
UNIVERSITY OF BELGRADE 
 

FACULTY OF TECHNOLOGY AND METALLURGY  
 
 
 
 
 
 
 
 

Danica V. Brzić 
 
 

APPLICATION OF NONLINEAR 

FREQUENCY RESPONSE METHOD FOR 

INVESTIGATION OF EQULIBRIUM AND 

KINETICS OF GAS-SOLID ADSORPTION 

 
Doctoral Dissertation 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

    Belgrade, 2016      



UNIVERZITET U BEOGRADU 
 

TEHNOLOŠKO-METALURŠKI FAKULTET  
 
 
 
 
 
 
 
 

Danica V. Brzić 
 
 

PRIMENA NELINEARNE FREKVENTNE 

METODE NA ISPITIVANJE RAVNOTEŽE 
I KINETIKE ADSORPCIONIH SISTEMA 

GAS-ČVRSTO 

 
Doktorska disertacija 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Beograd, 2016 



Graduation committee: 

 

 

Supervisor:   dr Menka Petkovska, full professor    

    University of Belgrade  

    Faculty of Technology and Metallurgy 

 

 

Members:   dr Nikola Nikačević, associate professor   

    University of Belgrade 

    Faculty of Technology and Metallurgy 

 

 

    dr Radmila Garić-Grulović, senior research scientist 
    Institute for Chemistry, Technology and Metallurgy 

    Belgrade 

 

 

 

 

 

 

Date of the defense:    Belgrade, 24.06.2016. 

 



Ackowledgements 

 

The experimental part of this dissertation has been done in the frame of the collaborative 

project between Faculty of Technology and Metallurgy and R&D department of the German 

chemical company BASF SE “Experimental investigation of mass transport limitations in 

adsorption, based on the Nonlinear Frequency Response method”. I would like to thank my 

supervisor prof. dr Menka Petkovska for providing me the opportunity to participate in this 

project. That was an important experience for me. Professor Petkovska had also always "the 

open door" for all my questions and doubts.  

I am thankful to dr Frank Poplow for guiding my work in BASF SE Ludwigshafen and for his 

significant contribution in designing the experimental set-up. I also highly appreciate the 

technical support of Jürgen Brauch and Dieter Hibinger. With their experience and willingness 

to solve the problems, they contributed significantly to the construction of experimental set-up 

and were my strong daily support.  

I would like to thank to my colleagues from the Department of Chemical Engineering, dr 

σikola σikačević for useful suggestions and encouragement as well as dr σevenka Bošković- 

Vragolović and dr Milan Milivojević for their continious interest in progress of my work and 

willingness to hear my problems. 

 

I am thankfull to my friends Emina, Ana, Dragan, Maja, Dubravka, Evangelia and Desislava, 

who were, each of them on his own way, the strong support for me. 

 

I thank to my parents for their support during my whole education. My deepest thanks go to my 

sister Olivera and brother-in-low Milan for their love and understanding.  And above all, I am 

thankfull to my little angel Nadja. Her comming on the world was a special motivation for me 

to finish this work. 

 

 

 

          Danica Brzić 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 ii 

Abstract 

 

The understanding of complex kinetic mechanisms of gas-solid adsorption is a challenging 

issue. The Frequency Response (FR) method, which has commonly been used for studying the 

kinetics of adsorption, analyzes the frequency response of the system in a linear range, and 

therefore partly fails to identify and characterize the kinetics of nonlinear adsorption 

phenomena. In the frame of this thesis, the applicability of a new Nonlinear Frequency 

Response (NFR) method for characterization of kinetics and equilibria of gas adsorption, was 

investigated.  

The NFR method is based on the analysis of the frequency responses for a rather large 

amplitude input excitation, named Nonlinear Frequency Responses, and determination of the 

higher-order frequency response functions (FRFs), by applying the Volterra series and 

generalized Fourier transform. The applicability of the NFR method for characterization of 

kinetics and equilibria of pure gas adsorption was investigated both theoretically and 

experimentally, for the case of a batch adsorber. The critical issue regarding the applicability of 

the NFR method was determination of the second-order FRF on the adsorbent particle scale. 

The theoretical investigation comprises two parts. The first part of investigation is based on the 

numerical simulations of the dynamic responses of a batch adsorption system, by using  

mathematical models on the adsorber scale and  adsorbent particle scale. As a result, the 

procedure for designing the NFR experiments has been established. In the second part, the 

theoretical FRFs up to the second-order for nonisothermal macropore diffusion (NMD) model, 

as one of the common mechanisms of gas-solid adsorption,  have been derived and analyzed. 

As a result, the methodology for estimation of the parameters of NMD model, based on the 

characteristics of the FRFs, was established. In order to validate the NFR method 

experimentally, a new experimental set-up was designed and constructed. The working 

principle of the apparatus is modulation of the volume of the closed cell in a sinusiodal way, 

with variable amplitude and frequency, and measuring the pressure, adsorbent temperature and 

gas temperature responses. The test system was CO2/ zeolite 5A particles. The results showed 

that the NFR method can be applied for identification of the kinetic mechanism and estimation 

of equilibrium and kinetic data.  It was also shown, that it is advantageous compared to the 

linear FR method in terms of reliability of identification of the kinetic model based on the 

second-order FRF, as well as in the possibility to estimate both kinetic and equilibrium data.  

Since this work represents the first evidence of experimental application of the NFR method for 

investigation of gas adsorption, it opens significant new perspectives in this field. 
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Izvod 
 

Razumevanje složenih kinetičkih mehanizama adsorpcije gas-čvrsto predstavlja izazov u 
savremenom istraživanju. Klasična Frekventna metoda, koja se uobičajeno koristi za ispitivanje 
kinetike adsorpcije, analizira frekventni odziv sistema u linearnoj oblasti i zato ne može u 
potpunosti da okarakteriše kinetiku nelinearnih procesa adsorpcije. U okviru ove disertacije 
ispitivana je primenljivost metode Nelinearnog Frekventnog Odziva (NFO) za karakterizaciju 

kinetike i ravnoteže adsorpcije gas-čvrsto.  
Metoda NFO se zasniva na analiziranju frekventnog odziva sistema na ulaznu pobudu relativno 

velike amplitude i određivanju frekventnih prenosnih funkcija (FPF) višeg reda, uz korišćenje 
Volterra redova i generalizovane Furijeove transformacije. Primenljivost metode NFO za 

karakterizaciju kinetike i ravnoteže adsorpcije čistih gasova je ispitivana teorijski i 
eksperimentalno u zatvorenom (šaržnom) sistemu. Ključno pitanje u pogledu primenljivosti 
metode NFO je mogućnost određivanja frekventne prenosne funkcije drugog reda na nivou 

čestice adsorbensa. Teorijsko istraživanje se sastoji od dva dela. Prvi deo se zasniva na 
numeričkim simulacijama dinamičkih odziva šaržnog adsorbera, uz korišćenje matematičkih 
modela na nivou adsorbera i na nivou čestice adsorbensa. Na osnovu dobijenih rezultata 

ustanovljena je procedura za planiranje nelinearnih frekventnih eksperimenata. U drugom delu, 

izvedene su i analizirane FPF prvog i drugog reda za model neizotermne diffuzije kroz 

makropore, koji je jedan od čestih mehanizama adsorpcije gasova. Na osnovu rezultata 

ustanovljena je procedura za određivanje parametara pomenutog modela na osnovu 
karakteristika FPF. Da bi se metoda eksperimentalno potvrdila, projektovan je i izgrađen novi 
eksperimentalni sistem. Princip rada ovog sistema je promena zapremine sistema po sinusnom 

zakonu, sa promenljivom amplitudom i frekvencijom, i merenje odziva pritiska gasa, 

temperature adsorbensa i temperature gasa. Kao test sistem za eksperimente korišćen je 
adsorpcioni sistem CO2/ zeolit 5A. Rezultati su pokazali da je moguće primeniti metodu NFO 
za utvrđivanje kinetičkog mehanizma adsorpcije gasova kao i za određivanje kinetičkih i 
ravnotežnih parametara. Takođe je pokazano da metoda NFO ima značajne prednosti u odnosu 
na klasičnu (linearnu) frekventnu metodu, i to u pogledu pouzdanosti utvrđivanja kinetičkog 
mehanizma na osnovu oblika FPF drugog reda kao i u pogledu mogućnosti određivanja i 
kinetičkih i ravnotežnih podataka iz istih eksperimentalnih podataka. 
U ovom radu je prvi put eksperimentalno potvrđena mogućnost ispitivanja adsorpcije gas-

čvrsto korišćenjem metode NFO, čime se otvaraju značajne nove perspektive u toj oblasti. 
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1. INTRODUCTION 

1.1 State of the art and motivation 

 

Separation processes play critical roles in a majority of process industries. Besides being 

the major operations (as in production of O2 and N2 from ambient air), separations are 

employed in pretreatment of raw materials, separation of recycle streams, purification of 

products and removal of pollutants from waste streams. The fact that separation processes 

account for 40-70% of both capital and operating costs (Humphrey and Keller, 1997) 

reflects how accuracy of the design of separation processes affects the revenue.   

Adsorption is one of the most important technologies for separation processes in 

chemical, petrochemical, environmental and pharmaceutical industry. Production of H2 

from various gases, production of O2 and N2 enriched air from ambient air, gas drying, 

trace impurity removal from contaminated gases, CO2 capture are the most important 

commercial gas phase adsorption separations. Different types of natural and synthetic 

zeolites and activated carbon are the most commonly used adsorbents for those 

separations. There are several hundred thousand adsorption units operated all over the 

world (Sircar, 2006).   

Although adsorption has a long history, the adsorptive technologies are still the subject of 

intensive research and development, according to the increasing number of scientific 

articles and patents (Sircar, 2006). Besides the above mentioned processes, for which the 

adsorption is the state of the art technology, the new applications are continually being 

explored such as preventing of global warming and ozone layer depletion (Suzuki, 1996), 

nuclear waste processing (Tranter et al., 2003), etc. The new types of adsorbents are also 

being designed as cellulosic nanofibers, metal organic frameworks (MOFs), etc. 

The adsorptive process design requires accurate data on three core adsorptive properties: 

equilibrium, kinetics and heat of adsorption. Adsorption equilibrium is defined by 

adsorption isotherm, i.e. the relation between solid-phase and fluid-phase concentrations 

of the adsorbate at a constant temperature, which is most often nonlinear and has to be 

determined experimentally. Adsorption kinetics defines the rate of adsorption and refers 

to identification of the most appropriate model equation that describes the dynamic of 



 2 

accumulation of the adsorbate on the solid surface and estimation of the kinetic 

constant(s). Quantity of heat released during adsorption is important because it 

determines the degree of nonisothermality of the process. Since the molecules of 

adsorbate may have different sizes, polarities and polarizabilities and solid adorbents may 

have different structure and energetical heterogenities, the behavior of the mentioned 

adsorption features may be very complex. Therefore, the characterization of adsorption 

systems of commercial importance is often a challenging task. A variety of methods for 

measuring individual adsorptive properties have been developed and described in 

literature. Regarding the measurements of adsorption isotherms, gravimetric, volumetric 

and chromatographic methods are mainly employed. The kinetic data measurements 

(mostly measurements of diffusion coefficients) are divided into microscopic (PFG-

NMR, QENS) and  macroscopic methods (Wicke-Callanbach, ZLC, uptake rate and 

frequency response). The heats of adsorption are measured by microcalorimetry. Good 

reviews regarding those methods can be found in classical adsorption books (Rouquerol 

et al., 1999, Do, 1998, Kärger and Ruthven, 1992). The experimental determination of 

adsorption equilibria and heats of adsorption are mainly well established. However, in-

depth understanding of the complex kinetic mechanism  and reliable identification of the 

kinetic model, is still an open issue and needs more research. In most of the proposed 

methods, the kinetic parameters are obtained by fitting experimental data to an assumed 

model.  Published data on diffusion coefficients, obtained by different methods, differ 

significantly (Kärger, 2003). A challenge is to develop a comprehensive technique, which 

could provide simultaneously consistent data for all three adsorptive properties with 

accuracy and reliability required for industrial design.  

Up to now, the approach which has often been used for studying the kinetics of gas 

adsorption, is the Frequency response (FR) method (Yasuda, 1994; Song and Rees, 1997; 

Onyestyák et al., 1996; Sward and LeVan, 2003; Giesy et al., 2012; Bourdin et al., 1996, 

1998), due to its ability to discriminate in the frequency spectrum between the rate 

constants of concurrent processes present in the complex adsorption process. The FR is 

based on measurement of a quasi steady-state responses of a system subjected to a 

periodic input modulation (usually sinusoidal) at different frequencies. If the input 

amplitude is kept small, the response contains a single harmonic (at the basic frequency), 
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which is directly proportional to the frequency response function (FRF) (first-order or 

linear FRF), which describes quasi-linear dynamic. The kinetic parameters are estimated 

by fitting the obtained FRF to a theoretical one, derived from a linearized model of the 

assumed kinetic mechanism. However, the fact that different kinetic models may have the 

same linearized forms and accordingly the same shape of the FRFs
 
(Song and Rees, 

1997), makes the linear FR method insufficient for characterization of nonlinear 

adsorption dynamics. It has been shown in literature that estimation of the model 

parameters from the linear FRF, especially for nonisothermal models is not 

straightforward (Sun and Bourdin, 1993). 

Petkovska and Do (1998) have suggested the extension of the FR method to the nonlinear 

range, by applying larger input amplitudes. The response of the system to large amplitude 

excitation contains, besides the basic harmonic, also the second, third, etc. harmonic. This 

response is named nonlinear frequency response (NFR). The second and higher 

harmonics contain information regarding nonlinear dynamics of the system. One 

approach for analyzing complex NFR is the concept of higher order FRFs (Weiner and 

Spina, 1980). This concept is based on replacing the nonlinear model by a sequence of 

FRFs of different orders. It is applicable for stable, weakly nonlinear systems. This 

mathematical tool enables the second- and higher-order FRFs to be estimated 

experimentally from the individual harmonics of the system's response. It is to be 

expected that estimation of higher-order FRFs (besides the first-order FRF) can provide 

complete characterization of the kinetics of the nonlinear adsorption process. Petkovska 

and Do (2000) have derived the theoretical FRFs up to the second-order for several 

adsorption kinetic models: Langmuir model, linear driving force, micropore diffusion and 

pore-surface diffusion. Their study has shown that: 1) the second-order FRFs for different 

kinetic models have different shapes 2) the low frequency asymptotes of the FRFs 

corresponds to the equilibrium parameters. These findings make the NFR approach a 

promising tool for efficient dealing with characterization of adsorption systems, because 

it could provide: 1) direct unambiguous identification of the kinetic model based on the 

shape of the second-order FRF and 2) estimation of both kinetic and equilibrium 

parameters from the same experimental data.  
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This outstanding potential of the NFR approach was the motivation to implement this 

technique for characterization of kinetics and equilibria of gas adsorption within the 

frame of this thesis.  

 

1.2 Scope and outline of the thesis 

 

The objective of the research presented in this thesis is to explore the applicability of the 

NFR approach for characterization of kinetics and equilibria of adsorption of pure gases. 

The applicability of the NFR method will be evaluated through the possibility of 

experimental determination of accuarte second-order FRF for adsorption of pure gas on 

solid adsorbent.  

Since the measuring NFRs of the adsorption systems has not been evidenced in the 

literature up to now, it was necesseary to construct the appropriate apparatus for NFR 

measurements. In order to design the functional apparatus and plan the efficient 

experiments, the applicability study based on numerical simulations have been 

performed. Based on the mathematical models of the batch adsorber and the film 

resistance control kinetics, NFRs have been simulated in MATLAB, and used as quasi-

experimental data. The first- and second-order FRFs have been calculated using the 

concept of higher-order FRFs (Weiner and Spina, 1980). The influence of different 

parameters (mass of the adsorbent, input amplitude, frequency range, noise, sampling 

rate) on the  accuracy of the estimation of the second-order FRF have been studied. The 

new apparatus was designed as the batch adsorber with sinusoidal volume change with 

the possibility to vary the amplitude. The gas pressure, particle temperature and, for the 

first time the gas temperature, are the measured responses. The applicability of the NFR 

method has been tested on the case of adsorption of CO2 on commercial zeolite 5A 

particles. In the frame of the procedure for calculation of the FRFs from NFR 

experimental data, the concept of "blank" FRFs was developed as a new way for 

eliminating errors due to spurious effects. In order to identify the kinetic mechanism, it 

was necessary to compare the experimental FRFs with the theoretical ones for different 

possible kinetic models. Since the theoretical FRFs for nonisothermal macropore 

diffusion (NMD) model, which is one of the possible models for commercial biporous 
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adsorbents, do not appear in the literature, we have derived those FRFs (up to the second-

order) in the frame of this thesis. In order to establish the methodology for estimation of 

the parameters of NMD model (kinetic constants, equilibrium data and heat of 

adsorption), the derived FRFs have been simulated and analyzed through parameter 

variation study. The thesis is organized in seven chapters as outlined below. 

In Chapter 1 motivation, objectives and scope of the investigation presented in this work 

are given. 

Chapter 2 gives some basic facts regarding gas adsorption. The existing methods for 

measurement of gas adsorption equilibria, kinetics and heats of adsorption are briefly 

reviewed. The basis of linear FR method for kinetic measurements is given together with 

a review of applications. 

Chapter 3 deals with the theoretical basis of nonlinear dynamic analysis in the frequency 

domain. The concept of higher-order FRFs (Weiner and Spina, 1980) as a tool for 

analysis of the NFRs is described. The existing theoretical results regarding application 

of the concept of higher-order FRFs on adsorption systems are presented. 

Chapter 4 contains the results of the simulation study regarding applicability of the NFR 

method for investigation of gas adsorption kinetics and equilibrium.  

Chapter 5 contains derivation and analysis of the theoretical FRFs up to the second-order 

for NMD model.  

Chapter 6 represents the experimental part of the work. It includes description of the 

experimental apparatus, measurement routine, procedure for data treatment as well as the 

results of the experimental measurements. 

Chapter 7 summarizes the results of this research and points out the directions for further 

investigations.  
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2.  GAS ADSORPTION ON POROUS SOLIDS 
 

In this chapter the basic facts regarding gas adsorption, adsorbents and their applications 

will be given. Special attention is given to zeolites, since they are used in the 

experimental part of this work for testing the new method. Since the new method (NFR) 

for estimation of equilibrium, kinetics and heat of adsorption will be introduced, the 

existing methods for experimental measurements of those three properties in gas-solid 

systems will be briefly reviewed. The principle of linear FR method, which is the basis of 

the NFR method, together with its applications, will be given in detail. 

 

2.1 Gas adsorption - basic facts, adsorbents and application  

 
Adsorption is selective accumulation of substance(s) (adsorbate(s)) from the gaseous or 

liquid phase onto the surface of a solid phase (adsorbent).  Physical adsorption is caused 

by weak van der Waals and electrostatic forces (polarization, field-dipol forces) between 

the adsorbate molecules and the atoms of adsorbent surface. Balancing of those forces 

leads to a dynamic equlubrium, as follows: 

  

Solid + Gas ↔Gas/Solid + Heat        (2.1.1) 

 

The heats released by adsorption are relatively low 10-40 kJ/mol. Adsorption is 

reversible and the reverse step is called desorption.  

Adsorbents are mostly microporous solid materials. The features of those matherials, 

which charaterize them as adsorbents are: internal surface area, pore size distribution, and 

surface polarity. Internal surface area (mostly in the range 500 - 2500 m
2
/g) is in direct 

correlation with adsorption capacity. Pore size distribution determines the assesibility of 

the adsorbate molecules of certain sizes to the internal adsorption surface, affecting thus 

the selectivity of the adsorbent. Surface polarity corresponds to the affinity towards polar 

or nonpolar substances. The nonpolar adsorbents (activated carbon, polymer adsorbents 

and silicalite) have high afinity for most organics and they are often described as 

hydrophobic. The polar adsorbents (zeolites, porous alumina, silica gel) are classified as 
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hidrophilic, since they have afinity for water and alcohols. The classification is 

conditional, since by oxidation of the activated carbon or variation of the Si/Al ratio of 

zeolites, the polarity can be changed. 

Adsorption processes may be divided into purification processes (where trace 

contaminants are removed from a process stream), and bulk separation processes (if one 

or more components are recovered selectively from a mixture in high concentrations). 

Table 2.1.1 presents some representative commercial processes of each type, with 

typically used adsorbents.  

 

Table 2.1.1 Gas adsorption industrial applications (IAS home page, 1999) 

BULK SEPARATION PROCESSES                         Adsorbent 

Normal paraffins, isoparaffins, aromatics              zeolite 

N2/O2                                                                      zeolite 

O2/N2                                                                      carbon molecular sieve 

CO, CH4, CO2, N2 , NH3 /H2                                   zeolite, activated carbon 

Acetone/vent streams                                             activated carbon                                             

Ethylene/vent streams                                            activated carbon                                             

Water/Ethanol                                                        zeolite 

 
PURIFICATION PROCESSES                                 Adsorbent 

Organics/vent streams                                            activated carbon 

Water/natural gas, air, synthesis gas                      silica, alumina, zeolite 

Sulfur compounds/natural gas, hydrogen, 

liquified petroleum gas                                          zeolite 

Solvents/air                                                            activated carbon 

Odors/air                                                                activated carbon                                             

NOx/N2                                                                  zeolite 

SO2/vent streams                                                   zeolite 

 

Adsorption processes are designed in practice as cyclic operations, with switching 

between unsteady-state acumulation of the adsorbate on the solid surface and 

regeneration of the adsorbent. The possible modes of operation are cyclic batch, 

continious counter-current and hromatographic. In a cyclic batch mode the adsorption is 

carried out in a fixed bed of the adsorbent as a discontinuous operation, consisting of 

adsorption and desorption steps. In the continious counter-current mode the adsorbent is 

circulated around two beds allowing adsorption and desorption steps to operate 

simultaneously. In a chromatographic mode the feed stream is introduced as a pulse, 

trying to reproduce the  separation preformances of the  laboratory hromatography on a 



 8 

larger scale. Regarding the regeneration of the adsorbent two main concepts employed in 

industry are presure swing adsorption (PSA) and temperature swing adsorption (TSA).  

In order to select an optimal adsorbent and process mode to achieve the desired 

separation, it is necessary to know three core adsorptive properties for systems of interest: 

equilibria, kinetics and heats of adsorption.  

 

2.1.1 Zeolites 

 

Zeolites are porous crystaline aluminosilicates which contain SiO4 and AlO4 tetrahedreal 

units (Fig. 2.1.1a), linked together through sharing of oxygen atoms into 4- 6- or 8-

oxygen rings (Fig. 2.1.1b), which build polyedral units, such as, for example, sodalite 

cage (Fig. 2.1.c), which can form the different frameworks as A or X(Y) types 

(Fig.2.1.1d).  

 

 

Fig. 2.1.1 Shematic representation of the framework structure of zeolites A and X (Y) 
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The obtained crystal lattice has regular channels (pores), which are of the molecular 

dimensions and into which adsorbate molecule can penetrate. This crystaline structure 

with uniforme pore sizes is a unique feature of zeolites that makes them one of the most 

often used type of adsorbents. Til nowadays, about 50 natural zeolites have been found 

and more than 100 synthetic types have been produced. The revised Atlas of Zeolite 

Framework Types (Baerlocher et al., 2007) gives comprehensive review  regarding 

zeolite types.  

The chemical composition of a zeolite can be represented by an empirical formula 

Mx/n((AlO2)x(SiO2)y)zH2O (Staudt, 1994), where n is the valency of the exchangeable 

cation M (Na
+
, K

+
, Ca

2+
, Mg

2+
) and z is the number of water molecules in the zeolite unit 

cell. The numbers x and y are integers and the ratio y/x is equal or higher than one. It is 

evident from the above formula, that each aluminium atom present in the framework 

brings one negative charge which is balanced by that of the exchangeable cation. Zeolites 

A (which will be used in this work) have Si/Al ratio close to 1.0 and 12 univalent 

exchangeable cations per cell. Typical forms of zeolite A with respect to exchangeable 

cations are listed in Table 2.1.2. It can be seen from Table 2.1.2 that the sort of cations 

determines the effective pore diameter, affecting thus the selectivity of the zeolite. 

 

Table 2.1.2 Typical forms of zeolite A (Thomas and Crittenden, 1998) 

Type Cations Formula of typical unit cell Effective pore diameter (nm) 

4A Na Na12[(AlO2)12(SiO2)12] 0.38 

5A Ca-Na Ca5Na2[(AlO2)12(SiO2)12] 0.44 

3A K K12[(AlO2)12(SiO2)12] 0.29 

 

Commercial zeolites are available in pellet forms where zeolite crystals (1-5 μm) are 

formed into particles of regular shapes (beads, pellets of 0.5-5 mm) using a binder 

material (clay, polymers). Some examples of commercial applications of zeolites are 

given in Table 2.1.1. 
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2.2. Adsorption equilibrium 

2.2.1 Models for adsorption isotherms 

 

Partition of the adsorbate molecules between the gas and the solid phase, when 

equilibrium defined by eq. 2.1.1 is established, is usually defined by adsorption isotherm 

(equilibrium relation). It defines the equilibrium loading (Q) for different pressures (P) at 

a constant temperature. The form of this relation depends on the nature and complexity of 

interactions between the adsorbate molecules and the surface of adsorbent. A general and 

well known classification of single solute isotherms of gases (Types I-V)  is given by 

Braunauer et al. (1940). The adsorption isotherms of a pure gases on zeolites are most 

often of Type I by Braunauer classification (Young and Crowell, 1962).  Different 

theoretical and empirical models (analytical equations) have been developed to describe 

the adsorption isotherms. Several models which describe Type I isotherms have been 

listed in Table 2.2.1 together with underlying assumptions.  

