hepatic whole cell extracts of control (C) and fructose-fed rats (F10) 
was determined spectrophotometrically, and expressed in arbitrary units per 
mg protein (AU/mg). Values are means ± SEM (n=9). (b) Representative 
Western blots and relative quantification of SOD2 level in hepatic whole cell 
extracts (50 μg protein) of control (C) and fructose-fed rats (F10) are shown. 
Quantitative analysis was done by the ImageQuant software. 𝛽-Actin was used 
as loading control. Values are means ± SEM (n=9) and are expressed relative to 
Control taken as 1. Asterisks indicate significant differences. *P<0.05.  
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Figure 4.8. Activity and expression of CAT in the liver of male rats exposed to 
moderate-fructose diet over a period from weaning to adulthood. (a) CAT 
activity was determined spectrophotometrically and expressed in arbitrary 
units per mg protein (AU/mg). Values are means ± SEM (n=9). (b) 
Representative Western blots and relative quantification of CAT level in hepatic 
whole cell extracts (50 μg protein) of control (C) and fructose-fed rats (F10) are 
shown. Quantitative analysis was done by the ImageQuant software. 𝛽-Actin 
was used as loading control. Values are means ± SEM (n=9) and are expressed 
relative to Control taken as 1. Comparisons between fructose-fed and control 
rats were made by unpaired Student's t-test. 

 

As shown on Figure 4.8 and 4.9, moderate fructose rich diet has not 

affected the activity and expression of CAT, GPx and GR in male rats. Similarly, 

the level of TBARS as marker of lipid peroxidation, did not differ between the 

groups (Figure 4.10a). The level of molecular chaperones Hsp70 and Hsp90, the 

expression of which is up-regulated in response to stress (Richter et al., 2010), 

remained unchained in the fructose-fed group, suggesting the absence of the 

diet-related protein damage in the liver (Figure 4.10b and 4.10c).   
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Figure 4.9. Activity and expression of GPx and GR in the liver of male rats 
exposed to moderate-fructose diet over a period from weaning to adulthood.  
(a) Enzyme activities were determined spectrophotometrically and expressed in 
arbitrary units per mg protein (AU/mg). Values are means ± SEM (n=9). (b) 
Representative Western blots and relative quantification of GPx and GR level in 
hepatic whole cell extracts (50 μg protein) of control (C) and fructose-fed rats 
(F10) are shown. Quantitative analysis was done by the ImageQuant software. 
𝛽-Actin was used as loading control. Values are means ± SEM (n=9) and are 
expressed relative to Control taken as 1. Comparisons between fructose-fed and 
control rats were made by unpaired Student's t-test.   
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Figure 4.10. Levels of TBARS, Hsp70 and Hsp90 in liver of male rats 
subjected to moderate-fructose diet in a period from weaning to adulthood. 
(a) The level of TBARS was determined spectrophotometrically and expressed 
in arbitrary units per mg protein (AU/mg). Relative protein levels of Hsp70 (b) 
and Hsp90 (c) were determined by Western blotting as described for Figure 1. 
Representative Western blots of Hsp70 and Hsp90 in hepatic whole cell extracts 
(50 μg protein) of control (C) and fructose-fed rats (F10) are shown. 
Quantitative analysis was done by the ImageQuant software. 𝛽-Actin was used 
as loading control. Values are means ± SEM (n=9) and are expressed relative to 
Control taken as 1. Comparisons between fructose-fed and control rats were 
made by unpaired Student's t-test.   
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4.3 The effects of high fructose-rich diet (60% fructose in 
drinking water) on physiological parameters and 
hepatic antioxidant enzymes function in male rats 

4.3.1 Physiological and biochemical parameters of fructose-fed rats and 
rats on standard diet 

Since males are shown to be more prone to development of diet-induced 

metabolic disturbances such as insulin resistance-related disorders and hepatic 

steatosis, we examined the effects of long-term high-fructose diet (60% fructose 

in drinking water) in male rats subjected to the dietary regime immediately 

after weaning. In order to prevent kidney hypertrophy, glomerular 

hypertension and cortical vasoconstriction, as possible consequences of 

disturbed water balance additional drinking water was provided for  

fructose-fed group. 
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Table 4.5. Food, liquid and energy intake, and physiological parameters in 
male rats subjected to high fructose-rich diet. 

The data are presented as means ± SD (n = 9 animals per group). Comparisons 
between fructose-fed and control rats were made by unpaired Student's t-test. A 
value of P<0.05 was considered statistically significant. Asterisks indicate 
significant differences. *P<0.05, **P<0.01.  

 

 

 

 

As shown in Table 4.5, a decrease in chow intake and increase in liquid 

and energy intake were observed in high fructose-fed rats, as compared to 

controls. Despite increased energy intake observed in fructose-fed rats, body 

mass and liver mass remained unaltered. However, visceral adipose tissue 

mass, adiposity index and liver to body ratio were significantly increased in 

high fructose-fed group, as compared to control group (Table 4.5).   

 Control 60% Fructose 

Food intake 

(g/day/animal) 
21.73 ± 0.73 16.99 ± 2.71 * 

Liquid intake 

(mL/day/animal) 
36.82 ± 4.05 

24.79 ± 3.76 *  Fru 

13,32 ± 1.66    H2O 

Total energy intake 

(kJ/day/animal) 
239.08 ± 8.05 324.35 ± 23.79 ** 

Body mass (g) 333.50 ± 32.34 345.64 ± 32.95 

Mass of liver (g) 11.37 ± 1.57 12.80 ± 1.40 

Liver-to-body ratio (x100) 3.40 ± 0.19 3.70 ± 0.32 * 

Mass of visceral adipose tissue (g)  4.37 ± 1.73 6.26 ± 1.62 * 

Adiposity index (%)  1.33 ± 0.51 1.82 ± 0.14 * 
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Table 4.6. Biochemical and hormonal parameters in male rats subjected to 
high fructose-rich diet  

Blood glucose and triglyceride levels were determined at the end of the 9-week 
application of high fructose-rich diet, after overnight fasting of animals. Insulin 
and NEFA levels were measured in isolated plasma samples. Liver triglycerides 
were isolated from fresh liver tissue. The data are presented as means ± SD  
(n = 9 animals per group). Comparisons between fructose-fed and control rats 
were made by unpaired Student's t-test. A value of P<0.05 was considered 
statistically significant. Asterisks indicate significant differences. **P<0.01.   

