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Thesis Adviser: Dr Nikola Burić, Research Professor at the Institute

of Physics Zemun, Belgrade
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2. Reviewer: Dr Milan Knežević, Professor at the Faculty of Physics,

Belgrade
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Abstract

Title of dissertation: Collective Dynamics and Self-organization

of Stochastic Neuronal Systems Influenced

by Synaptic Time Delay

by Igor Franović

The focus in the present thesis lies with the synchronization me-

diated self-organization phenomena in populations of globally

coupled stochastic excitable or bursting units subjected to inter-

action delays. Excitable local dynamics follows the Fitzhugh-

Nagumo model, canonical for type II excitability, whereas the

bursting units are represented by the Hindmarsh-Rose model.

The study comprises two complementary lines of research. One

is aimed at extending the analogy regarding the complex forms

of collective behavior exhibited by the assemblies of coupled

nonlinear autonomous oscillators and those made up of excitable

units. Within the second line of research, our main contribution

consists in developing the mean-field based models for the col-

lective dynamics of the assemblies of excitable or bursting units,

whose microscopic dynamics is governed by large sets of cou-

pled stochastic delay-differential equations. This is instigated by

the notion that any population displaying a collective mode may

be treated as macroscopic oscillator. While the framework itself

rests on implementing the cumulant approach complemented by

the Gaussian approximation, one of the principal gains presents

the ability to recast the problem of (stochastic) bifurcations af-

fecting the stability of the stationary state of the exact system



in terms of flows containing only several deterministic delay-

differential equations, where noise intensity may act as a bifur-

cation parameter.

For the populations of excitable units, the two mean-field as-

sumptions, the quasi-independence and the Gaussian one, are

adapted to reflect the strong time-scale separation between the

fast and slow motions, as well as the influence of noise. The

conditions for the assumptions’ validity are shown to involve

matching between the qualitative features of the local and global

dynamics, rather than being stated as common requirements for

the small noise intensity and small coupling strengths. One also

demonstrates that bistability in the dynamics of the mean-field

model may indicate in a self-consistent fashion the parameter

domains where the mean-field assumptions fail. Apart from sin-

gle populations of excitable or bursting units, the mean-field ap-

proach has also been applied in case of two coupled populations,

each comprised of excitable units, whereby the nonlinear inter-

action terms depend on the respective global variables. The latter

setup involves noise acting within both the assemblies, and two

types of coupling delays, the intra- and the inter-population ones.

In all the considered instances, the mean-field model has been

shown to qualitatively predict the parameter domains where the

stationary state is stable, the scenarios for the onset and the time-

delay induced suppression of the collective mode, as well as the

parameter ranges admitting bistability between the equilibrium

and the oscillatory state.

Regarding the complex forms of self-organization, we report on

the novel phenomenon of spontaneous cluster formation in ho-

mogeneous assemblies of excitable units, which arises due to

an interplay of the excitability feature and the co-effect of noise



and interaction delay. The phenomenon comprises the asymp-

totically stable two-cluster partitions, with units firmly bound to

their subsets, and the dynamical three-cluster states, where the

units may exchange subsets. The observed resonant-like behav-

ior is explained in terms of competition between the collective

effects occurring on the noise- and delay-dependent characteris-

tic time scales. We also discuss the implications of the somewhat

unexpected result, suggesting that the onset of the two-cluster

states coincides with the global bifurcation of the corresponding

mean-field model. Note that the content of the thesis is based on

the results published in four research papers, including I. Fra-

nović, K. Todorović, N. Vasović, N. Burić, Physical Review Let-

ters 108, 094101 (2012); I. Franović, K. Todorović, N. Vasović,

N. Burić, Physical Review E 87, 012922 (2013); I. Franović, K.

Todorović, N. Vasović, N. Burić, CHAOS 22, 033147 (2012);

I. Franović, K. Todorović, N. Vasović, N. Burić, CHAOS 21,

033109 (2011).

key words: excitable dynamics, noise, interaction delays, syn-

chronization, collective mode, cluster states, mean-field model,

Gaussian approximation, bifurcation analysis, stochastic bifur-

cation

scientific field: Physics

specific scientific field: Condensed matter physics and statisti-
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Chapter 1

Introduction

1.1 Synchronization and the collective mode

Populations of coupled oscillators provide the elementary dynamical paradigm

for modeling the collective motion in a variety of fields, ranging from

physics, chemistry and biology to social sciences [1–6]. Such a frame-

work has proven indispensable for understanding the onset and adjustment

of coherent rhythms related to Josephson junction circuits [7], laser arrays

[8] and electrochemical reactions [9], as well as the mechanisms regulat-

ing heartbeat [10] and circadian cycles [11], or underlying the normal and

pathological patterns of brain activity [12–14] on one hand and even some

forms of human social behavior [15, 16] on the other. The comprehen-

sive analysis of the universal elements behind such phenomena requires

one to combine and adapt the different concepts from the theory of non-

linear dynamics, statistical physics and pattern formation. All the men-

tioned systems, irrespective of the involved time scales and the degree of

complexity, share the common tendency toward collective synchronization

[17–19], facilitated by interaction between their constituents. Different

forms of synchronization turn out to be the fundamental mechanism behind

self-organization and structure formation in systems of coupled nonlinear

oscillators [1, 3, 5].

Synchronization on a macroscopic scale refers to mutual adjustment of

1



1. Introduction

rhythms between a large number or all units in the assembly, which gives

rise to a collective mode, whose frequency matches that of the synchro-

nized majority [2]. Note that a system may admit one or perhaps several

collective modes, whereby the larger is the synchronized group, the higher

is the amplitude of the collective mode. Analytical approaches to local and

global periodic behavior in systems of autonomous (self-sustained) non-

linear oscillators heavily relies on the notion of phase [17, 20, 21]. Having

properly defined the phase variable, the dynamics of any single unit may

be recast in terms of the simplified, one-dimensional description, which

allows one to characterize all the main aspects of oscillations, such as reg-

ularity or sensitivity to external forcing [22, 23].

On many occasions, sufficient insight into collective phenomena may

be gained by assuming that the units are coupled in the all-to-all fashion

(global coupling) [1, 3, 6], rendering each oscillator as being driven by

the mean-field generated by all the members of the assembly. In case of

weak interactions, population activity can be handled within the frame-

work of phase approximation. For the canonical setup involving globally

coupled Kuramoto phase oscillators [20, 24], one may derive the equations

for the global variable (order parameter), explicitly demonstrating that the

transition from asynchrony, characterized by the zero mean-field, to syn-

chronous regime under increasing coupling strength has the properties of

nonequilibrium phase transition. In particular, if the units are identical

or their natural frequencies follow a unimodal distribution, the mean-field

grows smoothly with supercritical coupling strength, indicating a second-

order transition [1, 6, 24, 25]. Nonetheless, if the distribution of natural

frequencies is uniform, the non-zero mean-field appears by a jump, analo-

gous to a first-order transition [26].

Apart from the onset and suppression of the collective mode [1, 27], the

most frequently addressed issues include the effects of the external forcing

[3, 28] or feedback [29], as well as the interaction between the different

2



1. Introduction

collective modes [30–32]. Added complexity of individual units’ dynamics

and/or coupling function may further result in a number of interesting phe-

nomena, such as chaos in the mean-field [33, 34], multistability [2], clus-

tering 1 [35–37] as well as splay-states [38, 39]. These well known forms

of behavior in assemblies of coupled phase oscillators have recently been

complemented by the novel highly non-trivial phenomena of self organiza-

tion, namely the self-organized quasiperiodicity [2, 40–42] and the chimera

states [43–48], both of which may be cast as partially synchronous states.

The former refers to a scenario where the mean-field is unable to entrain

the single units, but they still remain coherent, attaining a frequency incom-

mensurate to that of the mean-field. This is facilitated by the non-linear

global coupling, that changes its attractive/repulsive character depending

on the mean-field: for a weak (strong) mean-field, the coupling supports in-

phase (antiphase) synchronization. Self-organized quasiperiodicity arises

in an intermediate case, having the interaction tuned exactly at the bor-

der between attraction and repulsion [40, 41]. On the other hand, chimera

states involve a symmetry breaking scenario, where a spatially homoge-

neous population of identical coupled oscillators displays a self-organized

pattern comprised of regions with synchronous and asynchronous motion.

The most important ingredient for such patterns to emerge is the non-local

form of connectivity between the units, whose characteristic range is suf-

ficiently distinct from both the global and the local next-nearest neighbor

coupling [47]. For the general class of systems comprised of coupled phase

oscillators, the issues regarding the above collective states, including the

onset, dynamical features, as well as the transitions between them, are sus-

ceptible to analytical treatment. The appropriate framework is provided

by the Watanabe-Strogatz theory [49], complemented by the Ott-Antonsen

Ansatz [25, 50]. The latter allows one to derive closed equations for the
1Cluster synchronization refers to a phenomenon where subsets of network nodes display isochronous

synchronization internally, but synchronization between the subsets either does not occur, or is of non-
isochronous type, with the latter most often involving a phase lag. [21, 35].

3



1. Introduction

amplitude and the frequency of the mean-field, obtaining the correspond-

ing stationary solutions.

1.2 Noise and interaction delay

In real-world applications, the evolution of macroscopic systems is natu-

rally attended by noise and interaction delays, whose particular or com-

bined effects may substantially alter the ”bare” dynamics, conforming to

the noise- and delay-free case. On the modeling side, one should note sev-

eral recent studies suggesting that coexistence of noise and interaction de-

lays is ubiquitous in nature rather than rare [51, 52], with the most promi-

nent examples referring to biophysiological systems [53] and the laser dy-

namics in optical cavities [54]. While introducing noise provides a stan-

dard paradigm to account for the small random perturbations due to fluc-

tuations of the internal origin or variability in the embedding environment

[55, 56], the interaction delays usually arise for the finite signal transmis-

sion velocities along the appropriate communication channels, though the

time-lag may also be a corollary of finite processing times, causing latency

in the system’s responses [57–59].

Focussing on the impact of time delay in systems of globally coupled

phase oscillators [60–62], the major effect presents the ability to control,

viz. suppress or enhance the collective mode by feeding the delayed mean-

field back to the assembly [1, 29, 63]. This effectively introduces another

characteristic time scale to the system dynamics. What makes the delayed

feedback mechanism generic is the fact that it does not depend on the fea-

tures of the local dynamics, nor does it affect its corresponding frequency,

but it only acts in direction of improving or spoiling the coherence between

the single oscillators [1]. Among the less important effects of time delay,

one may count in the roles in introducing different forms of multistability,

as well as in facilitating the transition to chaos [64] or inducing synchrony

4



1. Introduction

in systems of coupled chaotic elements [65, 66].

Regarding the isolated effects of noise, a clear distinction should be

made between the scenarios where oscillations are noise-induced [56, 67]

and only noise-perturbed [68]. In the latter instance, it is well known that

rather than being detrimental, noise can actually prove constructive with

respect to improving regularity of the system’s behavior. This particularly

refers to the interplay of noise and nonlinearity, whose combined effects

have been seen to bring order into the unperturbed irregular dynamics [69].

Therefore, instead of looking into the ways of minimizing the influence of

noise, the proper strategy consists in finding the parameter domains where

the impact of noise is optimal. Within this context, one should mention

the phenomena of noise-induced order in chaotic dynamics, then the en-

hanced synchronization by external noise [55] and most importantly, the

stochastic resonance feature1 [70–72]. The latter refers to the existence of

a certain intermediate noise intensity at which the response of a system to a

weak subthreshold periodic signal becomes optimal. In effect, this may be

interpreted as if the weak signal changes the energetically most favorable

state of the system, with the hopping to such state, elicited by noise, occur-

ring precisely when its rate matches the one provided by the frequency of

forcing [67].

On the modeling side, two types of stochastic models may loosely be

distinguished when their dynamics is compared to their deterministic coun-

terparts [67]:

i) the models where noise acts inhomogeneously in different regions of

phase space, such that it dampens or amplifies certain processes and

events; this does not result in the introduction of novel characteristic

time-scales, but in modification and noise-dependence of the existing

ones;
1The discovery of stochastic resonance in 1981 marks the turning point in the perception of the role of

noise in nonlinear systems, changing the earlier perspective strictly relating noise and disorder.

5



1. Introduction

ii) models associated with presence of unstable barriers, such as thresh-

olds, separatrices and saddles in the system dynamics; with noise com-

ing into play, such barriers may be exceeded with finite probability.

At variance with type i), the stochastic models of type ii) attain a novel

characteristic time-scale, given that noise evokes processes absent in the

deterministic case.

The above physical picture is significantly modified in the case of noise-

induced oscillations, which brings us closer to the main topic of this thesis.

For the most part, the focus here lies with the synchronization mediated

self-organization phenomena in fully connected networks of excitable units

subjected to noise and coupling delays. Much less space is dedicated to

analogous phenomena in networks of bursting units. The common feature

for both forms of local dynamics is that the proper phase description is

unavailable, though certain phase-like variables, such as the effective phase

[4, 73, 74] or protophase, may yet be defined.

1.3 Excitable dynamics

Excitable dynamics constitutes a specific type of motion found in systems

whose equilibrium is poised close to a bifurcation toward sustained peri-

odic activity [67, 75]. In a nutshell, excitability refers to a form of be-

havior where a perturbed system may generate small-amplitude linear or

large-amplitude, highly-nonlinear types of responses, this depending sen-

sitively on the magnitude of the stimulus. In particular, if perturbation is

interpreted as a setting of initial conditions, it follows that two nearby con-

ditions may evoke qualitatively distinct excitations: after a linear response,

the system promptly settles back to equilibrium, whereas for the nonlin-

ear one, referred to as spike, the system’s representative point performs

a stereotypical large excursion in phase space before relaxing to equilib-

rium. Note that the boundary separating the two pertaining sets of initial

6



1. Introduction

conditions in phase space may be hard or soft [67, 75, 76], which is re-

flected in the threshold-like or smooth crossover between the small- and

large-amplitude responses, respectively. Arguably the best example of an

excitable system is provided by a neuron cell membrane [75, 76], where

a stimulus may either set off post-synaptic potentials, analogous to small-

amplitude graded responses, or may elicit action potentials (spikes), with

the outcome contingent on the stimulus strength.

The basic paradigm behind excitable dynamics is built on the sharp

time-scale separation involving the fast (excitatory, activator) variable, cou-

pled to a slow (recovery, inhibitory) variable, whereby the latter is respon-

sible for the relaxation stage following the excitation [77–80]. In terms of

the fast-slow decomposition, a single oscillation is made up of slow mo-

tion, confined to the slow manifold, and fast motion, consisting in rapid

jumps between different pieces of the slow manifold. All excitable sys-

tems possess a unique stable equilibrium, but may further visit two unsta-

ble states, namely the excited (firing) and the refractory (recovery) one.

The latter two are unstable in a sense that a system escapes from them

even in the perturbation-free case. In other words, in the absence of exter-

nal perturbations, an excitable system resides in equilibrium (rest state). If

a weak perturbation kicks in, the system fluctuates in the vicinity of fixed

point for a short while, then regaining the steady state. On the other hand,

being adequately perturbed, an excitable unit engages in a large-amplitude

excursion, passing through the firing and rest states before equilibrium is

reinstated. Once a spike has been elicited, a certain amount of time, known

as refractory time, has to pass before another excitation is possible.

One should be careful not to confound excitability with bistability, given

that the former is not facilitated by coexistence between a fixed point and

a limit cycle. As iterated above, all excitable systems are monostable, hav-

ing a stable equilibrium as the sole attractor, whereas the existence of orbits

corresponding to large-amplitude responses is tied to the structure of the
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respective systems’ phase spaces, especially their geometry in the vicinity

of equilibrium. The latter point also indicates that excitability per se is an

intrinsic feature of the system, rendering its manifestation completely in-

dependent on the deterministic/stochastic character of the stimuli. Under

deterministic scenario, the large-amplitude responses may be envisioned as

a corollary of the system traversing states far from equilibrium [67]. Re-

garding the stochastic effects, one readily realizes how noise may act as an

excitability amplifier [75]. This refers to the point that excitable systems

are capable of generating sustained oscillations under permanent pertur-

bation, whereby a sequence of excitations makes up a spike (pulse) train

[67]. On the surface, the ensuing noise-induced oscillations may even ap-

pear quite regular, so that their profile becomes virtually indistinguishable

from what is commonly seen in relaxation oscillators. However, oscil-

lations evoked in excitable systems are conceptually more intricate than

those found in self-sustained oscillators, be it the phase or the relaxation

ones. Regarding the potential analytical approaches, the key difference lies

in the ability to derive the proper phase description. The latter provides the

means for implementing the phase resetting framework, which allows one

to gain insight into the system’s responses to external stimuli or its syn-

chronizability with other systems [22, 81]. In this context, for autonomous

oscillators there is a basic phase description, which can easily be modi-

fied to account for the effects of noise perturbatively [73]. On the other

hand, the phase variable cannot be attributed at all to excitable systems,

essentially because they reside in equilibrium [4].

1.3.1 Classification of excitable systems

As already mentioned, by the theory of nonlinear dynamics, excitable be-

havior arises because the deterministic system lies just below the bifur-

cation threshold between the stationary state and the oscillatory motion

[67, 77, 78, 80]. In the subthreshold regime, any oscillation is merely a

8
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transient triggered by the sufficiently strong perturbation that temporar-

ily kicks the system into a supercritical state. According to the generic

mechanism by which the bifurcation toward the limit cycle takes place,

all excitable systems may be cast into two classes [67, 75]. The type I ex-

citable systems are poised near the saddle-node-on-invariant circle bifurca-

tion. Then, in the vicinity of the bifurcation point, the ensuing oscillations

can attain an arbitrary low frequency due to creation of a homoclinic orbit.

On the other hand, at the critical value of the bifurcation parameter, the

type II excitable systems would undergo a supercritical Hopf bifurcation,

meaning that the oscillation frequency near the critical threshold remains

finite. For type II excitability, the boundary between perturbations yielding

small- or large-amplitude oscillations is less clear, so that the transition be-

tween the two appears continuous. Type I excitability class is usually rep-

resented by the Morris-Lecar model [82], whereas the Fitzhugh-Nagumo

model [83, 84] is considered canonical for type II class. Both models are

two-dimensional and derive from the field of neuroscience. There are also

simpler, one-dimensional models of excitability, including the integrate-

and-fire model [85] and the noisy Adler equation [67]. Throughout the

thesis, we are concerned with the systems composed of type II stochas-

tic excitable units with delayed couplings, with each unit following the

Fitzhugh-Nagumo model.

1.3.2 Excitability and noise: resonance phenomena in single unit dy-
namics

Excitable systems influenced by noise are encountered in a wide variety of

areas, including chemical reactions, semiconductors [86], lasers [87, 88],

combustion and climate dynamics [67], but the most prominent examples

come from biophysiological context, where they are known to underlie the

behavior of cardiac [10, 89, 90] and neuronal tissues [4, 75, 91]. Sources of

noise in excitable systems are just as diverse as the origins of excitability

9
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itself [67]. In case of chemical reactions, noise is related to finite-size

effects, whereas in laser dynamics, the quantum fluctuations provide the

main physical basis for noise. Nonetheless, in neuronal systems, there

are multiple coexisting sources of noise, including the random synaptic

input due to background neuronal activity on one hand, and the stochastic

kinetics of the ion-gating channels as well as the quasi-random synaptic

release of neurotransmitters on the other.

For understanding the impact of noise on excitable systems, a point to

single out is that noise affects the excitation and refractory stages of oscil-

lation in a quite different fashion. The latter is reflected in the means and

variances of the underlying characteristic time-scales [51, 55, 67]. In par-

ticular, the activation time, required for the phase point to escape from the

equilibrium, is noise-controlled, with the excitation events approximately

obeying the Poisson statistics [67, 76–78]. On the other hand, the excur-

sion time, which describes the decay of the unstable excited and refractory

states, is mostly governed by the deterministic dynamics, which justifies

the term ”stereotypical oscillation” in the definition of excitability. While

the mean excursion time varies weakly with noise, the dependence of its

variance becomes apparent at large noise intensities.

What has been stated so far implies that noise-induced oscillations can

be made coherent by the appropriate (optimal) noise intensity. For a single

excitable unit, there are in fact two distinct scenarios for such resonance

phenomena, namely the coherence resonance (CR) [55, 77] and the self-

induced stochastic resonance (SISR) [78, 79]. To a certain extent, one may

compare them to stochastic resonance in autonomous oscillators, though

they take place in the absence of external forcing. CR explicitly relies on

different dependencies of means and variations of the activation and ex-

cursion times on noise. The resonance is achieved by a tradeoff between

two different effects: for one, noise should be large enough to make the

activation time considerably smaller than the excursion time, while on the

10
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other hand, noise intensity should not be overly large, such that the fluctu-

ations of the excursion time remain small [55, 67]. The mechanism behind

SISR is considerably more intricate, and rests on keeping an excitable unit

frustrated, such that its representative point is prevented from reaching the

vicinity of equilibrium. Put succinctly, differences between CR and SISR

concern three important aspects [77]:

i) the limit cycle within CR is the precursor of the deterministic one,

whereas the limit cycle in SISR has no deterministic counterpart;

ii) in CR, the bifurcation parameter has to be fine-tuned to close vicinity

of the critical threshold, whereas in SISR one does not require fine

tuning;

iii) in SISR, coherence of the oscillations is sensitive both to noise and the

separation ratio between the fast and slow characteristic time-scales;

noise can also be used as a control parameter to make the coherence

arbitrarily large.

Note that the arguments from this discussion will partly be revisited when

drawing an analogy to local mechanism behind clustering in Chapter 5.

1.3.3 Noise-induced regimes of collective behavior

Due to rapid expansion in recent years, the study of collective dynamics

in excitable media has come to be appreciated as a distinct field, where

the phenomena are characterized by specific modes of behavior in their

own right. Still, comparing the self-sustained and noise-excited oscilla-

tions, several analogies may be drawn. In particular, the latter may also get

synchronized when coupled into an assembly of excitable units [92, 93],

or may be controlled by the time-delayed feedback [63]. Important roles

of noise in spatially extended excitable media consist in facilitating and

enhancing periodic signal transmission and wave propagation, as well as

11
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promoting synchronization and influencing the pattern formation [67, 94].