 

 Table 2.2.1 Models for adsorption isotherms  
 

Expression 
Model 

parameters 

Assumptions 

Langmuir 

bP

bP
QQ




1
0

 
Q0, b - energetically equal 

asdorption sites 

- no lateral interactions 

Sips 

n

n

bP

bP
QQ

/1

/1

0
)(1

)(


  

Q0, b, n - energetically equal 

asdorption sites 

- no lateral interactions 

Dual site Langmuir 

Pb

Pb
Q

Pb

Pb
QQ

2

2

20

1

1

10
11 




  
Q01, b1,  

Q02, b2 

- energetically different 

adsorption sites 

- no lateral interactions 

Toth 

ttPb

P
QQ

/10
)( 

  
Q0, b, t - energetically different 

adsorption sites 

- no lateral interactions 

 

 

2.2.2 Measurement of adsorption isotherms  

 

A large number of methods for measuring adsorption isotherms have been developed and 

described in literature. The book "Gas Adsorption Equilibria- experimental methods and 

adsorption isotherms" by Keller and Staudt (2005) is one of the good contemporary 



 11 

reviews. Here, a brief summary of the classical and some newer methods for 

measurements of adsorption isotherms will be given.  

The developped methods can be divided into equilibrium and dynamic methods. 

Equilibrium methods analyze only equilibrium states, while dynamic methods consider 

concentration changes over time in order to determine adsorption isotherms. Classical 

equilibrium methods are volumetric and gravimetric and dynamic methods comprise 

different chromatographic methods.   

In the volumetric method the adsorbed quantity is determined from measurements of: 1) 

pressure of a certain amount of gas contained in a storage vessel of known volume and 2) 

pressure after expansion of that amount of gas into an adsorption vessel of a known 

volume containing solid adsorbent (after equilibration at a constant temperature). The 

difference between the two pressure readings allows calculation of the adsorbed amount 

of gas based on the equation of state (EOS). In order to determine the whole isotherm, 

mesurements at different pressures have to be performed. The volumetric method is 

suitable due to the  simplicity of the experimental measurements and availability of high 

precision pressure sensors. However, volumetric measurements are not useful at 

extremely low or high pressures, since the pressure measurements in these regions 

become difficult and accurate EOS of the sorptive gases are not always available. 

Examples of measurements of adsorption isotherms by volumetric metod can be found in 

(Riberio et al., 2014; Mofarahi and Bakhtyari, 2015; Zhu et al., 2015). 

The gravimetric method is based on the measurement of the weight of the adsorbent 

before and after equilibration with the fluid phase containing the adsorbate, at given 

temperature and pressure, by a microbalance. The available microbalances (such as two 

beams balances and magnetic suspension balances) are highly accurate and operate with 

tiny amounts of adsorbents. On the other hand, the microbalances are complex systems, 

sensitive to electomagnetic and mechanical disturbances and very demanding regarding 

control and data processing. Examples of measurements of adsorption isotherms by 

gravimetric method can be found in (Camacho et al., 2015; Silva et al., 2015 ). 

Besides those two classical equilibrium techniques, several newer ones have been 

developed, such as oscillometry (Keller, 1995) and impedance spectroscopy (Staudt et 

al., 1999). 
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Regarding the dynamic methods for measurements of adsorption isotherms, different 

chromatographic methods are established and described in detail in the literature 

(Kiselev and Yashin, 1969; Conder and Young, 1979; Katsanos, 1988; Grob and Barry, 

2004; Poole, 2012): frontal analysis, frontal analysis by characteristic point, elution by 

characteristic point, perturbation method and inverse chromatography. Chromatographic 

methods are based on the measurement and mathematical analysis of breakthrough 

curves or dispersive fronts (concentration changes over time at the outlet of the 

chromatographic column) that correspond to different changes of the inlet concentrations.  

Chromatographic methods are generally faster and more accurate than the static methods, 

but a large amount of adsorbate is consumed in order to generate different inlet 

concentration changes. A good review paper regarding determination of isotherms by 

gas–solid chromatography is given by Roubani–Kalantzopoulou (2004). 

 

2.3.  Heat of adsoprption 

 

The differential entalpy change for isothermal transfer of an infinitesimal amount of 

adsorbate from the adsorbed phase to the gas phase is called the isosteric heat of 

adsorption (Do, 1998). Adsorption is by nature an exothermic process and desorption is 

endothermic.  

The isosteric heat (-ΔH) can be measured directly as a function of loading and 

temperature using a microcalorimeter (Dunne et al., 1996; Siperstein et al., 1999). 

However, the isosteric heats are most often obtained from adsorption isotherms at 

different temperatures, by using Van't Hoff equation (Do, 1998), integrated under 

assumption that  (-ΔH ) is independent of temperature: 

.ln const
TR

H
P

g




         (2.3.1) 

A plot of ln P against 1/T at constant loading  has a slope equal to – ΔH/Rg. In eq. (2.3.1) 

P is the pressure, T is the equilibrium temperature and Rg is the gas constant.  
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2.4. Adsorption kinetics  

2.4.1. Transport processes in porous solids 

 

The rates of adsorption of a gas molecule on a particular site inside the zeolite crystal, 

estimated by means of kinetic gas theory, are of the order of microseconds (Sircar and 

Myers, 2003). However, the experimentally observed rates are several orders of 

magnitude lower, which indicates that the overall rate is controled by diffusional 

resistance(s) associated with mass transfer to the adsorption site. If the adsorbent is in the 

form of individual crystals than the diffusion of adsorbate into the pores of crystal lattice 

(intracrystalline or micropre diffusion) determines the overall rate. However, as alraeady 

mentioned in Section 2.1.1, the adsorbents in the form of pellets are used for practical 

applications.  The pellets are formed by binding crystals together using a binder, resulting 

in a biporous structure, as schematically presented in Fig. 2.4.1.  The narrow chanels 

within the crystal lattice of the individual crystals are regarded as micropores, while the 

intercrystalline voids form larger macropores. 

 

Fig. 2.4.1 Structure of the commercial zeolite pallet (from Thomas and Crittenden, 1998) 

 

The overall rate of adsorption on such pellet may be controlled by the following 

resistances: 
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1. Resistence of the external fluid film surrounding the particle, which is present only for 

adsorption of gas mixtures.  The transport mechanism through the film is gas-gas 

diffusion. 

2. Resistence to transport through macropores/mesopores within the binder phase to the 

surface of the crystals. Transport of the adsorbing gas molecules through macropores 

takes place by bulk or Knudsen diffusion in  the gas phase, in parallel with surface 

diffusion. 

3. Resistance to diffusion through micropores of the crystals to the adsorption site. The 

transport mechanism is activated diffusion (jumping of the adsorbed molecules from site 

to site). Additionally, the outside surface of the crystal may cause resistance at the 

entrance of the micropore (surface barrier resistance). 

Since adsorption is an exothermal process, the mentioned diffusional processes occur in 

the interplay with heat transfer through/from the particle.  

The contribution of each of the possible resistances depends on the physicochemical 

properties of the adsorbent - adsorbate pair and the temperature and pressure conditions 

at which adsorption occurs. Experimental identification of the relative dominance of 

indivudual resistances is still a research challenge. However, different metods for 

measurements of the diffusion coefficients have been developed and descibed in the 

literature. A short review of those metods, with regard to principles and 

advantages/disadvantages will be given in Section 2.4.3. 

2.4.2 Models for describng adsorption kinetics 

 

The mathematical models which describe the kinetics of adsorption of a gas in a porous 

particle are generally based on the mass balance described by the Fickian diffusion 

equation, which has the following general form: 



















r

Q
Dr

rrt

trQ 


1),(
        (2.4.1) 

and heat balance (under assumption that  tempertaure is uniform through particle): 

)()( gp

p

sp TTha
dt

dT
c

dt

Qd
H                     (2.4.2) 
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In eqs. (2.4.1) and (2.4.2) Q(mol/m
3
) is the local solid-phase adsorbate concentration, 

D(m
2
/s) is the diffusion coefficient, ı is the shape factor (0 - for slab, 1- for cylinder and 

2- for spherical geometry of particle), (-ΔH)(J/mol) is the hear of adsorption, cs (J/kgK) is 

the heat capacity of the adsorbent, h(W/m
2
K) is the heat transfer coefficient, a(m

2
/m

3
) is 

the specific surface of the particle, Tp(K) is the particle temeprtaure, Tg(K) is the gas 

temperature and Q (mol/m
3
) is the average solid-phase concentration in the particle 

defined as: 






R

drtrQr
R

Q
0

1
),(

1 



        (2.4.3) 

2.4.3 Measurements of diffusion coefficients 

 

A wide range of different experimental techniques have been applied in order to measure 

diffusion coefficients within microporous and bidispersed solids. It is convenient to 

distinguish between equilibrium techniques in which the self-diffusivity is measured (in 

absence of a concentration gradient) and non-equilibrium techniques which measure 

transport diffusivities. Regarding the scale of the measurements, the methods are divided 

into:  microscopic (sub-crystal scale), mesocsopic (single-crystal scale) and macroscopic 

(an assembly of crystals). Comprehensieve review of those methods, containing detailed 

descriptions, critical analysis and examples, is provided by Karge and Weitkampf (2008). 

The most important methods are listed in Table 2.4.1 and briefly described below. 

Microscopic techniques are based on the measurements of  the mean square displacement 

of the gas molecules into the crystal micropores under equilibrium conditions, by either 

nuclear magnetic resonance (PFG NMR) or by neutron scattering (QENS). The obtained 

time-constants correspond to self-diffusivities (D0). In order to get transport diffusivities 

(D), the gradient of the adsorption isotherm has to be taken into account, according to 

Darken's equation (Ruthven, 1984): 

 

Qd

Pd
DD

ln

ln
0           (2.4.4) 
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Microscopic methods give accurate diffusivities for very fast micropore diffusion (when 

the diameter of the diffusing molecule is smaller than the micropore diameter), while the 

slower micropore diffusion (when the diameter of the diffusing molecule is equal or 

slightly larger than the micropore diameter) and macropore diffusion kinetics are 

inaccessible. 

 

Table 2.4.1 Methods for measuring diffusion coeficients 

Microcscopic methods - NMR-PFG 

- QENS 

Mesoscopic methods - FTIR 

- Interference microscopy 

Macrocsopic methods - Wicke-Kallenbach 

- Uptake rate 

- Chromatographic 

- ZLC 

- Frequency response 

 

Mesoscopic methods are newer and include using of infrared spectroscopy or interference 

microscopy. The Fourier transform infrared spectroscopy (FTIR) has been successfully 

employed by Niessen and Karge (1993) for measurements of diffusion of p-xylene in 

zeolite crystals. In FTIR spectroscopy the absorbance of an IR band of the adsorbate is 

monitored by scanning the spectra of pure adsorbent in inert atmosphere and after a step 

change of the partial pressure of the adsorbate. The intensity of absorbance 

(transmittance) is the measure of the adsorbent coverage. Since modern, high sensitivity 

spectrometers are available, FTIR is considered as a very accurate technique, with ability 

to measure the sorption of binary mixtures.  

Another very promising technique for studying sorption kinetics is optical interference 

microscopy (IM), suggested by Schemmert et al. (1999). The technique is based on the 

analysis of the interference pattern generated by the superposition of two light beams, one 

passing through the adsorbing crystal and the other passing through the adsorbate. Since 

the optical density depends on the concentration of the guest molecules, changes in local 
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concentration appear directly as the corresponding changes in the interference pattern. 

Both FTIR and IM measurements are performed on single crystal scale and allow 

measurements in a wide range of temperature/pressure conditions. 

Regarding the macroscopic methods, Wicke-Kallenbach method, uptake rate, 

chromatographic and frequency response method are the most important. The schematic 

representation of the apparatus for Wicke-Kallenbach method for measuring diffusivity is 

presented in Fig.2.4.2 (Ruthven, 1984). 

 

Fig. 2.4.2 Shematic representation of Wicke-kallanbach cell (Ruthven, 1984) 

 

A cilyndrical adsorbent pellet is sealed within the cell. The inert gas is passed accros one 

face of the pellet and diluted mixture inert-adsorbate acrcross the opposite face of the 

pellet. By measuring the flowrates and concentrations of both streams in a quasi-steady 

state, the fluxes in both directions, and hence the effective macropore diffusivity can be 

calculated. The method could also be applied for measuring micropore diffusivities, but 

the difficulties of mounting and sealing of crystals make this application difficult.  

The uptake rate method is based on direct measurement of the sorption rate (gravimetric 

or piezometric) on the adsorbent sample subject to a step-change in sorbate concentration 

in a closed volume (Ruthven, 1984). The diffusion coefficient can be estimated the by 

fitting the experimental uptake curve to the solution of diffusion equation (2.4.1). 

Generally, both adsorbent configurations (crystals and pellets) can be examined by 

uptake rate measurement. Micropore diffusivities in crystals can be determined 

accurately for slow diffusion, while for the faster diffusion the intrusion heat effects 

become significant. Although nonisothermal effects can be account for in the models, 
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they are not obvious from the shape of the uptake curve. Regarding the uptake rate 

measurements in biporous pellets, the effective macropore diffusivity can be determined 

accurately if micropore diffusion is significantly faster than the macropore diffusion. 

Experiments with different particle sizes are nedded in order to check whether this 

condition is fulfilled (Ruthven, 1984). 

Chromatohraphy has already been mentioned in Section 2.2.2 as one of the methods for 

estimation of adsorption equilibrium. It is also possible to deduce the diffusion 

coefficient by analysis of the pulse response of the chromatographic column (in terms of 

the first and second moments of the pulse response). The main difficulty in the analysis 

of chromatographic data is to separate the axial-dispersion and diffusion contributions. 

The zero length column (ZLC) method, introduced by Eić and Ruthven (1988), which is a 

variant of the chromatographic method using an infinitezimal column, provides 

elimination of the axial dispersion effect. 

The Frequency response (FR) method analyzes the responses to the periodic (usually 

sinusoidal) change of the input variable. It stands out from the other transient methods 

(step and pulse responses) due to the following features (Reyes and Iglesia, 1994):  

1) An additional degree of freedom, introduced by frequency of periodic oscillation, 

provides direct examination of the time constants of concurrent processes within the 

adsorbing particle (each time constant corresponds to one critical frequency).  

2) The analysis of the response data can be performed in the frequency domain, which is 

very convenient, since the kinetic models equations become algebraic equations in the 

frequency domain. 

These features make the FR method a powerful and frequently used method for kinetic 

measurements of gas-solid adsorption systems. Since the FR method represents the basis 

for the NFR method, which is in the focus of this work, the concept and applications of 

the FR method will be discussed in the following section. 

From the above given review, it can be concluded that reliable measurements of diffusion 

into porous solids is more difficult than it can be expected. Each method has certain 

limitations or requires experimental conditions to be adjusted so that the underlying 

assumptions are fulfilled. Moreover, diffusion coefficients derived from microscopic and 

macroscopic methods can differ substabntially (Kärger, 2003).  
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2.5  The FR method for measurement of adsorption kinetic data 

 

The basic principle of  FR method is that a system subject to a periodic perturbation of 

the input variable, produces a periodic response (output) that has a different amplitude 

and a phase lag with respect to the input. The magnitudes of the amplitude attenuation  

and the phase lag are related to the dynamics of the process(es) occuring within the 

system. If the amplitude of the input modulation is small, then the output is a quasi-linear 

response. The output to the input ratio in the frequency domain, measured over a range of 

frequencies, defines the frequency response function (FRF). This function is also called 

first-order FRF or linear FRF, and it is the function of frequency. Kinetic parameters are 

obtained by fitting the experimental FRF to the theoretical one, derived from the 

linearized form of the assumed kinetic model. 

The FR method has been firstly applied for kinetic studies of adsorption by Naphtali and 

Polinski (1963), and since then, there have been a lot of applications of this method for 

different adsorption systems. Most investigators (Naphtali and Polinski, 1963; Yasuda, 

1976;  Rees and Shen, 1993, Onyestyak, 1996, Reyes et al.,1997) have performed the FR 

measurements in a batch adsorber with sinusoidal volume modulation and pressure as a 

measured output, as shematically presented in Fig. 2.5.1. 

 

 
 
Fig. 2.5.1  Shematic representation of FR measurements in a batch adsorber (linearized case) 

 

 

Based on the mass balance of the batch adsorber, Yasuda (1976) defined the so called 

"in-phase" (real) and "out-of-phase" (imaginary) components of the FRF, which can be 

calculated using the measured pressure responses. The experimental "in-phase" and "out-

of-phase" functions can be used for estimating the kinetic data by fitting to the theoretical 

ones for an assumed model. Yasuda and co-workers have investigated the kinetics of 

adsorption/chemisorption of etylene on ZnO (Yasuda, 1976), hydrogenation of propylene 
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over Pt/A12O3 catalyst (Yasuda, 1989), adsorption of CH4, C2H6, and C3H8 on 5A zeolite 

pellets (Yasuda et al., 1991) and methanol conversion to olefins over HZSM-5 catalysts 

(Yasuda and Nomura, 1993). In order to interpret the FR experimental data, they have 

derived the theoretical FRFs for following kinetic models: adorption-desorption with 

one/several adspieces, adsorption-desorption during reaction, micropore diffusion 

with/without surface barrier (Yasuda, 1994). Jordi and Do (1994) have studied 

theoretically FR of isothermal diffusion into biporous solids. Sun  et al. (1994) have 

extended the theoretical analysis to non-isothermal adsorption in biporous solids and 

deriverd and analyzed the in-phase and out-of-phase functions for non-isothermal 

micropore-macropore diffusion model. Sun and Bourdin (1993) have also derived 

theoretical FRF for isothermal diffusion-rearrangement model. 

Rees and co-workers have used the FR experiments in order to investigate diffusion of 

different hydrocarbons within zeolites: benzene/NaX (Rees and Shen, 1993), n-butane 

and 2-butane/silicalite (Shen and Rees, 1991), propane/silicalite (Song and Rees, 1996) 

and n-hexane/silicalite (Song and Rees, 1997), using Yasuda's theoretical FRFs (Yasuda, 

1994). Onyestyak and co-workers have examined the broad range of adsorption systems 

by the FR method: amonia, CO, CO2, propane on activated carbon charcoal, silica gel and 

different zeolites (Onyestyak, 1996, 2011; Onyestyak and Rees, 1999).  

A typical batch apparatus for FR adsorption measurements is usually a closed termostated 

cell, containing the adsorbate gas initially equilibrated with a small amount of the solid 

asdorbent. The sinusoidal modulation of the cell volume is typically performed by 

bellows coupled with a rotary motor and a suitable mechanism for converting circular 

into a linear motion (Yasuda, 1976; Reyes et al., 1997). Turner et al. (2001) improved the 

accuracy of the input sine wave approximation by using a servomotor with feedback 

control to drive the metal bellows. The pressure is measured with  highly accurate, fast-

response pressure sensors in order to obtain reliable amplitude attenuations and phase 

lags.  Rees and Shen (1993) have designed a FR device with square-wave volume 

perturbation produced by electromagnetically driven bellows. This arrangement allows 

better long-term stability and working frequencies up to 10 Hz. Bourdin et al. (1998) 

have introduced the measurement of the adsorbent temperature (by an infra red 

thermometer) along with measurements of pressure response to the volume modulation 



 21 

and they defined  the in-phase and out-of-phase components of the temperature response 

function (TRF). The same group of authors have previously published a comprehensive 

theoretical study regarding the TRFs for the cases of non-isothermal diffusion in crystals 

and biporous pellets including surface barrier effects (Bourdin et al. 1996a, b). Their 

results show that frequency spectra of the TRF enable separation of heat transfer and 

diffusion time constants which is not possible from the pressure measurements only.  

More recently, Jentys et al. (2005) have employed the IR spectroscopy in order to 

measure directly the surface concentration change due to the periodic pressure 

modulation in a batch system. This technique enables distinction between adsorption 

processes on different types of active sites. 

Besides batch FR measurements, a continious FR apparatus have also been developed 

(Sward and LeVan, 2003; Wang et al., 2003; Liu et al., 2010), where the pressure is 

modulated periodically and the resulting changes in the outlet flowrate are measured by 

mass flow meter or mass spectrometer. Giesy et al. (2012) modified later the apparatus of 

Sward and and LeVan (2003), in such a way that it can operate in both continious and 

batch mode, in order to combine the advantages of both techniques. Theoretical 

considerations regarding FRs of the flow adsorber were treated by Park et al. (1998) and  

Sward and LeVan (2003). A summary of the existing FR devices together with their main 

characteristics is given in Table 2.5.1. 

In spite of a broad field of applications, the FR method is limited by its inability to 

discriminate between kinetic models which have the same linearized forms and 

accordingly, the same shapes of the linear FRFs. For example, micropore diffusion, 

macropore diffusion and pore-surface diffusion models have the same shapes of the linear 

FRFs (Petkovska, 2006). Shen and Rees (1991) have reported that the FR experimental 

data for adsorption of n-butane on silicalite-1 fit equally well to three different models: 

non-isothermal micropore diffusion, two independent diffusion processes and diffusion-

rearrangement process. Those facts gave rise to the extension of the FR method to the 

nonlinear range, suggested by Petkovska and Do (1998) and named Nonlinear Frequency 

Response (NFR) method, which will be applied in this work for studying the kinetics and 

equilibrium of gas adsorption. 
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Table 2.5.1 Summary of experimental FR devices 

 
 

 

reference configuration modulated input/form input 

amplitude 

maximal 

frequency 

measured output investigated system 

Naphtali and 

Polinski (1963) 

batch volume/ sinusoidal no info  pressure/Pirani gauge H2/nickel 

Yasuda (1976) batch volume/sinusoidal ± 3.8 % 0.25 Hz pressure/Pirani gauge ethylene/ZnO 

Rees and Shen 

(1993) 

batch volume/square wave ± 1 % 10 Hz pressure/ differential Baratron benzene, etylbenzene, p-

xylene/silicalite-1 

Bourdin et al. (1998) batch volume/ sinusoidal < 2 % 30 Hz particle temperature/IR detector 

pressure/absolute Baratron 

CO2, propane/zeolite 

NaX 

Reyes et al. (1997) batch volume/sinusoidal ± 1.4 % 10 Hz pressure/ differential Baratron N2, Xe, isobutane/silica  

Turner et al. (2001) batch volume/ sinusoidal ± 1.5 % 5 Hz pressure/ differential Baratron n-hexane , 

metanol/silicalite 

Sward and LeVan 

(2003) 

flow-through pressure/ sinusoidal ± 5 % 0.2 Hz mass flow rate/mass flowmeter CO2/BPL activated 

carbon 

Jentys et al. (2005) 

 

batch volume/ square wave < 5 % 1 Hz concentration/ IR spectrometer 

pressure/absolute Baratron 

bezene, tolene, o- and p-

xylene /zeolite H/ZSM-5 

Giesy et al. (2012) combined 

batch/flow-

through 

 

volume 

pressure  

composition/ 

sinusoidal 

< 2 % 10 Hz pressure 

mass flow 

composition 

CO2/ zeolite 13X 
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3. NONLINEAR DYNAMIC ANALYSIS IN THE FREQUENCY 

DOMAIN - APPLICATION ON GAS ADSORPTION 
 

Since this thesis deals with nonlinear analysis of gas adsorption, a short review of the 

methods for nonlinear analysis will be given in this chapter. The Volterra-Weiner concept of 

higher-order FRFs (Weiner and Spina, 1980), which represents one of the tools for analysis 

of NFRs and the theoretical basis of the NFR method, will be described in detail. The 

procedure for obtaining both experimental and theoretical higher-order FRFs, using the 

Volterra-Weiner concept higher-order FRFs, will be presented. The relevant theoretical 

results regarding the application of NFR method on the gas adsorption, which were already 

published, will be recalled. Also, a short review of the applications of the NFR method in 

other chemical engineering systems will be given.  

 

3.1. Methods for dynamic analysis of nonlinear systems   

 

The processes in chemical engineering (including adsorption which is the subject of this 

work) are generally nonlinear. Nonlinear systems are characterized by diverse and complex 

dynamic behavior. Till nowadays, there is no general theory for dealing with analysis of 

nonlinear systems. Depending on the complexity of the system and on the concrete purpose, 

the time and frequency domain approaches for studing the nonlinear phenomena are used in 

practice. In the time domain, the nonlinear systems are represented by mathematical models 

of different types of nonlinear differential equations, where the output-input relations are 

expressed implicitly. The explicit form of the output-input relation i.e., the exact solution 

exists only for a few specific types of nonlinear differential equations. It is usual in 

engineering practice to consider first the linearization of the nonlinear model, which may be 

sucessfull only in a very limited number of cases (when the changes of the variables do not 

vary too much from their equilibrium values). The graphical phase-plane analysis (Jordan 

and Smith, 2007) is a tool which may predict qualitative characteristics of the nonlinear 

system's behavior without solving the differential equations. Numerical techniques, such as 

finite element method, together with algorithms for numerical integration, are used for 

finding solutions of the PDEs numerically. However, numerical simulations may be time 
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consuming and they are approximate. The time domain techniques turned out to be only 

occasionaly usefull (stability theory is based on differential equations theory), but not 

suitable for most practical enginerring applications. 