 

There were no significant differences in fasting glucose level and plasma 

insulin level between high fructose-fed and control rats (Table 4.6). An increase 

in blood triglyceride level was observed in male rats subjected to high  

fructose-rich diet as compared to rats on standard diet, while plasma NEFA 

level and hepatic triglyceride level remained unchanged (Table 4.6).   

 Control 60% Fructose 

Glucose (mmol/l) 4.36 ± 0.52 3.88 ± 0.24 

Insulin (mIU/l) 17.12 ± 6.63 18.35 ± 11.10 

NEFA (mmol/l) 0.69 ± 0.18 0.70 ± 0.32 

Triglycerides (mmol/l) 1.13 ± 0.25 1.55 ± 0.32** 

Triglycerides in the liver 
(mmol/l) 

1.37 ± 0.70 1.20 ± 0.31 
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4.3.2 Activity and expression of antioxidant enzymes in the liver of male 
rats exposed to high-fructose rich diet  

To further examine possible dose-related differences in pro-oxidative 

effects of long term fructose consumption we determined the activity of 

antioxidant enzymes SOD1, SOD2, CAT, GSH-Px, and GR in the livers of male 

rats subjected to high fructose-enriched diet in the period from weaning to 

adulthood, since males in comparison to females were shown to be more prone 

to development of diet-induced metabolic disturbances including insulin 

resistance-related disorders and hepatic steathosis, all being related to oxidative 

stress. 

 

 

 

 

 

 

 

 
Figure 4.11. Activity and expression of SOD1 in the liver of male rats exposed 
to high-fructose diet over a period from weaning to adulthood. (a) SOD1 
activity in hepatic whole cell extracts of control (C) and high fructose-fed rats 
(F60) was determined spectrophotometrically, and expressed in arbitrary units 
per mg protein (AU/mg). Values are means ± SEM (n=9). (b) Representative 
Western blots and relative quantification of SOD1 level in hepatic whole cell 
extracts (50 μg protein) of control (C) and high fructose-fed rats (F60) are 
shown. Quantitative analysis was done by the ImageQuant software. 𝛽-Actin 
was used as loading control. Values are means ± SEM (n=9) and are expressed 
relative to Control taken as 1. Comparisons between fructose-fed and control 
rats were made by unpaired Student's t-test.   
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High fructose diet had no effect on activity and expression of SOD1 

(Figure 4.11). A statistically significant increase in SOD2 activity was observed 

in high fructose-fed group, as compared to controls, while its expression 

remained unaltered (Figure 4.12).  

 

 

 

 

 

 

 

 

 

 

Figure 4.12. Activity and expression of SOD2 in the liver of male rats exposed 
to high-fructose diet over a period from weaning to adulthood. (a) SOD2 
activity in hepatic whole cell extracts of control (C) and high fructose-fed rats 
(F60) was determined spectrophotometrically, and expressed in arbitrary units 
per mg protein (AU/mg). Values are means ± SEM (n=9). (b) Representative 
Western blots and relative quantification of SOD2 level in hepatic whole cell 
extracts (50 μg protein) of control (C) and high fructose-fed rats (F60) are 
shown. Quantitative analysis was done by the ImageQuant software. 𝛽-Actin 
was used as loading control. Values are means ± SEM (n=9) and are expressed 
relative to Control taken as 1. Asterisks indicate significant differences. *P<0.05. 
Comparisons between fructose-fed and control rats were made by unpaired 
Student's t-test.   
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Figure 4.13. Activity and expression of CAT in the liver of male rats exposed 
to high-fructose diet over a period from weaning to adulthood. (a) CAT 
activity was determined spectrophotometrically and expressed in arbitrary 
units per mg protein (AU/mg). Values are means ± SEM (n=9). (b) 
Representative Western blots and relative quantification of CAT level in hepatic 
whole cell extracts (50 μg protein) of control (C) and high fructose-fed rats (F60) 
are shown. Quantitative analysis was done by the ImageQuant software.  
𝛽-Actin was used as loading control. Values are means ± SEM (n=9) and are 
expressed relative to Control taken as 1. Comparisons between fructose-fed and 
control rats were made by unpaired Student's t-test. 

 

 

 