Nevertheless, the most substantial effect related to noise in excitable media

is that it may enact a control parameter, such that its increase causes the

system to switch between the three generic regimes [95]. The latter include

i) the subthreshold motion at low noise intensities, where the firing of

individual units is sporadic and incoherent;

ii) coherent regime at intermediate noise, where the system displays the

collective mode due to approximate synchronization between the com-

parably high-frequency, regular spiking activities of single units;

iii) chaotic collective state at large noise intensities, where the single units

fire at high frequencies, but their action remains incoherent.

In this thesis, it is argued that taking into account the effects of interac-

tion delays profoundly alters the above physical picture. In particular, it

is demonstrated that the interplay of excitability, noise and delays in com-

pletely homogeneous networks leads to formation of cluster states, a com-

plex form of self-organization which exhibits the features of resonance

phenomena.

1.4 Background on bursting dynamics

As indicated earlier, a much smaller segment of the thesis is concerned

with the study of the self-organization phenomena in networks of globally

coupled bursting units subjected to noise and coupling delays. Bursting

activity is typically found in biophysiological context [75], with the ex-

amples including the neuronal systems [96, 97], populations of pancreatic

β-cells or the circuits responsible for rhythmogenesis, such as the central

pattern generators [98].

Bursting is a form of complex oscillation, where the active phases, com-

prised of series of closely spaced spikes, are interspersed with periods of

12
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quiescence, viz. the silent phases. Models of bursting generally involve

coaction of a fast subsystem giving rise to repetitive spiking within the ac-

tive phases, and the slow subsystem, that modulates spiking by controlling

its onset and termination. In qualitative terms, the models may be classi-

fied topologically according to the type of bifurcations the system under-

goes when passing from resting to spiking phases and vice versa. The most

widely encountered is the fold-homoclinic class, which is known for gener-

ating the square-wave bursting profiles [75]. The Hindmarsh-Rose model

[99], considered within the thesis, comes from the field of neuroscience

and is canonical for the class of square-wave bursters. One may loosely

regard it as analogous to Fitzhugh-Nagumo model, augmented with an-

other slow variable. Note that our analysis covers both the noise-perturbed

(endogenous bursters) and the noise-induced bursting activities.

As with the systems of coupled excitable units, onset of the collective

mode is related to synchronization between the local oscillations. Nev-

ertheless, the synchronization phenomena between the units engaged in

bursting activity are significantly more complex, and may take place on a

larger or a shorter time-scale. On a larger time-scale, one may encounter

burst synchronization, a manifestation of chaotic phase synchronization

[100–102], characterized by an overlap between the respective times of

triggering and cessation of active phases between the units, though the

spikes themselves may not be correlated. The phenomenon on a shorter

time-scale is referred to as spike synchronization [75], where spikes gener-

ated within the active phases of two neurons are closely matched.

1.5 Mean-field models for systems of coupled stochastic
delay-differential equations

Conceptually, given a population of coupled oscillators which exhibits a

collective mode, a pervasive idea within the theory of nonlinear dynamics
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is to treat it as a macroscopic oscillator [3]. Going a step further, the idea is

to develop a formalism that would provide a macroscopic description of the

system’s behavior, instead of the one based on the local dynamics. Such

an approach is motivated on theoretical and practical grounds, the former

of which will be discussed shortly. The practical reasons for attempting to

reduce the motion of a large system of units to that of global variables is

pretty much apparent: the computational time required to simulate an N-

size assembly of coupled oscillating units grows with N2 [103], whereas

additional demand is imposed when performing averages over different

realizations of stochastic processes.

Dynamics of nonlinear macroscopic oscillators can be studied in a fash-

ion similar to that of the single units. In particular, one may examine the

response to external stimuli by determining the collective phase-resetting

curves [21, 22, 104], analyze the enhancement or the suppression of oscil-

lations via time-delayed feedback [1, 27, 105], observe the mode entrain-

ment via external forcing [3, 25] or address the issue of mutual adjustment

between the collective modes from different assemblies [32]. As men-

tioned earlier, for populations made up of autonomous oscillators, there

are powerful phase reduction techniques, which allow one to analytically

treat the behavior of global variables, obtaining exact solutions related to

the above and more complex collective phenomena. However, this does

not apply in case of assemblies comprised of excitable units, given that

phase cannot be attributed to systems residing in equilibrium [4]. Nev-

ertheless, there are other more convenient methods that may be adapted

to capture the collective motion of populations of noise-driven oscillating

units subjected to interaction delays. In mathematical terms, dynamics

of such assemblies is represented by large systems of coupled nonlinear

stochastic delay-differential equations (SDDE), for which a systematic sta-

tistical description is still lacking. The study so far has mostly been con-

fined to determining the parameter domains admitting the stationary solu-
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tion of the system of coupled Langevin equations, implementing the step-

by-step or the moments methods [64, 106]. In case of instantaneous inter-

actions, the collective motion of stochastic systems in the thermodynamic

limit N → ∞ could also be handled within the Fokker-Planck formalism

[107, 108]. Then, the usual approach consists in applying the mean-field

and diffusion approximations to obtain the stationary probability distri-

bution [103]. The problems involving the time-dependent solutions for

probability distribution have recently been considered by performing se-

ries expansions in terms of Hermitian polynomials, such that the system’s

evolution is expressed through the dynamics of expansion coefficients. The

drawback with the Fokker-Planck formalism is that it does not provide an-

alytically tractable solutions for the setups involving time-delays, because

the SDDE-governed processes are essentially non-Markovian [64, 103].

In other words, having included the interaction delays, the stochastic pro-

cess is no longer memoryless, since the future states of the system depend

not only on the current state at moment t, but also require the knowledge

of history at time t − τ, where τ denotes the time-delay.1 A notable ex-

ception to the lack of analytical solutions for SDDE systems within the

Fokker-Planck approach presents the class of linear stochastic differential

equations with additive noise.

Instead of considering hierarchies of probability densities2, an alterna-

tive approach to describing collective motion led by a stochastic process

consists in deriving equations for the complete sets of cumulants or mo-

ments of distribution. Either of the two latter methods applies in presence
1This point is readily illustrated on the example of a single stochastic variable x(t), whose evolution

is given by some nonlinear equation that incorporates a delayed feedback. Then, one is faced with the
problem of determining the two-point joint probability distribution p[x(t), xτ], having defined xτ ≡ x(t −
τ), or equivalently, is required to calculate the so-called conditional drift term of the form ⟨xτ|x(t)⟩ =
∞∫
0

xτp(xτ|x)dxτ, where p(xτ|x) stands for the appropriate conditional probability [109, 110]. Note that if τ

is larger than the correlation time of x, a simplifying assumption of statistical independence p[x(t), xτ] =
p[x(t)]p[xτ] may be in order. Also, certain approximations are available in the limit of small time-delay.

2For the globally coupled systems, it is sufficient to consider one particle probability density given
the assumption of molecular chaos. On the other hand, considering more involved types of connectivity
patterns would require taking into account two- or higher degree-particle probability densities.
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of time-delays, but the one with cumulants is preferred because it allows

one to introduce a number of convenient approximations in a controlled

fashion [67]. Such approximations are intended as a form of closure hy-

pothesis for the set of equations guiding the evolution of cumulants. By

default, this set is unclosed due to nonlinear terms in the original SDDE

system, causing the dynamics of the lower-order cumulants to be inter-

twined with that of the higher-order ones. In this context, the most widely

applied is the Gaussian approximation [5, 67, 111, 112], by which all the

cumulants above the second order are assumed to vanish, such that the col-

lective motion is described in terms of averages and fluctuations of global

variables. Compared to the original system, the form of the ensuing mean-

field model is substantially more compact, and further involves only deter-

ministic DDEs, where noise is represented solely by its intensity [5, 67].

From the theoretical point of view, multiple gains can be drawn from

developing a mean-field description of collective motion. Apart from offer-

ing insight into the system’s behavior in the thermodynamic limit N → ∞,

it may advance understanding of the relationship between the local and

global dynamics, in particular with respect to isolating the key ingredients

of the local dynamics that affect the macroscopic phenomena. A benefit for

itself presents the point that the collective motion is described in terms of

variables with a transparent meaning, allowing one to see more clearly the

role of system parameters in shaping the global dynamics. Nevertheless,

the most valuable gain lies in the ability to trace the stochastic bifurcations

[64, 111, 113] of the exact system. In deterministic systems, the notion

of bifurcation refers to the qualitative change of the asymptotic dynamics

above the critical value of the bifurcation parameter. For the phenomeno-

logical stochastic bifurcations, the proper definition is still lacking, though

one may relate them to qualitative changes in some time-averaged measure,

like the probability density function or the power spectrum. For instance,

the steady state distribution could undergo transition, turning from uni-
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modal to bimodal. At variance with deterministic bifurcations, the noise-

driven ones may be smeared over a certain parameter range, rather than

occurring at the critical parameter value. Having derived the mean-field

approximation for the exact system, the stochastic bifurcations exhibited

by the original SDDE may be qualitatively compared to deterministic bi-

furcations of the approximate system, where the noise intensity can act as

a genuine bifurcation parameter.

Within the thesis, we present the derivation of the mean-field based ap-

proximations for the collective motion of populations of globally coupled

excitable or bursting units, subjected to noise and interaction delays. Car-

rying out the bifurcation analysis on the respective approximate models, it

will be demonstrated that the latter predict in a qualitative sense the con-

ditions for the stability of equilibrium, the scenarios for the onset of the

collective mode and its suppression by the effects of time-delay, as well as

the parameter domains admitting bistability exhibited by the correspond-

ing exact system. On the quantitative side, it is shown that the models

are capable of capturing the frequency of the collective mode. Moreover,

instances may be found where the time series of the mean-field variables

closely match those of the global variables of the exact system.

1.6 Outline of the thesis

The purpose of the introductory chapter so far has been to provide the ap-

propriate context for the issues discussed within the thesis. To do so, we

have laid out the basic terminology and have made brief remarks on the

relation between what has previously been known and the results to be

reported in detail here. The intention now is to make a preview on the

content of the thesis, briefly indicating the key points. In particular, two

complementary lines of research have been followed. For one, the inter-

est has been to examine whether and how much can the complex forms
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of collective behavior exhibited by the populations of autonomous oscil-

lators carry over to assemblies of excitable units, aiming to highlight the

common elements and isolate the potential specific features that arise due

to excitability. The second line of research pursued here focuses on deriv-

ing the mean-field based approximations to collective motion of the corre-

sponding exact systems. Apart from examining the conditions for the va-

lidity of the mean-field assumptions, the main goal is to demonstrate that

the scenarios related to the onset of the collective mode in the original sys-

tem, governed by the large set of SDDEs, can qualitatively be predicted by

the approximate model, represented by a small set of deterministic DDEs.

The remaining chapters are organized as follows.

Chapter 2 is comprised of three sections: the first contains background

information on the dynamics of a single Fitzhugh-Nagumo unit, the second

illustrates the three generic regimes of noise-induced collective behavior

for the assembly of Fitzhugh-Nagumo units, whereas the third one con-

cerns the detailed derivation of the mean-field model for the population of

excitable units influenced both by noise and interaction delays. The first

section stresses the interplay of strong time-scale separation and the vicin-

ity of the supercritical Hopf bifurcation, showing that the noise-induced

oscillations are reminiscent of those displayed by the relaxation oscillators.

The second section indicates the main features of the collective motion in

the absence of interaction delays. Apart from the details of the derivation,

in the third section one points out how the two mean-field assumptions, the

quasi-independence and Gaussian one, fit within the cumulant approach.

In Chapter 3, we provide the more precise formulation of the two mean-

field assumptions, adapted to the conditions of strong time-scale separation

and the presence of noise. The analysis shows that their validity cannot

simply be linked to the requirements for small noise and small coupling

strength, but should rather be stated in terms of the qualitative features of

local and global dynamics. It is further demonstrated that bistability of the
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mean-field model’s dynamics may indicate in a self-consistent fashion the

parameter ranges where the mean-field assumption s fail. The content of

this Chapter is based on the paper considered for publication in Physical

Review E [114].

Chapters 4 and 5 address the spontaneous formation of synchrony clus-

ters in homogeneous assemblies of stochastic delay-coupled excitable units,

this being a novel form of self-organization which we recently reported

on in [115, 116]. In Chapter 4 is described the basic phenomenology of

the noise-delay co-effect leading to the asymptotically stable two-cluster

partitions and the dynamical three-cluster states, having introduced the ap-

propriate analytical tools to characterize them. In Chapter 5, the resonant

character of clustering with respect to interaction delays is explained in

terms of competition between the noise-driven and delay-driven collective

modes. The local mechanism, showing how clustering is reflected in the

adjustment of single units, is considered by drawing an analogy to particle

motion in a double-well potential. We also comment on the unexpected

result that the onset of clustering coincides with the global bifurcation of

the corresponding mean-field model.

In Chapter 6 the focus lies with the collective dynamics displayed by

two populations of excitable units, having assumed that the coupling term

between populations is a nonlinear function of global variables. The pre-

sented results follow our recently published paper [117]. In particular, the

system dynamics is influenced by noise acting locally on each unit within

the assemblies, as well as the intra- and inter-population coupling delays.

The main idea behind constructing the approximate model for this setup

has been to replace each population with its mean-field counterpart. The

behavior of such an approximate system is compared with that of the exact

system to demonstrate the qualitative agreement in terms of the conditions

for the stability of equilibrium, scenarios for the onset of the collective

mode or its suppression by time-delay, as well as the parameter domains
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supporting bistable regimes.

The similar agenda is followed in Chapter 7, but in case of an assembly

of coupled bursting units. It is shown that the collective mode admitting

bursting may arise directly from equilibrium, or via an intermediate spik-

ing mode. A remarkable point is that there may be instances where the

series for the global variables of the exact system are exactly matched by

those of the respective mean-field variables. The results of this Chapter

rest on our recent article [118].

Chapter 8 contains the concluding remarks, together with the discussion

on possible directions of future research.
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Chapter 2

Assembly of excitable units: exact
system and the mean-field model

Chapter abstract Focussing on the Fitzhugh-Nagumo model, the

first two sections provide an overview of the known facts re-

garding the dynamics of a single excitable unit and specify more

closely the regimes of collective behavior making up the paradigm

for excitable media prior to our research. On the former, we

highlight the importance of interplay between nonlinearity and

sharp separation of characteristic time scales for manifestation

of the excitability feature. Relying on the phase plane analy-

sis, one demonstrates how the period of noise-induced oscilla-

tions is calculated, followed by several notes on their regularity

within the CR phenomenon. The types of collective dynamics

controlled by noise in the absence of interaction delays are char-

acterized in several ways, including the phase portraits for the

macroscopic variables, the regularity and synchronization prop-

erties of the local dynamics, as well as the stationary probability

distributions for the assembly averages. Last but not least, the

third section is highly relevant for the main body of the thesis,

because it concerns one of our main contributions, presenting
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the derivation of the mean-field model for the population of ex-

citable units subjected to noise and interaction delays.

2.1 Dynamics of an isolated Fitzhugh-Nagumo unit

Throughout the thesis, the Fitzhugh-Nagumo system (FHN) is used as a

generic model for excitable local dynamics. Prior to discussing the three

regimes of collective behavior typically encountered in noise-driven ex-

citable media, let us consider the dynamics of an isolated FHN unit, first

for the deterministic setup and then under the action of noise. This ap-

proach is aimed at highlighting the interplay between the strong time-scale

separation and the vicinity of Hopf bifurcation threshold in shaping the key

features of excitable dynamics.

Note that the equations of the FHN model can be interpreted as a gener-

alization of the van der Pol oscillator, and are better known under the name

Bonhoeffer-van der Pol oscillator [119] when considered in the regime of

self-sustained oscillations. For its excitable dynamics, this system has first

been analyzed in independent works of Fitzhugh (1961) [83] and Nagumo

(1962) [84], who regarded it as a simplification of the Hodgkin-Huxley

model [85], describing the excitable response of a nerve membrane to an

external current stimuli. Though derived in the field of neuroscience, FHN

model has since been applied in several other areas, including the forma-

tion of spiral and scroll waves in the kinetics of Belousov-Zhabotinsky re-

action [120], as well as the transmission of pulses in cardiac tissue [10, 90].

FHN model has particularly gained attention for it allows one to study the

key ingredients behind excitable dynamics within the framework of phase

plane analysis.

For the moment, the discussion is confined to the deterministic case,
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such that the equations for an isolated FHN unit read [75]

ϵdx = F(x, y)dt = (x − x3/3 − y)dt

dy = G(x, y)dt = (x + b)dt. (2.1)

The parameter ϵ is deliberately set to a small value ϵ << 1 to enforce a

large separation between the characteristic time-scales for the evolution of

x(t) and y(t). Throughout the thesis, the time-scale separation ratio be-

tween the two variables is ϵ = 0.01. Interpreted in the context of neuro-

science, the fast (activator) variable embodies the membrane potential of

a neuron, whereas the slow variable, referred to as recovery or refractory,

accounts for the gross kinetics of the potassium ion-gating channels. Nev-

ertheless, such an analogy should be viewed in a qualitative, rather than

quantitative sense [76].

b plays the role of excitability parameter, which can be established as

follows. We first invoke the point that the system (7.1) possesses a unique

equilibrium given by

x0 = −b, y0 = −b + b3/3, (2.2)

whose characteristic exponents read

λ± =
b2 − 1 ±

√
(b2 − 1)2 − 4ϵ
2ϵ

. (2.3)

Therefore, the fixed point is stable if and only if |b| > 1, whereas the system

undergoes supercritical Hopf bifurcation at |b| = 1. For |b| < 1, there

exists a limit cycle, which is globally stable. Selecting different values

of b, the system (7.1) may effectively switch between the excitable and

oscillatory regimes. Given that (7.1) is invariant under the transformation

(x, y, b) −→ (−x,−y,−b), it suffices to consider only the case b > 0 [79].

Now let us consider by means of phase plane analysis the excitable

dynamics obtained for b lying slightly above 1. The basic framework rests
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Figure 2.1: Phase plane analysis for an excitable Fitzhugh-Nagumo unit. The black solid
lines indicate the two nullclines (NLC) F(x, y) = 0 and G(y) = 0, with the equilibrium EQ
lying at their intersection point. The refractory and spiking branches of the cubic nullcline
are denoted by S R and S S , respectively. Focus is on illustrating the two types of responses
that may be elicited depending on the perturbation strength. Trajectory corresponding to
the small-amplitude excitation (S AE) is presented by the blue dotted line, whereas the tra-
jectory typical for the large-amplitude excitation (LAE) is shown by the green dash-dotted
line. Since the effects of perturbation are interpreted as setting of the initial conditions,
the obtained trajectories are in fact solutions of an initial value problem. Sensitivity of
the form of response to initial conditions is most apparent around the canard-like trajec-
tory (CNRD), denoted by the red dashed line, which makes up a soft boundary between
the domains leading to S AE or LAE. The data are obtained by iterating system (7.1) for
ϵ = 0.05 and b = 1.05.

on the nullclines F(x, y) = 0 and G(x) = 0, displayed by the black solid

lines in Fig. 7.1. These two curves outline the boundary between the

respective regions where the derivatives ẋ(t) and ẏ(t) attain opposite signs.

The location of the intersection point between the two nullclines depends

on b and determines the equilibrium of system (7.1). The cubic nullcline

F(x, y) = 0 can be divided into three branches, whereby the (refractory)

branch S R on the left side of Fig. 7.1 and the (spiking) branch S S on the

right are stable, whereas the middle one is unstable. The excitable regime
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is characterized by the fixed point lying close to the knee of the left branch.

Throughout the thesis, this is achieved by setting b = 1.05. On the other

hand, for b < 1 the fixed point gets shifted to the middle branch, thus

becoming unstable.

Excitable behavior is crucially influenced by the cubic nonlinearity of

the fast nullcline and the strong separation between the fast and slow char-

acteristic time-scales [80]. Note that an external perturbation injected into

the system can be regarded as a setting of the initial conditions [76]. If

the latter are such that the trajectory reaches S R first, the phase point sub-

sequently slides down toward the equilibrium, where it settles until the

next perturbation. This provides a description of a small-amplitude, non-

spiking event for the variable x(t), viz. Fig. 7.1. On the other hand, if

the initial conditions cause the trajectory to reach the S S branch first, the

system undergoes a large excursion in phase space [77]. Along this tran-

sient, one finds the representative point first traveling upward toward the

fold point (x, y) = (1, 2/3), then executing a jump to S R and proceeding as

described above. In other words, instead of rapidly decaying to the fixed

point, as in case of the small perturbation, the sufficiently large perturba-

tion elicits a large-amplitude (spiking) response of the system (7.1).

The use of terms ”small” and ”large enough” perturbation suggest the

existence of the threshold-like behavior in the FHN model. Typically, pres-

ence of a threshold would be associated with the saddle states or sets,

which separate between the attractor basins of the two stable states. In

our case, having varied the initial conditions, one can single out a bound-

ary delineating two regions of the phase plane, such that the boundary itself

makes up the trajectory of the system (7.1) obtained under particular ini-

tial conditions. Such a trajectory, indicated in Fig. 7.1, is reminiscent of

a canard [80], with the region around it being extremely sensitive to ini-

tial conditions. This is why the crossover from small to large-amplitude

events appears continuous, rather than threshold-like. The described type
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of boundary is inherited from the singular limit ϵ → 0, where S R and

S S may be regarded as attractors. In this case, the separatrix between the

two attractors actually includes the middle branch of the cubic nullcline.

Nevertheless, for finite ϵ the separatrix vanishes, but an infinite number

of lines, forming a layer, can be specified as carrying out the similar role.

Still, within the distance d >> ϵ of the fold point (x, y) = (1, 2/3), this

layer decays into a single line, resembling a clear boundary. Therefore, for

finite ϵ, it may be justified to refer to the canard-like trajectory illustrated

in Fig. 7.1 as the ”ghost-separatrix” [76].