Regarding the nonlinear analysis in the frequency domain, the concept of higher-order FRFs 

(Weiner and Spina, 1980) is widely used in different fields of engineering. This concept is 

applicable for stable nonlinear systems with polynomial nonlinearities (weakly nonlinear 

systems), and it is based on the representation of the model of the system in the form of 

series of FRFs of different orders (theoretically indefinite). For practical purposes, the 

truncation to the third-order FRF is usually sufficient to characterize the system. Nonlinear 

analysis in the frequency domain has the following advantages: 1) the nonlinear models 

defined in the time domen as PDEs become ODEs, and those defined in the time domain by 

ODEs become algebraic equations 2) the insights gained  from the linear FR analysis can be 

applied to analyze the nonlinear system dynamics. Although the concept of higher-order 

FRFs is known from the late 1950s, its applications are still very rare, since obtaining the 

FRFs for practical systems is difficult. Up to now, there has been no coherent method neither 

for calculation nor for measurement of the higher order FRFs.  Two approaches regarding 

obtaining the FRFs for nonlinear systems have been reported in the literature. The first 

approach has been introduced by Peyton Jones and Billings (1989) and it is based on 

application of a recursive probing algorithm to the nonlinear autoregressive moving average 

with exogenous inputs model (NARMAX) (Leontaritis and Billings, 1985). Another 

approach for obtaining the FRFs is so called Voterra-Weiner concept of higher-order FRFs 

(Schetzen, 1980; Rough, 1981) and it is based on the representation of the frequency 

response of a nonlinear system in the form of Volterra series and application of 

multidimensional Fourier transform (Weiner and Spina, 1980). Since the latter approach 

represent the basis of NFR techique applied in this work, it will be presented in the following 

subsection. 
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3.2 Frequency response of the nonlinear system 

3.2.1 Volterra-Weiner concept of higher-order FRFs 

 

The Volterra-Weiner concept (Weiner and Spina, 1980) represents the generalization of the 

well known approach of convolutional integral and definition of the FRF, used in the linear 

frequency domain analysis. Namely, the dynamic response of a stable linear single-input 

single-output system to an arbitrary input signal x(t) can be defined as a convolution integral: 

 dtxgtylin 




 )()()(        (3.2.1) 

where g() represents the impulse-response function of the system, or its kernel. By taking 

into account the definition of FRF (Weiner and Spina, 1980): 

  degG j




 )()(        (3.2.2)  

it is possible to relate the time domain response of the system, y
lin

(t), with its FRF G(ω) 

(which is the complex function of a single variable - frequency). The form of this relation 

depends on the form of input.   

For the input in the form of idealized periodic function x(t)=Ae
jωt

, (which can not be realized 

physically and will be called in the further text ideal single harmonic), the response defined 

by eq. (3.2.1) becomes: 

   degAety jtjlin 




 )()(       (3.2.3) 

which, considering the definition (3.2.2), becomes: 

)()(  GAety tjlin          (3.2.4) 

From Eq. (3.2.4) it can be seen that the response of a linear system to a single harmonic input 

is also a single harmonic at the same frequency. Similarly, the response of a linear system for 

a single co-sinewave input x(t)=Acos(ωt)=(A/2)e
jωt 

+(A/2)e
-jωt

, can be written as: 

tjtjlin e
A

Ge
A

Gty   
2

)(
2

)()(       (3.2.5) 

By using the property of conjugate symmetry
 
(Storer, 1991), eq. (3.2.5) becomes: 

 ))(arg(cos)()(  GtGAtylin        (3.2.6) 
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Eq. (3.2.6) shows that the response of a linear system to a single sinewave is also a single 

sinewave of the same frequency. The response defined by eq. (3.2.5) can be written in a 

frequency domain as follows: 

)()()(  XGY lin          (3.2.7) 

Eq. (3.7) shows that the FRF G(ω), which represents the model of the linear system in the 

frequency domain,  can be simply determined from the response to a sinewave input.  

When the nonlinear system with polynomial nonlinearities is the subject of the same arbitrary 

input x(t), the response may be represented as an indefinite sum of multidimensional 

convolutional integrals (Volterra series): 

)()(
1

tyty
n

n

nonlin 




         (3.2.8) 
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1 )(),,()(  
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



     (3.2.9) 

where gn(1,…,n) is the generalized impulse response function of order n, or n-th order 

Volterra kernel. The first element of the series,  y1(t), have the same form as  y
lin

(t) (eq. 

3.2.1), and represent the response of the linearized system, while each of the higher terms 

(n>1) represents the contribution of the nonlinearities of n-th order. 

In analogy to the Fourier transform of the linear system's kernel, which defines the FRF (eq. 

3.2.2), the multidimensional Fourier transform of the n-th order Volterra kernel defines the 

generalized n-th order FRF, as follows : 

n

j

nnnn ddegG nn    
1

)(

11
11),,(),,(









    (3.2.10 ) 

which is a complex function of n variables (frequencies). In order to establish the relation 

between the response of the nonlinear system defined by eqs (3.2.8) and (3.2.9) and FRFs of 

the different orders defined by eq. (3.2.10), the concrete form of the input x(t) has to be 

considered. 

For better understanding of the concept, the input in the form of the ideal single harmonic 

x(t)=Ae
jωt 

will be first considered. Namely, the n-th element of the response (eq. 3.9) to the 

ideal single harmonic will be (Storer, 1991): 

n

n

i

tj

nnn ddAegty i    1

1

)(

1 ),,()(  

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




     (3.2.11) 
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or 

n

n

i

j
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tjnn
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which, considering the definition  (3.2.10),  becomes: 

),...,()( 
n

tjnn

n GeAty         (3.2.13) 

From this expression it may be seen that each element of the response to a single harmonic 

input is also a single harmonic at frequency nω, and the whole response is composed of a 

series of single harmonics at integer multiples of fundamental frequency: 







1

),...,()(
n

tjnn

n

nonlin eAGty        (3.2.14)  

Each of the output harmonics (eq. 3.2.13) has in the frequency domain following form: 

),...,()()(  n

nGXnY         (3.2.15) 

which shows that n-th harmonic defines uniquely the n-th order FRF Gn(ω,..., ω). If the ideal 

single harmonic input, Ae
jωt

, could be realized physically, this would be the technique for 

straightforward determination of Gn(ω,..., ω) by simple separating the harmonics from the 

output spectra: 
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          (3.2.16) 

However, as already mentioned, the ideal single harmonic signal is not feasible. The nearest 

real signal is a single co-sinewave , which can be regarded as a sum of two ideal harmonics: 

tjtj e
A

e
A

tAtx  
22

)cos()(       (3.2.17) 

By expanding the Volterra series (eq.3.9) for the single co-sinewave input, the first three 

elements will be: 
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The first element y1(t), is equal to the response of the linearized system to the single co-

sinewave, y
lin

(t), (Eq. (3.2.5)), and it represents the sum of the responses to the individual 

harmonics contained in the co-sinewave input. 

However, the second element of the response, y2(t), contains, besides the terms which 

characterize second order interactions of the individual harmonics ((e
jωt

)
2 

and (e
-jωt

)
2
), also 

the term which represents the second order intermodulations  of two input harmonics 

(combined effect, e
jωt

× e
-jωt

 ), resulting in a new (zero) frequency. Multiple interactions and 

intermodulations of input frequencies are characteristic only for the nonlinear systems. They 

are the reason for appearance of the frequencies different than fundamental in the output 

spectrum. 

The third element, y3(t), shows that for the nonlinearities of the third order, the number of 

possible intermodulations increases (six intermodulation terms in eq. (3.2.20)). Generally, the 

n-th element of the response of a nonlinear system to a single co-sinewave input can be 

represented as:  
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where nBi is the binomial  coefficient: 
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and Gn,i denotes the n-th order FRFs: 
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       (3.2.23) 

Unlike the response to the ideal single harmonic input, where each element is a single 

harmonic related to a single FRF (eq.3.15), in the response to a single co-sinewave input each 

element contains contributions of FRFs related to multiple interactions (Eq. 3.2.23 for i=0 

and i=n) and FRFs related to intermodulations (Eq.3.23 for i(1,n-1)) of the two frequency 
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components (ω and -ω). The overall response of the nonlinear system (Eq. 3.2.8) for the co-

sinewave input - nonlinear frequency response (NFR)- can be written as follows: 
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It is obvious from Eq. (3.2.24) that the relation of the NFR and the FRFs of different orders is 

complex and that extracting the individual FRFs from the response is a demanding task. The 

approximate procedure for obtaining the higher-order FRFs are described in the following 

subsection. 

3.2.2 Estimation of higher-order FRFs from the nonlinear frequency response 

 

After applying of the conjugate symetry property (Storer, 1991) on the individual terms of 

the NFR  (eqs. (3.2.18), (3.2.19) and (3.2.20)), the overall response (Eq. (3.2.24)) can be 

written as follows: 
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From this expression it is evident that the response of a nonlinear system to a single sinewave 

will be composed of a series of sinewaves at integer multiples of the fundamental frequency 

(nω), with a possible component at zero frequency (DC shift). Each of those sinewaves at nω 

is a complex sinewave and contains series of single sinewaves. For example, by collecting 

the terms at ω from eq. (3.2.24a), the first harmonic of the response is obtained: 
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The second harmonic, at 2ω is: 



 

 

30 

 

...)).,,((2cos(
2

8),,,(

)),((2cos(
2

2),(2

44

2

2

2

4





















GArgt
A

G

GArgt
A

Gty

  (3.2.26) 

The third harmonic can be obtained analoguosly by collecting the terms at 3ω from eq. 

(3.2.24a) and so on.  Eqs. (3.2.25) and (3.2.26) in the frequency domain have the following 

forms: 
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Individual harmonics Y(ω), Y(2ω),... can be estimated directly by harmonic analysis of the 

experimentally masured time domain NFR. Eq. (3.2.27) shows that first harmonic contains 

contributions of the first- and odd higher-order FRFs, while eq. (3.2.28) shows that the 

second harmonic contains the contributions of the second- and  even higher-order FRFs. 

Since for weakly nonlinear systems, the contributions of higer-order FRFs decrease with the 

increase of their order, it arises that G1(ω) corresponds to the dominant term of the first 

harmonic (eq. (3.2.27)) and G2(ω,ω) corresponds to the dominant term of the second 

harmonic (eq. (3.2.28)).  All terms in Eqs. (3.2.27) and (3.2.28) depend on the input 

amplitude X. Taking those facts into account, it is possible to estimate approximately the 

FRFs by measuring the output harmonics. In the approach suggested by Lee (1997), each 

output harmonic (Y(ω), Y(2ω),...) is approximated by a sum of first k terms and the FRFs 

corresponding to those terms are estimated from the responses for k different input 

amplitudes by solving the system of algebraic equations. For example, if the first harmonic 

(eq. (3.2.27)) is approximated by first two terms: 
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and measured for two different input amplitudes X1 and X2: 
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then the FRFs G1(ω) and G3(ω,ω,-ω) can be calculated by solving the system of eqs. 

(3.2.27b) and (3.2.27c). Similarly, the FRFs G2(ω,ω) and G4(ω,ω,ω,-ω) can be determined 

from the second harmonic measured for two different input amplitudes, and so on. The larger 

number of terms considered in individual harmonics provides higher accuracy of the obtained 

FRFs, but requires more measurements.    

In the linear FR approach, (discussed in Section 2.5), very small input amplitudes (˂2%) are 

used, such that contributions of all higher-order FRFs (n≥2) become negligible, and the 

response contains only the first harmonic in the form: 

)()(1  XGYI          (3.2.29)  

In that case G1(ω) is directly calculated from eq. (3.2.29). Similarly, it can be assumed that 

for a somewhat larger input amplitude, it is possible to obtain the response where the 

contributions of FRFs of the third- and higher-order become negligible, and the response 

contains only the first harmonic (defined by eq. (3.2.29)) and the second harmonic as 

follows:  

2

2 )(),(
2

1  XGYII         (3.2.30) 

which would enable calculation of G2(ω,ω) form the experiments performed with only one 

input amplitude. The magnitudes of X for which eq. (3.2.30) is valid depends on the 

nonlinearity of the concrete system.   

3.2.3  Theoretical derivation of FRFs 

 

The procedures described in the previous subsection reffer to experimental estimation of 

higher-order FRFs. In order to obtain theoretical higher-order FRFs corresponding to a 

certain nonlinear model, the following general procedure has to be applied: 

1) The first step in derivation of theoretical FRFs is setting the model of the nonlinear system 

in the time domain (generally set of PDEs).  

2) In the second step, the input (x) and the output (y) variables have to be specified.  

3) The specified input variable is expressed as a periodic function of the general form 





N

k

tj

k
keAtx

1

)(
 and the output variable is expressed in the form of Volterra series 
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21
,...,,......    (3.2.31) 

The previously defined input and output are then substituted into the time domain model 

equation(s). 

4) In this step the method of harmonic probing (Weiner and Spina, 1980) is applied. Namely,  

the coefficients of 
 tj

kkk
nkkk

n
eAAA

  ...
21

21
...  on each side of the model equation obtained in 

the previous step are equated, thus giving the expressions which defines the n-th order FRF

 
nkkknG  ,...,,

21
 as a function of frequency. 

5) By solving the equation obtained in the previous step, the n-th order FRF

 
nkkknG  ,...,,

21
 is obtained. It should be emphasized that the solution procedure is 

recursive. Namely, for solving the equation which defines n-th order FRF, the equations 

which define the FRFs of all orders lower than n-th have to be solved previously. 

For illustration, in order to obtain the first-order FRF, the specified input variable is 

expressed as a single periodic input x(t)=Ae
jωt

 and the corresponding output in the form of 

Volterra series will be: 

...),()()( 2

21  tjtj AeGAeGty        (3.2.32) 

By substitution of the previously defined input and output into the time domain model 

equation and equating the coefficients of Ae
jωt

 on each side of the obtained expression, the 

equation which defines first-order FRF G1(ω) is obtained.  

In order to obtain the second-order FRFs, the input variable is expressed as a periodic 

function of two frequencies x(t)=A1e
jω1t+A2e

jω2t, and the corresponding output will be: 

....),(),(2),(
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 tjtjtj

tjtj
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eAGeAGty
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




 (3.2.33) 

Again, after substitution of the input and output into the time domain model equation and 

equating the coefficients of A1A2e
j(ω1+ω2)t, the expression which defines G2(ω1,ω2) is obtained. 

For the case ω1=ω2, the FRF G2(ω,ω), which corresponds to second-order interactions of 

input frequency is obtained. The expressions for the third- and higher-order FRFs can be 

derived in an analogous way.  
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3.3 Adsorber vs. particle higher-order FRFs for the case of a 

nonisothermal batch adsorber   

 

At the end of 90s, Petkovska and Do (1998) have proposed the utilization of the previously 

described general concept of higher-order FRFs for investigation of the gas-solid adsorption. 

In the frame of their comprehensive theoretical studies, they have defined the higher-order 

FRFs for general nonisothermal adsorption system and established the procedure as well as 

the theoretical basis for practical application of the NFR for characterization of equilibrium 

and kinetics of adsorption (Petkovska, 2001). The excerpts from their theoretical work, 

concerning the nonisothermal batch adsorber will be given below. The FRFs up to the 

second-order will be considered. 

 

3.3.1 Definitions of FRFs 

 

In Fig.3.3.1 a batch adsorber of a volume V (which can be modulated),  containig a certan 

amount of solid adsorbent is shematically presented. It is assumed that the gas (at 

temperature Tg and pressure P) is ideally mixed, that the adsorbent particles (at loading Q and 

temperture Tp) are equally exposed to the gas and that the system is in temperature and 

concentration equilibrium in the initial state (Q=Qs(P), Tp=Tg  at t=0). 

 
Fig. 3.3.1 Shematic representation of an ideally mixed batch adsorber 

 

When the volume is modulated periodically, in the general nonisothermal case, all four 

output variables (P, Tg, Q, Tp) change, and in the quasi steady-state become periodic 

functions of time as well. Each output is related to the input through an indefinite sequence 

of FRFs, as shown in block diagram given in  Fig.3.3.2. These functions are named the 

adsorber FRFs. 

Q, Tp  

P, Tg  
modulated 

volume  

Q, Tp  

P, Tg  

ADSORBENT  

GAS  
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Fig.3.3.2 A general block diagram of a batch adsorber and definitions of adsorber FRFs (Petkovska, 

2001)   

 

 

 

 

 

Fig.3.3.3 A general block diagram of an adsorbent particle  and definitions of particle FRFs 

(Petkovska, 2001) 
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However, if we recognize the adsorbent particles as a subsystem of the adsorber, then P and 

Tg are inputs and Q and Tp outputs for this subsystem. For the general nonisothermal case, 

six sets of FRFs are needed to define the particle model, as it is represented in block diagram 

in Fig. 3.3.3. 

Four sets of FRFs (Fp, FT, Hp, and HT) relate each output to each input, and two sets of 

cross-functions (FpT and HpT), relate each output to both inputs. These FRFs are the particle 

FRFs. The adsorber FRFs (Fig. 3.3.2) represent the model of the adsorber and the particle 

FRFs (Fig. 3.3.3) represent the model of the kinetic mechanism in the frequency domain for a 

general nonlinear nonisothermal case. 

For the special nonisothermal case (Tg=const., Tpconst.) the complete model is reduced to 

three series of adsorber FRFs (G, J and W functions) and two series of particle FRFs (Fp and 

Hp), while for isothermal case (Tp=const, Tg=const.) it reduces to two series of adsorber (G 

and J ) and one series of particle FRFs (Fp ).  

According to the definitions given above, it can be concluded that the particle FRFs are those 

which are relevant for kinetic mechanism identification. 

3.3.2 Procedure for application of the NFR method 

 

The procedure for application of the NFR method on the example of a batch adsorber 

presented in Fig. 3.3.1., according to (Petkovska, 2001),  consists  of the following steps: 

Step 1. Experimental FR measurements. The volume is modulated in a sinusoidal way and, 

after a quasi-steady state is reached, all directly measurable adsorber outputs are measured 

and recorded. The experiments are performed for a number of different frequencies and for 

several different values of the input amplitude. 

Step 2. Harmonic analysis of the output signals. The recorded output signals are analyzed 

using Fast Fourier Transform. As a result, the amplitudes and phases of the first, second, 

third, …, harmonics of the measured outputs are obtained.  

Step 3. Estimation of the adsorber FRFs.  The adsorber FRFs corresponding to the measured 

outputs are estimated based on the values of individual harmonics obtained in Step 2,  using 

the procedure given by Lee (1997)(Section 3.2.2). In the case that some of the adsorber 

outputs can not be measured directly (usually that is the case with the loading Q, and 

sometimes with the particle temperature Tp) the FRFs corresponding to the unmeasured 
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outputs are calculated using the adsorber model equations (Petkovska, 2001). An example, 

concerning the calculation of FRFs to unmeasured adsorbed quantity Q, will be given in 

Section 3.3.3.  

Step 4. Calculation of the particle FRFs. The particle FRFs ("F" and "H" functions) have to 

be calculated from the adsorber ones, obtained in step 3. The key equations which relate the 

adsorber and particle FRFs are obtained by expressing Q and Tp, once as the responses to the 

volume change (according to the block diagram in Figure 3.3.2) and the other time as the 

responses to P and/or Tg changes (according to the block diagram in Figure 3.3.3)(Petkovska, 

2001). The relations between the particle and adsorber FRFs  concerning special 

nonisothermal case (Tg=const., Tp≠const.) will be derived in Section 3.3.4.  

Step 5. Identification of the kinetic model. The particle FRFs calculated in Step 4 are 

compared with theoretically derived sets of particle FRFs corresponding to different 

mechanisms. Recognizing the significant patterns of the FRFs, the most probable model or 

models are chosen. This step assumes that a library of theoretical sets of particle FRFs 

corresponding to different kinetic mechanisms has been previously formed. The procedure 

for derivation of theoretical particle FRFs as well as the review of the existing library of 

theoretical FRFs is given in the Section 3.3.5. 

Step 6. Parameter estimation. Using the model chosen in Step 5 and the particle FRFs 

estimated from the experimental FR measurements, obtained in Step 4, the model parameters 

are estimated. The methodology of parameter estimation for several simpler kinetic 

mechanisms is given in (Petkovska, 2006). 

 

3.3.3 Calculation of the adsorber FRF corresponding to unmeasurable loading (Q) 

 

The procedure for calculation of the adsorber FRFs corresponding to unmeasurable outputs 

for general nonisothermal case can be found in Petkovska (2001). Since the assumption of 

constant gas temperature is commonly used in the FR studies regarding nonisothermal gas 

adsorption (Giesy et al., 2012; Bourdin et al., 1996; Sun et al., 1994; Sun et Bourdin, 1993), 

the special nonisothermal case Tp≠const. and Tg=const will be considered here. According to 

the block diagram in Fig. 3.3.2, for the case Tp≠const. and Tg=const., three series of adsorber 

FRFs G, W and J functions, represent the model of adsorber. If we consider P and Tp as the 
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measurable outputs and Q as unmeasurable output (which is most often the case), than the 

functions G and W can be calculated directly from measured outputs P and Tp, respectively, 

by using the procedure given by Lee (1997), while the J functions (which correspond to the 

unmeasurable output Q) are calculated by using the adsorber model equation and the G and 

W functions obtained from the measurements. The procedure is presented below. 

The mass balance of the batch adsorber (Fig. 3.3.1), when Tg=const. , is following: 

0
1)(1


dt

dQ

Vdt

PVd

TR pg

       (3.3.1) 

If we define the dimensionles variables (volume, pressure and loading), as the deviation 

variables divided by the corresponding steady-state values: 
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
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than the eq. (3.3.1) can be written as follows: 

    011 
dt

dq
vp

dt

d         (3.3.1a) 

where 
ssp

gsp

PVρ
TRQm

β   is the partition coefficient.  

In order to obtain the first-order function J1(ω), the volume is expresed as single harmonic 

function tjAev  and the adsorber outputs, according to the block diagram in Fig. 3.3.2, are: 

  tjAeGp 1          (3.3.3) 

  tjAeJq 1          (3.3.4) 

  tj

p AeW  1                                                                                                  (3.3.5) 

By substitution of the input tjAev  and equations (3.3.3) and (3.3.4) into the balance 

equation (3.3.2), and by equalizing the terms with tjAe  we obtain: 


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)( 1
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


G
J          (3.3.6) 

For the second-order FRF J2(ω,ω), the input is dfined as two harmonic function 

tjtj
eAeAv 21
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By substitution of the input tjtj
eAeAv 21

21

  as well as eqs.  (3.3.7) and (3.3.8) into the 

mass balance equation (3.3.2), and by equalizing the terms with A1A2e
j(ω1+ω2)t we obtain: 


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2
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
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3.3.4 Relations between the adsorber and the particle FRFs for special nonisothermal 

case (Tg=const. and Tp≠const.) 
 

According to the block diagram in Fig. 3.3.3 for the special nonisothermal case (Tg=const. 

Tp≠const.), two series of particle FRFs represent the kinetic model F and H functions. 

In order to obtain the first-order FRFs F1(ω) and H1(ω),  the outputs q and θp are expressed, 

once acording to the adsorber model (eqs. 3.3.4 and 3.3.5) and the other time according to the 

particle model: 

    tjAeFGq  11         (3.3.11) 

    tj

p AeHG  11        (3.3.12) 

By equating the right hand sides of eqs. (3.3.4) and (3.3.11) it follows: 

)()()( 111  FGJ          (3.3.13) 

which, by taking into account eq. (3.3.6) becomes: 

)(

1)(
)(

1

1
1 


G

G
F


          (3.3.14) 

Similarly, by equating the right hand sides of eqs. (3.3.5) and (3.3.12) one obtains: 

)()()( 111  HGW           (3.3.15) 

Since G1(ω) and W1(ω) can be directly estimated from measurements, the function H1(ω) can 

be calculated as follows: 
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1
1 
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G

W
H            (3.3.16) 
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For the second order particle FRFs F2(ω,ω)  and H2(ω,ω), q and θp are expressed once 

acording to the adsorber model  (eqs.3.3.8 and 3.3.9) and then according to the particle 

model: 
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By equating the right hand sides of eqs. (3.3.8) and (3.3.17) it follows: 
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which, by taking into account eq. (3.3.10) becomes: 
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For the case ω1= ω2=ω, this function becomes: 
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while for the case ω1= -ω2=ω, this function becomes: 
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Analogously, by equating the right hand sides of eqs. (3.3.9) and (3.3.18) it follows: 
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which for the case ω1= ω2 =ω becomes: 
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and for the case ω1= -ω2=ω: 



 

 

40 

)()(

)0(),(),(
),(

11

122
2 






GG

FGW
H            (3.3.25) 

 

3.3.5 Theoretical derivation of FRFs for adsorption kinetic models 

 

General procedure for theoretical derivation of FRFs is given in Section 3.2.3. In order to  

derive of the theoretical higher-order FRFs for the adsorbing particle (F and H functions), it 

is necessary firstly to define the mass and heat balance equations which describe the certain 

kinetic model, which are generally PDEs (as it has been described in Section 2.4.2). The 

adsorption equilibrium is described with the adsorption isotherm, which has to be developed 

into Taylor series around a steady-state. According to the block diagram of the adsorbing 

particle (Fig. 3.3.3) the inputs may be pressure and/or gas temperature and the outputs: mean 

sorbate concentration in the particle and/or mean particle temperature. After definition of the 

input(s) and output(s), the harmonic probing method (described in Section 3.2.3) is applied. 