As shown on Figure 4.13 and 4.14, high fructose diet has not affected the 

activity and expression of CAT, GPx and GR in male rats. The level of TBARS as 

marker of lipid peroxidation, and levels of Hsp70 and Hsp90 as markers of 

accumulation of damaged proteins, did not differ between the groups  

(Figure 4.15).  
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Figure 4.14. Activity and expression of GPx and GR in the liver of male rats 
exposed to high-fructose diet over a period from weaning to adulthood.  
(a) Enzyme activities were determined spectrophotometrically and expressed in 
arbitrary units per mg protein (AU/mg). Values are means ± SEM (n=9). (b) 
Representative Western blots and relative quantification of GPx and GR level in 
hepatic whole cell extracts (50 μg protein) of control (C) and high fructose-fed 
rats (F60) are shown. Quantitative analysis was done by the ImageQuant 
software. 𝛽-Actin was used as loading control. Values are means ± SEM (n=9) 
and are expressed relative to Control taken as 1. Comparisons between 
fructose-fed and control rats were made by unpaired Student's t-test.   
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Figure 4.15. Levels of TBARS, Hsp70 and Hsp90 in liver of male rats 
subjected to high-fructose diet in a period from weaning to adulthood. (a) 
The level of TBARS was determined spectrophotometrically and expressed as 
nmol per mg of protein. Relative protein levels of Hsp70 (b) and Hsp90 (c) were 
determined by Western blotting as described for Figure 1. Representative 
Western blots of Hsp70 and Hsp90 in hepatic whole cell extracts (50 μg protein) 
of control (C) and high fructose-fed rats (F60) are shown. Quantitative analysis 
was done by the ImageQuant software. 𝛽-Actin was used as loading control. 
Values are means ± SEM (n=9) and are expressed relative to Control taken as 1. 
Comparisons between fructose-fed and control rats were made by unpaired 
Student's t-test.   
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Since the introduction of high-fructose corn syrup in 1970s its daily 

intake has largely increased. The usage of high-fructose corn syrup in food 

industry was encouraged due to its functional advantages over sucrose such as 

greater sweetness and palatability, better solubility, better preservative features, 

easier handling, as well as low cost and high production efficiency. Due to these 

favourable properties it became one of the most versatile cost-effective 

ingredients on the market (Hanover & White, 1993). However, increase in 

fructose consumption coincided with the rising incidence of obesity, metabolic 

syndrome and type 2 diabetes, which has drawn the attention of medical 

professionals and scientists on the metabolic effects of this sugar (Dekker et al., 

2010; Bray, 2013). Soon it became clear that fructose affects lipid metabolism, 

and being a highly lipogenic sugar it can trigger a cascade of events originating 

in the liver and adipose tissue that can lead to hyperglycemia, dyslipidemia, 

hepatic steatosis, abdominal adiposity and insulin resistance, as well as 

hypertension, hyperuricemia and weight gain (Havel, 2005).  
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Fructose-fed rat represents a commonly used animal model for studying 

diet-induced metabolic disturbances (Tran et al., 2009). Previous studies 

performed on animals have shown that fructose-rich diet can induce most 

features of metabolic syndrome, including hypertension, insulin resistance, 

abdominal obesity, hepatic steatosis, endothelial dysfunction and inflammation 

(Dekker et al., 2010; Tappy et al., 2010). Also, it was suggested that oxidative 

stress participates in the development and progression of these metabolic 

disturbances (Grattagliano et al., 2008; Rains & Jain, 2011).  

In addition, gender differences in the susceptibility and progression of 

metabolic disturbances have been reported (Regitz-Zagrosek et al., 2006; Denzer 

et al., 2009; Varlamov et al., 2014). Males and females differ in distribution of 

adipose tissue. Namely, in males it is located predominantly in the abdominal 

region and carries much greater metabolic risk than adipose tissue distributed 

subcutaneously, as in females (Wajchenberg, 2000). Visceral adipose tissue is 

metabolically active, produces adipokines and inflammatory mediators, and is 

associated with insulin resistance and higher cardiovascular risk, in a gender 

specific manner (Pradhan, 2014). Animal studies have shown that males exhibit 

a greater resistance to increase in body mass than females. On the other hand, 

female rats seem to be less susceptible to carbohydrate- or lipid-induced insulin 

resistance (Horton et al., 1997; Busserolles et al., 2002; Riant et al., 2009). Male 

rats are more prone to diet-induced hypertension and hyperinsulinemia 

(Roberts et al., 2001), while female rats develop these symptoms only after 

ovariectomy (Galipeau et al., 2002).  

However, most of the previous studies investigated fructose-induced 

metabolic disturbances in adults, while data regarding the effects of fructose 

rich diet on young individuals are lacking. The immature young organism 

largely differs in the metabolic and physiological sense from adult, and the link 

between development of metabolic disorders in adulthood and increased 

fructose consumption in childhood is still not clear. 
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In this study we have examined the effects of moderate fructose rich diet 

applied over the period from weaning to adulthood on metabolic parameters. 

After 9-week application of the diet, an increase in caloric intake was noticed, 

both in male and female rats. This increase can be attributed to passive 

overconsumption of fructose, since drinking a palatable solution is not causing 

a feeling of fullness in the way that calories from food do. One can assume that 

increase in total energy intake originating from fructose would lead to 

escalation of body mass, since body mass is crucially dependent on energy 

balance. Nevertheless, in spite of increased caloric intake observed herein, total 

body mass remained unaffected by the applied diet regardless of sex, while 

absolute and relative visceral adipose tissue mass showed marked increase in 

female rats and only a trend towards an increase in male rats subjected to 

moderate fructose-rich diet. These findings could suggest that energy 

expenditure was higher in fructose-fed rats. Based on our unpublished results, 

we could propose that energetically expensive hepatic lipogenesis, as well as 

adipose tissue low-grade inflammation (Kovacevic et al., 2015) contribute to 

enhanced energy expenditure. Previously observed increase in hepatic de novo 

lipogenesis (unpublished results) was followed by triglyceridemia, but not by 

lipid accumulation in the liver, both in males and females. However we have 

observed gender differences in plasma NEFA levels and adiposity index of rats 

subjected to moderate fructose enriched diet immediately after weaning 

(Milutinovic et al., 2014). Namely, in males fructose-rich diet led to an increase 

in plasma NEFA levels, while the mass of visceral adipose tissue remained 

unaltered, suggesting that fructose-rich diet stimulated lipolysis in visceral 

adipose tissue (Bursac et al., 2013). On the other hand, fructose-rich diet induced 

adiposity in young female rats, without the rise in plasma NEFA (Kovacevic et 

al., 2014). Females, in general, due to a larger fat mass as compared to males, 

might have a more efficient way of removal, processing and storage of excess of 

lipids, thereby preventing and/or delaying the onset of further diet-induced 

metabolic disturbances (Votruba & Jensen, 2006; Couchepin et al., 2008). 