As mentioned before, the deterministic system (7.1) undergoes super-

critical Hopf bifurcation at b = 1, such that it displays sustained oscil-

lations even in the absence of stimulation. Given the condition ϵ << 1,

the bifurcation itself acquires singular character, whereby its normal form,

producing quasiharmonic oscillations, persists only in a narrow range of b

values [79, 80]. Within this interval, the oscillation frequency is of the or-

der ν(b) = O(1), while the amplitudes in x and y are O(ϵ) = O(
√

b − 1) and

O(ϵ), respectively. On the other hand, above a certain value of b given by

the condition 1 − b = ϵ/8, one finds a transition toward a relaxation cycle,

whose amplitudes amount to O(1), both in x and y [121]. This scenario

corresponds to a canard explosion [79, 80, 122].

While the non-zero frequency, viz. the finite period of oscillations at

the bifurcation threshold constitutes a local property of the unstable focus,

the large-amplitude oscillations are the corollary of the global dynamics of

the system [80]. The period of large-amplitude oscillations is determined

by the global structure of the phase space, and is primarily influenced by

the slow motion along the S R and S S branches of the cubic nullcline. It

is useful to attempt to assess its duration, bearing in mind that the noise-

induced oscillations seen under the excitable regime we consider below,

are just the precursor of the deterministic ones [77, 78]. When b < 1 and

ϵ → 0 is fulfilled, the motion on the limit cycle may be broken into two
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pieces of slow and two pieces of fast motion [77, 80]. Along the slow parts,

occurring on the O(1) time-scale, the trajectory follows S R and S S , such

that ẋ = x+b
1−x2 and y = x − 1

3 x3 holds. The slow parts are connected by the

rapid jumps on the O(ϵ) time-scale from S R to S S and vice versa, which

are characterized by ϵ ẋ = x − 1
3 x3 − y, y = ±2

3 . The period of limit cycle

TLC may asymptotically be substituted by just the section on the S R and

S S branches:

TLC =

∫ −1

−2

1 − x2

x + b
dx +

∫ 1

2

1 − x2

x + b
dx = 3 − (1 − b2)ln

4 − b2

1 − b2 . (2.4)

In the vicinity of the bifurcation threshold, the above expression yields an

estimate lim
b→1−

TLC(b) ≈ 3.

Let us now turn to the case where a single FHN unit is embedded into

a noisy environment. In the most general form, the equations for such a

setup read

ϵdx = (x − x3/3 − y)dt +
√
ϵ
√

2D1dW1

dy = (x + b)dt +
√

2D2dW2, (2.5)

having incorporated the stochastic effects in both the fast and slow subsys-

tems to account for the potential existence of different noise sources. In

particular, the
√

2DidWi terms represent the stochastic increments of the

independent Wiener processes, such that the expectation values and the

correlations satisfy ⟨dWi⟩ = 0, ⟨dWidW j⟩ = δi, jdt where i, j ∈ {1, 2}. In

the field of neuroscience, presence of the D1-term is typically interpreted

as synaptic noise, arising due to irregular firing of peer neurons, whereas

the D2-term is associated with the intrinsic cell dynamics, such as fluctu-

ations of currents in the ion-channels (ion-channel noise) [67, 76]. In the

excitable lasers, noise may also be present in both the fast and the slow

variable [76]. Treatment of the systems like (7.5) is inherently difficult,

given that the forms of dynamics they display are complex even in case of
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a single unit, let alone a whole assembly of units. In this context, note that

the above system has been demonstrated to exhibit five different scaling

regimes under variation of the noise amplitude δ =
√

D1 + D2, including

SISR, CR, bursting relaxation oscillations, rare clusters of several relax-

ation cycles and finally small-amplitude oscillations with sporadic isolated

spikes [79], appearing in this order when δ is reduced.

The analysis in the present thesis is confined to the case D2 > 0,D1 = 0.

One of the reasons for such a choice is that it enables a clear interpretation

of the role of noise: within the phase plane, noise causes the vertical null-

cline to change its position, effectively shifting the system between the ex-

citable and the oscillatory regime. What also makes this setup a preferred

one is the point that the noise-induced limit cycles are analogous to those

obtained in the oscillatory regime b < 1. As indicated in the Introduc-

tion, there exists a range of D2 values where the noise-induced oscillations

appear coherent. This may be established by the standard measures for

variability of spike trains, one of them being the coefficient of variation

(jitter) R [55, 123]. The latter is defined as the standard deviation of the

interspike interval T , normalized by its mean

R =

√
⟨∆T 2⟩
⟨T ⟩ , (2.6)

where ⟨·⟩ stand for the time-averages, and ⟨∆T 2⟩ = ⟨T 2⟩− ⟨T ⟩2 denotes the

variance. Values of R belong to the interval R ∈ [0, 1], with the smaller R

indicating better coherence.1 For an assembly of coupled excitable units,

the coherent local oscillations may easily adjust their phases, hence con-

tributing to the onset of the collective mode.

The phenomenon where noise-induced oscillations become regular un-

der noise acting in the slow subsystem of (7.5) is known as the coher-
1Other possible measures for coherence of spike trains include the diffusion coefficient De f f =

1
2 R2r0

[67], where r0 is the average firing rate, and the correlation time τcorr =
1
σ2

∫ ∞
0 |Ψ(s)|ds [67, 80], such that

Ψ(s) = ⟨[x(t− s)− < x >][x(t)− < x >]⟩ is the autocorrelation function and σ2 = |Ψ(0)| denotes its variance.
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ence resonance [55, 77]. The mechanism behind CR has been briefly

outlined in the Introduction, so that here we only specify some key el-

ements. To this end, one first notes that an arbitrary interspike inter-

val T = ta + te consists of the activation time ta and the excursion time

te, whose means and variances display quite different dependencies on

noise [55, 67]. Regarding ta, it may be adopted that the representative

point escapes from the refractory to spiking branch at the Kramers rate

r = const × exp (−∆U(y)
2D2

) << 1, where ∆U presents some y-dependent po-

tential barrier [55, 77, 78, 124]. Then, the corresponding mean activation

time can be estimated as ⟨ta⟩ ∼ r−1 ∼ exp (const × D−1
2 ), which implies a

rapid decay with increasing noise. On the other hand, < te > is weakly

dependent on noise, since it is primarily influenced by the system’s deter-

ministic relaxation properties. Nevertheless, fluctuations of the excursion

time still grow with the noise intensity.

In view of the stated above, we are now able to provide a heuristic

argument regarding the dependence of the squared coefficient of variation

R2 on noise. In particular, one may write [67]

R2 =
⟨∆(ta + te)2⟩
⟨T ⟩ =

⟨∆ta⟩2
⟨ta⟩2

⟨ta⟩2
⟨T ⟩2 +

⟨∆te⟩2
⟨te⟩2

⟨te⟩2
⟨T ⟩2

= R2
a(
⟨ta⟩
⟨T ⟩)

2 + R2
e(
⟨te⟩
⟨T ⟩)

2, (2.7)

where Ra and Re denote the respective coefficients of variation for ta and te.

The above expression has been obtained by assuming the statistical inde-

pendence between the latter two, such that ⟨tate⟩ = ⟨ta⟩⟨te⟩ holds. Should

the spike trains be coherent, R2 would have to be made as small as possi-

ble. Focussing on the first term, one may consider R2
a to be close to unity,

given that the process it describes is Poisson-like. This leaves the ratio of

the activation time vs. the interpike interval, which is small at large enough

noise intensities. As for the second term, both the jitter Re and the ⟨te⟩/⟨T ⟩
ratio grow with noise. Therefore, the minimum of R2 is achieved if D2 is
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Figure 2.2: Typical phase portrait of a Fitzhugh-Nagumo unit in the regime of coherence
resonance, where the stochastic limit cycle is just a precursor to the deterministic one. As
such, it takes place on the attractive (outer) branches of the ẋ = 0 nullcline (dotted line),
avoiding the unstable (middle) branch. EQ indicates the position of the equilibrium. A
typical orbit (solid line) is made up of two portions of slow motion O(1), connected by
two rapid transients O(ϵ). The former include a descent down the refractory branch S R

until the left knee is reached, and the ascent along the spiking branch S S . The inset shows
a section from the time series x(t) for D = 0.003.

large enough to substantially reduce the activation time, and small enough

to keep the fluctuations of the excursion time low [55, 67].

In Fig. 2.2 is illustrated the typical phase portrait of a limit cycle dis-

played by the excitable Fitzhugh-Nagumo unit (b = 1.05) in the regime

of coherence resonance. In dynamical terms, the cycle generated in this

case is just the precursor of the deterministic one, found in the supercrit-

ical state above the Hopf bifurcation threshold (b < 1). An orbit consists

of two pieces of slow motion connected by the rapid transients initiated

around the fold points of the cubic nullcline F(x, y) = 0, the former being

located at (x, y) = (−1,−2/3) and (x, y) = (1, 2/3). Such an oscillation pro-

file is reminiscent to that of relaxation oscillators, whereby the motion of

the phase point along the cycle proceeds as follows. The ascending stage

of the spike coincides with the phase point jumping from the refractory
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branch S R to the spiking branch S S , whereas the spike’s descending stage

corresponds to the upward motion along S S . The beginning of the refrac-

tory period is marked by the phase point switching from S S back to S R,

while during the interspike interval it travels down the refractory branch

toward the left knee (x, y) = (−1,−2/3). In the inset is shown a sequence

from a time series of the fast variable x(t), which corroborates the high

degree of regularity for the noise-induced oscillations.

2.2 Assembly of Fitzhugh-Nagumo units: generic regimes
of noise-induced collective dynamics

Apart from Chapter 7, the main body of the thesis concerns the collective

behavior of an N-size population of identical stochastic Fitzhugh-Nagumo

elements, viz. (7.5), interacting via delayed linear (diffusive) couplings.

The intrinsic parameters b and ϵ, whose meaning has already been ex-

plained in Section 2.1, are set to b = 1.05 and ϵ = 0.01, the former

placing the individual units in the excitable regime and the latter allow-

ing for a sharp separation between the fast and slow characteristic time-

scales. Also, the action of noise is incorporated within the slow subsystem

for the reasons explained by the end of Section 2.1. In its most general

form, the dynamics of a FHN unit embedded within a network then reads

[75, 125, 126]

ϵdxi = (xi − x3
i /3 − yi)dt +

1
ni

N∑
j=1

gi j[x j(t − τi j) − xi(t)]dt,

dyi = (xi + b)dt +
√

2DidWi, (2.8)

where the indices i, j ∈ {1, . . .N} specify the members of the population,

gi j present the elements of the weighted connectivity matrix and ni de-

notes the number of units which the given unit i is connected to. Within

the thesis, ni will be referred to as the (nodal) connectivity degree, the
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term commonly applied in network theory. In the following, we adopt a

simplifying assumption on the all-to-all type of connectivity between the

units (ni = N, gi j , 0 for every i, j), adhering to the concept of building

a minimal model capable of displaying certain forms of behavior. Con-

sistent with the stated in Section 1.1, one notes that such an idealization

has already proven useful, both on theoretical grounds [127, 128] and in

applications related to neuroscience, especially regarding the emergence

of healthy and pathological brain rhythms, or when studying the fashion in

which the distributed brain areas communicate [1, 21, 27]. The linear inter-

actions between the units are parametrized by the coupling strength gi j and

the time delay τi j, the latter accounting for the finite velocity by which the

interactions propagate and/or latency in the units’ responses. In our model,

the coupling parameters are assumed to be uniform over the population,

such that gi j = c, τi j = τ holds for each pair (i, j). Apart for simplicity, the

latter is also aimed at eliminating the possible causes of secondary effects

that could interfere with the considered core phenomena. For the same rea-

son, the noise intensities are taken to be homogeneous across the assem-

bly, meaning Di = D for each unit i. In the context of neuroscience, one

can draw analogy between the linear couplings and the electrical synapses

(gap-junctions) connecting the neurons, whereas the homogeneity of in-

trinsic and synaptic parameters conforms to the scenario where neurons

belong to a small patch of the brain cortex. By including all the points

stated above, the system (2.8) may be rewritten as

ϵdxi = (xi − x3
i /3 − yi)dt +

c
N

N∑
j=1

[x j(t − τ) − xi(t)]dt,

dyi = (xi + b)dt +
√

2DdWi, (2.9)

which, for the most part of the thesis, presents the set of equations guid-

ing the microscopic dynamics. Though generally considering the homoge-

neous populations, in Chapter 5 we also discuss the effects of heterogeneity
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in the intrinsic unit parameters and the connectivity patterns.

Within this section, the primary intention is to lay out the facts that have

been known on the collective dynamics of excitable media prior to our re-

search. However, before proceeding in this direction, it is necessary to

make a few brief remarks regarding the regimes displayed by a unit obey-

ing (2.9), having left an extended discussion on this issue for the main body

of the thesis. What is different from the setup analyzed in Section 1.1 is that

now one has to account not only for the influence of noise, but also for the

impact of the coupling terms, characterized by c and τ. Beginning with the

noiseless case D = 0, c and τmay either be such to allow the unit to remain

excitable, possessing equilibrium as the unique attractor, or they may give

rise to oscillatory state via Hopf bifurcation, so that the excitability feature

is lost. Adding a marginal amount of noise induces only small fluctuations

around the attractors of the deterministic dynamics, obtained for D = 0.

Nevertheless, as indicated earlier, a sufficiently strong noise can evoke a

transition from stochastically stable fixed point to noise-induced oscilla-

tions, which may appear regular at the optimal noise intensity. Though we

make this point more explicit later, the above arguments suggest that the

oscillations under general c,D and τ are in fact influenced by two charac-

teristic time scales [115], one which is noise-driven, and the other being

adjusted with the delay. Naturally, such a paradigm can carry over to the

collective motion due to synchronization of individual units.

Having clarified some of the details on the dynamics of units embed-

ded within a network, we now use the population comprised of Fitzhugh-

Nagumo elements to characterize more closely the three generic regimes of

collective behavior in excitable media obtained under the scenario where

noise enacts the control parameter. Recalling that these regimes have al-

ready been mentioned in Subsection 1.3.3 of the Introduction, the aim here

is to define the appropriate macroscopic variables and examine the related

phase portraits on one hand, but also to gain further insight into the un-
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Figure 2.3: Three generic regimes exhibited by the excitable media under systematic
increase of noise intensity D in case of instantaneous interactions are illustrated for the
population of Fitzhugh-Nagumo elements. Phase portraits provided for the ensemble
averages X = N−1∑N

i=1 xi and Y = N−1∑N
i=1 yi at c = 0.1 reflect incoherent motion (D =

0.0002), coherent collective oscillations (D = 0.002) and the decay into chaotic regime
(D = 0.009).

derlying microscopic dynamics and the ensuing synchronization features.

Note that the discussion in the remainder of this Section is confined to an

assembly of excitable units interacting via instantaneous couplings, such

that its evolution is described by the system (2.9) under the condition τ = 0.

This is so because the physical picture on global regimes identified prior

to our research has been built without considering the effects of interaction

delays.

The collective dynamics is typically described in terms of global (macro-
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scopic) variables

X =
1
N

N∑
i=1

xi

Y =
1
N

N∑
i=1

yi, (2.10)

which present the population (spatial) averages over the local variables.

In Fig. 2.3 are displayed the phase portraits corresponding to the three

regimes of collective behavior encountered when D is increased. For small

D, there is a stochastically stable global equilibrium, which owes to the

point that individual spiking is rare and incoherent, rendering the majority

of units at rest at any given time. The latter is corroborated by the Fig.

2.4(a), showing together the sequences from the fast-variable time series

for three arbitrary members of the assembly. At intermediate D, single

units discharge more frequently, whereby the spiking events between the

units become synchronized. Such synchronization of noise-induced os-

cillations gives rise to the collective coherent state, where the population

effectively acts as a macroscopic oscillator, cf. the limit cycle in Fig. 2.3,

whose frequency matches that of the individual units. Given the stochastic

character of the dynamics, by the term frequency one actually refers to the

reciprocal value of the time-averaged interspike interval (ISI) ⟨Txi⟩. The

time series in the main frame of Fig. 2.4(b) indicate approximate synchro-

nization between the single units, whereas the inset, showing the distribu-

tion of average ISIs P(Txi) over the population, demonstrates the level of

mutual entrainment of units to a single frequency. In this context, we have

also been interested in determining how the duration of the time-average

ISI ⟨TX⟩ for the global variable X depends on D within the coherent col-

lective regime, cf. Fig. 2.4(c). Note that the variation of the period of

noise-induced oscillations with D will prove important for the discussion

in Chapter 5. The inset of Fig. 2.4(c) corroborates the regularity of col-
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lective motion, indicating fairly small values of the coefficient of variation

RX for the global variable X(t), cf. the definition (7.6) and the accom-

panying explanation. Nevertheless, further increasing D, the tendency of

linear couplings to maintain approximate synchronization between units’

activities is gradually suppressed by noise, which eventually takes the dy-

namics of assembly averages (X(t), Y(t)) into chaotic regime. While the

local spiking frequencies continue to increase up to a certain point, the

inter-unit synchronization systematically deteriorates until the frequency

entrainment is lost, see the main frame and the inset of Fig. 2.4(d). For

such a scenario, one infers that the bulk of the population is refractory at

any instant, which renders the orbits of the global variables confined to an

area of phase space much smaller than the one outlined by the limit cycle

found in the coherent collective state.

As the final means to characterize the three regimes of global behavior

controlled by the variation of D, we consider the stationary probability

densities for the macroscopic variables P(X, Y). In particular, the objective

is to highlight the differences between the distribution profiles obtained for

the D values matching those in Figures 2.4(a), 2.4(b) and 2.4(d), each being

typical for one of the regimes. The stationary distributions are estimated

numerically by recording the system’s evolution for the sufficiently long

time period. Having eliminated the transients, the method itself consists

in counting the number of representative points that fall within each cell

of a 110 × 110 grid, built by dividing the relevant ranges of the X and the

Y variable values into 110 equal bins. As expected, for the stochastically

stable equilibrium, P(X, Y) shows a large peak about its location, cf. Fig.

7.5(a). For the coherent collective state at intermediate D, P(X, Y) reflects

the existence of the limit cycle by clearly indicating the two branches of

slow motion, see Fig. 7.5(b), naturally with the states on the refractory

branch, which correspond to the interspike intervals, being more salient. In

case of the incoherent collective state, cf. Fig. 7.5(c), P(X, Y) distribution
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is concentrated in a small area of the X − Y plane, which is a signature of

the breakdown of frequency synchronization between the units. Note that

the paradigm involving the three regimes of collective behavior has first

been reported for fully connected networks [5, 67], but has later on been

observed in layouts involving more complex interaction patterns [95, 123].

2.3 Derivation of the mean-field model

This section is intended to outline the key steps on how the MF model for

the activity of an assembly of stochastic excitable units coupled via delayed

linear couplings is derived. What is conveyed here presents our main con-

tribution regarding the analysis of systems whose dynamics is expressed

in terms of large sets of SDDEs, having applied the results throughout the

thesis. In particular, within the MF approximation one aspires for a highly

reduced set of nonlinear deterministic delay differential equations (DDE)

to replace the original system (7.1) comprised of 2N nonlinear SDDEs.

Though a simplified representation, the MF model should still be able to

reproduce with sufficient accuracy the latter’s behavior regarding the sta-

bility of the steady states, the scenarios for the onset of the collective mode

and its suppression under the action of the cross-population coupling de-

lay. The MF treatment draws on the all-to-all type of connectivity among

neurons within each population, incorporating the thermodynamic limit

N → ∞ in a natural way [67]. In order to build a MF model, two dif-

ferent approaches are available to proceed with: one may either consider

the time-dependence of a hierarchy of probability densities according to

the Fokker-Planck formalism, or may focus on the evolution of cumulants,

whereby the full density of states is factorized into a series of marginal

densities. The latter alternative is preferred, as it allows for a number of

convenient approximations to be introduced in a controlled fashion [67].

Note that one is bound to make some approximations for the nonlinear-
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ity of the original system, given that the cumulants of the particular order

are usually linked to those of the higher order, which apparently renders

the underlying series unclosed. The way to resolve this issue consists in

truncating the series by a form of a closure hypothesis. Such hypothe-

sis typically integrates the cumulant approach with the Gaussian approx-

imation [111, 129], recalling that the Gaussian distribution has vanishing

cumulants above the second order. Such a method has previously been ap-

plied to study the influence of noise on bifurcations in maps [130], colored

noise-induced transitions in bistable systems [131], phase transitions and

SR in globally coupled bistable elements [132], and transitions in globally

coupled noisy phase rotators [133].

Derivation of the MF model involves two elementary prepositions: first,

that the instantaneous distributions of local variables P(xi) and P(yi) are

Gaussian, and second, that the ensemble averages at any given moment

coincide with the expectation values of the appropriate distributions in a

sense (1/N)
N∑

i=1
xi ≈ E[P(xi)], (1/N)

N∑
i=1

yi ≈ E[P(yi)] [111, 129]. For now,

it suffices to say that the two above statements are referred to as the Gaus-

sian assumption (GA) and the quasi-independence assumption (QIA) re-

spectively, having left the refined formulation and the in-depth analysis

of their implications to Chapter 3. If the two stated conditions are met,

all the cumulants above the second order are supposed to vanish. Let us

briefly comment on the constraints imposed on the system parameters by

these assumptions. On the first point, the Gaussian distribution of local

variables is maintained if the noise amplitude obeys D << 1. Nonethe-

less, the strong law of large numbers [134] implies that the second condi-

tion concerning the ensemble averages is fulfilled exactly in the thermo-

dynamic limit N → ∞ if the involved stochastic processes are indepen-

dent (c << 1). However, the numerical results presented later on indicate

that the MF approximation remains valid if the two latter conditions are

relaxed, viz. when there is non-negligible interaction in the finite-size sys-
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tems, provided that the requirement for not too large a noise amplitude is

satisfied.