As a result, the ODEs in which the F and H functions are dependant variables of frequency 

are obtained. Those ODEs can be solved analytically or numerically. The existing library of 

theoretical FRFs contains FRFs up to the second-order for the following kinetic models: 

isthermal Langmuir kinetic, isothermal film resistance control, isothremal micropore 

diffusion, isothermal pore-surface diffusion (Petkovska and Do, 2000), non-isothermal 

micropore diffusion, two independamnt diffusional processes, diffusion-rearrangement 

process (Petkovska and Petkovska, 2003) and non-isothermal micropore diffusion with 

variable diffusivity (Petkovska, 2000). In this work the theoretical FRFs up to the second 

order for the  nonisothermal macropore diffusion model will be derived and presented in 

Chapter 5.  

 

3.4 Other applications of the NFR method in chemical engineering 

 

Theoretical study of Petkovska and co-workers regarding application of the concept of 

higher-order FRFs has given impetus for application of that concept in similar fields of 

chemical engineering. Ilić and co-workers have applied the concept of higher-order FRFs in 

order to determine experimentally the single solute and competitive adsorption isotherms of 
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liquid-solid systems (Ilić et al., 2007a; Ilić et al., 2007b; Ilić et al., 2007c; Ilić et al., 2008; 

Ilić et al., 2009). They have measured the NFRs of a liquid chromatographic column and 

estimated the FRFs up to the third-order and used them further for calculation of first-, 

second- and third-order derivatives of the adsorption isotherm. Petkovska with a group of 

autors from the Max Planck Institute in Magdeburg made an effort to apply the NFR analysis 

for investigation of kinetics of electrochemical reactions. Bensmann et al. (2010) have 

derived theoretical FRFs for four different models for description of the kinetics of 

electrochemical methanol oxidation and showed that the shape of the second-order FRF can 

be used as a criterion for discrimination between different kinetic mechanisms. Vidaković-

Koch et al. (2011) and  Panić et al. (2011) have validated experimentally the NFR approach 

for investigation of the kinetics of electrochemical reactions on the example of ferrocyanide 

electrooxidation. Kadyk et al. (2012) have applied the concept of higher-order FRFs in order 

to diagnose different phenomena (such as flooding, dehydratation or CO poisoning) which 

may occur in the  polymer electrolyte membrane (PEM) fuel cells. It was found that second-

order FRF can be successfully used for diagnosis of the mentioned phenomena. The NFR 

approach has also been applied for theoretical analysis of the potential improvements of 

isothermal and non-isothermal CSTR performance by forced periodic operation (Nikolić et 

al. 2014a, 2014b, 2015). The FRFs up to the second-order corresponding to the cases of 

modulation of different input variables (inlet concentration, inlet flowrate, inlet temperature) 

have been derived and analyzed. The sign of the second-order asymetrical FRF has been 

proven as a criterion for estimation of the possible improvments in the reactor performances.  
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4. STUDY ON THE APPLICABILITY OF THE NFR METHOD 

FOR INVESTIGATING GAS ADSORPTION 
 

 

Before constructing the experimental set-up for NFR measurements, an applicability study 

based on numerical simulations has been performed and presented in this chapter. It was 

necessary to evaluate the possibility of estimation of the experimental second-order FRF in 

order to design the NFR experiments. For that purpose, a mathematical model of a batch 

adsorber with film resistance kinetics has been implemented in MATLAB and the dynamic 

responses of the adsorber have been simulated. The simulations were performed using the 

adsorption isotherm for CO2/zeolite 5A from the literature. 

Based on the simulated responses for different input amplitudes, the nonlinearity of the 

system has firstly been analyzed and quantified. Based on the simulated NFRs, the possibility 

of estimation of the second-order FRF on the particle scale has been evaluated.  By analyzing 

the influence of the following parameters: mass of the adsorbent, amplitude of volume 

modulation, frequency range and sampling rate, on the accuracy of estimation of the second-

order FRF, criteria which define the optimal values of those parameters have been 

ascertained. Furthermore, a routine for determining the optimal values of the parameters for a 

concrete gas/solid system, based on the step responses, has been established. Finally, the 

procedure for application of the NFR method, described in Section 3.3.2, has been checked 

by using the simulated FRs as quasi-experimental data.  

 

4.1. Model equations 

 

The mathematical model of an isothermal ideally mixed adsorber with adsorption of a pure 

gas can be written as follows: 

0))1)(1(( 
dt

dq
vp

dt

d         (4.1.1) 

The dimensionless volume v=(V-Vs)/Vs, dimensionless pressure p=(P-Ps)/Ps and 

dimensionless solid-phase concentration q=(Q-Qs)/Qs, are defined as the deviation 

variables divided by corresponding steady-state values (subscript s). The partition coefficient 

β is defined as follows: 
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PVρ
TRQm

β           (4.1.2) 

where mp is the mass of the adsorbent and ρp its density, Rg is the universal gas constant and 

Tg is the gas temperature. For simplicity, the film resistance model will be employed to 

describe the kinetic of adsorption: 

  qppk
dt

dq
m          (4.1.3) 

where km is the modified mass transfer coefficient defined as: 

s

s
am

Q

P
kk           (4.1.4) 

where ka (s
-1

) is the mass transfer coefficient. The function p(q) is the inverse of the 

adsorption isotherm relation q(p) and may be represented as a Taylor series expansion: 

  ...2  qbqaqp qq
        (4.1.5) 

The coefficients aq and bq are proportional to the first and second derivatives of the function 

p(q) at the given steady-state as follows: 
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Adsorption isotherm used in the numerical simulations describes adsorption of CO2 on 

zeolite 5A at 25°C
 (Brzić and Petkovska, 2015), which has a Toth form: 

rrPbmPQ /1)(          (4.1.7) 

where parameters m, b and r have the following values: m=2354.3,  b=2.6432 and r =0.4104. 

The units of those parameters are consistent pressure (P) in mbar and adsorbed quantity (Q) 

in mol/m
3
. 

4.2 Simulated step and FRs of the batch adsorber  

 

In order to recognize and quantify the nonlinearity of the batch adsorption system (defined 

with the model given in the previous Section), the step responses and FRs, simulated for 

different steady-states, input amplitudes and frequencies, have been analyzed. The volume of 

the adsorber was the modulated input and the pressure was the output (response). The 

parameters used for simulations have been summarized in Table 4.2.1. The amplitudes of the 
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volume modulations have been varied up to 20 % of the steady-state volume, in order that the 

nonlinearity can be manifested and quantified based on the characteristics of the responses.  

 

Table 4.2.1 Parameters used for step response and FR simulations  

Volume of the adsorber in the steady-state  (cm
3
) 

Temperature (K) 

570  

298 

Density of the adsorbent (zeolite 5A) (kg/m
3
) 640  

Steady-state pressure (mbar) 20  50  100  

Mass of the adsorbent* (g) 1.1  2.45  4.70 

Mass transfer coefficient (s
-1

) 0.1,  1 

Input amplitude (fraction)  (-) 0.003 – 0.2 

Frequency (rad/s) 10
-6

 - 1 

*optimal mass corresponding to each steady-state (Section 4.3.1) 

 

Step responses 

 

The step change of the volume from the steady-state value Vs, can be defined as follows: 








ss

s

AVV

V
V   

0

0




t

t
       (4.2.1) 

where A is the amplitude (expressed as a fraction of Vs). An example of the volume step 

change for A= 0.05, together with the corresponding pressure response, is presented in Fig. 

4.2.1. 

It can be seen from Fig. 4.2.1b that the pressure response shows first an instant increase due 

to gas compression, and than gradual decrease due to adsorption. The obtained response has 

been approximated by a response of a series of a proportional element and a first-order 

system: 

  t/τPPPP s  exp121       (4.2.2)  

The first term on the right-hand side represents the pressure change due to compression: 

VKPPP ss  1

'

11        (4.2.3) 

where K1 (mol/(m
3
)

2
) is the static gain due to compression and ΔV=Vs1-Vs. The second term on 

the right-hand side in eq. (4.2.2), represents the pressure change due to adsorption: 

VKPPP ss  21

'

12        (4.2.4) 
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where K2 (mol/(m
3
)

2
)is the static gain due to adsorption and τ (s) is an apparent time constant. 

The parameters K1, K2  and τ, estimated by fitting the simulated step responses for different 

amplitudes to eq. (4.2.2), are presented in Table 4.2.2. 

 

 

Fig. 4.2.1 a) Step change of the volume b) Pressure response (Ps=20 mbar, ka=0.1s
-1

 and A= 0.05)  

 

Table 4.2.2 Parameters of the step responses for different input amplitudes 

A ( - ) K1 (mol/(m
3
)

2
) K2 (mol/(m

3
)

2
) τ (s) įK1 (%) įK2 (%) 

0.003 1406.5 692 1590 0 0 

0.004 1406.5 692.2 1590 0 0.03 

0.005 1406.5 692.7 1590 0 0.10 

0.006 1406.5 694.7 1589 0 0.39 

0.01 1424.1 698.8 1585 1.25 0.98 

0.02 1432.8 709 1574 1.87 2.46 

0.03 1453.4 719.6 1563 3.33 3.99 

0.04 1468 730 1552 4.37 5.49 

0.05 1480.3 740.9 1541 5.25 7.07 

0.06 1497.3 752.2 1530 6.45 8.70 

0.07 1514.5 763.5 1518 7.68 10.33 

0.08 1529.5 775.3 1507 8.75 12.04 

0.09 1547.1 787.2 1496 10.00 13.76 

0.1 1564.7 799.6 1484 11.25 15.55 

 

It can be seen that the model parameters are constant only for very small input amplitudes up 

to 0.005, where the system can be regarded as linear. For input amplitudes larger than 0.005 

the model parameters vary with the input amplitude, which indicates the system nonlinearity. 
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The relative deviations of the static gains K1 and K2 from the values corresponding to the 

linear case K1,0=1406.5 mol/(m
3
)
2
 and K2,0 = 692.2 mol/(m

3
)
2
:  

100
0,

0, 



i

ii

i
K

KK
K ,   i = 1, 2       (4.2.5) 

can be used as a measure of the system nonlinearity. Those values are also given in Table 

4.2.2.  

 

Frequency responses  

 

The FRs have been simulated for the cosinusoidal volume change around Vs: 

)cos( tAVVV ss           (4.2.6) 

An example of the simulated pressure response (expressed as a pressure deviation, ∆P=P-Ps), 

together with the corresponding volume change for A=0.05, is presented in Fig. 4.2.2. 

 

 

 

Fig.4.2.2 Pressure response to the sinusoidal volume change (Ps= 20 mbar, A= 0.05, ka = 0.1 s
-1

, ω = 

0.0008 rad/s) 

 

In the frequency domain, the volume and pressure time signals are represented by the  

corresponding frequency spectra, obtained by Fourier transform. The frequency spectrum is 

characterized the amplitude and phase of the time signal vs. frequency (or usually vs. 

dimensionless frequency = frequency/basic frequency). The frequency spectrum of the 

volume signal from Fig. 4.2.2 is presented in Fig. 4.2.3. Being a pure cosinusoidal function, 

the volume signal corresponds to a single harmonic (of amplitude 28.44 cm
3
 and phase -1.57 

rad). The frequency spectrum of the pressure response from Fig. 4.2.2 is presented in Fig.  

4.2.4. 
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Fig 4.2.3 Frequency spectrum of the volume change from Fig. 4.2.2 

 

Fig. 4.2.4 Frequency spectrum of the pressure response from Fig. 4.2.2 

 

It can be clearly seen from amplified magnitude of ∆P (Fig. 4.2.4) that, besides the 

component at the basic frequency (), higher harmonics are also present (at 2, 3,…), 

which means that the response of the nonlinear system is a complex periodic function which 

consists of the series of cosine waves (harmonics): 

      ...3cos2coscos

...




IIIIIIIIIIII

IIIIII

tBtBtB

PPPP


    (4.2.7) 

or in the frequency domain: 

...)exp()exp()exp(...  IIIIIIIIIIIIIIIIII jBjBjBYYYY    (4.2.8) 

The first harmonic has the amplitude BI=1.6751 mbar and phase φI=1.8973 rad (from Fig. 

4.2.4),  and it is defined, according to the concept of higher-order FRFs, by eq.(3.27). The 

second harmonic has the amplitude BII=0.0333 mbar and phase φII=-2.5403 rad and it 
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corresponds to eq.(3.28). It is obvious that the magnitudes of the output harmonics decrease 

with increase of their order, which is characteristic for weakly nonlinear systems. In order to 

recognize the influence of the input amplitude on the output harmonics, the amplitudes of the 

first four harmonics of the output, for different input amplitudes, are given in Table 4.2.3.  

 

Table 4.2.3 Amplitudes of the output harmonics for different input amplitudes   

         (Ps=50 mbar, ω0=0.0008 rad/s)  

          

Input 

amplitude 

Amplitude of the output harmonics (mbar) 
(YII/ YI)·100 

(%) YI YII YIII YIV 

0.01 0.3348 0.0013 2.86·10
-5

 1.69·10
-5

 0.39 

0.02 0.6696 0.0053 8.77·10
-5

 3.33·10
-5

 0.79 

0.05 1.6751 0.0333 8.09·10
-4

 7.07·10
-5

 1.98 

0.1 3.3582 0.1336 5.90·10
-3

 1.71·10
-4

 3.98 

 

It can be seen from Table 4.2.3 that the output harmonics increase with increase of the input 

amplitude. If we compare the magnitudes of the harmonics for input amplitudes 0.01 and 0.1, 

it can be concluded that, when the input amplitude increases 10 times, the first-harmonic 

increases linearly, while the second harmonic increases 10
2
 times, the third harmonic 

increases 2·10
2
 times, and the fourth harmonic about 10 times. This clearly shows how 

higher harmonics reflect the nonlinearities. The ratio of the second and the first harmonic 

(YII/YI) for a certain input amplitude can be regarded as a measure of nonlinearity, and those 

values (in percents) are also given in Table 4.2.3. Since the second harmonic is directly used 

for calculations of the second-order adsorber FRF (eq. 3.28), its magnitude is important from 

the point of view of measurability. While the first harmonic is of the order of magnitude of 1 

mbar, the second harmonic has significantly lower values (up to 4 % of the first one) and 

these are in the range between 10
-3

 and 10
-1

 mbar.  The magnitude of the second harmonic (as 

well as all others) depends, besides on the input amplitude, also on the steady state and 

frequency. In Figure 4.2.5 the amplitude of the second harmonic vs. frequency for three 

different steady-states and for the input amplitude 0.05 is presented. The amplitude of the 

second harmonic is a monotonously increasing S-shaped function of frequency. Figure 4.2.5 

also shows that the second harmonic and its total change with the frequency become larger 

for higher steady-state pressures.  



 

 

49 

 

Fig. 4.2.5 Amplitude of the second harmonic of the pressure response ∆P vs. frequency for different 

steady-states (A=0.05, ka =0.1 s
-1

)  

 

It can be seen from Table 4.2.3 that the third harmonic rises very fast in the given range of 

input amplitudes and has the values from 10
-5

 – 10
-3

 mbar, while the fourth harmonic is of the 

order of magnitude of 10
-5

 mbar and  shows only slight increase. The magnitude of the third 

harmonic reflects the contribution of the nonlinearities of the third order in the first harmonic 

(eq. 3.27), while the magnitude of the fourth harmonic reflects the contribution of the 

nonlinearities of the fourth order in the second harmonic (eq. 3.28),  which is important for 

determination of the first- and second-order FRFs and this will be discussed in Section 4.3.2.  

4.3 Optimal parameters for NFR experiments 

 

As already mentioned, the key parameters which affect the accuracy of estimation of the 

second-order FRF from the batch NFR experiments are: mass of the adsorbent, amplitude of 

volume modulation, frequency range and sampling rate. Mass of the adsorbent influence the 

partition of the adsorbate between gas and solid phase and consequently the amplitude of the 

pressure response. Amplitude of the volume modulation directly influences the appearance 

and magnitude of the output harmonics, as it was shown in Section 4.2.  The range of the 

frequencies for which NFRs should be measured, is related to the kinetic constant(s) of the 

adsorption process. For slower kinetics the lower frequencies are needed and for the faster 

kinetics the higher frequencies. Sampling rate determines the number of data points per 

period of timewave, which is important for accurate Fourier transform of the measured 

responses. In this Section we aim to establish the criteria which define optimal values of the 

mentioned parameters, by using the simulated FRs. We aim also to ascertain the procedure 
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for estimation of optimal parameters, based on the step response experiments which are easy 

to be performed. 

4.3.1 Determining the optimal mass of the adsorbent 

 

The intensity of the pressure signal, as a response of a batch adsorber to the volume change, 

for a given steady state and input amplitude, depends on the mass of the adsorbent. In order 

to recognize the significance of the mass of the adsorbent for successful FR experiments, FRs 

for the steady-state pressure 20 mbar and input modulation with amplitude 0.05 and 

frequency 0.0008 rad/s, for three different masses (0.4, 1.1 and 2 g) were simulated and 

presented in Fig. 4.3.1, together with the blank experiment (adsorbate at the same 

temperature and pressure without adsorbent) for the same input amplitude.  

 

 

 

 

 

 

 

 

 
Fig. 4.3.1 Pressure response for different masses of adsorbent a) 2g, b) 1.1g and c) 0.4g together with 

the response without adsorbent (Ps= 20 mbar, A= 0.05 ka = 0.1 s
-1

, ω = 0.0008 rad/s) 

 

As it can be seen from Fig. 4.3.1a, with 2g of adsorbent, the output signal has very small 

amplitude which may be experimentally undetectable (especially for higher frequencies). 

With 0.4g of adsorbent (Fig. 4.3.1c), the amplitude of the output signal is almost equal to the 

amplitude of the blank experiment, thus such FR contains no information about adsorption. 

The conclusion can be drawn that the best compromise between reliable measurability and 

sufficient distinction from blank experiment is achieved when the amplitude of the output 

signal is half of the amplitude of the blank experiment for the same input amplitude. This fact 

is used as a criterion for choice of the optimal mass of the adsorbent. A simple procedure for 
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determination of the optimal mass of the adsorbent, based on a preliminary step response 

experiment, is presented below. 

 

Estimation of the optimal mass of the adsorbent from the step response 

 

The step responses, corresponding to FRs shown in Fig. 4.3.1. (steady-state pressure 20 

mbar, input amplitude A =0.05, three masses of adsorbent: 0.4, 1.1 and 2g) are presented in 

Fig. 4.3.2.  

 

Fig. 4.3.2 Pressure responses to the step change of the volume (A=0.05) with different masses of 

adsorbent 

 

The criterion that the output amplitude of the FR is about a half of the amplitude of the blank 

experiment, corresponds to the following one in terms of the step response: 

2

1*

1
ss

s

PP
P


          (4.3.1) 

where Ps1
*
 is the new steady-state pressure obtained with the optimal mass of the adsorbent 

(Fig. 4.3.2). Based on this fact, the following procedure for estimation of the optimal mass of 

the adsorbent for any unknown adsorption system is proposed: 

1. Performing the step experiment from a desired steady-state (Ps) with an arbitrary 

mass of the sample (mp) and any feasible amplitude (A) 

2. From the obtained response curve, the value Ps1
′
 and Ps1 are estimated (see Fig. 

4.2.1b) 

3. Calculation of the value Ps1
* 
according to equation (4.3.1) 

4. The optimal mass of the sample is determined from a simple proportion: 
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mm           (4.3.2) 

It should be emphasized that the optimal mass of the adsorbent depends on the slope of the 

adsorption isotherm in the given steady-state, thus an optimal mass can be associated with 

each steady-state. The optimal masses of the adsorbent (zeolite 5A) for the tested steady-

states (20, 50, 100 mbar), estimated from the simulated step responses and the previously 

described procedure, are given in Table 4.2.1. For higher steady-state pressures, where the 

slope of the adsorption isotherm is lower, the larger mass of the adsorbent is required. 

4.3.2 Determining the optimal input amplitude 

 

As it has already been explained in Section 3.2.2, the first-order FRF G1(ω) is determined 

from the first harmonic of the NFR. G1(ω) is directly proportional to the first harmonic when 

the third-order FRF (and higher odd-order FRFs) can be neglected (eq. 3.27). Taking into 

account that the third harmonic increases significantly with the input amplitude (Table 4.2.3), 

it follows that the input amplitude should be kept very small (0.01-0.02) in order to obtain 

quasi-linear FR (which contains only the first harmonic) and calculate accurate first-order 

FRF.  

Regarding the optimal input amplitude for estimation of the second-order FRF G2(ω,ω) the 

choice is not as straightforward as for the first-order FRF. The second-order FRF is estimated 

from the second harmonic of the NFR (eq. 3.28). Since the values of the second harmonic are 

low (only several percent of the first one, Table 4.2.3), the first requirement is that the input 

amplitude has to be enough large to provide measurable second harmonic. Furthermore, the 

second-order FRF is directly proportional to the second harmonic only when the contribution 

of the fourth-order FRF (and higher odd-order FRFs) can be neglected (eq. 3.28).  

For the FR pressure measurements, a highly accurate Baratron capacitance manometers 

(MKS Instruments) are mainly used (Grenier et al. 1999; Song and Rees, 1997; Turner, 

2001). Taking into account the level of noise typical for this type of measuring instruments 

(MKS Product Catalogue), the minimal magnitude of the signal, expressed as pressure 

deviation, which can be measured reliably, is estimated to Ps·10-3
 mbar. That means that the 

second harmonic of the FR should have a minimal amplitude of Ps·10-3
 mbar. In Fig. 4.3.3a 

the amplitude of the second harmonic of simulated pressure responses, YII, for different input 
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amplitudes in the range from 0.01 to 0.2, for three different steady-states, have been 

presented. It can be seen that the second harmonic of Ps·10-3
 mbar is obtained for input 

amplitude of about 0.08. 

 

Fig.4.3.3 a)Amplitude of YII and b) Ratio of YIV/ YII vs. input amplitude (ω=2·10
-5

 rad/s) 

 

In order to estimate the contribution of the fourth-order FRF in the second harmonic, the  

ratio of the amplitudes of the fourth and second harmonic (YIV/YII) vs. input amplitude, has 

been presented in Fig. 4.3.3b. For input amplitudes up to 0.08, YII increases faster than YIV 

(for all three steady-states) and the ratio YIV/YII decreases, while for input amplitudes larger 

than 0.1 YIV increases faster than YII and the ratio YIV/YII increases. In the range from 0.08 to 

0.1 the ratio YIV/YII has the minimal values (of about 2·10
-3

), which means that in that range 

the contribution of the fourth-order FRF is the lowest. It turns out that the optimal input 

amplitudes for estimation of the second-order FRF are from 0.08 to 0.1.  

 

Estimation of the appropriate input amplitude from the step responses 

 

Similarly as for the optimal mass of the adsorbent, the simple procedure for estimation of the 

optimal  input amplitude, based on the step experiments has been developed and presented 

below.  
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The degree of nonlinearity, expressed in terms of FRs, (YII/YI)·100 and in terms of step 

responses, įK2 vs. input amplitude, for the same parameters as in Fig.4.3.3, is presented in 

Fig. 4.3.4.  

 

Fig.4.3.4 a) (YII/YI)·100 vs. input amplitude b) įK2 vs. input amplitude  

 

It can be seen that the optimal input amplitudes for estimation of G2(ω,ω), 0.08-0.1, 

correspond to the degree of nonlinearity (YII/YI) of 2,5 -3 % and įK2 of 12-15 %. 

Based on this fact, the preliminary step responses can be used for estimation of the required 

input amplitude for the NFR experiments. It is necessary to perform several step experiments 

for different input amplitudes in the range from 0.02 - 0.2. Input amplitudes for which įK2 is  

12-15 % can be used for estimation of the second-order FRF. 