 62 

 

In line with these, we have previously observed a decrease in insulin 

sensitivity in the liver of male (Vasiljevic et al., 2013; Velickovic et al., 2013), but 

not female rats (unpublished results) subjected to moderate fructose-enriched 

diet immediately after weaning. One of the possible explanations of gender 

differences in fructose-induced alterations in hepatic insulin signalling might be 

the difference in the plasma NEFA levels and adipose tissue storage function, 

since increased influx of NEFA, derived from the adipose tissue, was shown to 

affect hepatic insulin sensitivity (Boden et al., 2005; Solinas & Karin, 2010). It is 

possible to assume that enhanced adipose tissue storage function might protect 

the liver from adverse effects of NEFA pressure, thus playing an additional role 

in later onset of hepatic insulin resistance in young female rats on moderate 

fructose-rich diet. On the other hand, high influx of NEFA into the liver can 

contribute to disturbances in hepatic insulin signalling in males. Another 

possible explanation might be related to hepatic low-grade inflammation which 

was observed in male (Velickovic et al., 2013), but not in female rats 

(unpublished results). Finally, changes in redox environment could also 

contribute to these gender differences in hepatic insulin signalling.  

In line with previous studies, we have recently reported gender-related 

differences in fructose-induced systemic insulin signalling using the same 

animal model. Herein we show that fructose-rich diet led to hypoglycemia in 

female rats, which might indicate enhanced insulin activity. However, a rise of 

plasma insulin concentration was not observed, implying preserved systemic 

insulin signalling. Unaltered plasma insulin level was also observed in male 

rats, however, we have previously reported higher area under the curve (AUC) 

and longer glucose disposal halftime in male but not female fructose-fed rats, 

indicating a decrease of insulin sensitivity in male rats subjected to fructose-rich 

diet after weaning (Koricanac et al., 2013; Vasiljevic et al., 2013).  

In line with previous results obtained on adults, our results suggest that young 

male rats are more prone to fructose-induced disturbances in insulin signalling, 
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while female rats develop adiposity. A rise in plasma NEFA was observed only 

in males, and can be attributed to enhanced lipolysis in visceral adipose tissue 

(Bursac et al., 2013). Long-term consumption of moderate dose of fructose 

increases plasma triglycerides, regardless of sex. Overall, our results show that 

moderate fructose-rich diet induces gender-specific metabolic disturbances in 

young rats.  

For the purpose of this study, the choice of fructose concentration used 

for moderate fructose-rich diet was based on the data that 10% fructose solution 

closely resembles the intake of sweet solutions characteristic for Western diet 

(Ventura et al., 2011). We have hypothesized that 60% fructose solution would 

induce more prominent effects on metabolism of young male rats, since males 

are shown to be more prone to development of diet-induced metabolic 

disturbances such as insulin resistance-related disorders. Interestingly, the 

effects of high fructose diet were not as intense as we have anticipated, 

regarding the insulin sensitivity. Namely, we have observed an increase in 

caloric intake in high fructose-fed rats, however both body weight and liver 

mass were unaffected by the applied diet regime, which is in accordance with 

results obtained from another animal study using 60% fructose enriched diet 

(Kelley et al., 2004). Although high fructose-fed group had significantly higher 

liver-to-body ratio than the control group, we have not observed elevated lipid 

accumulation in the liver. However, the diet has induced hypertriglyceridemia 

and increased de novo lipogenesis in the liver of male rats subjected to high 

fructose diet (Teofilovic et al., 2016). Moreover, both adipose tissue mass and 

relative visceral adipose tissue to body ratio were increased in the high 

fructose-fed male rats, pointing to visceral adiposity. The observed visceral 

adiposity was not followed by increased plasma NEFA level, which resembles 

the situation observed in female rats subjected to moderate fructose-rich diet. 

However, while female rats preserved systemic and hepatic insulin signalling, 

without low-grade inflammation, a slight disturbance in hepatic, but not 
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systemic insulin sensitivity was recorded in male rats subjected to high fructose 

diet (Vasiljevic et al., 2014). Since plasma NEFA levels in high-fructose fed male 

rats remained unaltered, this decrease in hepatic insulin signalling could be 

attributed to low-grade inflammation (Vasiljevic et al., 2014), and possibly to 

oxidative stress. Namely, besides low-grade inflammation, oxidative stress was 

suggested as possible mediator that could induce and/or aggravate diet-

provoked metabolic abnormalities including insulin resistance, obesity and fat 

accumulation in the liver (Wellen & Hotamisligil, 2005; Keane et al., 2015; Rani 

et al., 2016).  

Previous studies have revealed the link between nutritional excess and 

oxidative stress, suggesting that redox disbalance might participate in the 

development and progression of metabolic disturbances including insulin 

resistance-related disorders (Houstis et al., 2006; Grattagliano et al., 2008; Rains 

& Jain, 2011). However relation between fructose consumption and oxidative 

stress appear to be rather complex, since fructose was shown to produce both 

pro- and anti-oxidative effects, depending on the dose, duration of 

consumption and (patho)physiological milieu (Semchyshyn, 2013). It was 

suggested that fructose exhibits negative effects mostly after long-term 

consumption; however our results on young animals do not support this view. 

Namely, 9-week fructose rich diet applied after weaning did not induce marked 

oxidative stress in the rat liver, regardless of sex. However, the diet has induced 

gender-specific alterations in function of major mitochondrial antioxidant 

enzyme – SOD2. Namely, an increase in SOD2 protein level was observed in 

male, but not in female fructose-fed rats.  