For convenience, let us first rewrite the system (7.1) by introducing an

alternative notation c↔ gin, τ↔ τin

ϵdxi = (xi − x3
i /3 − yi)dt +

gin

N

N∑
j=1

[x j(t − τin) − xi(t)]dt,

dyi = (xi + b)dt +
√

2DdWi, (2.11)

This notation anticipates for the case with two interacting populations dis-

cussed in Chapter 6, being primarily intended to enable an easier accom-

modation to such a setup. Given that the distributions of the stochastic

local variables are assumed to take on the Gaussian form, one can fully

characterize them by the set of the first and second order moments, which

includes the mean values, the variances and the covariance. The mean

values applied here

mx(t) = ⟨xi(t)⟩ = lim
N→∞

(1/N)
N∑

i=1

xi(t)

my(t) = ⟨yi(t)⟩ = lim
N→∞

(1/N)
N∑

i=1

yi(t) (2.12)

should strictly speaking be distinguished from the global variables X and Y

considered earlier for the large, but still finite-size populations. The angled

brackets are generally used to denote averaging over the units making up

the ensemble, whereas mx and my are reserved solely for the averages of

the local variables. Before introducing the second order moments, it is

convenient to define the deviations from the mean nxi(t) = ⟨xi(t)⟩ − xi(t)

and nyi(t) = ⟨yi(t)⟩ − yi(t), which obey the Gaussian distributions and are

independent between the single elements. Then the appropriate variances
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2. Assembly of excitable units: exact system and the mean-field model

read

sx(t) = ⟨n2
xi

(t)⟩ = ⟨(⟨xi(t)⟩ − xi(t))2⟩
sy(t) = ⟨n2

yi
(t)⟩ = ⟨(⟨yi(t)⟩ − yi(t))2⟩, (2.13)

whereas the covariance is given by

u(t) = ⟨nxi(t)nyi(t)⟩ = ⟨(⟨xi(t)⟩ − xi(t))(⟨yi(t)⟩ − yi(t))⟩. (2.14)

The evolution of the distributions’ means mx and my is obtained by per-

forming the ensemble averages over the system (7.8), while the expres-

sions for the dynamics of sx, sy and u follow from explicitly taking the time

derivatives of the definitions (7.10) and (6.5). Note that the latter calcula-

tion also involves the derivatives of the compound functions of the stochas-

tic variables such as d⟨x2
i ⟩/dt and d⟨y2

i ⟩/dt, where one is required to apply

the Ito’s chain rule 1. As for the higher order averages, like ⟨x2
i ⟩ and ⟨x3

i ⟩, it

is necessary to tie them to the first and second order moments. In the sim-

plest cases, this is accomplished by using the definitions (7.10) and (6.5),

while in most instances one arrives at the required relations by setting the

higher order cumulants [124] to zero, e.g. ⟨x3
i ⟩c = ⟨x3

i ⟩−3⟨x2
i ⟩⟨xi⟩+2⟨xi⟩3 =

0, ⟨x2
i yi⟩c = ⟨x2

i yi⟩ − ⟨x2
i ⟩⟨yi⟩ − 2⟨xi⟩⟨xiyi⟩ + 2⟨xi⟩2⟨yi⟩ = 0, and similar for

⟨x3
i yi⟩c = 0 and ⟨x4

i ⟩c = 0. The ensuing auxiliary formulas for the higher
1According to the Ito’s formula, the derivative dY of the twice-differentiable function Y(t) = U(X, t),

where X(t) is a stochastic process given by dX = F(t, X(t))dt + G(t, X(t))dW, amounts to dY = ∂U
∂t dt +

∂U
∂X dX + 1

2
∂2U
∂X2 G2dt
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order averages then read

⟨x2
i ⟩ = sx + m2

x

⟨x3
i ⟩ = m3

x + 3mxsx

⟨x4
i ⟩ = m4

x + 6m2
xsx + 3s2

x

⟨xiyi⟩ = u + mxmy

⟨x2
i yi⟩ = mysx + mym2

x + 2mxu

⟨x3
i yi⟩ = 3sxu + 3m2

xu + mym3
x + 3mxmysx. (2.15)

After a series of steps which are too lengthy to convey in full detail, the

closed system of equations for the first and second order moments finally

becomes

ϵ
dmx(t)

dt
= mx(t) − mx(t)3/3 − sx(t)mx(t) − my(t)+

gin(mx(t − τin) − mx(t))
dmy(t)

dt
= mx(t) + b

ϵ

2
dsx(t)

dt
= sx(t)(1 − m2

x(t) − sx(t) − gin) − u(t)

1
2

dsy(t)
dt
= u(t) + D

du(t)
dt
=

u(t)
ϵ

(1 − m2
x(t) − sx(t) − gin) − 1

ϵ
sy(t) + sx(t). (2.16)

Note that (2.16) comprises a set of deterministic delay equations, where

the impact of noise is absorbed into its amplitude D. Recalling the Intro-

duction, one of the stated objectives has been to carry out the bifurcation

analysis on the MF model analytically. However, the system (2.16) is still

sufficiently complex to defy such a treatment. To ensure that the bifurca-

tion analysis is analytically tractable, we consider an additional adiabatic-

like approximation which draws on the relatively fast relaxation of the sec-

ond order moments. In particular, given that the characteristic time scales,

at least for sx and u, are dominated by the small parameter ϵ, one may jus-
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2. Assembly of excitable units: exact system and the mean-field model

tify substituting their full dynamics by the stationary values reached when

ṡx = 0, ṡy = 0 and u̇ = 0 are satisfied. The system (2.16) then becomes

ϵ
dmx(t)

dt
= mx(t) −

mx(t)3

3
− mx(t)

2
(1 − gin − mx(t)2+√

(gin − 1 + mx(t)2)2 + 4D) − my(t) + gin(mx(t − τin) − mx(t))
dmy(t)

dt
= mx(t) + b (2.17)

Though this may appear a crude approximation, it is not an uncommon one

[67, 129]. In the language of neuroscience, the net result it yields is com-

parable to translating the initial MF model, given by the set of five equa-

tions, into an effective two-component neural-mass model [135], whereby

the latter, at variance with the former, neglects the distribution of individ-

ual neuron states over the population. If and how much this is plausible

strongly depends on the main objectives of the study, which here concern

the stability of the stationary state, the onset of the collective mode and

its suppression in an amplitude death-like phenomenon1[136, 137]. As it

stands, the described modification to the MF model should not substan-

tially affect the latter set of issues, since the information supplied by the

second order variables, like that on small fluctuations around the collective

synchronous state, appears redundant in such a context. This is corrobo-

rated later on by the results indicating an agreement between the behavior

of the exact system and the MF approximation.

Note that for D = 0, the obtained system (2.17) strongly resembles the

one describing a single Fitzhugh-Nagumo element subjected to a delayed

feedback. Consequently, it is not unexpected that the population dynam-

ics can display excitable-like behavior akin to what is illustrated in Fig.

7.1, provided that gin,D and τin admit equilibrium as the unique attractor.

When this is satisfied, apart from the small amplitude oscillations remain-
1Amplitude death refers to the phenomenon where oscillatory solution collapses to a stable fixed point,

with the possible bifurcation routes involving either an inverse Hopf or a saddle-node bifurcation.
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2. Assembly of excitable units: exact system and the mean-field model

ing nearby the equilibrium, external perturbations may also trigger large

excursions of global potential, the latter reflecting the crucial feature of

the exact system. Note that within the thesis are not provided the factual

evidence on how the MF model of an isolated population is capable of ac-

curately predicting the qualitative behavior of its exact counterpart, since

this point has been addressed in a fair amount of detail prior to this re-

search, cf. [138]. Here we adopt as a known fact that the sequence of local

bifurcations under variation of D, τin and gin can be used to highlight the

parameter domains giving rise to oscillatory states or those leading to am-

plitude death [139]. Building on that, the MF model of a single ensemble

will here be shown to reflect the global bifurcation imminent to the onset of

clustering in the exact system [115]. Nonetheless, for the setup involving

two populations that interact via delayed nonlinear couplings, the obtained

approximate system is demonstrated to (i) outline the parameter domains

where equilibrium is stable, (ii) specify the two distinct scenarios for the

onset of the collective mode, (iii) pinpoint the regions admitting different

forms of bistability and (iv) indicate the domains resulting in the suppres-

sion of the collective mode.
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Figure 2.4: Local dynamics behind the three regimes of collective behavior. The main
frames in (a), (b) and (d) show the corresponding sequences from the time series xi(t)
of three arbitrary units, encoded in black, blue and orange, for the scenarios when the
global dynamics exhibits the stochastically stable equilibrium (D = 0.0002), the coherent
collective state (D = 0.002) and the incoherent state (D = 0.009), respectively. Insets of
(b) and (d) refer to distributions P(Txi) of the time-averaged local ISIs Txi , indicating that
the transition from coherent to an incoherent collective state is accompanied by the loss of
frequency entrainment between the units. (c) is intended to provide further insight on the
coherent collective state, with the dependence ⟨TX⟩(D) of the time-averaged ISI for the
global variable X on noise presented in the main frame, and the associated dependence of
the jitter RX(D) plotted in the inset.
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2. Assembly of excitable units: exact system and the mean-field model

Figure 2.5: Profiles of the numerically estimated stationary probability distributions
P(X,Y) typical for the three regimes of collective behavior emerging under increasing
D in the absence of interaction delays. (a) refers to the stochastically stable equilibrium
(D = 0.0002), (b) corresponds to the collective coherent state (D = 0.002), whereas (c) is
obtained for the incoherent (chaotic) regime (D = 0.009). The coupling strength is fixed
to c = 0.1.
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Chapter 3

Testing the assumptions of typical
mean-field approximations of stochastic
delay-differential systems

Chapter abstract Main assumptions of a typical mean-field ap-

proximation for a system of stochastic excitable units with de-

layed couplings are formulated and tested. Their validity is demon-

strated to be primarily influenced by the qualitative properties of

the system’s dynamics, rather than stating the common require-

ments for the small noise and weak coupling strength. We ana-

lyze the generic regimes where the mean-field assumptions hold

or fail, further characterizing their relation with certain forms of

synchronization between the individual units.

The dynamics of complex systems with many interacting components

is often modeled by the systems of nonlinear stochastic delay-differential
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equations (SDDE), whose general form is given by

dxi(t) = f (xi(t)) +
N∑
i, j

gi j(xi(t), x j(t − τ j)) + σidWi, (3.1)

where i, j = 1, ...N, xi are vectors of dynamical variables of the i-th unit, f

is a nonlinear function, τi are the interaction delays and dWi are stochastic

increments of independent Wiener processes. Due to co-effects of nonlin-

earity, time-delay, stochastic character and a large number of components,

such systems often defy analytical treatment. Very few nontrivial exact

solutions of systems like (7.1) are known, whereas a limited number of

analytical results so far may be used for the qualitative analysis of stochas-

tic stability or stochastic bifurcations [124, 125, 140, 141]. Apart from a

heavy demand on computational time, known to grow as N2, numerical

solving of systems like (7.1) may be prone to numerical errors that are

difficult to control [142]. Therefore, much can be gained by introducing

approximation techniques, especially if their domains of relative validity

are well understood. Such approximations usually rely on some form of

mean-field assumptions (MFAs) [5, 67, 111, 112]. For the systems de-

scribed by (7.1), the two typical MFAs may loosely be formulated as: (i)

the dynamics of xi is given by the equally distributed quasi-independent

processes and (ii) the processes xi are Gaussian over small time intervals.

Either of the MFAs is likely to be violated over large domains of the rel-

evant parameter values. Nevertheless, the MF based approximations have

still proven useful, providing qualitative predictions in terms of the sta-

bility of the equilibrium, as well as the onset and the suppression of the

collective mode, or even the quantitative ones, regarding the frequency

of macroscopic oscillations [117, 138]. Apart from the analysis of the

domains where the MFAs apply, showing them to display the analogous

qualitative features, we further demonstrate how the MF model’s behavior

may indicate MFAs’ failure in a self-consistent fashion.
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The domains of MFAs’ validity depend on the details of the nonlinearity

and the interaction terms in (7.1). This letter concerns the specific class of

systems where f (xi) yield excitable dynamics, whereas the globally con-

nected units interact via linear couplings with uniform delays. Having al-

ready performed the bifurcation analysis of the corresponding MF system

[138], here we examine whether the parameter domains where such pre-

dictions are accurate may extend beyond the domains of MFAs’ validity.

3.1 Exact system, MFAs and MF system

Validity of MFAs is analyzed in case of a collection of N Fitzhugh-Nagumo

excitable units, whose dynamics is set by:

ϵdxi = (xi − x3
i /3 − yi)dt +

c
N

N∑
j=1

(x j(t − τ) − xi)dt

dyi = (xi + b)dt +
√

2DdWi, i = 1, . . .N (3.2)

Each unit interacts with every other via diffusive delayed couplings, whereby

the coupling strength c and the time-lag τ are taken uniform. Parameters

ϵ = 0.01 and b = 1.05 are such that the isolated units display excitable

behavior, having stable fixed point (FP) as the only attractor. The terms√
2DdWi represent stochastic increments of the independent Wiener pro-

cesses, viz. dWi satisfy E(dWi) = 0, E(dWidW j) = δi, jdt, where E() de-

notes the expectation over different realizations of the stochastic process.

Having proposed that the nontrivial conditions for the fulfilment of the

MFAs derive from the qualitative properties of the underlying dynamics,

we first summarize the typical regimes exhibited by (xi(t), yi(t)), beginning

with the deterministic case D = 0. For small c and τ, the only attractor of

each unit is FP and the dynamics is excitable. For larger c and/or larger τ,

the FP undergoes a Hopf bifurcation and the asymptotic dynamics resides

on a stable limit cycle (LC). The LC conforms to relaxation oscillations,
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with two clearly distinguished slow branches, the refractory and the spik-

ing one, and two fast transients in between, cf. Fig. 7.1(b) where small

noise perturbations are added. Small D induces small fluctuations around

the attractor of the deterministic dynamics. If the latter motion lies on LC,

the impact of D is reflected mostly in the fluctuations of phase of the oscil-

latory dynamics between the different stochastic realizations. Apart from

the increase of fluctuation amplitudes, enhancing D may give rise to the

transition from the stochastically stable FP to the noise induced spiking.

The latter can appear as nearly periodic or irregular depending on c, τ and

D. It is known that in systems of excitable units subjected to D and τ, the

length of inter-spike intervals (ISIs) is influenced by the competition be-

tween two characteristic time scales [115]. One is set by the self-oscillation

”period” T0(D) obtained for τ = 0, whereas the other is adjusted with τ.

Loosely speaking, for τ < T0(D) and intermediate c, the noise-led dynam-

ics characterized by T0(D) prevails over the delay-driven one unless τ is

commensurate or comparable to T0(D). This paradigm may carry over to

the collective motion due to synchronization of individual units.

The first MFA derives from the strong law of large numbers, by which

the sample average S N = N−1
N∑

i=1
si of N independent and identically dis-

tributed random variables si converges almost surely to the expectation

value E(si) for N → ∞. How S N approaches E(si) for large, but fi-

nite N and finite variances of si distributions σ2, is specified by the cen-

tral limit theorem, which implies that S N follow the normal distribution

N(E(si), σ2/N). In our setup, the subsets {xi(t)|i = 1, . . .N} and {yi(t)|i =
1, . . .N} at any given t are obviously not made up of independent variables,

but one may still consider the influence of interaction terms negligible if

N is sufficiently large. The latter is referred to as the quasi-independent

assumption (QIA), whose precise formulation is:

Definition 1 . random variables {xi(t)|i = 1, . . .N} and {yi(t)|i = 1, . . .N}
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for each t and sufficiently large N satisfy the approximate equalities:

X(t) ≡ 1
N

N∑
i

xi(t) ≈ E(xi(t))

Y(t) ≡ 1
N

N∑
i

yi(t) ≈ E(yi(t)) (3.3)

On the left of (7.3) are the spatial averages, used to define the global vari-

ables X(t) and Y(t). Need for the second approximation becomes apparent

after carrying out the spatial average and applying the QIA on (7.2). The

fashion in which the terms E(x3
i (t)) are to be treated is resolved by the

Gaussian assumption (GA), given as:

Definition 2 . for most time instances t0, the small random increments

dxi(t), dyi(t) for t ∈ (t0, t0+δt) can be computed with sufficiently good accu-

racy by assuming that the random variables xi(t), yi(t) for each i = 1, . . .N

and for t ∈ (t0, t0+δt) are normally distributed around (E(xi(t)), E(yi(t))) ≈
(X(t), Y(t)).

GA is intentionally stated in a weak sense, containing phrases ”suffi-

ciently good accuracy” and ”for most time instances”. The former implies

that the approximate solutions should have the same qualitative features as

the exact one, whereas the latter’s meaning will become clear following the

analysis on the typical scenarios where GA holds. Note that the GA does

not require {xi(t)|i = 1, . . .N} and {yi(t)|i = 1, . . .N} to be Gaussian pro-

cesses over asymptotically large time intervals, but rather to be Gaussian

over small intervals (t, t+δt) for most values of t. For such t one can express

all the higher order moments that appear in the expressions for dX(t) and

dY(t) in terms of only the means, viz. X(t) and Y(t), and the second-order

moments, including variances sx(t) = E(n2
xi

(t)), sy(t) = E(n2
yi

(t)) and the co-

variance u(t) = E(nxi(t)nyi(t)), where nxi(t) = X(t)−xi(t), nyi(t) = Y(t)−yi(t).

Here, the QIA is reflected in the fashion in which the spatial and the

stochastic averages are related. Use of GA in deriving the MF model rests
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on the notion that the fraction of time where GA fails will not introduce

significant differences between the MF and the exact solutions.

The MF counterpart of (7.2), incorporating QIA and GA, has been de-

rived in Section 5.6. It constitutes the following system of five determinis-

tic DDE:

ϵṁx = mx(t) − mx(t)3/3 − sx(t)mx(t) − my(t)

+ c(mx(t − τ) − mx(t)),

ṁy = mx(t) + b,
ϵ

2
ṡx = sx(t)(1 − mx(t)2 − sx(t) − c) − u(t)

1
2

ṡy = u(t) + D,

u̇ = (u(t)/ϵ)(1 − mx(t)2 − sx(t) − c) − sy(t)/ϵ + sx(t) (3.4)

assuming that MF solutions satisfy mx(t) ≈ X(t),my(t) ≈ Y(t). Note that

some more sophisticated MF approaches [103] adopt the Gaussian decou-

pling approximation, yet do not require QIA, as their final form accounts

for spatial averages of fluctuations of both local and global variables.

3.2 Domains where MFAs apply

The strategy is to first provide the qualitative explanation on the two typi-

cal scenarios where both the MFAs hold, associating the properties of the

local and global dynamics with the appropriate parameter domains. We

also demonstrate that the dynamics in different instances where GA, QIA

or both break down, though apparently distinct, still shares a common fea-

ture which is more or less pronounced. The analysis then proceeds to the

results of tests carried out to independently verify the validity of GA or the

QIA, initially focussing on the paradigmatic cases. Note that for an ex-

citable system influenced by D and τ, the MFAs are more likely to hold in

relative than the absolute sense, which instigated us to introduce methods
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to quantify the level in which the particular MFA is satisfied. This is con-

venient as one can explicitly show how their fulfilment deteriorates with

the variation of the system parameters before the eventual failure. We also

consider the relation between the MF model’s behavior and the validity of

the MFAs, discussing two issues: (i) whether the predictions of the MF

model, inferred by the bifurcation analysis, may extend to the parameter

domains where the MFAs no longer apply, and (ii) can the dynamics of the

MF model serve to indicate the domains where the MFAs break down.

Intuitively, one expects the MFAs to hold if c and D are small. Though

this is indeed so, the general conclusion cannot be put beforehand and in

terms of the most likely parameter domains, but should rather refer to the

qualitative properties of the system’s dynamics. As a preview of the main

result, it may be stated that the GA and QIA apply if both the local and the

global dynamics are characterized by a single attractor, either a FP or a LC,

provided that D is not too large. Conversely, if the local and the collective

variables yield qualitatively different dynamics or exhibit multistability,

the validity of either or both MFAs is lost. This occurs due to stochastic

phase fluctuations, manifested more or less strongly, which may render the

different realizations of both the local and the collective dynamics out of

step.

Figures 7.1(a) and 7.1(b) illustrate two canonical examples where GA

and the QIA hold. The value c = 0.1, fixed in both instances, is chosen

from an intermediate range to stress that the MFAs’ validity extends into

such a domain. Figure 7.1(a) refers to scenario for small D1 = 0.0002 and

small τ1 = 0.2, where the local and collective dynamics display stochasti-

cally stable FP. Figure 7.1(b) concerns the case where the local and global

dynamics exhibit the delay-driven LC with small superimposed fluctua-

tions. The particular setup involves D2 = D1 but much larger τ2 = 2.7,

having verified that the analogous conclusions apply for the noise-led os-

cillations. The main frames and insets of both figures are focussed on
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Figure 3.1: Main frames in (a), (b) and (c) display three different stochastic real-
izations (x5,i, y5,i) (black solid, dashed and dotted lines) for an arbitrary neuron, and
(E(x5,i), E(y5,i)) for an ensemble of 10 realizations, shown by the solid red (grey) lines.
The insets of (a), (b) and (c) refer to graphic normality tests. The data are obtained for
(c,D, τ) = (0.1, 0.0002, 0.2) in (a), (c,D, τ) = (0.1, 0.0002, 2.7) in (b) and (c,D, τ) =
(0.1, 0.003, 1.5) in (c). (d) illustrates the breakdown of GA for X(t) under (c,D, τ) from
(c). The inset shows the phase portraits for (X(t),Y(t)) (blue line) and (mx(t),my(t)) (black
line).

the validity of GA. The former show three different stochastic realizations

(x5,i, y5,i) for an arbitrary neuron, encoded in black solid, dashed and dot-

ted lines, as well as the expectation values (E(x5,i), E(y5,i)) for an ensem-

ble of 10 realizations, drawn by the solid red (grey) lines. The index i

accounts for the realizations. In case of Fig. 7.1(a), for any t, the ex-

pectation closely matches either of the realizations trivially. Regarding

the scenario with LC, the analogous statement holds true if t is such that

(E(xi(t)), E(yi(t)) ≈ (X(t), Y(t)) lies on the slow branches of the given or-

bit. If (E(xi(t)), E(yi(t)) falls onto one of the transients, the expectation
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departs substantially from the realizations, cf. Fig. 7.1(b). As mentioned

in the definition, GA’s validity is upheld if the number of former instances

strongly prevails over the latter ones. This is verified for (c,D2, τ2) from

Fig. 7.1(b), showing that the ratio of points lying on the transients vs those

on the slow branches, approaches nt/ns ≈ 0.1 for the sufficiently long time

period along the trajectory of (E(xi(t)), E(yi(t)). Figure 7.1(c) illustrates

the local dynamics for comparably large D3 = 0.003, c = 0.1 and inter-

mediate τ3 = 1.5, where the stochastic realizations fluctuate around the

single LC. The fluctuations are large enough to induce strong phase desyn-

chronization between the realizations. This is distinct from Fig. 7.1(b) in

that the expectation substantially departs from each of the realizations at

any t. For (c,D3, τ3), one can no longer interpret (E(xi(t)), E(yi(t)) in terms

of clearly discernible slow and fast motions. Nonetheless, for some less

pronounced examples of GA violation, say at (c,D, τ) = (0.1, 0.002, 1.2),

one may estimate nt/ns ≈ 1.5. Stochastic realizations of global variables’

orbits (Xi(t), Yi(t)) and their stochastic averages (E(Xi(t)), E(Yi(t))), shown

in Fig. 7.1(d) for (c,D3, τ3) from Fig. 7.1(c), display qualitatively similar

behavior as the local variables.