4.3.3 Determining the optimal frequency range 

 

The required range of frequencies for the NFR experiments is determined in such a way that 

the low and the high asymptotic behaviour of the first- and second-order FRFs is reached.  In 

order to ascertain the required frequency range, G1(ω) and G2(ω,ω) have been calculated 

based on the simulated NFRs. G1(ω) is calculated using eq.(3.29) and the FRs for input 

amplitude 0.02, while G2(ω,ω) is calculated using eq.(3.30) and the FRs for input amplitude 

0.08. Three different cases, corresponding to different system parameters, presented in Table 

4.3.1, have been considered.  
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Table  4.3.1 Parameters for simulations of the NFRs 

Parameter Case1 Case2 Case3 

Ps (mbar) 20 50 50 

ka (s
-1

) 0.1 0.1 1 

τ (A=0.08) (s) 2605 821.7 82.1 

 

Figs. 4.3.6a and b illustrate the amplitudes of the first- and second-order adsorber FRFs, both 

in dimensionless form. The asymptotic behaviour is assumed to be reached when the 

amplitude changes less than 0.2 % for Δω=5·10
-6

 rad/s.  

 

Fig. 4.3.6  a)Amplitude of G1(ω) vs. frequency  b)Amplitude of G2(ω,ω) vs. frequency 

 

It can be noticed from Figs. 4.3.6a and b that the required frequency range for G1(ω) and 

G2(ω,ω) is approximately the same for each case. For example, for case 1, the low critical 

frequency is 10
-5 

rad/s and the high critical frequency 10
-2

 rad/s, both for G1(ω) and G2(ω,ω). 

It can be further noticed that both the steady-state pressure and the mass transfer coefficient 

influence the critical frequencies. By comparing cases 1 and 2, it can be concluded that for 

higher steady-state pressures higher values of the low and high critical frequencies are 

obtained. For the mass transfer coefficients with one order of magnitude difference (cases 2 

and 3), the critical frequencies differ also about one order of magnitude.  

However, if we express G1(ω) and G2(ω,ω) as functions of dimensionless frequency defined 

as: 

τωω            (4.3.3) 
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where τ is the apparent time constant determined from the step response for Aopt (Table 

4.3.1), they become invariant of Ps and ka regarding the frequency range, as it is illustrated in 

Figs. 4.3.7a and b.  

 

Fig. 4.3.7 a)Amplitude of G1(ω) vs. dimensionless frequency  b)Amplitude of G2(ω,ω) vs. 

dimensionless frequency 

 

The amplitudes of G1(ω) completely overlap (Fig. 4.3.7a), while the amplitudes of G2(ω,ω) 

have slightly different low-limiting values for different steady-states (Fig. 4.3.7b). However, 

the dimensionless critical frequencies are the same for all three cases, and they can be used to 

define a universal dimensionless frequency range. The low and the high critical 

dimensionless frequencies are ω*
min = 0.01 and ω*

max = 10, respectively (Figs. 4.3.7a and b).  

 

Estimation of the frequency range from the step response 

 

In order to estimate the required frequency range for a particular system, the apparent time 

constant (τ) should be determined from the step response experiment for Aopt from the desired 

steady-state with the corresponding optimal mass of the sample, by fitting the response curve 

to eq. 4.2.2. The required frequency range is than calculated as follows: 

 
τ
.

τ
ωω

*
010min

min           (4.3.4) 

ττ
ωω

*
10max

max           (4.3.5) 
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4.3.4 Determining the optimal sampling rate 

 

In the NFR analysis, the measured FRs in the time domain are transferred into a frequency 

domain usually by means of discrete Fourier transform (DFT).  We use the fast Fourier 

transform (FFT) algorithm that computes approximately DFT (Birgham, 1988). In order to 

get the accurate values of the output harmonics by using the FFT, the sampling interval (ts) 

and the number of the analyzed data points (N) have to be properly chosen (Birgham, 1988). 

Moreover, the entire length of the sample (ts·N) has to be equal to an integer multiple of the 

period of the waveform (Birgham, 1988): 

TNNt Ts            (4.3.6) 

where T is the period of waveform (T=2π/ω) and NT is the number of periods. In this section 

we aim to quantify the sampling interval and number of data points necessary for accurate 

calculation of the second harmonic in the output. For that purpose, FFT of five periods 

(NT=5) of the simulated output signal (pressure deviation, P-Ps) with different sampling 

intervals (ts), for three different periods of waveform (T=10000, 1000 and 100s), have been 

performed. The obtained values of the amplitude of the second harmonic are presented in 

Table 4.3.2.  

 

Table 4.3.2. Second harmonic of the output (P-Ps) for different sampling intervals (NT=5) 

 T=10000s T=1000s T=100s 

ts (s) N YII (mbar) N YII (mbar) N YII (mbar) 

1000 50 0.0438     

500 100 0.0349     

250 200 0.0314     

100 500 0.0298 50 0.0789   

50 1000 0.0293 100 0.0668   

25 2000 0.0291 200 0.0631   

10 5000 0.0289 500 0.0618 50 0.0789 

5 10000 0.0289 1000 0.0615 100 0.0670 

1 50000 0.0289 5000 0.0613 500 0.0629 

0.5   10000 0.0613 1000 0.0628 

0.25   20000 0.0613 2000 0.0627 

0.1   50000 0.0613 5000 0.0626 

0.05     10000 0.0626 

0.025     20000 0.0626 

0.01     50000 0.0626 
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When the sampling interval decreases (and consequently the number of data points N 

increases), the second harmonics first changes and then reaches a constant value (which is 

considered as the accurate one).  

         

The minimal number of data points for which the second harmonic becomes constant is 

found to be 5000 i.e. 1000 points per period (gray fields in Table 4.3.2). The sampling 

interval which satisfies the condition of 1000 points per period, can be calculated simply for 

any period of waveform as follows: 

1000

T
ts            (4.3.7) 

4.3.5 Guideline for design of the NFR experiments  

 

In order to design successful NFR experiments in a batch system for an unknown adsorption 

gas/solid system, it is necessary to perform several preliminary step response experiments 

and to determine the optimal parameters (mp
*
, Aopt, ωmin, ωmax, ts,min, ts,max) according to the 

procedures described in the previous sections and shematically represented in Fig. 4.3.8.  

At first a desired steady-state (Ps, Ts) is chosen. The volume in the steady-state (Vs) is the 

constant of the experimental system. A single step response experiment from (Ps, Ts) with an 

arbitrary mass of the sample (mp) and any feasible amplitude (A) is performed and the 

parameters of the response curve (Ps1
′
 and Ps1) are used for calculation of the optimal mass of 

the sample (mp
*
) using eqs. (4.3.1) and (4.3.2). Further, several step response experiments 

with optimal mass (mp
*
) for input amplitudes in the range 0.02 - 0.2 are performed and the 

parameters K2 and τ are determined for each response. The optimal amplitude for estimation 

of the second-order FRF (Aopt) is the one for which δK2 is about 12-15%. With the time 

constant (τ) corresponding to Aopt, the required range of frequencies (ωmin, ωmax) is calculated 

using eqs. (4.3.4) and (4.3.5). By comparing this range with the range of feasible frequencies 

of the FR device, a conclusion can be drawn weather the desired system can be examined by 

that device. When the optimal parameters are determined, a reasonable number of points (20-

30) in the range (ωmin, ωmax) is chosen and for each frequency (i.e.period) the corresponding 

sampling interval, ts, is calculated according to eq. (4.3.7). 
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Fig.4.3.8 Shematic representation of the procedure for estimation of the optimal parameters for the 

NFR experiments 

 

Two series of FR experiments are necessary to be performed for each desired steady-state. 

The first series with input amplitude A=0.01-0.02 in the range of frequencies (ωmin, ωmax) in 

order to estimate G1(ω) and the second series with Aopt in the same range of frequencies in 

order to estimate G2(ω,ω).   

4.4 The NFR procedure applied on the quasi-experimental data obtained 

by numerical experiments  

 

In order to check weather the procedure for application of NFR method (described in Section 

3.3.2) enables estimation of accurate first- and second- order particle FRFs and consequently 

the equilibrium and kinetic data, the simulated FRs have been used as the quasi-experimental 

data. The accuracy of the particle FRFs, obtained from the simulated FRs, have been 

evaluated by comparison with the theoretical FRFs for the film resistance control. The FRs 

have been simulated for the steady-state pressures 10 mbar, 50 mbar and 100 mbar. The 

optimal masses for those steady-states are given in Table 4.4.1 and mass transfer coefficient 

was ka=0.1 s
-1

. The procedure is demonstrated step by step below. 

Step 1 Obtaining of the FRs 

For each of the chosen steady state pressures two series of pressure responses, p(t), for 

A=0.02 and A=0.08,  have been simulated. 

τ (Aopt) 

eqs. 4.3.4 and 4.3.5 

Ps1
* 

eq. 4.3.2 eq. 4.3.1 

  Choice of desired  Ps, Ts 

  Vs=const. 

step response experiment 

with arbitrary mp and A 

set of step response experiments 

with mp
*
 and A   (0.02 - 0.2) 

eq. 4.2.2 

mp
* 

K2 , Ĳ 
optAA

K


 )%1512(2
 

ωmin, ωmax ts,min, ts,max 

eq. 4.3.7 
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Step 2 Harmonic analysis of the simulated FRs  

The simulated pressure responses have been transferred into the corresponding frequency 

spectra, Y(ω), by means of FFT. The segment of five periods (N=5000) of each response has 

been used. The first and the second harmonics, YI and YII , have been determined from the 

obtained spectra.  

Step 3 Adsorber FRFs 

In this step the adsorber FRFs, G1(ω) and G2(ω,ω), have been calculated by using equations 

(3.29) and (3.30), respectively. G1(ω) was calculated by using YI for A=0.02 and G2(ω,ω) by 

using YII for A=0.08. The quasi-experimental first- and second-order adsorber FRFs were 

presented in Figs. 4.4.1. and 4.4.2, in standard Bode-plot representation (amplitude vs. 

frequency in log-log and phase vs. frequency in semi-log diagrams).  

The amplitudes of both G1(ω) and G2(ω,ω) exhibit the S-shaped form (Figs. 4.4.1a and 

4.4.2a) and asymptotically approach unity for high-frequencies. The phases of G1(ω) and 

G2(ω,ω) exhibit maximums. The phase of G1(ω) asymptotically approaches –π for low and 

high frequencies, while the phase of G2(ω,ω) approaches zero for both limiting cases.   

  

Fig.4.4.1 First-order adsorber FRF for three 

different steady-states 

Fig.4.4.2 Second-order adsorber FRF for three 

different steady-states 

 

Step 4 Particle FRFs  

Using the quasi-experimental first- and second-order adsorber FRFs G1(ω) and G2(ω,ω), the 

corresponding particle FRFs F1(ω) and F2(ω,ω) are calculated, using equations (3.3.13) and 
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(3.3.20). They are presented in Figs. (4.4.3) and (4.4.4), respectively. In order to check the 

accuracy of the estimated FRFs, they are compared with the corresponding theoretical ones 

(presented with lines in Figs. 4.4.3. and 4.4.4). The theoretical FRFs for film resistance 

control model (defined by eq. (4.1.4)) have been derived by Petkovska and Do (2000) and 

have following forms: 

 
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1
1 


j

a
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          (4.4.1) 
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
       (4.4.2) 

where τF is the time constant of the process: 

)(1 mqF ka          (4.4.3) 

and aq and bq are the derivatives of the inverse isotherm relation defined by eq. (4.1.7). Fig. 

4.4.3 shows that the quasi-experimental F1(ω) functions agree very well with the theoretical 

ones for all three investigated steady-states, with negligible discrepancies of the phase of 

F1(ω) for 100 mbar at high frequencies. 

 

Fig. 4.4.3 First-order particle FRF F1(ω)  

 

However, the quasi-experimental F2(ω,ω) agree well with theoretical ones in the range of 

low and medium frequencies for all three steady-states. For high frequencies, where F2(ω,ω) 

has very small values (amplitude lower than 10
-3

, see theoretical lines in Fig. 4.4.4), it can 

not be estimated from the quasi-experimental data. At high frequencies the adsorbed quantity 
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becomes very small, which causes the numerical errors associated with calculations with 

small numbers. The limiting frequency up to which F2(ω,ω) can be estimated increases with 

the increase of the steady-state pressure and it is about 3/τF.   

 

 

Fig. 4.4.4 Second-order particle FRF F2(ω,ω) 

 

Step 5 Estimation of the equilibrium and kinetic parameters  

The equilibrium parameters are obtained from the low-frequency asymptotes of the particle 

FRFs (Petkovska, 2006). For the film resistance control model, the following low-frequency 

limiting values are obtained from eqs. (4.4.1) and (4.4.2): 

 
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
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         (4.4.4) 
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        (4.4.5) 

The process kinetic constant for simple kinetic models can be estimated from the extremum 

of the imaginary part of the first-order particle FRF F1(ω) (Petkovska, 2006). For the film 

resistance control model, the time constant, τF is obtained as a reciprocal of the frequency for 

which the negative the imaginary part of F1(ω) has a maximum (crit): 

crit

F 
 1

          (4.4.6) 

The low-frequency asymptotic values of the quasi-experimental F1(ω) and F2(ω,ω) for Ps=10 

mbar, 50 mbar and 100 mbar (Figs. 4.4.3 and 4.4.4) are presented in Table 4.4.1.  
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Table 4.4.1 The low-frequency asymptotic values of the quasi-experimental F1(ω) and F2(ω,ω) and 

ωcrit  

 
 Ps=10 mbar Ps=50 mbar Ps=100 mbar 

 
 1

0
lim F


 0.5065 0.3463 0.2849 

 


,lim 2
0
F


 -0.1756 -0.1593 -0.1434 

crit (rad/s) 1.9·10
-4

 7·10
-4

 1.4·10
-3

 

 

The imaginary parts of the quasi-experimental F1(ω) functions, corresponding to the three 

steady-state pressures are shown in Figure 4.4.5, and the frequencies for which these curves 

have their maximums (crit) are also given in Table 4.4.2.  

 

Table 4.4.2 Estimated equilibrium and kinetic parameters from numerical FR experiments – 

comparison with the original parameters used for simulation 

 
 aq (-) bq (-) km (s

-1
) 

                                                      Ps = 10 mbar 

Exact  

(used for simulations) 
1.9777 -1.3649 9.7047·10

-4
 

Quasi-experimental 

Relative error (%) 

1.9743 

0.17 

-1.3513 

1.00 

9.6239·10
-4

 

0.83 

Quasi-experimental with noise 

Relative error (%) 

1.9740 

0.18 

-1.2976 

4.93 

9.6254·10
-4

 

0.82 

                                                      Ps = 50 mbar 

Exact  

(used for simulations) 
2.8967 -3.8782 2.4471·10

-4
 

Quasi-experimental 

Relative error (%) 

2.8877 

0.31 

-3.8358 

1.09 

2.4244·10
-4 

0.92 

Quasi-experimental with noise 

Relative error (%) 

2.8869 

0.34 

-3.9190 

1.06 

2.4226·10
-4 

1.00 

                                                      Ps = 100 mbar 

Exact  

(used for simulations) 
3.5232 -6.2747 3.9338·10

-4 

Quasi-experimental 

Relative error (%) 

3.5100 

0.37 

-6.2011 

1.17 

3.9885·10
-4 

1.39 

Quasi-experimental with noise 

Relative error (%) 

3.5137 

0.27 

-6.1947 

1.27 

3.9843·10
-4 

1.28 
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Based on the values of the low-frequency asymptotes, first and second derivatives of the 

inverse adsorption isotherm (aq and bq), have been calculated using eqs. (4.4.4) and (4.4.5). 

The time constants (τF) have been calculated as the reciprocal values of ωcrit and the modified 

mass transfer coefficients (km) from eq. (4.4.3). 

 

Fig. 4.4.5 Negative imaginary part of F1(ω) 

 

The estimated parameters aq bq and km are given in Table 4.4.2, together with the original 

(exact) values used for simulations. It can be seen that very good agreement has been 

achieved, with maximal error of about 1 %.  

 

4.4.1 Influence of noise on the accuracy of the estimated FRFs 

 

Since noise is unavoidable in experimental work, its influence on the accuracy of the 

estimated first- and second-order FRFs has been checked. A random noise with variance of 

0.001Ps has been added to the simulated pressure responses for input amplitudes 0.02 and 

0.08 for each of the three investigated steady-state pressures (10 mbar, 50 mbar and 100 

mbar), and they have been used for estimation of the particle first- and second-order FRFs, 

using  the same procedure as in the case without noise. The extent of noise used for this 

analysis is somewhat larger than expected in the real experiments. As illustration,  F1(ω) and 

F2(ω,ω) estimated from the pressure responses with noise, for the steady-state pressure 50 

mbar, are presented in Figs. 4.4.6 and 4.4.7, respectively, together with the corresponding 

ones estimated from the FRs without noise and the theoretical ones. It can be seen from Figs. 

4.4.6 and 4.4.7 that F1(ω) is unaffected by the noise, while F2(ω,ω) is more sensitive to the 

noise, which is reflected in a certain scattering of the data. 
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Fig. 4.4.6  First-order particle FRF F1(ω) 

 

The equilibrium parameters (aq and bq) as well as the mass transfer coefficient (km), 

determined from quasi-experimental F1(ω) and F2(ω,ω) estimated from the FRs with noise, 

are added in Table 4.4.2. Comparison of those parameters with the corresponding ones 

estimated from the FR without noise shows that no significant errors are caused by the noise. 

Exceptionally, the error of estimation of the parameter bq for Ps=10 mbar is slightly larger 

(4.93 %). It is due to the fact that the second harmonic for Ps=10 mbar is very low (see Fig. 

4.2.5) and consequently it is more affected by the noise.  

 

Fig. 4.4.7  Second-order particle FRF F2(ω,ω) 
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Summary 

The results of the theoretical study presented in this chapter indicate that construction of the 

apparatus for experimental investigations of gas-solid adsorption by the NFR method would 

be reasonable and justified. The second harmonic of the pressure response, which is used for 

calculation of the second-order adsorber FRF, is of the order of magnitude of 10
-2

 mbar, 

which is measurable with available instruments. In order to obtain an accurate experimental 

second-order FRF on the particle scale, the NFR experiments should be performed with 

optimal values of the parameters (mass of the adsorbent, input amplitude, frequency range 

and sampling rate). The optimal values of the parameters for a certain gas/solid system can 

be determined from simple preliminary step response experiments,  by following the 

procedure described in Section 4.3.5. 

The results presented in this chapter have been published in the following articles: 

D. Brzić, M. Petkovska, Some practical aspects of nonlinear frequency response method for investigation of 

adsorption equilibrium and kinetics, Chem. Eng. Sci 82 (2012), 62–72 

 
D. Brzić, M. Petkovska, A study of applicability of nonlinear frequency response method for investigation of 
gas adsorption based on numerical experiments, Ind. Eng.Chem.Res. 52, (2013), 16341-16351 
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5. PARTICLE FRFs FOR NON-ISOTHERMAL MACROPORE 

DIFFUSION MODEL 

 

The procedure for application of the NFR method includes identifying the most probable 

kinetic mechanism by comparison of the experimentally obtained first- and second-order 

particle FRFs with the corresponding theoretical ones for different possible kinetic models. 

The review of the adsorption kinetic models for which the theoretical FRFs up to the second 

order have been published, presented in Section 3.3.5, shows that the existing library of 

theoretical FRFs is rather limited. The theoretical FRFs of the second-order for 

nonisothermal macropore diffusion (NMD) model did not exist in the literature up to now. 

Since the NMD mechanism is one of the suggested mechanisms for adsorption of CO2 on 

commercial zeolite 5A particles (which will be investigated in experimantal part of this 

work) in the literature, the theoretical particle FRFs up to the second-order for this model and 

spherical geometry have been derived and presented in this chapter. The FRFs for isothermal 

macropore diffusion (IMD) have firstly been derived, since they are needed as the first 

assumptions in numerical solution of FRFs for NMD. The procedure for deriving the 

theoretical particle FRFs, described in Section 3.2.3, was applied for this case. The obtained 

FRFs have been simulated and analyzed regarding the influence of the steady-state pressure, 

particle size and temperature. A methodology for direct estimation of the kinetic constants 

(diffusion coefficient and heat transfer coefficient), based on the first- and second-order 

FRFs, has been established.  

5.1 Mathematical models of isothermal and nonisothermal macropore 

diffusion 

 

As the first step in derivation of theoretical FRFs, the mathematical models of isothermal and 

nonisothermal macropore diffusion into single porous spherical adsorbent particle 

surrounded by uniform gas phase, are postulated. For isothermal macropore diffusion, the 

mass balance for the particle is given by the following equation: 


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 with boundary conditions: 
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pcRr i  :          (5.1.3) 

 where qi represents the sorbate concentration in the solid phase, ci the sorbate concentration 

in the pore, p is the pressure of gas surrounding the particle, İp is porosity of the particle, İ'p 

modified porosity (Table 5.1.1) and Dp is diffusion coefficient. The shape factor is ı=2 for 

spherical geometry, t is time, r is spatial coordinate of the adsorbent particle and R its radius.  

The boundary conditions are based on the assumptions of concentration profiles symmetry 

(eq. (5.1.2)) and negligible film resistance (eq. (5.1.3)). Local equilibrium between the gas in 

the pores and adsorbed phase is assumed: 

 ii cfq            (5.1.4) 

and the adsorption isotherm is given in the Taylor series form: 

  ...
2  ipipii cbcacq         (5.1.5) 

where ap  and bp are proportional to the first- and second-order concentration coefficients of 

the adsorption isotherm, respectively (Table 5.1.1). In eqs. (5.1.1) – (5.1.5) all concentrations 

were defined as dimensionless deviations from their steady-state values. Their definitions are 

given in Table 5.1.1. 

Solution of the eqs. (5.1.1) and (5.1.5) with boundary conditions eqs. (5.1.2) and (5.1.3) gives 

the functions qi(r) and ci(r). The overall sorbate concentration at the position r, q(r), is 

defined as: 
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and the mean concentration in the adsorbent particle <q> : 

 drrqr
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For the nonisothermal macropore diffusion, besides the mass balance (eq. (5.1.1)) and its 

boundary conditions (eqs. (5.1.2) and (5.1.3)), a heat balance equation is defined, under the 

assumptions of gas film transfer control and uniform particle temperature: 
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where θp is particle temperature, θg gas temperature (dimensionless variables, Table 5.1.1) 

and <qi> the mean sorbate concentration in the solid phase. The parameter ξ represents the 

modified heat of adsorption and ζ the modified heat transfer coefficient (Table 5.1.1). The 

assumption of local equilibrium within the pores can now be written as: 

 
pii cfq ,           (5.1.9) 

and the adsorption isotherm is again given in the Taylor series form, taking into account both 

concentration and temperature dependency:  

   pipTpTpTipippii cbbacbcacq  22
,              (5.1.10) 

where aT is the first-order temperature coefficient, bT is the second-order temperature 

coefficient and bpT is the second-order mixed coefficient of the adsorption isotherm (Table 

5.1.1). 

 

Table 5.1.1 Definitions of dimensionless variables and model parameters 
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5.2 Definitions of the FRFs 

 

According to the block diagram for adsorbing particle, given in Fig. 3.3.3, for the case of 

nonisothermal diffusion, under assumption of constant gas temperature (Tg=const., 

Tp≠const.), two sets of FRFs are needed to define the process on the particle scale: F- the 

functions which relate the mean concentration in the particle <q> to the pressure of the gas 

surrounding the particle, and H- the functions which relate the particle temperature θp to the 

pressure. Because of the complexity of the system, some auxiliary FRFs will be used during 

the derivation of F- and H-functions and they will be defined as follows: I
*
- the functions 
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relating the local sorbate concentration in the pore ci(r) to the pressure and F
*
- the functions 

relating the overall concentration at the position r, q(r) to the pressure.  

 

5.3 Derivation of the first- and second-order FRFs 

 

5.3.1 Isothermal macropore diffusion 

 

First-order FRF. If pressure as the input is defined as tjAep  and the local sorbate 

concentration ci(r)  as the output is represented in the form of Volterra series according to eq. 