Males were shown to be more prone to insulin resistance-related 

disorders. The later onset and less severe metabolic phenotypes in females were 

related to a better antioxidative capacity of females (Busserolles et al., 2002; 

Borras et al., 2003; Baba et al., 2005). Namely, females exhibit better antioxidative 

capacity as compared to males (Borras et al., 2003), and this was even correlated 
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with longer life span of females (Vina et al., 2005b). Gomez-Perez et al (Gomez-

Perez et al., 2008), reported that female rats on high fat diet, in spite of having a 

greater excess of body mass than males, showed a less marked insulin 

resistance profile than males, and better oxidative and inflammatory profile, 

thus a better capacity to cope with oxidative stress-related disturbances in 

insulin signalling. In addition, only ovariectomized female sucrose-fed rats 

displayed higher susceptibility to lipid peroxidation as compared to intact 

females or ovariectomized females supplemented with estradiol (Busserolles et 

al., 2002), implying the protective role of estrogens. Recently Valencia et al 

(2016) have reported that overiectomy increases hepatic mitochondrial H2O2 

production, which further exacerbates with ageing. Furthermore, mitochondrial 

lipid peroxidation was highest in the aged mice and exacerbated by 

ovariectomy (Valencia et al., 2016). The authors have suggested that ovarian 

secretory function is necessary for the maintenance of hepatic ROS buffering 

capacity in the mitochondria, while age significantly influences mitochondrial 

respiration.  These findings imply that when age is coupled with loss of ovarian 

function there is an increased risk for developing hepatic mitochondrial 

dysfunction, which may influence the onset of metabolic disease in females. 

However, most of the previous studies were performed on adults while 

studies on young individuals are still scarce. The ability of antioxidant defence 

system to react efficiently in conditions of disturbed homeostasis is largely 

defined by the age. A large body of evidence correlates dysfunction of 

antioxidant system and increased ROS production with ageing (Zhang et al., 

2015). The results presented herein show that fructose-rich diet did not induce 

oxidative stress in the liver of female and male rats subjected to the dietary 

regime immediately after weaning. Importantly, moderate fructose rich diet 

affected only SOD2 function in male but not in female rats.   

Oxidative stress and cellular site-specific alterations in redox settings 

were related to development and progression of metabolic disturbances, 
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(Houstis et al., 2006; Grattagliano et al., 2008; Rains & Jain, 2011). Disturbed 

balance between formation and removal of the ROS can lead to damage of 

cellular macromolecules, result in diverse functional changes and thus 

contribute to genesis and progression of several pathophysiologies including 

insulin resistance. Namely, the excess of ROS can lead to deregulation of insulin 

signalling by impairing serine/threonine phosphorylation of insulin receptor 

substrate 1 (IRS-1), and by disturbing cellular redistribution of insulin 

downstream signalling components (Bloch-Damti & Bashan, 2005; Al-Lahham 

et al., 2016). In addition, it was found that antioxidant supplementation leads to 

a decrease in ROS generation and improves insulin sensitivity, pointing to the 

role of ROS in progression and aggravation of insulin-resistance related 

disorders (Faure et al., 1997; Reddy et al., 2009). We have previously shown that 

moderate fructose–rich diet applied immediately after weaning affects hepatic 

insulin sensitivity and induces hypertension, hyperlipidaemia and low grade 

inflammation only in male rats (Koricanac et al., 2013; Vasiljevic et al., 2013; 

Velickovic et al., 2013), while females developed adiposity and triglyceridemia 

(Kovacevic et al., 2014). The results presented herein show that moderate 

fructose-rich diet did not induce oxidative stress in the liver of female and male 

rats subjected to the dietary regime immediately after weaning. Namely, the 

level of TBARS as marker of lipid peroxidation, remained unaltered after 

fructose consumption, and the absence of increased accumulation of damaged 

proteins in the liver was confirmed by the unchanged level of Hsp70 and 

Hsp90. Although the dietary regime has affected SOD2 function only in male 

rats, the absence of oxidative stress in the cell suggests that young males still 

have the capacity to maintain redox homeostasis when challenged by the 

energy overload. However, altered SOD2 function points to mitochondria as 

possible mediators between fructose overconsumption and deregulation in 

hepatic insulin signalling in males.   



 67 

 

Mitochondria are the major source of ROS in cells, where ROS formation 

results from imperfectly coupled electron transport (Murphy, 2009). Unchanged 

mitochondrial SOD2 protein level observed in young females, could be related 

to preserved activity of electron transport chain. Namely the results of our 

laboratory show unaltered mitochondrial beta-oxidation of fatty acids in the 

liver of female rats subjected to fructose-enriched diet immediately after 

weaning (unpublished results). Namely, the level of Carnitine 

palmitoyltransferase I α (CPT-1α) which transports acyl-CoA intermediates into 

mitochondria, thereby representing the rate-limiting initial step in 

mitochondrial beta-oxidation of fatty acids, remained unchanged (unpublished 

results). Besides mitochondrial antioxidative enzymes, mitochondrial 

uncoupling proteins (UCPs) play an important role in the antioxidant defence 

mechanism. UCPs are proton carrier proteins located in the mitochondrial inner 

membrane, and UCP-induced proton leak across the membrane can cause 

partial depolarization of the mitochondrial transmembrane potential (Dulloo & 

Samec, 2001). Previous results have shown an increased expression of UCP2 in 

liver of male fructose-fed rats, and it was assumed that it could be an adaptive 

mechanism to the metabolic overload caused by fructose administration (Castro 

et al., 2011). On the other hand, the results of our laboratory show unaltered 

UCP2 expression in the liver of young fructose-fed female rats (unpublished 

results). Unchanged UCP2 level is in line with unchanged mitochondrial beta-

oxidation of fatty acids and unaltered SOD2 protein level the liver of female 

rats. In addition, the results of our laboratory have shown that moderate 

fructose-rich diet increases hepatic de novo lipogenesis in female rats 

(unpublished results). Altogether, these results could imply that young female 

rats use anabolic processes such as de novo lipogenesis rather that catabolic 

processes, such as mitochondrial beta-oxidation of fatty acids, to cope with 

fructose overload in liver. In addition, the rate of hepatic mitochondrial beta-

oxidation can also be altered by NEFA absorbed from the blood (Boden et al., 

2005). Our results show that female rats subjected to moderate fructose-rich diet 
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develop adiposity which was paralleled with increase in blood triglycerides 