Apart from characterizing it by the nt/ns ratio, the GA validity has been

tested directly for an arbitrary neuron at the given (c,D, τ). Having run

many different realizations of the process xi(t), yi(t) applying the same ini-

tial function, we have examined the properties of the distribution of dif-

ferent realizations xi(t0 + δt), yi(t0 + δt) for small δt, taken to be of the or-

der, in tens or hundreds of iteration steps. For LC dynamics, (xi(t0), yi(t0))

has lied on the refractory branch. The insets of (a), (b) and (c) display

graphic normality tests, where the red lines indicate the theoretical percent

of data points that would lie below the given value if obeying the Gaussian

distribution, while the blue circles refer to the cumulative distribution of

(x5,i, y5,i) for an ensemble of over 200 realizations. The data show that the

distributions corresponding to (c,D, τ) in Fig. 7.1(a) and 7.1(b) are Gaus-
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sian, whereas the one for Fig. 7.1(c) is not. The results of graphic tests are

corroborated by the numerical Shapiro-Wilk method.

Note that the results above do not indicate how the GA’s validity de-

teriorates with variation of the system parameters. The most interesting

question is to assess the rate in which validity reduces with increasing D

for fixed c and τ. The quantity appropriate to characterize this is deter-

mined as follows. For very small D = 0.0002, we select an arbitrary neu-

ron and fix a point on the refractory branch of its LC orbit. Then, a large

number of different stochastic realizations Nr for the given parameter set

(D, c, τ) = (0.0002, 0.1, 2.7) is run. The goal is to find the maximal number

of iteration steps Tmax, for which the representative point in all the realiza-

tions still lies on the refractory branch. The curve plotted in Fig. 7.2 shows

how the fraction of realizations Nout/Nr where the representative point has

escaped the refractory branch in less than or exactly Tmax steps increases

with D. This may also be interpreted as an indication on how D gives rise

to the number of instants where (E(xi(t)), E(yi(t)) belong to fast transients.

According to validity of GA and the behavior predicted by the bifurcation

analysis of the MF model [138], one may distinguish three characteristic

noise domains. In (I), both the GA and the MF based bifurcation curves

apply. For (II), the GA breaks down, but the MF model’s dynamics still

follows the one of the exact system. In domain (III), both the GA and the

prediction based on the MF model’s bifurcation analysis fail.

We proceed by the analysis on the fulfilment of QIA. One may either

take (i) an indirect approach, derived from a corollary of the QIA formu-

lation, or (ii) the direct approach, based on the notion that approximate

synchronization between the units may render them virtually independent.

Regarding (i), one invokes the central limit theorem, by which for large,

but finite N holds that if local variables are normally distributed for most

t, so too are the collective variables. Hence, GA validity for X(t) and Y(t)

should imply that the local variables are independent. The normality test
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Figure 3.2: Fraction of stochastic realizations Nout/Nr in dependence of D for (c, τ) =
(0.1, 2.7). The results converge to the given curve as Nr is increased.

on X(t) and Y(t) is carried out analogously to that for xi(t) and yi(t). The

main frames (insets) of Fig. 7.3(a), (b) and (c) refer to graphic normality

tests on the variable X(t) (Y(t)) for the parameter sets exactly matching

those in Fig. 7.1(a), (b) and (c). Figures 7.3(a) and (b) indicate the validity

of GA for X(t) and Y(t) distributions, which suggests that QIA also applies.

Nonetheless, an interesting point on Fig. 7.3(c) is that the distribution of

Xi(t0+δt) over stochastic realizations conforms to, and the one for Yi(t0+δt)

sharply deviates from the Gaussian form. Such an outcome is often found

for intermediate D and τ. One may cast this as a scenario where QIA is

not violated strongly, since there are instances with normality violated for

both X(t) and Y(t).

Let us consider the relation between behavior of the MF model and

the validity of MFAs, especially QIA. It has already been indicated that

GA for the collective motion may be violated in a weaker or the stronger

sense, depending on (c,D, τ). Either way, stochastic phase desynchroniza-

tion is reflected in the amplitude quenching of X(t). What we argue is that
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Figure 3.3: (a), (b) and (c) show normality tests for X(t) (main frames) and Y(t) (in-
sets). Parameters are the same as in Fig. 7.1(a), (b) and (c), respectively. (d) il-
lustrates coexistence of FP (red dot) and LC (black dashed line) for the MF variables
(mx(t),my(t)), as well as the typical orbit (X(t),Y(t)) of the exact system (blue solid line)
at (c,D, τ) = (0.1, 0.002, 0.5).

the MF model is ”sensitive” to instances of stronger violation, such that

the bistability of its dynamics may indicate the failure of QIA in a self-

consistent fashion. Namely, for moderate violation from Fig. 7.1(d) and

Fig. 7.3(c), at variance with the exact system, MF model displays a large-

amplitude LC, see the inset in Fig. 7.1(d). However, in cases of strong GA

violation for the collective motion, found either at intermediate D for small

and intermediate τ, or at large D and τ, the MF model exhibits coexistence

between the FP and the large LC, see Fig. 7.3(d), or between the small

and large LCs. Large LC is born via the global fold-cycle bifurcation and

does not affect stability of the stationary state, whereas the small LC arises

from the direct Hopf bifurcation. Mixed mode of the exact system in both

instances may be interpreted as stochastic switching between two attrac-
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Figure 3.4: In (a) and (b) are displayed graphic normality tests indicating Gaussian distri-
butions of ISIs and the return points for X(t), respectively. The data refer to the noise-led
dynamics at (c,D, τ) = (0.1, 0.0015, 0).

tors of the deterministic MF model, whereby such orbits are not normally

distributed around the respective averages.

Before elaborating on the relation between the synchronization prop-

erties and the fulfilment of QIA, we consider two side topics intended to

qualify more closely the terms ”frequency” and ”phase” used later on. The

aim is to show that the effective frequency and phase description of sys-

tem dynamics may be appropriate if MFAs hold. Regarding frequency, we

present the results on the distribution of ISIs for X(t). Note that there are

two types of collective modes, one where the ISIs are dominated by T0(D),

which occurs for small and intermediate D under very small τ, and the

other corresponding to the delay-led dynamics, which is typically seen for

small and intermediate D under large τ. Either way, we have verified that

ISIs are normally distributed for an arbitrary stochastic realization under

long simulation times. In Fig. 7.4(a), the normality test is provided for

the more interesting case, showing persistence of Gaussian distribution for

the noise-led dynamics under fairly large D = 0.0015 at τ = 0. Thus, the

description of collective motion in terms of the average period (frequency)

appears justified if MFAs apply.

In the context of effective phase for the collective motion, we have ex-

amined whether the distributions of the return points P(Xr) and P(Yr) fol-
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lowing the average ISI may also be Gaussian, if MFAs are satisfied. P(Xr)

and P(Yr) are calculated in two steps: one first lets the simulation run for

the sufficiently long time to determine the average ISI for X(t), and then

carries on by collecting data on the return points for another very long time

period. The first point (X0, Y0) is chosen to lie on the refractory branch of

the LC. In Fig. 7.4(b) is shown the graphic normality test for Pr(X) along

an arbitrary stochastic trajectory under the same parameter set as in Fig.

7.4(a). Given result implies that, in statistical sense, the return points re-

main fairly close to the ”average” LC.

Now we proceed with the analysis on the relation between synchroniza-

tion of units and the fulfillment of MFAs, in particular QIA. Being stochas-

tic and excitable in nature, the units cannot exhibit complete synchroniza-

tion. However, the discussion above suggests that one may speak of ap-

proximate frequency (FS) and phase synchronization (PS) in conditional

terms, if MFAs are satisfied. Presence or absence of these forms of syn-

chronization may give rise to three types of collective states: (i) coherent

states where single units display both the approximate FS and PS, (ii) states

that exhibit FS, but lack PS and (iii) collective states where approximate FS

is not established. One may infer the relation between synchronization and

QIA by examining the linear interaction terms of the form c(xi(t−τ)−x j(t)).

If there is approximate lag-synchronization, the latter become very small,

which leaves the neurons virtually independent. Therefore, by identifying

conditions under which the approximate lag-synchronization is achieved,

one effectively looks for the parameter domains where QIA applies.

We have established that there exist only two scenarios for the approx-

imate lag-synchronization, both of which amount to cases of approximate

FS and PS. The interaction terms may substantially reduce either (i) for

noise-led dynamics at τ ≃ 0, or (ii) for delay-driven dynamics at very large

τ ∼ T0(D). A way to characterize the approximate FS for the given pa-

rameter set is to calculate the ratio r = ∆T/⟨Ti⟩, where ∆T = max|Ti − T j|
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Figure 3.5: The parameter domains admitting the approximate frequency and phase syn-
chronization between the units provide an indication of where the QIA holds. (a) shows
r(c,D) for the delay-driven dynamics at τ = 2.7. (b) and (c) illustrate I3(c,D) and I4(c,D)
for τ = 2.7, respectively.

is the maximal difference between the time-averaged ISIs Ti of individual

units, whereas ⟨Ti⟩ denotes the population average ⟨Ti⟩ = N−1
N∑

i=1
Ti. The

smaller r becomes, the better FS between the units is achieved. The results

for r(c,D) plotted in Fig. 7.5(a) refer to the (ii) case at τ = 2.7. We have

verified that setting τ = 0, which corresponds to case (i), yields qualita-

tively similar results. As the main point, note a very large domain where r

is small, which indicates the approximate FS. Expectedly, for small c and

large D, r is seen to rise sharply, implying that FS is lost.

The drawback of the method above is that one cannot distinguish whether

approximate FS is or is not accompanied by PS. To do so, we consider

the time-averaged third and fourth order moments of the local potentials
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P(xi(t)) for the given parameter set, taking the average over a very long

stochastic realization. By ergodic hypothesis, such an average equals the

one taken over an ensemble of realizations. The third-order average mo-

ment is defined as I3 = (1/T )
T∑

t=1
I3(t), where I3(t) =

∑
xi

(xi − X(t))3P(xi(t)).

The analogous relation holds for I4. P(xi(t)) is obtained by dividing the

range of possible xi values into 110 bins [x, x + δx], whereby one records

the fraction of units whose potential falls within the given bin. If there is

an approximate FS and PS, one expects xi for most t to be Gaussian dis-

tributed around the mean X(t). Then, both I3 and I4 should lie close to zero.

If there is approximate FS, but PS is lacking, I3 ≈ 0 should hold, whereas

I4 should substantially depart from zero. Finally, if there is no approximate

FS, both I3 and I4 are supposed to lie away from zero. Results on I3 and

I4 at τ = 2.7 for a wide range of (c,D) values, cf. Fig. 7.5(b) and 7.5(c),

suggest that domains with approximate FS closely match those with PS.

Note the overlap between the areas with the smallest r, I3 ≈ 0 and I4 ≈ 0

in Fig. 7.5(a), 7.5(b) and 7.5(c), where QIA should hold.

3.3 Chapter summary and discussion

For the class of excitable systems influenced by D and τ, we have formu-

lated the MFAs and discussed the typical scenarios where they hold or fail.

The MFAs are adapted to reflect the excitable character of system dynam-

ics and the strong time scale separation between fast and slow variables.

Validity of MFAs is found to extend beyond the commonly expected pa-

rameter domains, demonstrating it to essentially depend on the qualitative

properties of the local and global dynamics. If these two are characterized

by a unique attractor of the same type, either a FP or LC, and D is not

too large, both GA and QIA apply. We have introduced novel methods to

quantify the level in which the MFAs’ validity deteriorates with parameter

variation. While the failure of GA is linked to stochastic phase fluctua-
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tions between different process realizations, fulfilment of QIA is brought

into context of synchronization of the local dynamics. For the MF model,

the most important point shown is that bistability in its dynamics may in-

dicate in the self-consistent fashion the domains where MFAs are violated.
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Chapter 4

Clustering in excitable systems: basic
phenomenology

Chapter abstract Spontaneous formation of clusters of synchro-

nized spiking in a structureless ensemble of equal stochastically

perturbed excitable neurons with delayed coupling is demon-

strated for the first time. The effect is a consequence of a sub-

tle interplay between interaction delays, noise and the excitable

character of a single neuron. Dependence of the cluster proper-

ties on the time-lag, noise intensity and the synaptic strength is

investigated.

Collective behavior in large ensembles of physiological and inorganic

systems can be reduced to that of coupled oscillators engaged in various

synchronization phenomena. In terms of macroscopic coherent rhythms,

it may either be the case where all the units are recruited into a giant

component or the case of cluster states characterized by exact or in-phase

intra-subset and lag inter-subset synchronization. The spontaneous onset

of cluster states is of particular interest to neuroscience [21] for the con-
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jectured role in information encoding, as well as for participating in motor

coordination or accompanying some neurological disorders. The approach

to clustering has mostly relied on modeling neurons as autonomous oscilla-

tors, treating separately the question of whether the proposed mechanisms

may be robust under noise [29, 57, 136, 137, 143] and transmission de-

lays [144–147]. We explore a new mechanism which rests on the excitable

character of neuronal dynamics and mutual adjustment between noise and

time delay to yield the self-organization into functional modules within an

otherwise unstructured network.

For the instantaneous couplings, the research on populations of ex-

citable neurons has covered pattern formation due to local inhomogene-

ity [148], or has invoked a scenario where noise enacts a control param-

eter tuning the dynamics of ensemble averages between the three generic

global regimes [95]. Distinct from the layout with complex connection

topologies, here it is demonstrated how coupling delays do alter the lat-

ter landscape in a significant fashion, giving rise to an effect one may dub

the cluster forming time-delay-induced coherence resonance. In part, the

strategy to analyze global dynamics rests on deriving the mean-field (MF)

approximation for the exact system. The likely gain from the MF treatment

is at least twofold: except for allowing one to extrapolate what occurs in

the thermodynamic limit N → ∞, it may serve as an auxiliary means to

discriminate between the effects of noise and time delay. Unexpectedly,

the MF model undergoes a global bifurcation at certain parameter values

where the exact system shows an onset of cluster states.
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4.1 Network dynamics and the tools to analyze it

We focus on an N-size population of all-to-all diffusively coupled Fitzhugh-

Nagumo neurons, whose local dynamics is set by

ϵdxi = (xi − x3
i /3 − y + I)dt +

c
N

N∑
j=1

[x j(t − τ) − xi(t)]dt,

dyi = (x + b)dt +
√

2DdWi, (4.1)

where the activator variables xi embody the membrane potentials, while the

recovery variables yi mimic the action of the K+ membrane gating chan-

nels. c denotes the synaptic strength and τ stands for the coupling delay,

both parameters for simplicity assumed homogeneous across the ensem-

ble. The
√

2DdWi terms represent stochastic increments of the indepen-

dent Wiener processes, i.e. the white noise. For the external stimulation

holds I = 0, whereas the small parameter ϵ = 0.01 warrants a clear separa-

tion between the fast and slow time scales. Selecting b = 1.05, the neurons

are poised near the Hopf bifurcation threshold b = 1, which places them

in an excitable regime where each possesses a single equilibrium. An ad-

equate stimulation, be it by the noise or the interaction term, may evoke

a large excursion of membrane potential, passing through the spiking and

refractory states before it loops back to rest.

To characterize the degree of correlation between the firing events, we

use primarily the interneuron spike train coherence [149, 150]

κi j =

m∑
k=1

Xi(k)X j(k)/

√√
m∑

k=1

Xi(k)X j(k). (4.2)

This requires one to split the simulation period T into bins k of length

∆ = T/m, awarding each neuron a variable Xi(k) = 1(0), contingent on

whether a spike was triggered or not within the given time bin, respec-

tively. As with all the quantities below, we have been careful to exclude
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from calculations the transient behavior. The spike threshold and the time

bin are set to X0 = 1 and ∆ = 0.008, verifying that no change of the re-

sults occurred if X0 or ∆ were reduced. The distribution of the κi j values

may serve to distinguish between the homogeneous and clustered network

states. Another aspect we are interested in is whether the clustered states

are monostable or coexistent with the homogeneous ones at the given net-

work size. To probe this, we have monitored if the values of the global

coherence κ = 1
N(N−1)

N∑
i, j=1;i, j

κi j for different realizations at the fixed pa-

rameters clumped together, expecting bunching into distinct groups as ev-

idence of multistable behavior.

Addressing the temporal structure of the network states, it is useful to

look into the distribution of the local neuron jitters ri [55, 123]. They repre-

sent the normalized variations of the interspike intervals Tk extracted from

xi(t), ri =

√
⟨T 2

k ⟩ − ⟨Tk⟩2/⟨Tk⟩, with smaller values indicating better regu-

larity. The modality and the width of the ri distribution over the population

may serve as rough indices on how the cluster dynamics is mutually ad-

justed. In the final part, we analyze the behavior of the ensemble averages

X = 1/N
∑N

i=1 xi and Y = 1/N
∑N

i=1 yi, where the former increases if a larger

fraction of neurons fire in synchrony. The results for the exact system are

compared to those of the approximate MF model [139]. The latter presents

a two-dimensional set of delayed differential equations

ϵ
dX(t)

dt
= X(t) − X(t)3/3 − X(t)

2

{
1 − c − X(t)2 +

√
[c − 1 + X(t)2]2 + 4D

}
− Y(t) + c[X(t − τ) − X(t)],

dY(t)
dt
= X(t) + b, (4.3)

derived within a cumulant approach by employing the Gaussian approxi-

mation.

We note that the results for the exact system refer to a network of N =

200 neurons, applying independently a method from [151] to verify no
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Figure 4.1: Profiles of the κ(D) families of curves over the synaptic strengths c = 0.08, 0.1
and 0.12 display strong dependence on the delay, increasing from τ = 2 in (a), τ = 6 in
(b), τ = 10 in (c) to τ = 11 in (d). The location of ”wells” may point to the emergence of
the clustered states.

qualitative changes in the clustering behavior for larger N.

4.2 Onset and characterization of cluster states

To get a sense of what may be the parameter ranges to admit the cluster

states, we plot the c–families of the κ curves in dependence of D for dif-

ferent τ. Without the delay, the curves would conform to a stereotype pro-

file, where one distinguishes between the three ”regular” segments for very

small, intermediate and large D, showing first a reduced κ due to incoherent

oscillations, then steady high values for the coherent ones and the decay-

ing segment at D where the stochastic dynamics prevails. However, from

Fig. 7.1 we learn how this is upheld for some τ, say τ = 11, but is violated
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manifestly at the ”cluster-resonant” values τ = 2, 6, 10. The ”wells” seen

at approximately D ∈ (0.001, 0.003) in Figs. 7.1(b) and 7.1(c) may occur

for just two reasons, as κ decreases either for the incoherent or the clustered

states. The latter alternative is supported by the coherence matrices in Fig.

7.3, which are discussed shortly. The importance of the D - τ adjustment

for the clustering effect is also witnessed by the c-dependence within the

families in Fig. 7.1: the stronger the interaction term, the more salient is

the picture of ”irregularity” sections immersed into a ”regular” curve pro-

file. Increasing the delay, the cluster states first occur, apparently monos-

table, around τ = 2 for the small D = 0.00025, whereby the typical phase

portrait (PP) projection shows twisted orbits with two clearly discernable

segments, see Fig. 7.2(a). These reflect the two macroscopic fractions of

the population firing alternately, such that the homogeneous network dy-

namically splits into clusters of mutually synchronized neurons, with the

clusters locked in antiphase. The frequency entrainment is indicated by

the shape of the ri distribution, which peaks sharply around < r >m= 0.01.

We tested the invariance of clustering with N via the asymptotical behav-

ior of the quantity χ2
N =

σ2
X

1
N
∑N

i=1 σ
2
xi

, where σ2
X =< X(t)2 >t − < X(t) >2

t

and σ2
xi
=< xi(t)2 >t − < xi(t) >2

t holds. If the cluster states endure,

there should be a residual component χ(∞) ∈ (0, 1) in the large N limit

[151]. For this and the remaining cases, the onset of such a regime is found

around N ≈ 200, implying that no qualitatively novel phenomena occur

above this system size. An interesting observation is that the cluster con-

figuration {N1,N2}, determined by the fractions’ sizes, fluctuates around

the ratio 2 : 1 for different stochastic realizations and appears to aggregate

with enhancing N. For certain τ, the two-cluster state also emerges outside

the D-region delimiting the incoherent and coherent global regimes. This

holds for τ = 5 and D ∈ (0.0004, 0.0008), where the cluster layout is also

such that if one is active, the other remains refractory. The ri distribution

maintains a narrow form, but its maximum shifts to < r >m≈ 0.19. Though

68



4. Clustering in excitable systems: basic phenomenology

Figure 4.2: Global PPs for the two-cluster states show twisted LCs, whereby the two
discernable segments reflect the alternate firing of the neuron subsets. The N1/N2 ratio
depends on the interplay of D and τ, as seen from the examples τ = 2,D = 0.00025, c =
0.1 in (a) and τ = 5,D = 0.0005, c = 0.1 in (b).

one retrieves the general picture from above, a variance is that larger τ

seems to favor the partition N1/N2 ≈ 1 : 1, see PP in Fig. 7.2(b). The 1 : 1

ratio is preferred both for increasing N and if the delay is set to τ = 6.