(3.2.14): 

...),()( 2

21   tjtj

i AeIAeIc                   (5.3.1)  

and substituted into the model eqs. (5.1.1), (5.1.2), (5.1.3) and (5.1.5), after collecting the 

terms containing tjAe  and equalizing them to zero, the following equation is obtained: 
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with boundary conditions: 

r=0  
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0
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r=R   1,,1  rI iso                       (5.3.4)  

The parameter e in eq. (5.3.2) is defined as follows: 

 
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'1

p

ppp a
e


 

                      (5.3.5) 

Equation (5.3.2)  is a second-order homogeneous ODE and has the following analytical 

solution: 

 
 
 p

p

iso
DejR

Dejr

r

R
rI

/sinh

/sinh
,,1 


                 (5.3.6) 

Using eq. (5.1.6) the function F1
*
(ω, r) is obtained: 
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   rIarF effp ,, 1,1                   (5.3.7) 

where ap,eff is the effective first-order concentration coefficient of the adsorption isotherm, 

defined in Table 5.3.1. Finally, the first-order FRF with respect to the mean concentration in 

the particle <q> is obtained using eq. (5.1.7): 

 
 

p

pp

effpiso
Dej

DejRctghDejR

R
aF

/

1//3
2,,1 
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


              (5.3.8) 

 

Second-order FRF. For the derivation of the second-order FRF the pressure is expressed as 

tjtj
eAeAp 21

21

  , and the local sorbate concentration ci(r) again in the form of Volterra 

series according to eq. (3.2.14): 
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
           (5.3.9) 

and substituted into the model into the model eqs. (5.1.1), (5.1.2), (5.1.3) and (5.1.5). After 

collecting the terms containing  tj
eAA 21

21

  and equalizing  them to zero,  the following 

equation is obtained: 
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         (5.3.10) 

with boundary conditions: 

r=0  
 

0
,,,2 



dr

rdI iso 
              (5.3.11) 

r=R   0,,,2  rI iso                (5.3.12) 

Parameter f in eq. (5.3.10) is defined as follows:  

 
'

1

p

p
f




                (5.3.13) 

By incorporating  eq. (5.3. 6) for  rI iso ,,1   into eq. (5.3.10), the final equation defining the 

 rI iso ,,,2 
 function is obtained. This non-homogeneous ODE cannot be solved 

analytically, so it was solved numerically, by using the bvp4c solver in MATLAB. By using 

eq. (5.1.6), the function  rF iso ,,,2 
is obtained: 
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     rIbrIarF isoeffpisoeffpiso ,,,,,
2

,1,,2,,2                  (5.3.14) 

where bp,eff is the effective second-order concentration coefficient of the adsorption isotherm 

(Table 5.3.1). Finally, the second-order FRF with respect to the mean concentration in the 

particle <q> is obtained by using eq. (5.1.7): 

   drrFr
R

F iso

R

iso ,,
3

, ,2

0

2

3,2                  (5.3.15) 

 

5.3.2. Nonisothermal macropore diffusion 

 

First-order FRFs. The pressure is again the input defined as tjAep  , the local sorbate 

concentration ci(r) is already defined by eq. (5.3.1) and the particle temperature θp is defined 

in an analogous way: 

...),()( 2

21  tjtj

p AeHAeH                                                    (5.3.16) 

and substituted into the model eqs. (5.1.1), (5.1.2), (5.1.3) and (5.1.10). After collecting the 

terms containing tjAe  and equalizing them to zero, the following equation is obtained: 
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              (5.3.17) 

with boundary conditions: 

r=0  
 

0
,1 



dr

rdI 
                 (5.3.18) 

r=R   1,1  rI                   (5.3.19) 

Equation (5.3.17) is a non-homogeneous second-order ODE and contains on the right-hand 

side the temperature FRF H1(ω). The heat balance (eq. (5.1.8)) becomes: 

      LIH 11                   (5.3.20)  

where I1(ω) is the function  rI ,1 
  averaged along the pore: 
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31                               (5.3.21) 

and the function L(ω) is defined as: 
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                     (5.3.22) 

Since the function H1(ω) is independent on the spatial coordinate r, eq. (5.3.17) can be 

solved analytically and has the following solution: 
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or in the terms of   rI iso ,,1  : 

        11,11 1,, Ha
e

f
Ha

e

f
rIrI TTiso 






                             (5.3.23a) 

Equation (5.3.23a) clearly shows that for constant particle temperature, when H1(ω)=0, the 

function  rI ,1 
  is equal to the one obtained for isothermal case. 

After averaging the function  rI ,1 
 (eq. 5.3.23a) along the pore, according to eq.(5.3.21), 

the following equation, relating the I1(ω) functions for the isothermal and non-isothermal 

case, is obtained: 

        1,11,11   isoTiso IHa
e

f
II                (5.3.24) 

After substituting eq. (5.3.20) into eq. (5.3.24), the final equation for  1I  for the non-

isothermal case is obtained: 
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and the corresponding H1(ω) (eq. (5.3.20)) becomes: 

     
    11 ,1

,1

1









isoT

iso

ILa
e

f

LI
H                 (5.3.26) 

Using eq. (5.1.6) the function F1
*
(ω, r) is obtained: 

      1,1,1 ,, HarIarF effTeffp  
                                                (5.3.27) 

where aT,eff is the effective first-order temperature coefficient of the adsorption isotherm 

(Table 5.3.1). Using eq. (5.1.7) the first-order FRF with respect to the mean concentration in 

the particle <q> is obtained: 
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      1,1,1 HaIaF effTeffp                             (5.3.28)  

 

Second-order FRFs. For the derivation of the second-order FRF the pressure is again 

expressed as tjtj
eAeAp 21

21

  , the local sorbate concentration ci(r) is already defined by 

eq. (5.3.9) and the particle temperature θp is defined in an analogous way: 
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and substituted into the model eqs. (5.1.1), (5.1.2), (5.1.3) and (5.1.10). After collecting the 

terms containing  tj
eAA 21

21

  and equalizing them to zero, the following equation are 

obtained: 
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             (5.3.30)  

with boundary conditions: 

r=0  
 

0
,,2 



dr

rdI 
                (5.3.31)  

r=R   0,,2  rI                   (5.3.32)  

The heat balance (eq. (5.1.8)) becomes: 
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122             (5.3.33) 

Equations (5.3.30) and (5.3.33) have to be solved numerically, by an iterative procedure 

leading to the solutions for  rI ,,2   and  ,2H . In this iterative procedure,  ,,2 isoI   
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3,2   ) was used as the first assumption for  ,2I  in eq.  

(5.3.33). Using eq. (5.1.6) the function  rF ,,2  is obtained: 
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where bT,eff  is the second-order temperature coefficient and bpT,eff  is the effective second-

order mixed coefficient of the adsorption isotherm (Table 5.3.1). The second-order FRF with 

respect to the mean concentration in the particle <q> is obtained using eq. (5.1.7): 

   drrFr
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R

,,
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, 2

0

2

32         (5.3.35) 

 

Table 5.3.1 Definitions of the effective isotherm coefficients 

Coefficient Expression 
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5.4 Simulation and analysis of the FRFs  

 

5.4.1 Plan and parameters for simulations 

 

In order to analyze the characteristics of the first- and second-order FRFs for the IMD and 

NMD models, derived in the previous section, they were simulated using MATLAB 

software. For the simulations, the literature equilibrium data for CO2/zeolite 5A, (Tlili et al., 

2009), were used: 

KP

KPQ
Q m




1
, )exp(0

RT

H
KK


        (5.4.1)  
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where P(bar) is the pressure, Q(mol/kg) is the adsorbed quantity and  Qm is the maximum 

adsorbed quantity, given in Table 5.4.1 for three different temperatures. The heat of 

adsorption is (-∆H)=13.9 kJ and the pre-exponential factor K0=6.53·10
-2 

bar
-1

. 

 

Table 5.4.1 Parameters of the adsorption isotherm  (Tlili et al.,2009) 

T (K) Qm (mol/kg) K(bar
-1

) 

298 3.15 18.92 

373 2.25 4.77 

423 1.35 3.57 

 

The isotherm concentration and temperature coefficients (ap, aT, bp, bT and bpT) were obtained 

by expanding the eq. (5.4.1) into a Taylor series and they are given in Table 5.4.1.  

 

Table 5.4.1 Adsorption isotherm coefficients  

 Ps= 0.025 bar 

Ts= 298 K 

Ps= 0.05 bar 

Ts= 298 K 

Ps= 0.15 bar 

Ts= 298 K 

Ps= 0.025 bar 

Ts= 373 K 

Ps= 0.025 bar 

Ts= 423 K 

ap 0.6917 0.5287 0.2721 0.8739 0.9217 

bp -0.2133 -0.2492 -0.1981 -0.1102 -0.0722 

aT -3.8801 -2.9657 -1.5266 -3.9166 -3.6425 

bT 8.0522 3.4428 -0.4247 10.4797 9.7129 

bpT -0.7437 -0.0851 0.3479 -1.4644 -1.5361 

 

Physical and transport parameters for the simulations are taken from the literature for the 

system CO2/zeolite 5A and they are given in Table 5.4.2. The simulations were performed 

through seven runs with different combination of parameters defined in Table 5.4.3. The 

steady-state pressure was varied in the runs 1, 2 and 3, the adsorbent particle size was varied 

in the runs 1, 4 and 5 and the steady-state temperature was varied in the runs 1, 6 and 7. The 

parameters were varied in the ranges which correspond roughly to those reported by 

Onyestyak et al. (1996) and Giesy et al. (2012)
 
, who have investigated the CO2/zeolite 

systems.  
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Table 5.4.2 Parameters for simulations of the theoretical particle FRFs 

parameter value unit reference 

Dp 5·10-7 
m

2
/s   Onyestyak et al.(1996) 

h 3 W/m
2
K Bourdin et al.(1996) 

ρp 1200 kg/m
3
 Yang et al.(1997) 

cps 921 J/kgK Yang et al.(1997) 

(-ΔH) 40 kJ/mol Garces et al.(2013) 

İp 0.35 - Yang et al.(1997) 

 

Table 5.4.3 Plan of numerical simulations  

 Ps (bar) Ts (K) R (m) tD (s) th (s) tD/ th (-) į (-) 

Run 1 0.025 298 2·10-4 
118,87 15.96 7.45 2.75 

Run 2 0.05 298 2·10-4
 69.43 15.96 4.35 3.22 

Run 3 0.15 298 2·10-4
 18.45 15.96 1.15 2.55 

Run 4 0.025 298 4·10-5
 4.75 3.19 1.50 2.75 

Run 5 0.025 298 8·10-5
 19.0 6.38 3.00 2.75 

Run 6 0.025 373 2·10-4
 43.88 15.96 2.75 0.63 

Run 7 0.025 423 2·10-4
 17.29 15.96 1.1 0.19 

 

For the nonisothermal macropore diffision model, two time constants are defined:  

- the diffusional time constant: 

p

D
D

eR
t

2

           (5.4.2) 

where parameter e is defined by eq. (5.3.5). 

- the heat-transfer time constant: 
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cR
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3

11 



         (5.4.3) 

In Table 5.4.3, the diffusional time constant (tD) and the heat-transfer time constant (th), (as 

well as their ratio) corresponding to each parameter combination are given. Furthermore, the 

nonisothermality coefficient of the adsorption system (į), calculated according to Sun et 

al.(1993) as: 
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is also given in Table 5.4.3. The larger value of į indicates more pronounced nonisothermal 

behavior of the system. 

The simulated first- and second-order FRFs for the conditions defined in Table 5.4.3, will be 

presented and analyzed in the following sections. Since the FRFs are complex functions of 

frequency, there are in principle two ways for their graphical presentation: amplitude and 

phase vs. frequency and real and imaginary part vs. frequency. In order to enable recognizing 

of all important patterns that can be attributed to the investigated models, we will use both 

presentations. 

5.4.2. The first- and second-order FRFs for isothermal and nonisothermal macropore 

diffusion control 

 

The calculated first-order FRFs for IMD (F1,iso(ω)) and NMD (F1(ω)) corresponding to run 1 

(Table 5.4.3) are presented in parallel, as amplitude and phase vs. frequency  in Figs. 5.4.1a 

and 5.4.1b and as the real and negative imaginary part vs. frequency in Figs. 5.4.1c and 

5.4.1d.  

 

Fig. 5.4.1 First-order FRFs for IMD and NMD (run 1) 
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It can be noticed from Fig. 5.4.1, that at low and high frequencies the limiting values of the 

first-order FRF for the IMD and NMD models have identical characteristics. Namely, the 

amplitudes of both functions (F1,iso(ω) and F1(ω)) have the same horizontal asymptote for 

ω→0 and an asymptote with the slope -0.5 for ω→∞ (Fig. 5.4.1a), while  their  phases  have 

the asymptotic value zero for ω→0 and –π/4 for ω→∞ (Fig. 5.4.1b). This can be explained 

with the fact that very low frequencies correspond to very long periods, which are long 

enough for complete thermal relaxation. On the other hand, very high frequencies correspond 

to the periods which are several orders of magnitude smaller than the heat transfer 

characteristic time (th). In the middle frequency range, the amplitude and the real part of 

F1(ω) have lower values than those of F1,iso(ω), which is the consequence of the lower 

adsorbed quantity at higher temperature (Figs. 5.4.1a and 5.4.1c). The phase of F1,iso(ω) has 

one inflection point while the phase of F1(ω) exhibits two inflection points (Fig. 5.4.1b). 

Both functions, F1,iso(ω) and F1(ω), exhibit one maximum of the negative imaginary part 

(Fig. 5.4.1d), whereby the maximum of F1(ω) is shifted towards lower frequency and has 

slightly lower magnitude. It can be concluded from Fig. 5.4.1, that two rate constants which 

characterize the NMD mechanism (heat transfer and diffusion) can not be distinguished one 

form another in the frequency window of the first-order FRF. A single maximum of -Im 

(F1(ω)) may be erroneously considered as a process with single time constant. 

In Fig. 5.4.2 the calculated second-order FRFs for IMD (F2,iso(ω,ω)) and NMD (F2(ω,ω)) 

corresponding to run 1 (Table 5.4.3) are presented.  

Similarly as for the first-order FRFs, it can be seen from Fig. 5.4.2 that the characteristics of 

F2(ω,ω) for limiting values of frequencies are the same as for F2,iso(ω,ω). The amplitudes of 

both functions have the same horizontal asymptote for ω→0 and the asymptote with a slope -

0.5 for ω→∞ (Fig. 5.4.2a), while their phases have the asymptote –π for ω→0 and –5π/4 for 

ω→∞ (Fig. 5.4.2b). In the middle frequency range, significant difference in the shape of the 

second-order FRF for IMD and NMD is observed. The amplitude of F2,iso(ω,ω) changes the 

slope once (Fig. 3a) and the phase has a minimum (Fig. 5.4.2b). The real part of F2,iso(ω,ω) 

has a sigmoidal shape (Fig. 5.4.2c) and the negative imaginary part has one very pronounced 

minimum (Fig. 5.4.2d). 
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Fig. 5.4.2 Second-order FRFs for IMD and NMD (run 1) 

 

However, the second-order FRF for NMD has the following bimodal features: the amplitude 

of F2(ω,ω) changes the slope twice (Fig. 5.4.2a) and the phase has a distinct minimum 

followed by a distinct maximum (Fig. 5.4.2b). The real part of F2(ω,ω) has two changes of 

slope (Fig. 5.4.2c) and -Im (F2(ω,ω)) has a pronounced minimum followed by a very small 

maximum (Fig. 5.4.2d). As it can be seen from Fig. 5.4.2, the NMD second-order FRF 

exhibits a bimodal pattern, indicating thus that the heat transfer and diffusional time constant 

can be separated in the frequency window of F2(ω,ω).   

 

5.4.3 Influence of the steady-state pressure on the first- and second-order FRFs for 

NMD 

 

The calculated first-order FRF for NMD (F1(ω)) for three different steady-state pressures 

(runs 1, 2 and 3) and temperature 298 K are presented in Figs. 5.4.3a and 5.4.3b as amplitude 

and phase vs. frequency and in Figs. 5.4.3c and 5.4.3d as the real and negative imaginary part 

vs. frequency.  

Figure 5.4.3 shows that the shape of F1(ω) is qualitatively affected by the steady-state 

pressure. For the steady-state pressure of 0.05 bar, the function F1(ω) has the same shape as 
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for 0.025 bar, which is (as described in the previous section) characterized by a single 

maximum of the negative imaginary part. 

 

 

Fig. 5.4.3 First-order FRF for NMD for different steady-state pressures (runs 1, 2 and 3) 

 

However, for steady-state pressure of 0.15 bar, a clear bimodal pattern of F1(ω) can be 

observed. The amplitude (Fig. 5.4.3a) and the real part (Fig. 5.4.3c) change the slope twice, 

the phase (Fig. 5.4.3b) exhibits a plateau between two inflection points and the negative 

imaginary part has two maxima (Fig. 5.4.3d). As it can be seen from Table 5.4.3, different 

steady-state pressures correspond to different ratios tD/th (runs 1,2 and 3). The steady-state 

pressure influences the diffusional time constant (tD) through the coefficients ap and İ'p (see 

Eqs. (5.4.2) and (5.3.5)), while the heat transfer time constant (th) remains unchanged (Eq. 

(5.4.3)). As a consequence, the ratio tD/th changes, and it is higher for the lower steady-state 

pressures (Table 5.4.3). The nonisothermality coefficient į has approximately the same 

values for the tested steady-state pressures (Table 5.4.3). It can be concluded from Fig. 5.4.3, 

that for the ratio tD/th ≈1 (run 3, 0.15 bar) the bimodal behavior of F1(ω) is clearly observed. 

However, for the ratio tD/th ≈4 (run 2, 0.05 bar), the bimodal behavior disappears and only 

one peak of -Im(F1(ω)) can be observed, as well as for tD/th ≈7.5 (run 1, 0.025 bar). The fact 

that -Im(F1(ω)) can exhibit either one or two maxima, shows that F1(ω) is not sufficient for 

identification and characterization of  NMD mechanism.  
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The simulated second-order FRFs, F2(ω,ω), corresponding to runs 1, 2 and 3 are presented in 

Figs. 5.4.4a and 5.4.4b as amplitude and phase vs. frequency and  in Figs. 5.4.4c and 5.4.4d 

as real part and negative imaginary part vs. frequency.  

 

 

Fig. 5.4.4 Second-order FRF for NMD for different steady-state pressures (runs 1, 2 and 3) 

 

The first important observation from Fig. 5.4.4 is, that unlike F1(ω), the characteristic 

bimodal pattern of F2(ω,ω) (two changes of the slope of the amplitude and real part, and a 

minimum followed by a maximum of the phase and negative imaginary part), is observable 

for all three steady-state pressures. Exceptionally, for the steady-state pressure 0.15 bar, in 

the range of frequencies between 10
-2

 and 10
-1

 rad/s, the amplitude and the real part of 

F2(ω,ω) exhibit one additional change in the slope, the phase has an inflection point and the 

negative imaginary part has a horizontal plateau. This behavior may be associated with the 

negative sign of the second-order temperature coefficient of the adsorption isotherm at 0.15 

bar (bT=-0.4247, Table 5.4.1). It can be concluded from Fig. 5.4.4, that the characteristic 

bimodal features of F2(ω,ω) are qualitatively independent of the ratio tD/th in the tested range. 

This fact means that F2(ω,ω) can be used for reliable identification of the NMD mechanism. 
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5.4.4 Influence of the particle size on the first- and second-order FRFs for NMD 

 

The simulated F1(ω) functions for three different particle sizes (runs 1, 4 and 5) and 

temperature 298 K are presented in Figs. 5.4.5a (real part) and 5.4.5b (imaginary part). The 

corresponding F2(ω,ω) functions are presented in Figs. 5.4.5c (real part) and 5.4.5d 

(imaginary part). (The amplitudes and phases of F1(ω) and F2(ω,ω) for those runs are not 

presented, because they contain the same information as the real and imaginary part, 

regarding the influence of the particle size).  

 

Fig. 5.4.5 First- and second-order FRFs for NMD for different particle sizes (runs 1, 4 and 5) 

 

It can be seen from Fig. 5.4.5 that, similarly as for the change of the steady-state pressure, the 

shape of the first-order FRF changes with the change in the particle size, while the shape of 

the second-order FRF remains qualitatively the same. The particle size influences both tD and 

th (Eqs. (5.4.2) and (5.4.3), respectively). Since tD is proportional to R
2 

and th is proportional 

to R, the ratio tD/th increases with increase of the particle radius. The nonisothermality 

coefficient is unaffected by the particle radius (Eq. (5.4.4)). For the smallest particle radius 

(R=4·10
-5

 m, run 4, Table 5.4.3), which corresponds to the ratio tD/th of 1.5, the function 

F1(ω) shows bimodal behavior (two inflections point of the real part and two maxima of 

negative imaginary part). With increase of the particle radius, and consequently tD/th (runs 5 

and 1), the bimodal behavior of F1(ω) gradually disappears (Figs. 5.4.5a and 5.4.5b). As 
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already mentioned, the function F2(ω,ω) exhibits the characteristic bimodal pattern (two 

changes of the slope of the real part and a minimum followed by a small maximum of the 

negative imaginary part) for all three particle sizes  (and consequently for all three ratios 

tD/th). It is interesting to notice from Fig. 5.4.5 that, with increase of the ratio tD/th, the 

bimodal features of F1(ω) disappear, while the bimodal features of F2(ω,ω) become more 

pronounced. 

 

5.4.5 Influence of the steady-state temperature on the first- and second-order FRFs for 

NMD 

 

The simulated functions F1(ω) for three different steady-state temperatures (runs 1,6 and 7) 

are presented (as lines) in Figs. 5.4.6a (real part) and 5.4.6b (imaginary part), while the 

corresponding functions F2(ω,ω) are presented in Figs. 5.4.6c (real part) and 5.4.6d 

(imaginary part). The functions for the isothermal case, F1,iso(ω) and F2,iso(ω,ω), for the same 

temperatures, are  given in parallel for comparison (symbols in Fig. 5.4.6). 

 

Fig. 5.4.6 First- and second-order FRFs for IMD (symbols) and NMD (lines) for different steady-state 

temperatures (runs 1, 6 and 7) 

 

It can be seen from Figs. 5.4.6a and 5.4.6b that the function F1(ω) has the same shape for all 

tested temperatures, characterized with one maximum of -Im(F1(ω)). The comparison of the 

function F1(ω) with the corresponding one for isothermal case shows that the maximum of -
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Im(F1(ω)) is shifted towards lower frequencies at 289 K, the magnitude of the maximum of -

Im(F1(ω)) is slightly lower at 373 K, while the overlapping of these two functions is 

observed at 423 K (Figs. 5.4.6a and 5.4.6b). This can be explained with the fact that with the 

increase of the steady-state temperature, the nonisothermality of the system (expressed 

through the coefficient į, Eq. (5.4.4)) decreases. As a consequence, the rise of the particle 

temperature becomes smaller at high temperatures and the system is practically isothermal. 

For the steady-state temperature 423 K, the nonisothermality coefficient is į=0.19 (Table 

5.4.3), which means that the nonisothermality of the system is negligible (į=0 for isothermal 

system) and therefore the functions F1(ω) and F1,iso(ω) overlap.  

The second-order FRF (Figs 5.4.6c and 5.4.6d) has different shapes for different steady-state 

temperatures (Figs. 5.4.6c and 5.4.6d). At 298 K, the bimodal behavior with a pronounced 

minimum and a small maximum of  -Im(F2(ω,ω)) is present. However, at 323 K and 423 K 

the second-order FRFs overlap the ones for the isothermal case and have only one minimum 

of -Im(F2(ω,ω)). It can be concluded from Fig. 5.4.6 that the shape of the second-order FRF 

gives information weather the adsorption system can be treated as isothermal, which is not 

possible from the first-order FRF.  

In summary, the parameter variation analysis shows that the second-order FRF for NMD 

model has a bimodal pattern qualitatively independent from the ratio tD/th.  A minimum 

followed by a maximum of the phase of F2(ω,ω) (or a pronounced minimum followed by a 

small maximum of -Im(F2(ω,ω))) is the characteristic feature which can be used for 

recognition of the NMD model. 
 

 

5.4.6  Temperature FRFs 

 

In Figs. 5.4.7 and 5.4.8 the first- and the second-order temperature FRFs (H1(ω) and 

H2(ω,ω))  for different combination of parameters (runs 1, 2, 5 and 7) are presented, 

respectively, as real and imaginary part vs. frequency. Comparison of Runs 1 and 2 shows 

the influence of the steady-state pressure, of runs 1 and 5 the influence of the particle size, 

and of runs 1 and 7 represent the influence of the steady-state temperature.  

Figure 5.4.7 shows that there is no qualitative change in the shape of H1(ω) due to the 

variation of the mentioned parameters (and consequently different ratios tD/th). The real part 
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(Fig. 5.4.7a) is characterized with one maximum, while the imaginary part (Fig. 5.4.7b)  has 

a maximum at lower frequencies and a minimum at higher frequencies. 

 

Fig. 5.4.7 First-order temperature FRF  for different parameter combinations  

 

According to the study of Bourdin et al. (1996), who have treated NMD model in the linear 

range, the low frequency region of H1(ω) is affected by the heat transfer limitations, which 

result in the increase of the real part and the maximum of the imaginary part. The higher 

frequency range of H1(ω) is affected by the mass transfer limitations resulting in the decrease 

of the real part and the minimum of the imaginary part. The magnitude of the maximum of 

the real part is mainly affected by the nonisothermality coefficient (į), i.e. the particle 

temperature rise. As it can be seen from Fig. 5.4.7a, the highest value of the maximum of 

Re(H1(ω)) is for  Run 2, for which the coefficient į has the largest value (3.22 , Table 5.4.3). 