without the rise in NEFA level, suggesting that fructose-fed females adsorb and 

process fructose in the liver, and transport it in the form of triglycerides to 

adipose tissue for storage. In line with these, our previously published results 

show that fructose overconsumption stimulates lipogenic rather than lipolytic 

processes in visceral adipose tissue of young fructose-fed female rats 

(Kovacevic et al., 2014). Furthermore, fructose-rich diet led to an increase in the 

mass of liver but did not elevated lipid deposition in the liver cells. Lipids 

accumulated in the liver might serve as substrates in harmful chain reactions 

such as lipid peroxidation, thereby contributing to development and 

progression of metabolic disorders. However, our results show that fructose-

rich diet did not elevated lipid deposition, induced lipid peroxidation and led 

to an oxidative stress in the liver. Thereby, it is possible to assume that 

enhanced adipose tissue storage function in young female rats might protect the 

liver by having a role in preserving hepatic redox environment, and 

consequently contribute to later onset of metabolic disturbances including 

hepatic insulin resistance.  

In contrast to fructose-fed females, an increase in adipose tissue lipolysis 

followed by increased plasma concentration of NEFA was observed in male rats 

subjected to moderate fructose-rich diet immediately after weaning (Bursac et 

al., 2013). Also, the diet led to a deregulation of hepatic insulin signalling 

(Vasiljevic et al., 2013). An increase in hepatic SOD2 expression observed in 

fructose-fed male rats, might be attributed to the enhanced mitochondrial 

activity and most likely represents an adaptation to site-specific alterations in 

redox conditions. In line with this, our unpublished results showed increased 

mitochondrial beta-oxidation of fatty acids in the liver of male rats subjected to 

moderate fructose-rich diet immediately after weaning. Namely, facilitated 

activity of electron transport chain inevitably leads to promoted electron 

leakage and superoxide radical anion production (Murphy, 2009). 
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Mitochondrial SOD2 rapidly removes superoxide anion radicals produced 

during oxidative phosphorylation. The product of this reaction is H2O2. It is 

important to point that in our study fructose consumption increased SOD2 

expression, but rendered its activity unaffected, and we can only assume that in 

this situation posttranslational regulation SOD2 function serves to protect 

mitochondria from short living superoxide anion radical, but without steady 

rise in H2O2 level. However, these assumptions need confirmation.  

A plethora of data relates mitochondrial dysfunction to insulin resistance 

(Montgomery & Turner, 2015). However, there is an ongoing debate whether 

superoxide anion radical or H2O2 is the key player. Most of the studies propose 

mitochondrial H2O2 rather than superoxide anion radical as the link to insulin 

resistance. It is well known that long term exposure of cells to high levels of 

H2O2 leads to insulin resistance (Anderson et al., 2009; Iwakami et al., 2011). 

However, Hoehn et al. have demonstrated that overexpressed mitochondrial 

SOD2 has significant insulin sensitizing properties under various cellular and 

physiological stresses (Hoehn et al., 2009). Since SOD selectively decreases 

superoxide anion radical levels at the expense of increased H2O2 production, 

the authors pointed to a critical role for superoxide anion radical rather than 

H2O2. Our results cannot offer a direct answer to this question, but we can 

propose that in our model fine tuning of SOD2 function represents an 

adaptation aimed to restore hepatic insulin signalling. Namely, although 

hepatic insulin signalling was deregulated after fructose-rich diet, a clear state 

of insulin resistance was not induced. Since low doses of hydrogen peroxide 

can enhance insulin sensitivity in vitro and in vivo (Loh et al., 2009; Iwakami et 

al., 2011), while long term exposure of cells to high levels of H2O2 leads to 

insulin resistance (Anderson et al., 2009; Iwakami et al., 2011) , we can assume 

that under the conditions of increased production of superoxide anion radical, 

highly expressed SOD2 enables fast switches in the enzyme activity, where 
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pulsatile rapid dismutation of its membrane impermeable substrate to 

permeabile H2O2 could provide positive effect on insulin action.  

In this study fructose consumption increased SOD2 expression, but 

rendered its activity unaffected. The majority of studies described 

transcriptional regulation of SOD2 level suggesting that oxidative stress-

induced SOD2 gene expression represents an important cellular defence 

mechanism (Miao & St Clair, 2009). In line with this, elevated expression of 

SOD2 in the liver of male rats subjected to moderate fructose-rich diet most 

likely represents an adaptation aimed to protect mitochondria against elevated 

superoxide radical anion, produced by enhanced mitochondrial activity. The 

lack of correlation between SOD2 activity and its protein level, could be related 

to inactivation of the enzyme by glycation (Jabeen & Saleemuddin, 2006). 

However, our previously published results show that the level of protein 

carbonyl groups remained unaltered in fructose-fed vs. control rats suggesting 

that other mechanisms might regulate SOD2 activity (Nestorov et al., 2014). It 

has been reported that tyrosine nitration leads to significant inactivation of 

SOD2 (Yamakura et al., 1998; MacMillan-Crow & Thompson, 1999). 