The clustered states so far may be cast as stationary in the sense of

stability against neurons switching between the clusters. We also report

on the existence of three-cluster states that may be considered ”dynami-

cal”, with the neurons able to jump to and from clusters. Such an outcome

arises for the stronger noise D ≈ 0.0013, once the delay is increased to

τ = 10. To underline the difference between the stationary and dynamical

clustered states at τ = 5 and τ = 10, we plot side-by-side the correspond-

ing pairwise coherence matrices
{
κi j

}
, see Figs. 7.3(a) and 7.3(b), where

the network nodes have been rearranged by a hierarchical clustering algo-

rithm according to a form of metric distance that has the most coherent

nodes the closest. This makes it explicit how the intercluster coherence

for the two-cluster state is virtually negligible with respect to the three-

cluster case. Loosely speaking, within an unstable three-part population

division, when a certain fraction is firing, the other is refractory and the

neurons in the smallest cluster are at rest (excitable). This less clear sep-

aration is also apparent when comparing the nodal degree distributions in
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Figure 4.3: Rearranged coherence matrices for τ = 5,D = 0.0005, c = 0.1 in (a) and
τ = 10,D = 0.0013, c = 0.1 in (b) imply the strong cluster separation in the two-cluster
states and mixing between the clusters in the three-cluster case. Darker shading reflects
higher coherence.

cases τ = 5 and τ = 10, obtained if one assumes
{
κi j

}
to provide weights

for the network whose links stand for the correlated dynamics between the

neurons. For τ = 5, the bimodal degree distribution is clearly seen without

raising the connectivity threshold, whereas for τ = 10 the initially smeared

three-modal distribution refines after some thresholding is performed. The

rationale of dynamical clustering may best be understood by analyzing the

ri distribution in the three-cluster state. Apart from being wider than in the

two-cluster state, it peaks at a much smaller value < r >m≈ 0.09, implying

the more regular neuron firing. For this to hold, synchrony within the clus-

ters has to be of intermittent nature, such that the neurons once engaged in

synchronized spiking are much more likely to do so again.

Aa understanding of clustering mechanism is revealed by comparing

the typical PPs of neurons participant in the homogeneous coherent state

and the clustered states, see Figs. 7.4(a) and 7.4(b). A striking feature

in the latter case is a kink at the refractory branch of the slow manifold.

The appearance of a kink is the key manifestation of the D − τ co-effect,

that consists in separating the ensemble into clusters and maintaining the

proper phase difference between them. The purpose of the kink is to keep
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the neurons frustrated long enough at the refractory branch before being

allowed to slide down to its left knee. This may be imagined as a form of a

lock-and-release behavior, where the delay primarily gives rise to the first,

and noise to the second part. If a fraction of the ensemble were to move

beyond the left knee and the other were to lag behind, the split should

be amplified with each population cycle, eventually becoming resilient to

perturbation precisely due to trapping at the refractory branch. For trapping

to be successful, the kink has to be placed properly, approximately where

the dynamics of the representative point is most susceptible to perturbation

along the slow manifold. Then, for a brief period, due to an influence from

xi, the evolution of yi is locally accelerated, becoming comparable to a

speed of change in the direction orthogonal to the slow manifold, driven by

the spiking fraction of the population. Note that the trapping interval has to

be adjusted so that the entire population is entrained to a single frequency

of firing. The latter matches the one in delay-free case, which warrants

stability against perturbations. The arguments above and the numerical

data seem to indicate how the delays where the coherence resonance is felt

the strongest may be approximated by τ = T0/2 + n ∗ T0, with T0 being

the period of coherent oscillations at τ = 0. Noise-wise, with increasing

τ, D has to be adjusted to higher values to regulate the relaxation from the

kink to the slow manifold while maintaining the entrainment to the proper

frequency. In parallel, for stronger D, the representation cloud of the firing

fraction tends to disperse more, requiring a sufficient τ for this effect to be

averaged out.

The interplay between D and τ is further highlighted by exploring the

behavior of the MF model (7.4). Local bifurcation analysis shows that

the MF exhibits a succession of super- and subthreshold Hopf bifurcations

[139], which account for the transition from the stochastically stable FP to

the stable LC. Still, this scenario is confined to noise higher than here: an-

alytical and numerical means corroborate the Hopf bifurcations to emerge
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Figure 4.4: (a) and (b) show typical PPs of neurons participating the homogeneous global
oscillations and clustered states, respectively. The latter are distinguished by a kink K,
which is a signature of the D − τ co-effect. The parameter sets are τ = 6,D = 0.0005, c =
0.1 in (a) and τ = 2,D = 0.00025, c = 0.1 in (b).

about D ≈ 0.0025 at relevant τ. Now we argue that the approximate model

is in qualitative terms able to capture the clustering effect occurring for

small D, c and τ. Focus is on the finding that MF system predicts an onset

of cluster states by undergoing a global bifurcation for the parameter val-

ues around τ = 2,D = 0.00025 and c = 0.08. At the given τ and D, for

c < 0.08 the approximate model has only the equilibrium, whereas around

c ≃ 0.08 a large and a small LC are born via a fold-cycle scenario. Note

how then the PP of the MF acquires the form qualitatively similar to those

of the exact system’s in Figs. 7.2(a) and 7.2(b). The two sections of the

emerging MF orbit mimic the action of the fractions within the full pop-

ulation. This structure of the LC becomes unstable under increasing c or

τ, i.e. for the stronger impact of the interaction term. Another interesting

aspect to the approximate system is that it shows the complex LC to co-

exist with the FP, viz. the basins of attraction in Fig. 7.5(b), which is a

feature apparently absent in the exact model. However, the FP is located

very close to the basins’ boundary which indicates it to be stochastically

unstable in the exact system for an arbitrary small noise.

72



4. Clustering in excitable systems: basic phenomenology

Figure 4.5: Bistability in the MF model: (a) shows the trajectories converging either to
the FP or the LC, depending on the initial conditions, whereas in (b) are displayed the two
basins of attraction for τ = 2,D = 0.00025, c = 0.1.

4.3 Chapter summary and discussion

We have reported on a novel phenomenon where clustering within the ho-

mogeneous neural population is induced by an interplay of noise and time

delay. This paradigm is distinct from most current explanations on how

the clustered states may arise, for it does not treat D and τ as destabilizing

and detrimental, but rather as biased toward the formation of dynamical

structure in networks that are unstructured both in terms of topology and

local parameters. The analyzed model is minimal yet sufficient to display

an interesting type of behavior, possible only as an interplay of excitability,

noise and interaction delay. Once the phenomenon is recognized as caused

only by these qualitative properties one can study the effects of more real-

istic assumptions on the distribution of neuronal properties and connection

patterns. An interesting point concerns the derived MF model, which can

aid in understanding the precise roles played by D and τ. Notably, beneath

the surface lies a more stratified phenomenon, where the subtle adjustment

between the parameters affects the number of clusters, their configuration,

stationary or dynamical character, as well as whether the cluster states oc-

cur monostable or coexist with the homogenous solution at the given pop-

ulation size. This framework could find application within the research on
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neural systems and other excitable media.
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Chapter 5

Cluster synchronization of spiking in
homogenous assemblies of excitable
units: analysis

Chapter abstract In the field of nonlinear dynamics, system-

atic exploration of the co-effects introduced by the simultane-

ous presence of noise and time delay has gained attention only

recently. An interesting type of the ensuing synchronization phe-

nomena may be splitting of a population into clusters, each made

up of neurons oscillating in synchrony, whereby the activity be-

tween the clusters shows phase lags. Usually, the synchroniza-

tion cluster formation is a consequence of some structural inho-

mogeneity, either in the local parameters or the network topol-

ogy. Here we provide an in-depth analysis of the phenomenon

where the interplay of noise, interaction time-delay and the ex-

citable character of neuronal dynamics is found to be necessary

and sufficient for the occurrence of the synchronization clusters,

in spite of the network being completely structureless. In par-

ticular, the model we apply concerns a fully connected network

of noisy excitable neurons interacting via delayed diffusive cou-
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plings. Several tools have been applied to characterize the syn-

chronization clusters and to study their dependence on the neu-

ronal and the synaptic parameters. Qualitative explanation of the

cluster formation is discussed. We have found the two-cluster

partitions where neurons are firmly bound to their subsets, as

well as the three-cluster ones, which are dynamical by nature.

The former turn out to be stable under small disparity of the in-

trinsic neuronal parameters and the heterogeneity in the synaptic

connectivity patterns.

Selective synchronization of relevant neural populations is a general

principle for organizing communication in the brain, as it is associated with

many cognitive processes [152–156], while also being crucial for move-

ment preparation and execution [157–160]. It is commonly believed that

synchronously oscillating neurons exchange information more effectively

[13]. Neurons in vivo operate under the influence of many factors that can

be modeled as noisy perturbation. Nontrivial and constructive role of noise

in the dynamics of a single neuron, few neurons or large neuronal networks

is well known [55, 67, 161–167]. The key to this lies in the fact that the ex-

citable dynamics of a single neuron acts as an amplifier of the small noisy

perturbation. The latter can shift a neuron near the stable fixed point of

the excitable regime randomly into a state that yields a spike discharge.

Such noise induced spiking resembles chaotic oscillations. However, for

a certain range of noise intensity, which depends on the neuronal refrac-

tory period, spiking may appear as regular oscillation with a well defined

frequency. Coupling to other neurons can then lead to synchronization be-

tween stochastic spiking or may induce deterministic oscillatory dynamics.
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Transmission of neuronal impulses through an axon and synapses is not

instantaneous. The transport time can be included phenomenologically

into the modeling by using explicit time lag in the synaptic interaction

terms. Relatively small interaction time delays are known to have profound

effects on the neuronal dynamics [14, 29, 57, 136, 137, 143, 168, 169]. The

time delay may induce oscillations through different mechanisms, like the

Hopf or some global bifurcations, or it may suppress the existing oscilla-

tions. It is also widely recognized how time delay can profoundly influence

the type of synchronization between the neurons.

The effects of the simultaneous influence of noise and the interaction

delays on the dynamics of typical neuronal systems have been analyzed

much less, viz. [138, 143] and the references therein. One such phe-

nomenon, induced by combining the noise, interaction-delay and the ex-

citable character of the local dynamics, constitutes the splitting of popula-

tion into clusters, each made up of synchronously firing neurons. So far,

the issues gaining significant attention have been the formation of clus-

ters of synchronous dynamics either due to the inhomogeneous distribu-

tions of the neuronal parameters or the non-trivial network topologies, see

[13, 21]. Appreciating such studies, one would imagine the clusters emerg-

ing in structureless networks less likely. Note that this does not connote to

systems of globally coupled identical oscillators, where clustering already

constitutes a well-known manifestation of multi-stability, usually being as-

sociated with more complex interaction functions [170–172]. However, it

has recently been reported [115] that the synchronization clusters can be

formed even in completely homogeneous networks of excitable units ow-

ing solely to a subtle interplay of noise, interaction delay and the neuronal

excitability. In this chapter we provide an in-depth analysis of the spon-

taneous clustering phenomena. Several techniques are to be employed to

characterize the aspects of local and the macroscopic dynamics related to

the synchronization clusters, capturing the mechanisms that allow them to
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arise and be maintained.

We consider a collection of N identical Fitzhugh-Nagumo excitable

neurons perturbed by the white noise and interacting via the delayed linear

couplings. Each neuron is connected to every other neuron, assuming uni-

form synaptic strength and the time-lag. Though the default setup involves

a homogeneous ensemble, some of the cluster states are further shown to

be robust with respect to small dispersions of the neuronal and network

parameters. Results of the detailed numerical study on the properties of

the cluster partition are discussed, making its dependence on the coupling

strength, noise intensity and the time-lag explicit. Following on that, we

provide an explanation of the observed phenomena using numerical and

qualitative arguments, as well as the recently developed mean-field model

of the stochastic delay-coupled network of excitable units [138, 139, 143].

The chapter is organized as follows. In Sec. 5.1 the focus lies with

the details of the applied neuron and population models, further provid-

ing background on the global regimes generic for the extended excitable

media. Section 5.2 is aimed at introducing the coherence measure appro-

priate to characterize the mutual adjustment between the neuron firing pat-

terns, arriving at the means to analyze the structure of clustered states from

the macroscopic perspective. The other major issue concerns the relation-

ship between the cluster states and the already familiar global regimes, in

particular in terms of anticipating the parameter regions that may facili-

tate clustering. Section 5.3 is dedicated entirely to the two-cluster states,

examining whether and how are the regularity of local dynamics and the

properties of cluster partition affected by variation of noise amplitude and

the time delay. Another matter of interest is the asymptotic dynamics re-

lated to clustering, referring both to the long term stability and the behavior

under increasing the system size. In Sec. 5.4 one shows the structure of

the three-cluster states to be prone to reconfiguration, at variance with its

two-cluster counterpart. The two following sections underlie the common
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framework behind the clustering phenomena. On one hand, it is shown

that the coaction of noise and delay induces a unique form of neuron phase

portraits, whereas on the other, the developed mean-field (MF) model is

demonstrated to undergo a global bifurcation reflecting the onset of clus-

tered states. The final section contains the summary and the discussion on

the results obtained.

5.1 Background on the neuron model and the population
dynamics

Consistent with the assumption on neuron excitability, the local dynamics

of an N-size population is built on the Fitzhugh-Nagumo model [75, 125,

126]

ϵdxi = (xi − x3
i /3 − yi + I)dt +

c
ni

N∑
j=1

gi j[x j(t − τ) − xi(t)]dt,

dyi = (xi + b)dt +
√

2DdWi, (5.1)

where xi and yi are the respective activator and recovery variables, gi j

present the elements of the adjacency matrix and ni refer to the number

of neurons which the given neuron i is connected to. Setting ϵ = 0.01

enforces a clear separation between the fast and slow variable subsystems,

such that the former embodies the dynamics of membrane potentials, and

the evolution of the latter may be linked to the action of the K+ ion gating

channels. The system is not subjected to external stimulation currents, so

I = 0 holds. The neurons are nonetheless exposed to a noisy environment,

a point reflected by the
√

2DdWi terms representing the stochastic incre-

ments of the independent Wiener processes, whose expectation values and

correlations satisfy ⟨dWi⟩ = 0 and ⟨dWidW j⟩ = δi, jdt. Communication be-

tween neurons occurs via diffusive couplings, parametrized by the synaptic

strength c and the time delay τ, the latter accounting for the finite propa-
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gation speed over the axons and/or the latency in postsynaptic responses.

The synaptic parameters are taken to be uniform not least for simplicity,

but rather to set aside all possible sources of secondary effects that may

interfere with the core clustering phenomenon.

The key intrinsic parameter b is supposed to modulate the neuron ex-

citability. To see how this may be so, one first recalls how the isolated

neuron in the noiseless case undergoes a supercritical Hopf bifurcation for

|b| = 1, such that it possesses a unique attractor, the fixed point (FP) above

and the limit cycle (LC) below this value. Appreciating the invariance of

the system (7.1) to transformation (xi, yi, b)→ (−xi,−yi,−b), one can con-

sider only the case b > 0 without any loss of generality. As a corollary of

the strong time-scale separation, the Hopf threshold marks the onset of re-

laxation oscillations, where the phase point within each cycle spends O(1)

time along the spiking and refractory branches of the slow manifold, exe-

cuting rapid O(ϵ) jumps in between them, recall Fig. 2.2. Translated to the

stochastic version of the bifurcation, for vanishingly small D the trajecto-

ries still land on the appropriate attractor with probability 1 [79]. However,

slightly above b = 1 the neurons are found in an excitable regime, meaning

that an adequate stimulation, be it by the noise or the interaction term, may

elicit large transients of membrane potential, whereby the orbit traverses

the spiking and refractory states before the equilibrium is reinstated. A

typical instance of such a behavior is obtained for b = 1.05, the value kept

fixed throughout the chapter. Confined to the non-interacting case, one

further encounters a range of intermediate noise amplitudes where the en-

suing spike sequences show very little randomness. The particular setup

with additive noise in the slow subsystem, like that in (7.1), may foster the

coherence resonance (CR) [55], characterized by a tight analogy between

the stochastic LC and its deterministic counterpart [77]. The latter does not

hold for the alternative scenarios attending noise in the fast subsystem: let-

ting it act alone or combined with that in the slow variable dynamics may
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give rise to self-induced stochastic resonance (SISR) [77, 78] or several

forms of mixed-mode oscillations [79], respectively.

Extending the above framework to excitable media, one typically in-

vokes a scenario where noise enacts a control parameter, tuning between

the different global regimes [64, 95, 103, 113]. In case of instantaneous

couplings, the ensemble averages have been demonstrated to take up three

generic forms of behavior, contingent solely on variation of the noise am-

plitudes, as illustrated earlier in Fig. 2.3. For small D, there is a stochas-

tically stable global equilibrium, since the individual spiking is rare and

incoherent, leaving most of the population at rest at any given time. The

intermediate noise amplitudes give rise to a more frequent firing with most

of the events synchronized, effectively turning the population into a macro-

scopic oscillator whose global frequency matches those of individual neu-

rons due to mutual entrainment. Increasing D even further, one reaches

a point when noise overwhelms the libration effects of coupling, with the

ensemble averages decaying into chaotic regime. While the local spiking

frequencies continue to increase, the synchronization systematically dete-

riorates by most of the spikes thrown out of step. These two points imply

that at any instant the bulk of the population is refractory, which renders

the trajectory of the global variables confined to an area of phase space

much smaller than the one encircled by the LC.

The paradigm involving the three described types of behavior has first

been reported for fully connected networks [5, 67], and has later been

confirmed to endure for the layouts involving more complex interaction

patterns [95, 123]. What we argue is that the inclusion of synaptic de-

lay profoundly alters such a landscape, influencing in a meaningful way

the succession of global variables’ regimes. In particular, the coaction of

noise and delay is found to facilitate a distinct form of synchronization

that allows for the onset of the cluster states. As the effects of topology

remain secondary to the core ingredients behind the phenomenon, namely
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the noise, time delay and the neuron excitability feature, the results pre-

sented here refer to a globally connected network, viz. gi j = 1 holds for

each (i, j) pair of indices and ni = N applies to every node. This type of

idealization has proven useful [127, 128], and populations with assumed

all-to-all couplings, once subjected to external forcing or feedback con-

trol, have even been implemented in modeling the emergence of healthy

and pathological brain rhythms, as well as the interaction between the dis-

tributed brain areas [1, 21, 27]. Nevertheless, in a discussion later on we

consider an issue of removing a fraction of links between the neurons,

showing that the phenomena laid out persist in randomly diluted networks

on a condition that the sparseness level and the inhomogeneity in nodal

degrees distribution are not excessive.

5.2 Observation of clustering

The main topic of this section concerns introducing the appropriate tools

to monitor the emergence and describe the temporal structure of the clus-

ter states. In particular, there are four issues we address: first, defining

the quantities that may readily be implemented to distinguish between the

homogeneous and the cluster states; second, gaining an insight on the set

of parameters that admit clustering; third, examining whether the clus-

ter states appear monostable or coexist with the homogeneous ones, and

fourth, devising methods to discern and visualize how the neurons get dis-

tributed between clusters for each realization of the n-cluster state. In a

nutshell, the aims stated are best achieved by means of pairwise and popu-

lation coherence, which characterize the extent of correlation between the

spiking events on the local and the global level.

To begin with, one is required to split the full iteration period T into bins

k of length ∆ = T/m, such that each neuron i is awarded a binary variable

Xi(k) ∈ {1, 0}, dependent on whether the neuron has fired or not within the

82



5. Cluster synchronization of spiking in homogenous assemblies of excitable units:
analysis

given bin, respectively. By doing so, the continuous time series of neuron

membrane potentials are coarse-grained into binary sequences of ones and

zeroes. Then the pairwise coherence κi j is defined as the cross-correlation

between the neuron spike trains [149, 150]

κi j =

∑m
k=1 Xi(k)X j(k)√∑m

k=1 Xi(k)X j(k)
. (5.2)

Throughout the chapter, the time bin ∆ = 0.008 is set, whereas X0 = 1

is the threshold assigned for the neuron potential to cross so to register a

spike, verifying that the results withstand if either of these values is re-

duced further. We have made certain that the transients are excluded from

calculations. Note that the distribution of κi j values may be used to distin-

guish between the homogeneous and the (different types) of cluster states,

the information gained from its modality and the peaks’ width.

Alternatively, {κi j} can also be viewed as if it provides a template for

defining a posteriori a connectivity matrix completely independent on the

structural one, given by gi j. One may envision this as an interpolation of the

notion of functional networks [173–176], a well-known tool for analyzing

the properties of the long-term dynamics within the large N systems, essen-

tially intended to qualify some form of synchronization between the units.

This is based on the idea of considering a pair of units (more strongly) cou-

pled if their respective firing series are (better) synchronized. Hence, the

way in which the functional network is built reflects the self-organization

of neuron dynamics so that it places the units with precisely timed spikes

within the same functional modules [21, 173, 175]. The latter role is here

assumed by the clusters, so that the functional networks can be applied

in exposing the structure of the cluster states. Since we introduce the co-

herence as a type of synchronization measure, the terms functional and

coherence network are used alternatively.

The coherence networks [177] referred to here are by construction undi-
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rected, but can involve either binary or weighted links. In the former case,

a pair of neurons is considered connected if their pairwise coherence lies

above a certain threshold Θ, be it nonzero or trivial [176]. Within this ap-

proach, the distinction between the homogeneous and the clustered states

is apparent from the profile of the distribution of nodal connectedness de-

grees P(ki), as derived from the appropriate coherence network. Note that

the nodal connectedness degree ki is defined as the number of nodes which

the given node i is connected to.