The positions of the extrema of the imaginary part of H1(ω) depend on the heat transfer time 

constant (maximum) and diffusional time constant (minimum). For run 5, for which th has 

lower value than for runs 1 and 2 (Table 5.4.3), the imaginary part exhibits a maximum at 

higher frequency. Similarly, since tD is lower for run 5 than for runs 1 and 2, the minimum of 

the imaginary part lies at higher frequencies (Fig. 5.4.7b). Although the heat and diffusional 

time constants are more obviously distinguished in the frequency window of H1(ω) than in 

that of F1(ω), they can still not be directly estimated from H1(ω). It should also be noticed 

from Fig. 5.4.7 that in the case of the temperature of 423 K (run 7), where the 

nonisothermality is very low, the temperature FRF H1(ω) has very low values close to zero. 
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Fig. 5.4.8 Second-order temperature FRF  for different parameter combinations  

 

Regarding the shape of the function H2(ω,ω), it can be seen from Fig. 5.4.8, that H2(ω,ω) has 

a reversed pattern then that of H1(ω).  The real part of H2(ω,ω) (Fig. 5.4.8a) is negative and 

has a single minimum, while the imaginary part (Fig. 5.4.8b) has a minimum at lower 

frequencies and a maximum at higher frequencies. Figure 5.4.8 also shows that the shape of 

H2(ω,ω) is not qualitatively changed by variation of the steady-state pressure, particle size 

and temperature. For the temperature 423 K (run 7), as expected for an almost isothermal 

system (į=0.19), the function H2(ω,ω)≈0.  It can be also concluded from Fig. 5.4.8, that 

H2(ω,ω) is affected by the values of į, th and tD in the same way as H1(ω). The absolute value 

of the magnitude of the minimum of the real part is larger when į is larger (Fig. 5.4.8a). For 

higher th, the minimum of the imaginary part is obtained at lower frequency, and for higher 

tD, the maximum of the imaginary part is obtained at lower frequency (Fig. 5.4.8b).  

5. 5 A methodology for estimation of the model parameters  

 

The theoretical first- and second-order FRFs for NMD, derived in Section 5.3, contain 

sufficient information for reliable estimation of the diffusional and heat-transfer time 

constants, effective first- and second-order concentration coefficients of the adsorption 

isotherm, as well as the heat of adsorption, as it will be presented bellow.  
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5.5.1 Estimation of the kinetic parameters 

 

In the case of isothermal macropore diffusion, it was already shown (Sun et al., 1993; 

Petkovska, 2006) that the diffusional time constant tD (as a single kinetic parameter ) can be 

estimated from the frequency at which the negative imaginary part of F1(ω) has a maximum 

(ωcrit), using the relation 56.11Dcritt  for the spherical shape of the particles.  

In the case of nonisothermal macropore diffusion, as it was shown in Section 5.4. (Figs. 

5.4.3d and 5.4.5b), the diffusional time constant (tD) and the heat transfer time constant (th) 

can not be separated in the frequency window of F1(ω). However, if the new function is 

defined, as the ratio of H1(ω) (eq. (5.3.20)) and F1(ω) (eq. (5.3.28)): 

 
 

 
 





Laa
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F

H

effTeffp ,,1

1


         (5.5.1) 

it becomes invariant of tD. If this ratio is plotted as a function of ω·th (Fig. 5.5.1), it becomes 

invariant of  th, as well. In Fig. 5.5.1 only the functions for runs 1, 4 and 5, corresponding to 

different th are shown.  For any set of parameters, the maximums of the curves 

Im(H1(ω)/F1(ω)) correspond to ω·th=1, thus giving the possibility to estimate th from the 

frequency at which the experimentally determined function Im(H1(ω)/F1(ω)) has a 

maximum.  

 

 

Fig. 5.5.1 Imaginary part of H1(ω)/F1(ω) vs. ω·th 

 

As already mentioned in Section 5.4, the function F2(ω,ω) clearly reflects the bimodal nature 

of the NMD mechanism, which is best noticeable in the phase frequency window, as a 
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minimum followed by a maximum (Fig. 5.4.4b). If the phase of F2(ω,ω) is plotted as a 

function of ω·tD, for all seven runs from Table 5.4.3 (Fig. 5.5.2), it turns out that the 

maximums of all curves (except for run 7, which represents almost isothermal case and 

shows no maximum) correspond to ω·tD=13.6, which means that tD can be estimated from 

the frequency for which the phase of the experimental F2(ω,ω)  has the maximum.  

 

 

Fig. 5.5.2 Phase of F2(ω,ω) vs. ω·tD 

 

Figure 5.5.3 shows the imaginary part of H2(ω,ω) vs. ω·tD for runs  1-6 from Table 5.4.3 (for 

run 7 H2(ω,ω) ≈0, Fig. 5.4.8). It can be seen that the maximums of all curves correspond to 

ω·tD≈12.8, which means that tD can alternatively be estimated from the frequency for which 

the imaginary part of the experimental H2(ω,ω)  has a maximum. 

 

 

Fig. 5.5.3 Imaginary part of H2(ω,ω) vs. ω·tD 
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5.5.2 Estimation of the equilibrium parameters  

 

The equilibrium parameters can be estimated from the low-frequency asymptotes of the FRFs 

(Petkovska, 2006). For the cases of IMD and NMD, the low frequency asymptote of F1,iso(ω) 

as well as of F1(ω) corresponds to the effective first-order concentration coefficient of the 

adsorption isotherm (ap,eff): 

    effpiso aFF ,1
0

,1
0

limlim 





       (5.5.2) 

while the low frequency asymptote of F2,iso(ω,ω) as well as of F2(ω,ω) corresponds to the 

effective second-order concentration coefficient (bp,eff): 

    effpiso bFF ,2
0

,2
0

,lim,lim 





       (5.5.3) 

 

5.5.3 Estimation of the heat of adsorption 

 

It can be shown, that for the ratio H1(ω)/F1(ω) defined by eq. (5.5.1), holds: 
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          (5.5.4) 

which means that modified heat of adsorption coefficient can be determined from the high-

frequency asymptote of the experimental H1(ω)/F1(ω) and the heat of adsorption     (-ΔH) 

can be calculated from the definition equation of the modified heat of adsorption, ξ (Table 

5.1.1). 

 

Summary 

  

The nonisothermal macropore diffusion (NMD) model describes a complex kinetic 

mechanism with simultaneous diffusion and heat transfer, and consequently contains two 

time constants. In the frequency domain, this model is defined with two series of FRFs: the 

F- functions  (which relate the mean concentration in the particle to the pressure) and the H-

functions (which relate particle temperature to the pressure). The analysis of the derived F- 

and H -functions up to the second order has shown that, for reliable recognition of the NMD 

model and estimation of individual time constants of diffusion and heat transfer, 
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experimental functions: F1(ω), H1(ω) and F2(ω,ω) are necessary. Moreover, knowing those 

three functions enables estimation of the first and second-order derivatives of the adsorption 

isotherm, as well as the heat of adsorption. 

The results presented in this chapter have been published in the following article: 

D. Brzić, M. Petkovska, Nonlinear frequency response analysis of nonisothermal adsorption controlled by 

macropore diffusion, Chem. Eng. Sci 118 (2014), 141–153 
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6. EXPERIMENTAL PART 

 
In order to validate and exploit the NFR approach for studying adsorption of pure gases, a 

new apparatus has been designed and constructed. it is described in this chapter. The 

apparatus has a batch configuration with sinusoidal modulation of the volume, with an 

amplitude that can be varied. The responses to the volume modulation, pressure, gas 

temperature and particle temperature, have been measured with highly accurate and fast 

response measuring instruments. The procedure for planning the experiments, regarding the 

choice of optimal parameters, has already been described in Chapter 4. The measurement 

routine and data analysis have been demonstrated on the example of CO2 adsorption on 

commercial zeolite 5A particles. A concept of blank FRFs has been introduced as a new way 

to incorporate the results of blank experiments for eliminating spurious effects. The first- and 

second-order FRFs which relate the adsorbed quantity to the pressure (F1(ω) and F2(ω,ω)) as 

well as the first-order FRF which relates the particle temperature to the pressure (H1(ω)) have 

been calculated based on the measured responses, while H2(ω,ω) was not possible to 

determine from the measured data. Based on the obtained experimental FRFs, identification 

of the kinetic mechanism and estimation of the kinetic and equilibrium parameters have been 

demonstrated. This represents the proof of validity and applicability of the NFR method. 

 

6.1 Design of the NFR experimental set-up 

 

Theoretical basis of the concept of higher-order FRFs (Chapter 3) as well as the results of the 

simulations of NFRs of a batch adsorber (Chapter 4), impose some requirements regarding 

the design of NFR experimental set-up:  

(1) Variable input amplitude. This requirement arises from the fact that the first- and second- 

order FRFs are not determined from the same input amplitude, as it was described in Section 

4.3.2. Also, the amplitude is adjusted in order to correspond to each investigated system and 

chosen steady-state point. 

(2) Accurate sine wave-form of the input.  Since the equations which are used for estimation 

of the FRFs from individual harmonics (eqs. 3.2.27 and 3.2.28) are derived by expanding 
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Volterra series for single sine-wave input, good approximation of the sine wave-form of the 

volume change is important issue to be realized in practice. 

(3) Temperature measurements. Since the nonisothermality of the adsorption system is 

expected to be manifested under larger amplitude modulations, the gas and particle 

temperature measurements (along with the standard pressure measurements) are necessary 

for complete characterization of the system.  

(4) Recording the data with high sampling frequency. Numerical analysis regarding the 

number of data points per period required for accurate Fourier transform of the complex time 

signal, performed in Section 4.3.4, has shown that the minimal sampling interval is a 

thousandth part of the period of the time-wave. With shortening the period, the required 

sampling frequency increases ( i.e. for period of 10 seconds, sampling frequency of 100Hz is 

required).  

The design of our set-up combines the properties of the batch FR devices reported in 

literature (described in Section 2.5) with specific requirements for the NFR approach, 

mentioned above. The sine-wave volume modulation is commonly performed by metal 

bellows coupled with a rotary motor and a suitable mechanism for converting circular into a 

linear motion (Yasuda, 1976; Reyes et al., 1997). This arrangement enables varying 

frequency by varying the rotation speed, while variable amplitude is not feasible. In our set-

up, we also use a metal bellows to modulate the volume, while the sinusoidal form with 

variable amplitude is accomplished by using a servomotor with linear actuator. The sine 

wave-form of the stroke of the motor shaft (s=s0sin(ωt)) over time is generated by entering 

the values of velocity (ds/dt) and acceleration (d
2
s/dt

2
) at certain times (Fig. 6.1.1).  

 

Fig. 6.6.1 Motor with linear actuator as a generator of the sinusoidal wave-form 

 

t (s) 

s(mm) 
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Besides the option of easy variation of the input amplitude, using a linear actuator has 

additional advantages: (1) mechanical mechanisms for transferring circular into linear motion 

are avoided and (2) step changes of the volume with variable amplitude can be easily 

performed. The accuracy of the sine-wave approximation of the input is provided by 

applying feedback control of the motor axis position.  

The pressure response is measured as a differential pressure between an adsorption and a 

reference cell (a cell without adsorbent at the same steady-state temperature and pressure). 

This concept, already used by Turner et al. (2001), enables large range of operating pressures 

to be covered with only one (costly) differential pressure transducer.  

The infra red (IR) measurement of the particle temperature, introduced by Bourdin et al. 

(1998), is in our apparatus significantly simplified by using an IR detector of the newest 

generation which has small size and enables easy mounting.  

The gas temperature measurement is employed for the first time in the FR technique. The 

thinnest available thermocouple (0.15 mm in diameter) was used for gas temperature 

measurements in order to achieve fast response. 

 A schematic representation of the experimental set-up is shown in Fig. 6.1.2 and 

specification of the equipment and measuring instruments is given below. 

The adsorption cell (1) and the reference cell (5) are double-wall cylinders made of stainless 

steal. A heating circulator (up to180 °C) is used to heat up the cells by circulating oil through 

both shells. At the bottom of the adsorption cell, a stainless steal metal bellows (2) of 39/59 

mm diameter (MEWASA FLEX) is connected. A servomotor (4) (RCS2-RA7BD, IAI 

Industrieroboter GmbH) with linear actuator is used to drive the bellows. For the starting 

position of the motor axis (the half of the effective stroke), the volume of the adsorption cell 

is 568.8 cm
3
. The feedback control of the motor shaft position is accomplished by SCON-C 

controller (IAI Industrieroboter GmbH). Frequencies up to 1 Hz and amplitudes up to 10 % 

of the steady-state volume are feasible. The adsorption and the reference cell are placed 

together in an insulated box (6). A spiral heater on the inside wall of this box serves for 

additional heating of the system during cleaning of the adsorbent. By lowering the pressure 

in this box (using the pump P-2), uniform motion of the bellows is achieved as well as lower 

power consumption of the motor.  
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Fig. 6.1.2 Experimental apparatus for NFR experiments: adsorption cell (1), metal bellows (2), 

sample holder (3), servo–motor (4), reference cell (5) thermostat (6).  

 

The position sensor (DI), Type T 150, Ahlborn, placed on the axis of the servomotor, 

measures the distance and thus indicates the volume of the system. Fast response Baratron 

differential pressure transducer (DPI), Model 120 AD, MKS Instruments, measures the 

pressure difference between the adsorption and the reference cell. The measurement range of 

the pressure transducer is 10
-2

-10
3 

Pa with accuracy ±0.05 Pa. The steady-state pressure is 

measured by an absolute pressure sensor (API). The infrared detector (TI-2), (KT15IIP, 

Heitronics), with accuracy of ±0.15 K and with 300 ms response time, is mounted tightly at 

the top of the adsorption cell and used for particle temperature measurement. A K type 

thermocouple (TI-1) of 0.15 mm in diameter and 150 ms nominal response time is used for 

gas temperature measurements. Standard high-vacuum dosing valves, seals and fittings are 
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used. The National Instruments acquisition board suitable for high sampling rates and 

LabVIEW software are employed for data acquisition. 

 

6.2 Materials and operating conditions 

 

Commercial zeolite 5A beads (Sylobead MS 522, Grace Davison) of 1.6 -1.8 mm in diameter 

(ρp=640 kg/m
3
, cps=921 J/kgK) were used as the adsorbent. These beads were crushed, sieved 

and the fraction of 0.2 - 0.224 mm was used for an additional series of NFR experiments. The 

porosities, pore areas and pore distributions for both samples were investigated by mercury 

porosimetry and the results are summarized in Table 6.2.1.    

 

Table 6.2.1 Adsorbent samples properties 

 Porosity (-) Total pore area 

(m
2
/g) 

Pore diameter (μm) 

original beads 

dp=1.7mm 

0.35 8.493 0.25  0.05
*
 

crushed particles 

dp=0.21mm 

0.65 11.672 0.25  0.05
*
 

* 
very small fraction of the pores 

 

Pure CO2 was used as the adsorbate gas. The adsorption isotherm for this system at 25°C was 

determined by gravimetric method, using a Rubotherm magnetic suspension balance (Fig. 

6.2.1). These isotherm data were fitted with Toth equation: 

rrPbmPQ /1)(           (6.2.1) 

with the following parameters m=2352.2, b= 17.5813 and r= 0.41096. In equation (6.2.1) Q 

is in mol/m
3
 and P in Pa.  

The experiments were performed at 25°C and 20 mbar. Two series of FRs were measured for 

each particle diameter: one with input amplitude 0.03Vs and the other with input amplitude 

0.08Vs, both for a number of frequencies in the range 0.00125 - 6.28 rad/s. Blank responses 
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(at the same temperature and pressure without adsorbent) were measured for each tested 

amplitude and frequency.  

 

 

Fig. 6.2.1 Adsorption isotherm for CO2/zeolite 5A at 25 °C (from gravimetric measurements) 

 

6.3 Procedure for the NFR experiments 

 

A measured sample of the zeolite particles was first activated for 12 hours in an oven at 400 

°C. After cooling down, the sample was transferred into a holder. The coarse particles were 

arranged as a double layer and the small particles as a thin layer. The system was evacuated 

by using the pump P-1 in Fig. 6.1.2 (during that time the valves V-1 and V-3 were open and 

V-2 was closed) and heated up to ≈220°C for cleaning the sample. After 12 h, V-1 and V-3 

were closed and the system was cooled down to 25°C. Pure CO2 was first introduced into the 

reference cell (V-3 open, V-1 and V-2 closed) and than left to enter gradually into the 

adsorption cell (V-3 closed, V-1 and V-2 open). After equilibration at the desired pressure 

(indicated by API), V-1 and V-2 were closed. Prior to the experiments, leak tightness of the 

system was checked by measuring the differential pressure between the adsorption and 

reference cell under static conditions. The pressure increase below 10
-4

 Pa/s was considered 

as acceptable.  

After assigning the desired values of amplitude and period of the time wave, the motor was 

started producing the volume modulation. The axis position, differential pressure, gas and 

particle temperature were continuously measured. After reaching the quasi-stationary state, 

minimum five periods of time-wave were recorded with a sampling rate 1000/T (where 

T=2π/ω is the period of the time wave, in seconds). The motor was turned off and the system 
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was left to equilibrate again. Next, a new period and/or amplitude were set and the 

experiment was repeated for two amplitudes and a  number of frequencies. The  whole 

procedure was repeated for other steady-state pressures. 

6.4 Experimental NFRs of a batch adsorber 

 

As illustration, In Fig. 6.4.1 we show samples of the measured volume (a), pressure (b), gas 

temperature (c) and particle temperature (d) in the quasi-stationary state (presented as 

deviations from the steady-state values), obtained for sinusoidal volume modulation with 

A=0.08 and ω=0.78 rad/s. The signals of the pressure and gas temperature obtained in the 

corresponding blank experiment are given in parallel. As expected, the pressure response in 

the adsorption experiment has lower amplitude than in the blank experiment (Fig. 6.4.1 b). 

The gas temperature response shows no difference in the adsorption and blank experiment 

(Fig. 6.4.1 c). It is interesting to notice that the periodic change of the gas temperature can be 

registered, although with a very small amplitude of ±0.1 K. The measurements in a broad 

range of frequencies showed that the periodic change of the gas temperature could be 

registered only for frequencies higher than 0.125 rad/s.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.4.1  Measured input (ΔV) and output signals (ΔP, ΔTg, ΔTp) (A = 0.08 ω= 0.78 rad/s) 

 

In order to be analyzed in the frequency domain, the measured signals are transferred into the 

corresponding frequency spectra by applying the fast Fourier transform (function fft in 
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MATLAB). The data length of five periods were used for fast Fourier transform. 

Exceptionally, for the periods longer then 800 s, only three periods were measured and 

analyzed. The frequency spectra corresponding to the signals presented in Fig. 6.4.1 are 

presented in Figs. 6.4.2-6.4.4, as the amplitude and phase vs. dimensionless frequency 

(frequency normalized by the basic frequency).  

 

 

Fig. 6.4.2  Frequency spectrum of the volume signal from Fig. 6.4.1a   

 

Fig. 6.4.2 represents the frequency spectrum of the volume signal and it serves to evaluate 

the accuracy of sine-wave approximation. The frequency spectrum of the ideal sine-wave is 

represented by a single harmonic (Fig 4.2.3, Chapter 4). Figs. 6.4.2a and 6.4.2b show that the 

measured volume signal contains the first harmonic ׀X139=׀ cm
3 

and the third harmonic 

cm 0.07=׀X3׀
3 

(0.18 % of the first one), which means that, for the given frequency, very good 

sine-wave approximation is achieved. However, for frequencies larger than 0.6 rad/s the 

second harmonic ׀X20.5 ≈׀cm3
 is also registered. If the second-harmonic in the input is 

present, than the second harmonic in the output contains also the contribution of the first-

order FRF at 2ω, as follows: 
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122   XXGXGXGY   (6.4.1) 

This fact should be considered when the second-order adsorber FRF is estimated , as it will 

be presented in following section. 

Fig. 6.4.3 represents the frequency spectra of the measured pressure signals for the 

adsorption and the corresponding blank experiment. As expected, the pressure response in 

both cases contains the first, second and higher harmonics (Figs. 6.4.3 a and 6.4.3 b) with the 
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decreasing trend of amplitude (׀Y189=׀ Pa, ׀Y22.5= ׀ Pa, ׀Y30.25= ׀ Pa,...). The amplitudes of 

the first four harmonics of the pressure response vs. frequency for input amplitudes 0.03 and 

0.08 are shown in Fig. 6.4.5. 

 

 

Fig. 6.4.3 Frequency spectra of the pressure signals from Fig. 6.4.1b 

 

 

Fig. 6.4.4 Frequency spectra of the gas and particle temperature from Figs. 6.4.1c and 6.4.1d 

 

The amplitude of the first harmonic (Fig. 6.4.5 a) increases linearly with the input amplitude 

and has the values of the order of magnitude 10
1
 Pa for both input amplitudes. However, the 

amplitude of the second harmonic (Fig. 6.4.5 b) is more sensitive to the input amplitude, and 

increases by a factor of about 5, when the input amplitude is increased by a factor of 2.5. The 

amplitudes of the second harmonic for A=0.08 are of the order of magnitude 10
0
 Pa, which 

can be reliably measured with available Baratron pressure sensors. The amplitudes of the 

third harmonic (Fig. 6.4.5 c) are of the order of magnitude 10
-1

 Pa, whereby the third 
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harmonic for A=0.08 shows scattering and increase for the frequencies higher than 0.6 rad/s. 

The amplitude of the fourth harmonic (Fig. 6.4.5 d) is ≈1·10-2
 Pa for A=0.03 and ≈5·10-2

 Pa 

for A=0.08.  

         

Fig. 6.4.5 Amplitudes of the first four harmonics of the pressure response vs. frequency for two 

different input amplitudes 

 

From Fig. 6.4.5 it can be concluded: 

1) the degree of nonlinearity, expressed as (Y2/Y1)·100, of the tested CO2/zeolite 5A system, 

for input amplitude 0.08 is about 3%, which agree to the theoretical one obtained by 

simulations (Chapter 4).  

2) The ratio (Y3/Y1) for input amplitude 0.03 is about 5·10
-2

, which means that contribution of 

the third-order FRF in the first harmonic (eq. 3.2.7) can be neglected, and Y1 can be used for 

calculation of the first-order adsorber FRF from the approximate equation: 

111 )( XGY            (6.4.2) 

3) The ratio (Y4/Y2) for input amplitude 0.08 is about 10
-2

, which means that contribution of 

the fourth-order FRF in the second harmonic (eq. 6.4.1) can be neglected, and Y2 can be used 

for calculation of the second-order adsorber FRF from the approximate equation: 

21

2

122 )2(),(
2

1
XGXGY          (6.4.3)      

 

Fig. 6.4.4 represents the frequency spectra of the measured gas and particle temperatures. 

Since the measurements have shown the change of gas temperature of less than 0.1 K (in the 
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whole range of the tested frequencies), the gas can be considered as isothermal. In the 

frequency spectrum of the particle temperature only the first harmonic can be observed (Fig. 

6.4.4a) (׀Z10.39=׀ K), while the second harmonic can not be distinguished from noise (Fig. 

6.4.4a).  

6.5 Estimation of the particle FRFs 

 

Due to the negligible changes in the measured gas temperature, the tested adsorption system 

will be considered as the special nonisothermal case (Tg=const., Tp≠const.)(Petkovska, 2001) 

and consequenly described with two series of particle FRFs: F- and H- functions (Fig. 3.3.3). 

Although in the theoretical considerations in previous chapters, the FRFs which relate 

dimensionless variables have been used, the experimental FRFs which relate dimensional 

variables (deviation variables) will be calculated here, since the equilibrium loading (Qs) 

nedeed for the calculation of dimensionless F- functions (eqs. 3.3.13 and 3.3.20), is generally 

not known.  

The H-functions can be calculated directly from the measured particle temperature and 

pressure, as follows: 

  111 YHZ            (6.5.1) 
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where Y1 and Y2 are the first and the second harmonic of the pressure (P-Ps) and Z1 and Z2, 

are the first and the second harmonic of the particle temperature (Tp-Tps).  

The F-functions have to be calculated from adsorber G-functions (Petkovska, 2001). The 

relations which relate the dimensionless F- and G-functions for the batch asdorber under 

special nonisothermal conditions (Tg=const., Tp≠const.), were derived in Chapter 3 (Section 

3.3.4) (Eqs. 3.3.13 and 3.3.20). The corresponding equations in dimensional form can be 

written as follows: 
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In Eqs.(6.5.3 and 6.5.4)  G1(ω) and G2(ω,ω) are the first and the second order adsorber FRFs 

which relate pressure deviation (P-Ps) to the volume deviation (V-Vs). The partition 

coefficient is defined as β*
=mpRgTs/ρp (Pa·m6

/mol), and does not contain the equilibrium 

loading Qs.  

Equations 6.5.3 and 6.5.4 were derived assuming ideal gas behaviour and ideal mixing in the 

adsorber. However, in real experiments, phenomena like adsorption on the walls, deviation 

from the ideal gas behaviour, pressure change due to the gas heating by compression and 

delays of the measuring and acquisition systems can affect the measured pressure responses 

and cause errors in the calculation of the G-functions and consequently in obtained F-

functions. A common way to account for those spurious effects is through blank experiments. 

Since the NFR analysis is performed in the frequency domain, we have developed a new 

concept, which describes how to incorporate the results of the blank experiments in the 

frequency domain. It is based on estimation of so called blank FRFs and is presented below. 

 

Relations between the F- and G- functions which include blank FRFs 

 

In the NFR measurements, blank experiments are performed at the same steady-state 

temperature and pressure as the adsorption experiments, just in absence of the adsorbent. The 

adsorber FRFs, calculated from eqs. ((6.4.2) and (6.4.3)) using blank pressure responses 

(ΔPb=Pb-Ps), are called blank FRFs (the Gb-functions).  