Peroxynitrite produced by the coupling reaction between nitric oxide and 

superoxide anion radical, causes nitration of proteins. Our previously 

published results show that the expression of inducible nitric oxide synthase 

(iNOS)  was not affected by the fructose consumption implying involvement of 

other posttranslational modifications in the regulation of SOD2 function 

(Nestorov et al., 2014). Perhaps a more plausible explanation may be the 

regulation of SOD2 activity by acetylation/deacetylation, which occurs in 

response to changes in mitochondrial nutrient and/or redox status. It was 

found that SOD2 acetylation decreased the enzyme activity, while deacetylation 

by mitochondrial deacetylase Sirtuin-3 (SIRT3) had an opposite effect (Qiu et al., 

2010; Chen et al., 2011). 

https://www.google.rs/url?sa=t&rct=j&q=&esrc=s&source=web&cd=4&cad=rja&uact=8&ved=0ahUKEwj5toXfufDOAhUGUBQKHQ0cD5oQFgg8MAM&url=http%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpubmed%2F14561209&usg=AFQjCNEuEMUZY2ylT1ChZcyav0RB6JxKcw&sig2=dCtEXSg4j0LEac9kR255Qw
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Overall, our results on the effect of moderate fructose rich diet on hepatic 

antioxidant enzymes activity show that long-term moderate fructose 

consumption did not induce oxidative stress in the liver of female and male rats 

subjected to diet in period from weaning to adulthood. The function of 

antioxidant enzymes and markers of general redox conditions and lipid 

peroxidation remained unaltered in female rats, while in males the diet led to 

an increase in the expression of SOD2, but did not affect its activity or activity 

and expression of all other examined antioxidant enzymes. Since only fructose 

fed males exhibited disturbed hepatic insulin signalling our results suggest a 

mediating role of SOD2, however further research is needed.  

Our results raised the question whether consumption of higher doses of 

fructose in young age might induce oxidative stress in the liver as the main 

fructose-metabolizing tissue, and consequently contribute to development and 

aggravation of metabolic disturbances in later adulthood. In light of previously 

reported sex differences in antioxidative capacity, it is possible to assume that 

high doses of fructose might lead to more pronounced redox-related 

disturbances particularly in males. To answer this question, we have subjected 

male rats to long term high-fructose diet regime. 

The results show that high fructose-rich diet (60% fructose solution) did 

not induce oxidative stress in the liver of male rats subjected to the dietary 

regime immediately after weaning. Namely, the level of TBARS and Hsp70 and 

Hsp90, as markers of lipid peroxidation and protein damages, remained 

unaltered after the treatment. In support to our results obtained on male rats 

subjected to moderate-fructose rich diet, a disruption of hepatic insulin 

signalling in young male high-fructose-fed rats previously observed in our 

laboratory (Vasiljevic et al., 2014), which occurred in the absence of oxidative 

stress, demonstrates that fructose-provoked impairment of insulin signalling is 

not induced by oxidative stress, at least not at young age. In line with our 

observation that moderate fructose-rich diet alters only mitochondrial SOD2 
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function in male rats, we have observed increased SOD2 activity after high-

fructose diet. However, moderate fructose-rich diet increased SOD2 expression 

while rendered its activity unaltered, which may represent an adaptation to 

enhanced mitochondrial activity, with possible role in insulin signalling. On the 

other hand, high fructose-rich diet increased only mitochondrial SOD2 activity 

while the expression of the enzyme remained unaltered. This enhanced SOD2 

activity coupled with unaltered expression most likely represents transient 

modulation of the enzyme function in response to site-specific alterations in 

redox conditions, which might reflect current energy demands of the cell. In 

support, the results of our laboratory show unaltered mitochondrial beta-

oxidation of fatty acids in high-fructose fed rats (Teofilovic et al., 2016). Also, 

high fructose-rich diet induced adiposity and triglyceridemia, while plasma 

NEFA levels remained unchanged, thus implying to stimulated anabolic, rather 

than catabolic processes. A lack of correlation between SOD2 expression and 

activity might be ascribed to the posttranslational regulation of the enzyme 

activity. Although most of the posttranslational modifications of SOD2 have 

inhibitory effects on the enzyme activity (Yamakura & Kawasaki, 2010), it was 

found that deacetylation increases SOD2 activity (Qiu et al., 2010; Tao et al., 

2010; Chen et al., 2011; Zhu et al., 2012; Tao et al., 2014). Since the increase in 

SOD2 activity in high fructose-fed rats was not accompanied by increased 

expression or enhanced activity of other antioxidant enzymes or damage of 

cellular macromolecules, we can assume that the expected rise in concentration 

of hydrogen peroxide represents transient and regulated stage during the 

adaptation to nutritional excess. Using the same animal model, we have 

previously observed that high-fructose diet impairs hepatic insulin sensitivity 

(Vasiljevic et al., 2014); therefore the absence of oxidative stress observed herein 

suggests that the rise in hydrogen peroxide concentration in the liver of high 

fructose-fed rats might represent a cellular response aimed to restore hepatic 

insulin sensitivity at the early stage of the disease. However, the possibility that 

prolonged fructose overconsumption might finally lead to oxidative stress and 
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consequently contribute to progression and aggravation of metabolic 

disturbances in later adulthood, should also be investigated. 

Overall, moderate fructose-rich diet did not altered hepatic insulin 

signalling and induced oxidative stress in the liver of female rats subjected to 

dietary regime immediately after weaning. The diet has not affected antioxidant 

enzymes function, nor induced lipid peroxidation and protein damages in the 

liver. Unaffected insulin signalling and absence of oxidative stress suggests that 

concept of later onset and less severe pathophysiology of insulin-resistance 

related disorders in females expands to young age.  

The lack of oxidative stress observed after both moderate (Nestorov et al., 

2014) and high-fructose diets imply that young male rats are also capable to 

maintain the redox homeostasis challenged by the energy overload and protect 

the cell from oxidative damages. The proposed causative role of oxidative stress 

in induction of fructose-induced metabolic disturbances was not confirmed in 

this study, since both moderate and high-fructose diet decreased hepatic insulin 

sensitivity and induced low grade inflammation in males without the 

occurrence of oxidative stress. However modulation of SOD2 function was 

observed in both dietary regimes implying a mediatory role of mitochondria. 