In Fig. 7.2(a) one sees the homogeneous state of global coherent os-

cillations typified by a unimodal distribution at Θ = 0, such that all the

neurons are interconnected, viz. the structural and the coherence networks

are an exact match. On the other hand, for the cluster states one expects

an n-modal degree distribution P(k), whereby the threshold level necessary

to arrive at clearly separated peaks depends on the ratio of intra- to inter-

cluster correlations: the higher it becomes, the lesser Θ is required. For the

two-cluster state in Fig. 7.2(b), coherence between neurons participating

the different clusters is negligible, so one may take a marginal threshold

value to obtain the coherence network whose nodal degree distribution re-

flects the cluster partition {N1,N2}.
Now let us explore the notion of the weighted coherence network, which

rests on interpreting κi j as elements of a weight matrix that determines the

scheme by which the nodes are interconnected. In order to visualize the

structure of a cluster state, one is supposed to take two steps. The first is

to introduce a distance metric which, loosely speaking, translates the least

coherent neurons into the farthest ones, so that {κi j} is effectively trans-

formed into a matrix of distances {γi j}. The second step consists in apply-

ing an agglomerative hierarchical clustering algorithm on {γi j}, whereby

the closest lying neuron groups are systematically merged into larger ones.

Level-by-level, the groups to be joined are determined by a linkage crite-

rion, expressing the intergroup distance as a function of pairwise distances
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Figure 5.1: Characterization of the cluster states in terms of features of the corresponding
binary and weighted coherence networks. In (a) and (b) it is demonstrated how the dis-
tinction between the homogeneous coherent states and the n-cluster states can be made
explicit by the binary coherence network, which possesses a unimodal (an n-modal) dis-
tribution of the nodal connectedness degrees P(k) in the former (latter) case. The data in
(a) are obtained for the homogeneous coherent state at c = 0.1,D = 0.001, τ = 6, whereas
the parameter values for the two-cluster state in (b) are c = 0.1,D = 0.00025, τ = 2.
The weighted coherence network, represented by the weight matrix in (c), and the binary
network in (d) may serve independently or combined to capture the structure of the given
cluster state, as shown for the two-fraction partition at c = 0.1,D = 0.0005, τ = 5.

between their respective members. In relation to the first step, it is conve-

nient to adopt the distance metric d(i, j) = 1 − κi j. Completing the second

stage, one readily obtains a dendrogram, where the layout of neurons in the

lowest level may serve to rearrange {κi j} so it assumes the block-diagonal

form. The diagonal blocks mirror the clusters, and those off-diagonal rep-

resent the cross-correlations. What is displayed in Fig. 7.2(c) constitutes

the outcome of the above strategy implemented in case of the two-cluster

state obtained at (D, τ) = (0.0005, 5). A matter of some interest is to probe

whether the binary and weighted coherence networks give rise to equiva-

lent partitions for the same network state. Apparently, the binary networks,
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Figure 5.2: Focus on the impact of interaction delay on the system’s behavior. (a) shows
the κ(τ) plots for D = 0.0005 (solid circles) and D = 0.0007 (open diamonds) at fixed
c = 0.1. Local minima exhibited by κ(τ) serve as an indication on the intervals of τ that
foster the cluster states. (b) Representation scheme with respect to D is adopted from
(a). The inset refers to the variation of the average oscillation period ⟨TX⟩/T0 with τ for
the macroscopic variable X. In qualitative terms, the curves appear virtually the same for
different noise, whereby the given profiles imply that the system’s dynamics can be traced
to the competition between the noise-driven and the delay-driven oscillation modes. The
dashed line corresponds to the case ⟨TX⟩ = T0. The main frame displays the dependence
of the scaled average oscillation period ⟨TX⟩/T0 on τ for different D. For the homogeneous
coherent states found within the approximate intervals τ ∈ [2.6, 4.2], τ ∈ [6.2, 8.2] and
τ & 9.8, the above competition is resolved in favor of the delay-driven mode. For the
two-cluster states around τ ∈ [4.8, 6] and τ ∈ [8.8, 9.8], the noise-driven mode prevails.

like the one in Fig. 7.2(d), provide less sophisticated information, but cor-

roborate well with the weighted ones if the clusters are well separated, viz.

when Θ should top only the very small cross-terms. Once there is more

ambiguity to the separation, reaching the qualitative agreement rests with

selecting the ”proper” Θ for the binary network, as we see later on.

5.2.1 Where to look for the cluster states?

Having discussed the means of characterization, the next objective is to

determine the parameter domains that facilitate the onset of the cluster

states. For the most part, one is interested in the impact of D and τ, and

to a lesser degree in the influence of c. Focussing initially on the isolated

effects that each of the parameters brings in, we first consider how the sys-
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tem’s behavior is modified under variation of a single parameter, while the

remaining ones are fixed. To this end, one invokes the global coherence

[150] κ = 1
N(N−1)

N∑
i, j=1;i, j

κi j, derived from the pairwise coherence by aver-

aging over the neuron population. Given the definition, κ may assume val-

ues within the [0, 1] interval, with the upper and lower limits reflecting the

completely coherent and incoherent firing between neurons, respectively.

What is most useful about κ is that it decreases only for two reasons, either

if the cluster states emerge or if some form of disordered states sets in. In

the former case, should there be a two-cluster state with an approximate

equipartition and a strong cluster separation, one expects to find κ ≈ 0.5

or a slightly lesser value, depending on the deviations from the two as-

sumptions we made. However, a larger reduction of κ can be considered a

certain signature of the disordered states. Based on these two remarks, one

should be able to read from any κ dependence where the cluster states are

likely located. In particular, if there are no disordered states in the vicinity,

the cluster states should coincide with the local minima of κ.

This is first probed for the κ(τ) dependence, viz. Fig. 7.3(a), having D

fixed at two appropriate values, D1 = 0.0005 and D2 = 0.0007. Under this

setup, the intention is to demonstrate that tuning the delay gives rise to the

clustering effect, meaning that there exist some narrow intervals of τwhich

may be cast as the cluster-resonant ones [115]. We have indeed found by

numerical simulation that the local minima around τ ≈ 2, 6 and 10 coincide

with the onset of the two-cluster states, as to be expected from the curves’

profile. The properties of such states will be analyzed in more detail in

Section 5.3. However, one notes that clustering around τ ≈ 2 is distinct

from the analogous phenomena for larger τ, given that in the former case,

when increasing the delay, no homogenous coherent states arise prior to

the cluster state, a point which in the latter case no longer applies. The

other important observation is that κ(τ) acquires virtually a universal form

for the fixed D values selected from the range relevant to clustering. The
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minor differences around the local minima are the reflection of the noise-

specified behavior of the global variables leading in to the formation or

dissipation of the cluster states. Such background effects lie outside the

scope of the present chapter. However, the argument on minor differences

and the earlier statements on having to select the appropriate D values that

admit clustering imply that one should also take into account the interplay

between the effects of D and τ. In particular, apart from the characteristic

time-scale determined by τ, note that the noise intensity as well brings

in a characteristic time-scale, the one for ”bare” oscillations in the delay-

free case τ = 0. The latter’s period T0 is solely determined by D, with

T0(D) being a decaying function within the considered D-range, cf. Fig.

2.4(c) and the accompanying explanation. To get a sense on the values

which T0 may assume, we state two relevant instances, T0(D = 0.0005) ≈
3.78 and T0(D = 0.0007) ≈ 3.66. It is not a surprising effect to find

the system’s behavior being determined by the competition between the

two oscillation modes, one guided by noise and the other driven by the

interaction delay. In this context, it is interesting that the cluster-resonant

delays τr in Fig. 7.3(a) may roughly be approximated by the formula τr =

T0/2 + n ∗ T0, which contains an implicit dependence on D through τ.

Note that the given expression is similar to what is obtained in [62] for the

coupled phase oscillators. Nevertheless, the formula may only be accepted

in conditional terms, under two important constraints. First, it should not

be read as if implying the existence of point-like resonances with delay, but

rather as an indication on where the centers of the cluster-resonant intervals

are situated. On the second constraint, note that Fig. 7.3(a) has the formula

empirically confirmed only for n = 0, 1, 2. However, one should also take

into account that considering overlong delays, viz. τ several times longer

than the neuron refractory period, makes little sense in physiological terms.

Looking for further confirmation and additional details on how the sys-

tem’s behavior is driven by the competition of the delay and noise-driven
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oscillation modes, we examine the variation with τ of the normalized av-

erage oscillation period for the global variable X, < TX > /T0, where av-

eraging refers to an ensemble of different stochastic realizations. The plot

is displayed in the inset of Fig. 7.3(b). Determining < TX > is the same as

determining the average ISI [178], except for the two-cluster states, where

the former is approximately twice as the latter. Apart for the non-trivial

behavior in general, the curves for different D again qualitatively show a

common form, with the minor noise-specific effects manifested mostly in

the vicinity of τ ≈ 2. An important point is that around τr the < TX > /T0

values lie very close or slightly above the identity line < TX >= T0, indi-

cated by dashes in the inset of Fig. 7.3(b). This should not be confound

with the peaks around τ ≈ 3.8 and τ ≈ 7.6, where τ ≈ n ∗ T0 applies.

These peaks are unrelated to clustering and reflect a form of global events

in the phase space, which involve the limit cycle for the macroscopic vari-

ables approaching the vicinity of the saddle fixed point. Nonetheless, once

the homogeneous coherent states first set in (τ & 2.4), < TX > /T0(τ) de-

pendence exhibits nearly a periodic behavior approximately respecting the

bare oscillation period T0, viz. the sections τ ∈ [2.6, 6.2] and τ ∈ [6.2, 9.8].

To establish more firmly how are the homogeneous and the cluster states

distinguished in terms of the prevailing oscillation modes, we also consider

the variation with τ of the scaled average oscillation period for the global

potential, < TX > /τ, see the main frame in Fig. 7.3(b). It strikes that the

curves for different D again show nearly universal behavior. Essentially,

one finds three plateaus approximately for τ ∈ [2.6, 4.2], τ ∈ [6.2, 8.2]

and τ & 9.8, which are numerically confirmed to coincide with the ho-

mogeneous coherent states. Their average oscillation periods amount to

τ, τ/2 and τ/3, respectively, clearly implying the prevalence of the delay-

dominated mode over the noise-driven one. Cross-referencing the results

from the inset and the main frame, it also becomes clear that the sections

for the approximate intervals τ ∈ [4.8, 6] and τ ∈ [8.8, 9.8] correspond to
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Figure 5.3: Insight on the impact of D and c on the system’s dynamics. (a) shows the
κ(D) family of curves for the set of delay values including τ = 2 (open triangles), τ = 4
(solid triangles), as well as τ = 6 (open circles), having c = 0.1 fixed. Two-cluster states
are indicated for the noise amplitudes D . 0.0008 at τ = 2, whereas the appropriate range
of D is broader at τ = 6. The curve’s profile for τ = 4 implies the lack of clustering
within the considered interval of noise. (b) illustrates how the shape of the κ(D) curves
at fixed τ = 6 is altered under variation of c, beginning with c = 0.08 (open triangles),
over c = 0.1 (solid triangles) to c = 0.12 (open circles). Too strong a coupling appears to
suppress the onset of the cluster states.

the two-cluster states, where the T0-dominated oscillation mode wins over

the τ-dominated one. In other words, it may be stated that in the noise-

delay adjustment leading up to the cluster states, noise has the upper hand

on determining the oscillation frequency, suppressing the forcing effect of

the delay. As for the impact of bringing in the stronger noise, one only

observes a minor broadening of the τ intervals where clustering can be

found. This may be interpreted in the context of the finding that the delay-

driven mode gives way to that driven by noise when the cluster states set

in. Though it presents a simplification, note that the approximate formula

on τr(T0) is able to capture how the centers of the cluster-supporting delay

intervals shift to smaller τ for larger D.

After an extensive overview focused mainly on the effects of τ on the

formation of the cluster states, we direct our attention to demonstrating

more explicitly how the system’s behavior is influenced by the variation
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of D. In this context, it is interesting to compare the κ(D) curves for the

different τ, examining how the cluster states interfere with the previously

known picture involving three generic global regimes, contingent on the

intensity of noise. To this end, in Fig. 7.4(a) are displayed the κ(D) curves

obtained by having fixed the delays at τ = 2, 4 and 6. The value τ = 2

has earlier been established to support clustering, τ = 6 is in this respect

marginal but still facilitates the cluster states, whereas τ = 4 is identified as

the value where no cluster states emerge. The latter curve serves to provide

the point of reference, given that the deviations from its form may indicate

clustering, among other phenomena. Note that the curve τ = 4 conforms to

a stereotype profile in the delay-free case τ = 0. Following the explanation

on the global regimes stated in the Introduction, one would expect to be

able to discern three segments for the small, intermediate and large values

of D, coinciding with the low initial κ values, significant κ increase through

the middle section and a sharp decay for the latter part. This is basically

confirmed for κ(D) at τ = 4, only the initial segment with low values

is not apparent, as the required noise amplitudes are much smaller than

the adopted, already small sampling step for noise. Note that the κ(D)

curves for τ = 2 and τ = 6 acquire quite different forms, though they

both indicate clustering at certain D ranges. In the former case, κ ≈ 0.5

implies the existence of two-cluster states for relatively small D . 0.0008.

In the case τ = 6, the D values that foster clustering seem to span the wider

range. However, the overall picture may be somewhat smeared, since some

average κ do not correspond to either the homogeneous coherent or the

cluster states, reflecting bistability between the two, or even other types of

multistability within some parameter ranges.

Finally, we touch upon the influence of varying the coupling strength c

on the formation of the cluster states. To do so, we plot the κ(D) families

of curves for c = 0.08, 0.1 and 0.12 at fixed τ = 6, see Fig. 7.4(b). It

is apparent that the stronger the coupling, the more isolated become the
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”irregularity” sections embedded into the flatter curve’s profile, the latter

being a corollary of the interaction term winning over the noise. Put differ-

ently, the stronger coupling confines the cluster states to smaller regions of

the D-τ parameter space, making the resonance effect a more sharper one.

Once the existence of cluster states is established, κ may be put to use

in determining whether they appear monostable or the dynamics exhibits

multistable behavior for the given parameter set. If the κ values for dif-

ferent stochastic realizations were to bunch into distinct groups, it should

be considered an evidence of the latter. On a cautionary note, this issue is

likely to be sensitive on the system size.

Unless stated otherwise, the results presented throughout the chapter

refer to a population of N = 200 neurons, with the numerical integration

performed by an Euler method taking the iteration step δt = 0.002. Ad-

ditional reduction of δt has been confirmed to leave the results unaffected.

Apart from direct simulations of the ensemble dynamics for N = 500 and

N = 700, the persistence of clustering phenomena has been verified by a

method intended to probe the asymptotical behavior of the system in the

thermodynamic limit N → ∞, see subsection 5.3.1. The two sections to

follow are aimed at characterizing the temporal structure of the two- and

three-cluster states. The former are demonstrated to be stationary and the

latter dynamical by nature [179], the distinction based on whether the neu-

rons are allowed to cross back and forth between the clusters.

5.3 Properties of the two-cluster state dynamics

Enhancing the noise amplitude, the two-cluster states are first encountered

at D ≈ 0.00025 for τ = 2. It is noteworthy that the given D values lie close

to the crossover domain between the incoherent and the coherent collec-

tive dynamics. A useful approach is to consider first the phase portrait for

the macroscopic variables X = N−1∑N
i=1 xi and Y = N−1∑N

i=1 yi, deemed
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Figure 5.4: Two-cluster states at small D and τ. (a) As a signature of the population split,
the phase portrait for the collective dynamics shows a twisted limit cycle orbit, where the
two discernible segments reflect the action of the clusters. (b) A section from the X(t)
series (dashed line) is overlaid by the xi(t) series (solid lines) for two arbitrary neurons
from the distinct clusters. A high-level coherence within the subsets is witnessed by the
fact that the peaks of the global potential perfectly match the ones of the local potentials.
The latter series imply that the firing of clusters is locked in antiphase. The data are
provided for the case c = 0.1,D = 0.00025, τ = 2.

as suitable descriptors since the higher amplitude of the peak global po-

tential reflects a larger portion of neurons firing in synchrony. For such

collective motion, Fig. 7.5(a) yields a twisted orbit made up of two clearly

discernible segments that coincide with the macroscopic fractions of the

population activated in turns, whereby the approximate synchronization

within the subsets is maintained. In other words, the structureless popula-

tion is in a dynamical fashion split into clusters, such that one’s activation

is accompanied by the neurons in the other cluster being refractory. This

goes along with the observation in Fig. 7.5(b), demonstrating the overlap

between the X(t) spikes and the individual action potentials evoked in ar-

bitrary neurons from the distinct clusters. One also learns how each of the

two latter series displays high regularity, with the phase difference between

their respective pulses apparently locked to π. The particular phase shift

implies a splay state [162, 180], meant in general as an n-cluster partition

where the phase difference between any two groups amounts to an integer

multiple of 2π/n.
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To display the above behavior, the neurons have to be entrained to a

single frequency, a point reflected in the distribution of local jitters ri [55,

123] over the population. The jitters are defined as normalized variations

of the interspike intervals Tk extracted from the individual time series xi

ri =

√
< T 2

k > − < Tk >2

< Tk >
, (5.3)

such that their smaller values indicate more regular firing patterns. Expect-

edly, for (D, τ) = (0.00025, 2), the ri distribution in Fig. 7.6(a) is unimodal

with a narrow peak and a maximum at a very low value < rm >≈ 0.01,

all the points indicative of the approximately uniform neuron frequencies

across the population. Also, the mutual interaction acts within the clusters

so to give rise to a form of a recovery mechanism, which rapidly sup-

presses any neuron from displaying large fluctuations in the firing period,

the type of behavior that potentially leads to escaping the cluster. Though

the stochastic background of the system dynamics may resurface causing

occasionally the local interspike intervals (ISIs) to depart noticeably from

the mean, one finds such perturbations resolved already in the next firing

cycle. This is witnessed in Fig. 7.6(b), where the first return map of the ISIs

for an arbitrary neuron shows a large majority of points tightly bunched.

The latter holds irrespective of the cluster the given neuron belongs to, the

point confirmed by the virtually indistinguishable ISI distributions for the

members of the distinct subsets, viz. the inset in Fig. 7.6(b).

In terms of variations of the two-cluster partition {N1,N2} under dif-

ferent stochastic realizations, it is interesting how for small D and τ the

system appears less disposed to a splay state with equal sized fractions.

Instead, one finds the fractions’ ratio fluctuating around 2 : 1, displaying

the stronger convergence to an asymmetrical state if the population size N

were increased, which rules out the possibility of this being the finite-size

effect. In fact, it has more to do with the reduced ability of small amplitude
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Figure 5.5: Properties of single neuron dynamics. (a) The distribution of local jitters P(ri)
implies that highly regular spiking patterns are maintained across the ensemble. (b) The
first return map of the firing periods Tn for an arbitrary neuron illustrates how any larger
deviations from the mean value are rare, further subdued already within the following
cycle. The latter is upheld independent on the particular cluster a neuron belongs to. This
is witnessed in the inset, which shows the ISI distributions P(Tn) for two arbitrary neurons
from the distinct subsets. The parameter set is (c,D, τ) = (0.1, 0.00025, 2).

noise to draw more neurons away from the main bunch.

At certain τ longer than the average cycle of the isolated neuron, the

two-cluster states are found to span the range D ∈ (0.0004, 0.0008), a

domain where the homogeneous coherent states are obtained in the case

τ = 0. Though at first sight of Fig. 7.7, illustrating the typical phase por-

trait for the ensemble averages under these parameters, it may seem plau-

sible just to carry over the arguments from above, one should still outline a

couple of differences. On a lesser note, the maximum of the ri distribution

is seen to shift to < rm >≈ 0.19 due to an overall reduced regularity of the

firing patterns. Qualitatively, however, the system dynamics in respect to

different stochastic realizations switches into a bistable regime which in-

volves coexistence between the two-cluster and the disordered states. Also,

the conditions where D and τ are increased seem to favor the symmetrical

cluster state with equal fractions in the population partition. The tendency

to N1/N2 ≈ 1 : 1 ratio becomes more salient with the increased system

size, but is manifested as well for a somewhat larger τ = 6, if the D values

lie in the already considered range.
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Figure 5.6: Two-cluster states at intermediate D and τ. Phase portrait for the global
dynamics at (c,D, τ) = (0.1, 0.0005, 5) is projected in the X − Y plane. The properties
of the cluster partition N1,N2 are seen to depend on the parameter values, whereby the
larger D and τ appear to favor the states closer to an equipartition N1/N2 ≈ 1 : 1 over the
asymmetric clustering.

Though it is not within the scope of the present chapter to extend the

analysis in such a direction, one should still verify that the two-cluster

states remain intact if one were to introduce heterogeneity into the intrin-

sic neuron parameters or the network coupling scheme. On the former,

we have considered a population diversity scenario [148] where the ex-

citability parameter is randomly drawn from a uniform distribution over

a 2σ interval around b = 1.05. One should be careful to adjust σ so

that the lowest possible b lies above the Hopf threshold b = 1. Never-

theless, the ensuing phase portraits for (c,D, τ) = (0.1, 0.00025, 2) and

(c,D, τ) = (0.1, 0.0005, 5) are virtually unchanged compared to those in

the homogeneous case, except for the minor variations in the cluster sizes

occurring sporadically between the firing cycles. The other point concerns

the persistence of the two-cluster states in case when the embedding net-

work is randomly diluted. The dilution is carried out by randomly remov-

ing a certain fraction of links (synapses) from the fully (globally) con-

nected network, as defined by the probability for removal p. Expectedly,

at the above (c,D, τ) parameter sets we have found no modifications in the
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Figure 5.7: In case of the two-cluster state, evolution of the representative clouds for the
distinct clusters is shown in the xi − yi phase space. To indicate the stationary character
of the cluster partition, we selected a triplet of neurons, including two arbitrary members
(labeled by 1 and 162) from one cluster, and a single neuron (labeled by 51) from the
other cluster. At any given moment, the neurons’ respective positions, denoted by arrows,
imply that there is no mixing between the clusters. The parameters are set to (c,D, τ) =
(0.1, 0.0003, 2).

collective dynamics for the moderate p, say p = 0.3 or slightly above.