If we assume that all unknown spurious effects can be represented as a single term in the 

mass balance equation, which is identical for the adsorption and blank experiments, than the 

mass balance of the batch adsorber (for the case of constant gas temperature) can be written 

in the following way: 

0  QVPPVPV ss        (6.5.5) 

where ΔQ=Q-Qs is the perturbation of the adsorbed quantity (mol/m
3
) and Φ represents all 

unknown effects. When written for the blank experiments, eq. (6.5.5) becomes: 

0 VPPVPV sbbs        (6.5.6) 

By combining eqs. (6.5.5) and (6.5.5) the adsorbed quantity can be expressed as a function of 

the volume change and the pressure difference in the blank and adsorption experiment: 
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According to the concept of higher order FRFs, the pressure and adsorbed quantity can be 

expressed in the form of Volterra series. By applying the method of harmonic probing, the 

following relations between the F-functions, G-functions and Gb-functions are derived: 
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In this way, by defining the blank FRFs, the results of blank experiments are incorporated 

directly in the frequency domain. This approach is advantageous compared to the signal 

subtracting in the time domain, since it tolerates small discrepancies in conditions under 

which blank and adsorption experiments are preformed. 

In the further text, the estimation of blank FRFs, adsorber FRFs and particle FRFs will be 

given step by step. 

6.5.1 Blank FRFs 

 

The first-order blank FRF c is estimated from eq. (6.4.2) using the first harmonic of the blank 

pressure response (Y1b) for A=0.03: 
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b           (6.5.10) 

The second-order blank FRF G2b(ω,ω) is estimated from eq. (6.4.3) using the measured 

second harmonic of the blank pressure response (Y2b) for A =0.08: 
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The experimental G1b(ω) and G2b(ω,ω) are presented in Figs. 6.5.1 and 6.5.2  respectively, as 

amplitude and phase vs. frequency. The lines in Figs. 6.5.1  and 6.5.2 represent first and 

second-order adsorber FRFs derived from the model of ideal gas. It can be seen from Fig. 

6.5.1 that the amplitude of G1b(ω) is slightly lower than that for the ideal gas, which reflects 

the gas nonideality. However, the amplitude of G2b(ω,ω) is slightly higher than that for the 

ideal gas (Fig. 6.5.2), which is most probably the consequence of neglecting the contribution 
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of the fourth-order FRF in eq. (6.4.1). The phases of both G1b(ω) and G2b(ω,ω) show 

significant lags for frequencies higher than 0.1 rad/s, which can be atributed to the delays in 

the pressure sensor or/and acquisition system.  

 

 
 
Fig. 6.5.1 First-order blank FRF G1b(ω)  

 

 
Fig. 6.5.2 Second-order blank FRF G2b(ω, ω)   

 

6.5.2 Adsorber FRFs 

 

The first-order adsorber FRF G1(ω) is estimated from eq. (6.4.2) using the first harmonic of 

the pressure response (Y1) for A=0.03: 
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The second-order adsorber FRF G2(ω,ω) is estimated from eq. (6.4.3) using the measured 

second harmonic of the pressure response (Y2) for A =0.08: 
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The adsorber FRFs, G1(ω) and G2(ω,ω), for two different particle diameters, are presented in 

Figs. 6.5.3 and 6.5.4, as the amplitude and phase vs. frequency. 

 

  

    Fig. 6.5.3  First-order adsorber FRFs G1(ω)              Fig. 6.5.4 Second-order adsorber FRFs G2(ω,ω) 

 

 

As it can be seen from Fig. 6.5.3, the first-order adsorber FRFs have different shapes for 

different particle diameters. The amplitude of G1(ω) for the coarse particles (dp=1.7 mm) has 

one inflection point and the phase has a single maximum, while for the fine particles 

(dp=0.21 mm) the amplitude of G1(ω) has two inflection points and the phase has two 

corresponding maxima. The phase of G1(ω) tends to –π for both low and high frequencies. 

The second-order adsorber FRFs (Fig.6.5.4) exhibit almost the same patterns as G1(ω) 

depending on the particle size (one inflection point of the amplitude and a single maximum 

of the phase for the coarse particles and two inflection points of the amplitude and the two 

maxima of the phase for the fine particles). The phase of G2(ω,ω) tends to zero for both low 

and high frequencies. The obtained G1(ω) and G2(ω,ω) are further used for calculation of 

particle FRFs. 
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6.5.3 Particle FRFs 

 

Using G1(ω) and G2(ω,ω) as well as G1b(ω) and G2b(ω,ω), estimated in the previous sections, 

the particle FRFs F1(ω) and F2(ω,ω) have been calculated from eqs. (6.5.8) and (6.5.9), and 

presented in Figs. 6.5.5 and 6.5.6, respectively. The amplitude of F1(ω) (Fig. 6.5.5) has one 

inflection for the coarse and two inflections for the fine particles. The phase of F1(ω) has two 

inflections for both particle diameters, whereby in the case of fine particles a plateau can also 

be observed. The phase of F1(ω) tends to zero for low frequencies and to -π/4 for high 

frequencies. The amplitude of F2(ω,ω) (Fig. 6.5.6) for the coarse particles has two inflections 

which correspond to a minimum and a maximum of the phase. For the fine particles only one 

inflection of the amplitude of F2(ω,ω) can be clearly observed and the phase of F2(ω,ω) has a 

small minimum. It can be seen from Fig. 6.5.6 that for the frequencies higher than 0.6 rad/s 

the data for F2(ω,ω) are scattered and thus unreliable.  

  

Fig. 6.5.5 Particle first-order FRFs F1(ω)         Fig. 6.5.6  Particle second-order FRFs F2(ω,ω) 

 

The temperature FRF, H1(ω), is calculated from Eq. (6.5.1), using the first harmonics of the 

measured particle temperature (Z1) and pressure (Y1), and presented in Fig. 6.5.7. The 

amplitude of H1(ω) has one maximum for the coarse particles and two maxima for the fine 

particles. The phase of H1(ω) has two inflections for both particle diameters and changes in 

the sign at a frequency about 0.1 rad/s. The second-order temperature FRF H2(ω,ω) could not 

be estimated because second harmonic in the particle temperature response was not 

measurable (Fig. 6.4.1d). 
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Fig. 6.5.7 First-order temperature FRFs H1(ω)  

 

The obtained particle FRFs F1(ω), F2(ω,ω) and H1(ω) will be used for recognition of the 

governing kinetic mechanism and estimation of the equilibrium and kinetic parameters, as it 

will be presented in the following section. 

6.6 Identification of the kinetic mechanism  

 

Regarding the kinetic mechanism of adsorption of CO2 on commercial zeolite 5A, Onyestyak 

et al. (1996), who have investigated this system by linear FR method, have reported 

isothermal macopore diffusion control as the governing mechanism for the temperatures 

higher than 373K, while for the lower temperatures it was not possible to fit the data to IMD 

model because the bimodal behavior was experimentally observed. It was supposed that the 

second peak of the phase lag at low frequencies corresponded to heat effects.  

Therefore we have derived the FRFs up to the second order for NMD model (Chapter 5) as 

the suspected mechanism for adsorption of CO2 on zeolite 5A particles at lower 

temperatures. The characteristic features of the experimental particle FRFs F1(ω), F2(ω,ω) 

and H1(ω), for particle diameters of 1.7mm and 0.21mm, are compared with those of the 

corresponding theoretical FRFs for NMD in Tables 6.6.1-6.6.3. Since the patterns of the real 

and imaginary part of the particle FRFs can give some additional insight in the process of 

mechanism identification, the particle FRFs, presented in Figs. 6.5.5-6.5.7 in the form of 

amplitude and phase characteristics, are also presented as the real and imaginary part vs. 

frequency in Figs. 6.6.1-6.6.3, respectively. 
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Table 6.6.1 Comparison of the characteristic features of the experimental functions F1(ω) with the 

theoretical ones derived for the NMD model  

 Theoretical for NMD  Experimental  

(dp=1.7 mm) 

Experimental  

(dp=0.21 mm) 

Amplitude F1(ω) Changes slope once or 

twice 

Changes slope once Changes slope twice 

 

Phase F1(ω) Two inflections Two inflections  Two inflections  

Real F1(ω) One or two inflections One inflection  Two inflections  

- Imag F1(ω) One or two maxima One maximum  Two maxima  

 

 

Table 6.6.2 Comparison of the characteristic features of the experimental functions F2(ω,ω) with the 

theoretical ones derived for the NMD model  

 Theoretical for NMD  Experimental  

(dp=1.7 mm) 

Experimental  

(dp=0.21 mm) 

Amplitude F2(ω,ω) Changes slope twice Changes slope twice Changes slope twice 

Phase F2(ω,ω) Minimum followed by 

a maximum 

Minimum followed by 

a maximum 

Single minimum 

Real F2(ω,ω) Changes slope twice Changes slope twice Changes slope twice 

- Imag F2(ω,ω) Minimum followed by 

a very small maximum 

Minimum followed by 

a very small maximum 

Single minimum 

 

 

Table 6.6.3 Comparison of the characteristic features of the experimental functions H1(ω) with the 

theoretical ones derived for the NMD model 

 Theoretical for NMD  Experimental  

(dp =1.7 mm) 

Experimental  

(dp =0.21 mm) 

Amplitude H1(ω) One maximum One maximum Two maxima 

Phase H1(ω) Changes sign Changes sign Changes sign 

Real H1(ω) One maximum One maximum Two maxima 

Imag H1(ω) 
Maximum followed by 

a weak minimum 

Maximum followed by 

a weak minimum 

Maximum followed by 

inflection and deep 

minimum 
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Fig. 6.6.1 First-order FRF F1(ω)                             Fig. 6.6.2 Second-order FRF F2(ω,ω) 

 

 

Fig. 6.6.3 First-order temperature FRF H1(ω) 

 

Regarding the function F1(ω), the pattern of the negative imaginary part of F1(ω) is the most 

important for mechanism identification. Table 6.6.1. shows that the experimental F1(ω) for 

the coarse particles exhibits one maximum and for the fine particles two maxima. Results of 

the theoretical studies show that F1(ω) for the NMD model can exhibit one or two maxima of 

-Im (F1(ω)), depending on the parameters (Chapter 5, Section 5.4.3). The comparison given 

in Table 6.6.1 shows that, according to the function F1(ω), the NMD could be considered as 

governing mechanism for both particle diameters. However, the unique feature of the NMD 

mechanism, the distinct minimum followed by a distinct maximum of the phase of F2(ω,ω), 
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is experimentally observed only for the coarse particles, while for the fine particles only a 

weak minimum of the phase F2(ω,ω) is present (Table 6.6.2). Inspection of Table 6.6.2 

shows that all characteristics of the experimental F2(ω,ω) for the coarse particles coincide 

with those predicted by the NMD model. This result is very important since it is the first 

confirmation that all characteristic features of F2(ω,ω) can be experimentally observed. 

Table 6.6.3 shows that the experimental temperature FRFs H1(ω) for the coarse and fine 

particles have significantly different patterns. For the coarse particles the real part of H1(ω) 

has a maximum and the imaginary part has a maximum followed by a weak minimum. These 

patterns agree with those of the theoretical H1(ω) function for the NMD model. However, for 

the fine particles two maxima of the real part and a maximum followed by an inflection point 

and a deep minimum of the imaginary part of H1(ω) is observed. Such  patterns of H1(ω) 

were reported by Bourdin et al. (1996) for the case of nonisothermal macropore diffusion 

with the significant surface barrier.  

In summary, since all the characteristic features of the experimentally obtained functions, 

F1(ω), F2(ω,ω) and H1(ω) for the coarse particles are in accordance with the corresponding 

theoretical FRFs for the NMD model, NMD is recognized as the governing mechanism for 

the coarse particles. On the other hand, for the case of the fine particles, only the 

experimental F1(ω) is in accordance with theoretical one for NMD, while F2(ω,ω) and H1(ω) 

are not in accordance with the corresponding theoretical FRFs neither for NMD model nor 

for the nonisothermal micropore diffusion (Petkovska and Petkovska, 2003). Taking into 

account that with decrease of the particle radius, the surface barrier and micropore diffusion 

become more pronounced, the derivation of the second-order FRFs for nonisothermal 

macropore diffusion with surface barrier and nonisothermal micropore-macropore diffusion 

(and other possible complex mechanisms) would be needed for identification of the kinetic 

mechanism.  

Furthermore, in the case of the fine particles the shape of the particles is not strictly spherical 

and there is a certain size distribution of the particles, which might cause the deviation of the 

experimental results from the model predictions. Apart from that, the shifting of the 

macropore diffusion time constant (maximum of the phase of F2(ω,ω)) towards higher 

frequencies (where the results are less accurate) with decrease in the particle diameter may 

cause difficulties in identification of the kinetic mechanism. 
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6.7  Estimation of the model parameters 

 

6.7.1 Equilibrium parameters 

 

Estimation of the model parameters is the last step in the application of NFR method. It is 

based on the experimental FRFs and theoretical FRFs of the identified model. Since NMD is 

recognized as the governing mechanism for the coarse particles, the equilibrium and kinetic 

parameters are estimated according to the methodology proposed in Section 5.5. The 

equilibrium parameters, i.e. the first and second order derivatives of the adsorption isotherm 

are determined from the low-frequency asymptotic characteristic of F1(ω) and F2(ω,ω) : 
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It should be noted that the obtained derivatives are actually effective values, which defines 

changes of the overall concentration in the particle with respect to the pressure. The 

comparison of these derivatives with the values based on the equilibrium relation obtained 

from gravimetric measurements (eq.6.2.1) is given in Table 6.7.1. The relative error of 

several percent may be caused with the fact that the asymptotic behavior at the low frequency 

end was not reached within the frequency range used in the experiments. It can be expected 

that these errors would be reduced by performing experiments at lower frequencies.  

 

Table 6.7.1 Comparison of the first and second derivatives of the adsorption isotherms obtained from 

the NFR and gravimetric measurements 

 NFR method Gravimetric 

measurements  (eq.6.2.1) 
Rel. error, % 

PsdP

dQ
(mol/m

3
Pa) 0.124 0.127 3.1 

Ps
dP

Qd
2

2

2

1
(mol/m

3
Pa

2
) 4.68·10-5 5.06·10-5

 7.5 
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6.7.2 Diffusion coefficient 

 

The diffusion coefficient, Dp, is estimated from the frequency at which the phase of 

experimental F2(ω,ω) has the maximum, using the relation 6.13D  (Section 5.5.1). The 

phase of F2(ω,ω) for the coarse particles is presented in Fig.6.5.6b and the maximum lies at 

ω=0.18 rad/s. The corresponding diffusion time constant is τD=75.5 s and the diffusion 

coefficient Dp is calculated from the following equation:  

D

p

eR
D






2

          (6.7.3) 

where the parameter e* is defined as: 
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and has a value  5.5·10-6
 m

2
/s. Taking into account the dominant pore diameter of 250 nm 

(Table 6.2.1) and the mean free path of CO2 at 2 kPa and 298 K of 2750 nm, the value of 

Knudsen number (Kn=11) indicates that the system at given conditions is in Knudsen regime 

of diffusion. The calculated effective diffusion coefficient  /pKneff DD  (DKn - Knudsen 

diffusivity, İp =0.35 and τ - tortuosity factor typically ≈3 for zeolites) is 3.49·10-6 
m

2
/s, which 

is very close to the experimentally obtained Dp. Comparison of the diffusion coefficient 

obtained from the NFR method with the literature values for CO2 on zeolite 5A obtained with 

other techniques, is given in Table 6.7.2,  and shows good agreement. 

 

Table 6.7.2 Comparison of the diffusion coefficient with literature values 

 Dp (m
2
/s) technique adsorbat/adsorbent conditions 

This work 5.5·10-6
 NFR CO2- zeolite 5A  Ts=25°C,   Ps=2kPa 

Onyestyak et al. 

(1996) 

4.7·10-7
 FR CO2- zeolite 5A Ts =150 °C  

Ps =0.133 kPa 

Sargent and 

Whitford (1971) 

1·10-6
 tracer 

(
14

CO2) 

CO2- zeolite 5A Ts =25 °C    

Ps = 101 kPa 
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6.7.3 Heat transfer coefficient 

 

The heat transfer coefficient, h, is estimated from the frequency at which the imaginary part 

of the experimental function H1(ω)/F1(ω) has a maximum, using the equation 1h

(Section 5.5.1). The function H1(ω)/F1(ω) for the coarse particles is presented in Fig. 6.7.1, 

as the real and imaginary part. The imaginary part has the maximum at ω=0.0126 rad/s (Fig. 

6.7.1), which corresponds to τh=79 s. The heat transfer coefficient is calculated from the 

following equation: 

h

pspp cR
h




3

)1( 
 =2.56 W/m

2
K        (6.7.5) 

which is in the range of typical values for free convection (up to 10 W/m
2
K).  

6.7.4 Heat of adsorption 

 

The heat of adsorption, (-∆H), is estimated from the high-frequency asymptote of the real 

part of H1(ω)/F1(ω) (Section 5.5.3), which represents the modified heat of adsorption, ξ*
, and 

from Fig.6.7.1 it is: 




 


)))(/)((Re(lim 11 FH =0.05 Km

3
/mol      (6.7.6) 

 

Fig. 6.7.1 Real and imaginary part of H1(ω)/F1(ω) 

 

The heat of adsorption is than calculated as follows: 

pspcH   )( =29.5 kJ/mol       (6.7.7) 
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The obtained value is in good agreement with heats of adsorption for CO2/zeolite 5A 

reported by Tlili et al.(2009) (30 kJ/mol) and Garces et al. (2013) (40 kJ/mol). 

 

Summary 

The new apparatus, described in this chapter, was succesfully used for validation of the NFR 

method for investigation of the gas adsorption. Satisfactorily good approximation of 

sinusoidal volume change was achieved by using the servomotor with linear actuator and 

feedback control of its position for driving the bellows. Measurements of the pressure 

responses by highly accurate Baratron pressure transducer provided determination of the 

experimental first- and second-order F-functions. Infrared measurements of the particle 

temperature provided determination of the first order H-function. Gas temperature 

measurements enable estimation whether the gas phase can be regarded as isothermal or not. 

For the investigated case, very small changes of the gas temperature were observed, so this 

temperature was regarded as constant. Based on the obtained FRFs the following parameters 

of the investigated system CO2/zeolite 5A particles have been estimated: diffusion 

coefficient, heat transfer coefficient, first and second-order derivatives of the adsorption 

isotherm and the heat of adsorption. This results confirm that the NFR method is applicable 

regarding characterization of gas-solid adsorption and that it is advantageous compared to the 

classical FR method.  

The results presented in this chapter have been published in the following article: 

D. Brzić, M. Petkovska, Nonlinear frequency response measurements of gas adsorption equilibrium and 

kinetics: New apparatus and experimental verification, Chem. Eng. Sci 132 (2015), 9-21 
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7. CONCLUSIONS 

 

 
The objective of this work was to explore the applicability of the concept of Nonlinear 

Frequency Response (NFR) for identification of the kinetic mechanism of adsorption of pure 

gases, since the commonly used linear FR method suffers from significant limitations. The 

NFR method represents an extension of the linear FR to the nonlinear range, by applying the 

concept of higher-order FRFs. The basic principle of the NFR method is determination of the 

experimental higher-order FRFs and their comparison with theoretical ones for different 

kinetic models. In this work FRFs up to the second order have been considered.  

The most challenging issues regarding the application of the NFR approach for investigation 

of gas adsorption in the closed system were: 1) generation of the mechanical sine wave with 

variable amplitude, needed as the input excitation 2) accurate measurement of the second 

harmonic of the pressure response (which is typically low for weakly nonlinear adsorption 

systems) 3) lack of the theoretical higher-order FRFs for complex kinetic mechanisms. 

The objective of this thesis was realized through three main parts of investigation: 1) 

applicability study based on numerical simulations of NFRs of a batch adsorber 2) design, 

constructing and evaluating of the experimental set-up for NFR measurements and 3) 

derivation of the theoretical FRFs up to the second order for nonisothermal adsorption 

controlled by macropore diffusion for spherical geometry. The most important results 

obtained from that investigations are summarized in the following text. 

A) The applicability of the NFR concept for studying gas adsorption was evaluated by 

calculation of the first- and second-order particle FRFs (F1(ω) and F2(ω,ω)), using the 

simulated NFRs of a batch adsorption system as "quasi experimental" data. The simulation 

results have shown how the following parameters: mass of adsorbent, input amplitudes, 

frequency range and sampling rate, affect the possibility and accuracy of estimation of F1(ω) 

and F2(ω,ω). Based on those results, the criteria which defines the optimal values of the 

mentioned parameters for efficient NFR experiments, have been ascertained. The values of 

those parameters can be determined for any adsorption system from several preliminary step 

response experiments according to the procedure developed in this work and summarized in 

a guideline given in Section 4.3.5. The input amplitude was found to be a critical issue for 

obtaining an accurate second-order FRF. The results have shown that input amplitude for 
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which the degree of nonlinearity (expressed as the ratio of the second and the first harmonic 

in the output) is about 3%, is the optimal for estimation of the second-order FRF. For the 

investigated system (CO2/zeolite 5A) the optimal amplitude was 8-10 % of the steady-state 

volume. Since the satisfactory accuracy of F1(ω) and F2(ω,ω) was obtained from "quasi 

experimental" NFRs for optimal parameters, it was concluded that constructing an 

experimental set-up is justified . 

B) By deriving the first and second-order FRFs for the nonisothermal macropore diffusion 

(NMD) model, the existing library of theoretical FRFs have been extended. The NMD model 

under assumption of constant gas temperature is characterized by two series of FRFs (the F-

functions, which relate the adsorbed quantity to the pressure and the H-functions, which 

relate the particle temperature to the pressure). For the first-order FRFs the analytical 

expressions were obtained, while the second order FRFs were obtained numerically. The 

analysis of the obtained FRFs, performed by simulations for different values of the non-

isothermality coefficient (į) and the ratio of the diffusional and heat transfer time constant 

(tD/th), have shown the following: 

 The second-order FRF (F2(ω,ω)) exhibits specific bimodal pattern (a minimum 

followed by a maximum of the phase of F2(ω,ω)), which allows reliable recognition 

of NMD mechanism 

 The diffusion coefficient Dp can be estimated from the frequency at which the phase 

of the experimental F2(ω,ω) has a maximum, using the relation ω·tD=13.6 

 The heat transfer coefficient h can be obtained from the frequency at which the ratio 

H1(ω)/F1(ω) has a maximum, using the relation ω·th=1 

 The first- and second-order concentration derivatives of the adsorption isotherm can 

be obtained from the low-frequency asymptotes of F1(ω) and F2(ω,ω), respectively 

 The heat of adsorption (-∆H) can be obtained from the high-frequency asymptote of 

the ratio H1(ω)/F1(ω).  

The above results clearly show, that for estimation of both kinetic constants of the complex 

NMD model (tD and th), three FRFs have to be determined: F1(ω), F2(ω,ω) and H1(ω). 

C) The new apparatus for validation and exploiting of the NFR concept was constructed. The 

operating principle of the set up is modulation of the asdorption cell volume, around the 

steady-state value, as a sine wave of different amplitudes and frequencies and measurements 
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of the pressure, gas temperature and particle temperature responses with high accuracy and 

resolution. The sinusoidal modulations of the volume with amplitudes up to 10 % of the 

steady-state volume and frequencies up to 1 Hz were feasible. The apparatus was proven as 

capable of producing representative NFRs and their reliable measurements. Based on the 

measured NFRs for the CO2/zeolite 5A system, the particle FRFs F1(ω), F2(ω,ω) and H1(ω) 

were obtained. It is the first evidence of obtaining the experimental second-order FRF which 

describes gas adsorption. Since the patterns of all those functions matched the theoretical 

ones for the NMD model, this model was accepted. The kinetic parameters: diffusion 

coefficient and heat transfer coefficient, the equilibrium parameters: the first- and second-

order derivatives of the adsorption isotherm, as well as the heat of adsorption, were 

estimated. A conclusion follows that the investigated NFR method is applicable for 

identification of the kinetic mechanism and estimation of equilibrium and kinetic data of gas 

adsorption systems.  

The main advantages of the NFR method compared to the linear FR are: 1) reliability of 

identification of the kinetic model based on the pattern of second-order FRF, 2) direct 

estimation of nonlinear model parameters based on the characteristics of the FRFs 3) 

estimation of the kinetic and equilibrium parameters from the same experimental data. 

The main drawbacks of the NFR approach are related to experiments at very low and very 

high frequencies. At very low frequencies the experiments last very long and the initial 

steady-state conditions can be changed. At very high frequencies, the period of modulation is 

much shorter than the diffusion time constant and therefore the measured pressure signal 

does not differ much from the blank experiments. As a consequence, the errors due to the 

calculations with small numbers can arise. Apart of this, the frequencies higher than 1 Hz are 

not technically feasible by mechanical means.   

Regarding further investigations on this topic, the following issues can be highlighted: 1) 

Improvement of the approximation of the sinusoidal volume change 2) Possibility of direct 

measurements of the adsorbed quantity instead of pressure 3) Extension of the frequency 

range above 1 Hz and 4) Derivation of the theoretical higher-order  FRFs for complex kinetic 

models. 
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The scientific importance of this work lies in the fact that it represents the first evidence of 

the successful investigation of gas adsorption in the nonlinear range, which opens significant 

new perspectives in this field. 
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