Although the majority of previous studies reported that long-term 

fructose consumption disrupts antioxidant mechanisms, a large discrepancies in 

the course and intensity of fructose-induced alterations can be found in the 

literature (Francini et al., 2010; Kannappan et al., 2010; Pasko et al., 2010; 

Botezelli et al., 2012; Crescenzo et al., 2013; Glban et al., 2014). For example, 

fructose rich diet was found to induce a reduction of hepatic CAT and SOD 

mRNA, (Cavarape et al., 2001), elevation of SOD2 expression and decline in 

enzyme activity (Kizhner et al., 2007) an increase in SOD1 and GPx activities 

(Girard et al., 2006), although SOD expression remained unaltered while the 

expression of GPx decreased in the liver of fructose-fed rats (Girard et al., 2006), 
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etc. Furthermore, some authors reported that fructose rich diet reduced the 

antioxidant capacity and caused oxidative damages in the liver (Kannappan et 

al., 2010; Botezelli et al., 2012; Crescenzo et al., 2013), while others reported the 

absence of oxidative stress (Pasko et al., 2010), or adaptation to modest oxidative 

stress (Francini et al., 2010) in fructose fed rats. Finally, Girard et al. reported 

that fructose rich diet enhanced the total antioxidant capacity of the liver 

(Girard et al., 2006). The inconsistency of the experimental data might stem from 

the differences in the treatment duration (ranging from 3 weeks to 17 months), 

as well as in the fructose concentration (ranging from 10% to 60%), and the age 

of the animals at the beginning of the treatment. Importantly, none of these 

studies was performed on juvenile rodents. Our results indicate that the role of 

oxidative stress and mitochondrial function in the pathogenesis of metabolic 

disturbances induced by the fructose overconsumption in childhood and 

adolescence should be further examined. 

Our results have raised an important question regarding the 

prooxidative and antioxidative effects of fructose after long-term consumption. 

Namely current literature data suggest that fructose exhibits antioxidative and 

protective effects after short-term application, while its long-term consumption 

exerts mostly negative effects. Herein, we show that both moderate and high 

fructose diet induced metabolic disturbances in the young rat. However, we 

have expected oxidative stress and more aggravated metabolic disturbances 

after high fructose diet, such as marked state of insulin resistance in the liver, 

accompanied by liver steatosis, and aggravated inflammation. However, high-

fructose diet did not induce oxidative stress after 9-week consumption, which 

in part, could be attributed to young age of the animals. Another possible 

explanation could be the unique metabolism of fructose. Namely, fructose and 

its metabolic derivatives showed high antioxidative capacities  and fructose 

appeared to be better antioxidant as compared to other sugars such as mannose 

and glucose (Spasojevic et al., 2009a; Spasojevic et al., 2009b). In addition to high 
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antioxidative capacity and cytoprotective effects, fructose promotes the 

production of reducing agent NADPH by pentose phosphate pathway. It 

appears that fructose stimulates anabolic pathways such as lipogenesis, but the 

absence of more aggravated metabolic disturbances in high fructose fed rats 

might arise from the absence of marked oxidative stress due to antioxidative 

properties of fructose and its metabolic derivatives.   

At the end, we could propose that the rapid increase in worldwide 

prevalence of metabolic disorders could not be attributed only to fructose 

overconsumption. It rather reflects global change in modern lifestyle which 

includes not only dietary changes, but also a switch to processed food rich in 

fat, fructose and salts, as well as markedly reduced physical activity.  
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6 CONCLUSIONS 

 

1. Both male and female rats subjected to moderate (10%) and high (60%) 

fructose-rich diet exhibited an increase in caloric intake which can be 

attributed to passive overconsumption of fructose.  

2. Also, moderate (10%) and high (60%) fructose-rich diet had no effect on 

insulin and glucose blood levels, suggesting preserved systemic insulin 

signalling in the rats of both genders.  

3. Long term moderate (10%) fructose-rich diet induced triglyceridemia in both 

male and female rats. However, it induced gender-specific metabolic 

disturbances in young rats: in males the diet led to an increase in plasma 

NEFA levels, while in female rats it caused adiposity without a rise in 

plasma NEFA levels. These gender differences might be related to 

differences in activation of lipolytic or lipogenic pathways in the adipose 

tissue.  

4. In male rats, high (60%) fructose diet induced triglyceridemia and adiposity 

without a rise in plasma NEFA levels.  

5. Fructose overconsumption in the period from weaning to adulthood did not 

induce oxidative stress, as evidenced by unaltered lipid peroxidation as well 

as accumulation of damaged proteins in the liver of female and male rats. 

The result suggests that young organisms, due to a higher capacity of 

antioxidant system, have an increased ability to maintain the redox 

homeostasis, regulate ROS concentration within non-toxic homeostatic 

levels and protect the cells from oxidative stress. 
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6. Moderate (10%) fructose-rich diet applied over a period from weaning to 

adulthood did not affect the activities, nor the protein levels of hepatic 

antioxidant enzymes in female rats. 

7. In male rats, both moderate (10%) and high (60%) fructose diet altered only 

mitochondrial SOD2 function, but did not affect the activities, nor the level 

of expression of other examined antioxidant enzymes.  

8. Previously observed fructose-induced disturbances in hepatic insulin 

signalling in males could not be attributed to oxidative stress, at least not at 

the young age. Nevertheless, a possible mediatory role of mitochondrial 

SOD2 in development of metabolic disorders should be further investigated. 

The later onset of metabolic disturbances, including hepatic insulin 

resistance, in young females as compared to males, was confirmed in our 

study.  
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