5.3.1 Asymptotic dynamics

This subsection covers the asymptotic dynamics related to the two-cluster

state, both with respect to the long-term behavior and the increasing system

size. On the former, one may inspect how are the representative points of

neurons distributed in the xi − yi phase space at different moments over the

sufficiently long iteration period, viz. Fig. 7.8. This is helpful in demon-

strating the persistence of clusters, especially their invariance to dissolution
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and reconfiguration. The two representative clouds can be seen to main-

tain a clear separation and compactness throughout the simulation, as they

should if the neurons are indeed forbidden to leave and exchange clusters.

In practice, to assert the latter one may further select a triplet of neurons,

where a couple belongs to the same cluster, and then show how these two

are always clumped together, while the remaining neuron never has the

spikes synchronized with them. This is further elaborated in Section 5.4.1,

where the method of dynamical correlation coefficients is implemented.

So far, the arguments on the persistence of cluster states with increasing

N have relied on the results of numerical simulations. Here we implement

a method intended to probe the system dynamics in the thermodynamic

limit N → ∞. To this end, one introduces a type of a synchrony measure

[12]

χ2(N) =
σ2

X
1
N
∑N

i=1σ
2
xi

, (5.4)

which presents the time-averaged variance of the global potential X(t),

σ2
X = ⟨X(t)2⟩t − ⟨X(t)⟩2t , normalized over the mean of the time-averaged

variances of the local potentials xi(t), σ2
xi
= ⟨xi(t)2⟩t − ⟨xi(t)⟩2t . By the law

of large numbers, for the systems of sufficient size χ(N) reads [12]

χ(N) = χ(∞) +
a
√

N
+ O(1/N), (5.5)

where χ(∞) denotes the asymptotic component. Should there be genuine

cluster states, the latter is expected to lie within a range between 0 and 1.

The existence of the χ(∞) term has been verified for the previously consid-

ered parameter sets, with the example for (D, τ) = (0.00025, 2) provided

in Fig. 5.8. Notably, the χ(N) dependence makes it explicit that the near-

asymptotic behavior sets in already about N ≈ 200. This suggests that the

implied stability of the two-cluster states in large populations cannot be

affected by some mechanisms absent at small N.

98



5. Cluster synchronization of spiking in homogenous assemblies of excitable units:
analysis

200 400 600 800 1000

0.670

0.675

0.680

(N)

N
Figure 5.8: χ(N) dependence for the two-cluster state at (c,D, τ) = (0.1, 0.0005, 5). The
existence of an asymptotic component χ(∞) ∈ (0, 1) suggests the persistence of clustering
in the thermodynamic limit, whereby the onset of the near-asymptotic behavior is found
about N ≈ 200. The latter makes it unlikely that the stability of the two-cluster states in
larger populations may be altered by some mechanisms absent at smaller N.

5.4 Three-cluster state dynamics

The cluster states addressed so far can be considered stationary in terms of

stability against reconfiguration, that is the changes in population partition

due to neurons switching back and forth between the clusters. Adding up

to a polymorphous character of the clustering phenomena, we also report

on the existence of three-cluster states dynamical by nature [179], where

the ability of neurons to exchange cluster survives even in the asymptotic

regime. One stresses how such a scenario, encountered with further in-

crease of D and τ about D ≈ 0.0013 for τ = 10, does not include a

splay state with the clusters at any moment staggered by the 2π/3 phase

difference, so it should by no means be related with stochastic fluctua-

tions around such a partition. Instead, there is a weaker cluster separation,

which is best analyzed applying the methods laid out in Section 5.2, draw-

ing a comparison to the results on the properties of binary and weighted
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Figure 5.9: Global properties of the three-cluster state. (a) Compared to Fig. 7.2(c),
the weight matrix for the weighted coherence network displays larger off-diagonal terms,
indicating less clear cluster separation. (b) The binary coherence network reveals the
three-cluster partition if the threshold level is raised to Θ & 0.45. The data refer to the
parameter set (c,D, τ) = (0.1, 0.0013, 10).

coherence networks derived in Section 5.3.

In particular, the pairwise coherence matrix in Fig. 5.9(a) yields the

inter-cluster elements much larger than those in the two-cluster state. A

further indication on this is received from the corresponding binary net-

work, whose structure now shows a strong dependence on the threshold

parameterΘ, a point announced earlier on. If one chooses too low a thresh-

old, there is insufficient resolution to distinguish between the three clusters,

so one may end up with a seemingly two-cluster partition. However, any

choice of Θ should be justified in a self-consistent fashion, such that no

qualitative changes emerge after it is increased. In this context, it may

readily be verified how a rise in Θ reveals the actual three cluster partition,

viz. Fig. 5.9(b), corroborating with the findings from the coherence matrix

approach.

Now let us focus on the origin and the long term behavior of the three-

cluster states. In relation to the former, an important perspective lies with

the local dynamics. Except for the brief episodes within the population

cycle when all the units are refractory, at any given moment the three clus-
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ters are roughly made up of neurons in refractory, spiking and resting (ex-

citable) states, respectively, whereby the two latter subsets are proximal

in the phase space. For this point alone, the three-cluster state may best

be understood as derived from the two-cluster state instability, where the

mutual entrainment fails to maintain the proper inter-cluster phase differ-

ence, giving way to noise. Moreover, the instability is self-sustained, as

the stochastic effects are amplified by the very properties of the partition

that has two subsets firing in close succession. Note how for any neuron

participating the cluster states there are but two effective sources of noise,

one explicit, embodied by the D term in the yi subsystems, and the other

implicit, due to interaction in the fast variable subsystems. On the latter,

consider first the example involving the two-cluster partition. There, one

finds a kind of subdivision imposed between the interaction terms, such

that each neuron feels the action of its cluster co-members strongly, while

the impact of the other subset amounts to noise, which is a consequence of

tuning between the delay and the duration of neuron firing cycles. To some

extent, this carries over to the three-cluster state. In particular, the intra-

cluster interactions still provide ”periodical forcing” necessary to conserve

the mutual entrainment, whereas the action of neurons from the other two

clusters may be treated, apart for some zero-measure intervals due to im-

perfect adjustment of spiking periods relative to τ, as interaction-induced

noise with zero mean values and small amplitudes. Nevertheless, the com-

bined effects of the enhanced noise ”proper” and the ”interaction noise”

can make an excitable neuron susceptible to exchanging clusters. This can

take place under the scenarios of ”spike skipping” or ”premature firing”.

In the former case, a neuron is denied a spike by getting caught in vicinity

of the equilibrium, so that it misses out on its cluster beat. In the event

of premature firing, a sufficiently large interaction term influences a neu-

ron passed beyond the halfway of the mean interspike interval, making it

escape the refractory branch of the slow manifold. Once the given unit
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discharges ahead of the remaining subset co-members, there is a high like-

lihood for it to become assimilated into the cluster active around that time.

An intuitive perspective on the long-term behavior behind the three-

cluster states may be gained by considering the features of the appropriate

ri distribution (not shown). Two points deserve special attention, both at

odds with what is obtained for (D, τ) = (0.0005, 5). First, the distribution

peak is around < rm >≈ 0.09, the value substantially higher compared to

0.19 from the previous case, and second, the distribution has a longer tail

to the right. The former is not easy to grasp, as it can hardly be attributed

solely to a D − τ co-effect. In view of the very narrow D interval occupied

by the three-cluster state, one may rather hypothesize a more subtle devel-

opment, a putative interplay between the noise proper and the interaction-

induced noise, which is not too far off the scenarios for the mixed-mode

oscillations exhibited by isolated neurons subjected to additive noise in

both the fast- and slow-variable subsystems. As for the longer tail of the

ri distribution, the three-cluster partition apparently exhibits a form of dis-

order related to the broken balance between the refractory and the spiking

branches of the population at any given moment. This is likely to make

the state non-generic, meant as sensitive to all kinds of parameter inhomo-

geneities, including the nonuniform connectivity patterns and the diversity

introduced by letting b vary over the ensemble.

From the analysis of the available mechanisms by which the neurons

exchange clusters, as well as the findings on the ri distribution, it is justi-

fied to conclude that the gross-structure of the three-cluster states involves

a nucleus made up of two clusters and a non-negligible fraction of ”itiner-

ant” neurons, switching between the hard cores. This is not to say how the

former are free from cluster exchange, it is only that on the average they

execute considerably less jumps than the latter. An instance showing one

of the itinerant neurons switching between the core clusters via the ”pre-

mature firing” scenario is provided in Fig. 5.10. Curiously enough, in spite
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Figure 5.10: Illustration of the dynamical clustering typifying the three-cluster states.
The top and bottom panels show sections from the xi(t) series for two arbitrary neurons,
labeled 2 and 82, which belong to distinct core-clusters. The middle panel refers to a
minority subset that exhibits switching between the cores, with its behavior characterized
by the neuron 40. Within the interval t ∈ [900, 922], spiking in the middle series is in
step with the top series, whereas for t ∈ [923, 960] it is synchronized with the firing series
from the bottom panel. The moment when the neuron 40 jumps between the two core-
clusters t ≈ 922 is indicated by an arrow in the middle panel. The data are provided for
(c,D, τ) = (0.1, 0.0013, 10).

of being involved in an apparently random activity, the itinerant neurons do

not behave in an independent fashion, but rather maintain some degree of

mutual coherence. In terms of the corresponding distribution of local jit-

ters, the nucleus comprises the values centered around its peak, whereas

the rest of the population reflects its tail. Altogether, both the intra- and

the inter-cluster synchronization are intermittent by nature, but the neu-

rons with more frequent coherent episodes are more likely to commit to

synchronous firing again.
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5.4.1 Dynamical correlation coefficients as means to quantify dynam-
ical clustering

Appreciating the discussion above, we implement a method illustrative of

the extent of co-activity which qualifies the neurons as members of the

same cluster. Focusing on characterization of the coherent episodes, one

considers the evolution of the dynamical correlation coefficients [181]

ci j
k =

< TiT j >k − < Ti >< T j >k√
(< T 2

i >k − < Ti >
2
k)(< T 2

j >k − < T j >
2
k)
, (5.6)

each reflecting the variation of the pairwise correlation between the respec-

tive ISIs sampled over the moving frame. The frame’s length should scale

with the characteristic duration of the episodes or be taken so to encom-

pass a meaningful number of events, say in the range of tens of spikes. In

Eq. 7.6, Ti and T j denote interspike intervals for neurons i and j, whereas

the angled brackets indicate averaging over the k-th frame. ci, j
k belong to

the interval (−1, 1) and highlight how well are the fluctuations in firing

patterns of one neuron matched by those of the other on a low level of

temporal coarse-graining. The values close to the upper (lower) boundary

indicate correlated (anti-correlated) spiking, while near zero values point

to the lack of correlation.

In Fig. 5.11, the objective is to clearly distinguish between the asymp-

totically stable two-fraction and unstable three-fraction partitions by plot-

ting side-by-side the ci, j
k time dependencies which illustrate the typical

inter-cluster (dotted lines) and intra-cluster (solid lines) correlations. The

(i, j) couples for each partition are chosen so to keep one neuron fixed,

while extracting from its own and the distinct cluster the other neuron. If

large fluctuations in ci, j
k are encountered, one may resort to an appropriate

smoothing algorithm. As expected, in Fig. 5.11(a) which refers to the two-

cluster state, there is persistent correlated (anti-correlated) spiking within

(between) the clusters, whereby the corresponding curves display no mix-
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Figure 5.11: Asymptotic vs intermittent synchronization between the neurons. (a) and (b)
refer to the two-cluster state at (c,D, τ) = (0.1, 0.0005, 5) and the three-cluster state for
(c,D, τ) = (0.1, 0.0013, 10), respectively. In both panels are plotted the time variations
of ci, j

k for an arbitrary pair of neurons in the same cluster (solid lines) and from the dis-
tinct clusters (dotted lines). (a) implies stable correlated (anti-correlated) spiking within
(between) the subsets. The mixed picture in (b) indicates that correlated episodes occur
for neurons occupying both the same cluster and the distinct ones, but are more abun-
dant in the former case. The smoothed curves are obtained by applying the second-order
Savitzky-Golay algorithm.

ing. Nevertheless, in case of the three-cluster state, see. Fig. 5.11(b), two

points should be outlined. At variance with Fig. 5.11(a), not only has the

difference between the dynamical correlation coefficients for the members

of the same and the distinct subsets reduced, but also episodes can be found

where the inter-cluster correlation exceeds the intra-cluster one. This also

corroborates with the statement on how the intermittent synchronization

facilitates the formation of the three-cluster state: compared to the neu-

rons in different clusters, those within the same cluster enjoy prolonged

intervals of mutually coherent spiking with rare and short interruptions.

In the following section, the aim is to lay out the unifying framework

behind the clustering phenomena, drawing on the analysis of the common

properties exhibited by the individual phase portraits. The interest lies

with the macroscopic mechanisms that allow the cluster states to emerge

and provide for the necessary robustness against perturbations.
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5.5 Explanation of the clustering dynamics

Having discussed clustering from the macroscopic point of view, it is of

interest to explain the way it is induced by and how it is manifested in

the behavior on a microscopic level. An improved understanding on how

the dynamics of neurons participating the distinct clusters is mutually ad-

justed can be gained by drawing an analogy between the motion of the fast

variables and that of particles in a double-well potential [77]. Making a

change of variables t = ϵt′, one can rewrite the equations for xi from (7.1)

in the form dxi = −∂V(xi,yi,X)
∂xi

dt′. The Vi potentials reduced to each of the

fast subsystems then read

Vi(xi, yi, X) = −1
2

(1 − c)x2
i +

1
12

x4
i + xiyi − cxiX, (5.7)

incorporating both the intrinsic and the interaction terms. It is natural to

treat yi and the delayed ensemble average X(t − τ) as parameters, with the

former changing at a rate much slower than xi. One notes how the local

minima and the maximum of the given Vi coincide with the intersections

that the curve yi − cX = const, referring to the ”dressed” slow variable

makes with the fast variable nullcline. The latter’s profile is, apart from

the flattening effect due to interaction (the y-values at the knees are ±2
3(1−

c)3/2), very much the same as that displayed in Fig. 7.1(a). In particular,

of the three branches, the minima are tied to the refractory and the spiking

ones, whereas the maximum is linked to the unstable branch. Within this

framework, the spiking dynamics can be understood in terms of crossing

the potential barrier between the two wells.

One may capture how the variations of the barrier’s height and the

wells’ depth are reflected in the local dynamics by monitoring the simul-

taneous positions the arbitrary members of the distinct clusters occupy in

relation to the corresponding Vi curves, see Fig. 5.12. The focus is on the

changes in the form of the potential induced by the neurons visiting some
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Figure 5.12: Analysis of the local dynamics in analogy to motion of particles in a double-
well potential. The solid and dotted curves Vi(xi(t), yi(t), X(t − τ)) indicate the respective
potentials attributed to representative neurons from the distinct clusters. Transitions be-
tween the refractory (x . −1) and the spiking (x & 1) branches are interpreted as hopping
over the potential barrier, whose height depends on the interaction term. (a) reflects the
setup where one neuron is active, and the other is refractory. The configuration in (b)
shows both neurons on the refractory branch, with one having just completed a spike,
whereas the other approaches the left knee. In (c) one of the neurons is trapped on the
refractory branch, which constitutes a hallmark of clustering on the local level.

characteristic points along the orbit. For ease of presentation, one neu-

ron (solid Vi curves) is selected as referential, such that the Figs. 5.12(a),

5.12(b) and 5.12(c) coincide, in the respective order, with the peak of the

spike, the onset of the refractory period and the resting state approaching

the left knee of the slow manifold. In the first two instances, the transi-

tion barriers are expectedly high, whilst the other neuron assumes notably

less stable positions on the refractory branch. Nevertheless, the most im-

portant point concerns Fig. 5.12(c), aimed to convey the actual signature

of the clustering phenomena impressed on the local dynamics. What is

demonstrated amounts to a trapping effect, where the neuron nearby, but

sufficiently above the left knee, faces a very low barrier. However, its po-
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tential is almost, yet not quite enough to escape from the refractory to the

spiking branch. In fact, it can be shown that the neuron is kept frustrated

precisely due to the interaction term, which raises the barrier up on the

value determined solely by yi, enough to make the transition impossible.

This type of behavior is maintained over the lower section of the refractory

branch, with the net result of the spike generated later than the ”barren”

neuron dynamics would yield under the same conditions.

The discussion related to Fig. 5.12(c) can be appreciated by drawing a

comparison between the individual phase portraits typical for neurons par-

ticipating the homogeneous coherent states and the cluster states, see Figs.

5.13(a) and 5.13(b), respectively. It immediately strikes that the latter pos-

sesses a kink on the refractory branch of the slow manifold [115], which

derives from the trapping effect described above. For the moment, we refer

to the two-cluster state, a natural approach knowing the three-cluster state

to be descended from it. Either way, the presence of the kink is the key

manifestation of the self-regulation mechanism based on the D-τ co-effect

which gives rise to the ensemble split into clusters and allows the estab-

lished phase relationship among them to be maintained. The role of the

kink consists in keeping the neurons frustrated on the refractory branch so

to postpone the phase point’s descent toward the left knee. This scenario

conforms to a lock-and-release type of behavior, where the delayed inter-

actions primarily give rise to the former, and the action of noise to the latter

part. If a fraction of neurons were to move past the left knee while the rest

lagged behind, for the convenient D and τ the kink emerges to stabilize the

inter-cluster separation, simultaneously strengthening the inner cluster co-

hesion. The location of the kink, which depends on the parameter set, is a

decisive factor for the trapping effect to succeed: it has to be placed nearby

the knee of the refractory branch, where the neuron dynamics is most sus-

ceptible to perturbation, yet the sufficient distance to the equilibrium has

to be maintained.
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Figure 5.13: (a) and (b) display the phase portraits for the local dynamics of the homo-
geneous coherent states and the cluster states, respectively. The latter are distinguished
by the kink K, which reflects the D − τ co-effect. The inset shows sections of xi(t) se-
ries for two arbitrary members of the distinct clusters, whereby an arrow indicates the
neuron whose portrait is presented in the main frame. For an insight into the role of
kink, we highlighted by bullets the respective positions of the involved neurons along the
orbit at a given moment t. As a neuron lies at the kink, the other’s potential is at the
peak of the rising phase (farthest right bullet). In addition, at t − τ, the former is located
very close to the peak, which illustrates how the delay affects the adjustment between
the clusters’ dynamics. The parameter are set to (c,D, τ) = (0.1, 0.0005, 6) in (a) and
(c,D, τ) = (0.1, 0.00025, 2) in (b).

The episode at the kink onset presents the sole section along the limit

cycle where the interaction term prevails over the noise proper. Then, for a

brief period, prompted by the rise in xi the evolution of yi gets accelerated

to match the rate of change in the direction orthogonal to the slow mani-

fold, the whole event driven by the spiking subset of the population. Note

that the condition on the trapping interval duration is imposed as prerequi-

site to sustain the entrainment to a single frequency between the neurons.

This frequency agrees with the one in a delay-free case, ensuring that the

system dynamics takes on the form most resilient against small perturba-

tions. Such a remark, combined with the established π phase difference

for the two-cluster partition, implies that clustering may prefer some delay

values over the others. One should recall here the earlier stated approxi-

mate formula for the clustering-resonant delays τr = T0/2 + n ∗ T0, where
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T0 stands for the period of coherent oscillations in case of τ = 0. The given

expression and the subdivision of interaction terms in which the ”periodi-

cal forcing” prevails over the ”implicit noise” are in fact two sides of the

same coin, as forcing cannot fulfill its role unless the delay is not properly

adjusted so that cluster compactness can be maintained. As for the noise,

the increase of τ has to be countered by the larger D to facilitate relaxation

from the kink to the slow manifold while retaining the entrainment to the

proper frequency. In this context, the larger noise amplitudes may begin to

manifest in a wider spread of the active subset. One can see conceptually

how the enhanced delays are then required to cancel, or rather average out

such an effect, instating a form of control through delayed feedback.

Building on the analysis so far, we provide an additional perspective

on the dynamical instability found in the three-cluster states, viz. Sec. 5.4.

Looking back at the proposed scenarios, one is seen as emerging in parallel

to the kink’s occurrence, and the other is tied to its collapse. In the former

case, a neuron may exchange clusters by skipping to fire within its subpop-

ulation beat, as it sticks too long in a close proximity of the equilibrium,

performing a turn around the fixed point before resettling to the original

limit cycle. Within the framework involving the double-well potential, the

postponed firing instability unfolds via a scenario where a delayed rise in

the interaction term combined with a small yi value effectively cause an

inhibitory effect. This reestablishes the barrier in lieu of the single solution

on the spiking branch, setting the neuron temporarily back in the vicinity

of the potential minimum on the refractory branch.

Under the alternative scenario, the neuron firing may precipitate the rest

of its cluster by virtue of the interaction terms winning over the action of

noise proper. This prevents the relaxation to the refractory branch of the

slow manifold, so that the neuron traverses instead a smaller orbit inside

the area of phase space encircled by the typical limit cycle. The effective

disappearance of the kink is tied to the collapse of the V potential barrier,
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the reason for it lying in that the interaction term acquires a positive value

while the neuron’s phase point has not yet reached the left knee. The col-

lapse leaves the minimum at the spiking branch as the only solution, such

that getting further descent terminated promotes a smaller limit cycle orbit.

To put this matter into a broader perspective, one may recall the distinc-

tion between the CR and the SISR phenomena on non-interacting neurons,

whose respective limit cycles exhibit a similar relationship [77]. In view

of the detailed structure of the interaction terms, it may be tempting to in-

terpret the local dynamics behind the two-cluster partition as the CR-like

behavior, and the second scenario on dynamical instability as a sign of a

mixed mode [79] where SISR-like phenomena step in.

Following the study on how the collective activity is reflected in that of

individual neurons, the final section deals with the macroscopic dynamics

from the perspective of the mean-field (MF) approximation we have de-

rived. Two main points are introduced: first, one shows the MF model to

undergo a global bifurcation for the parameter set where the exact system

exhibits the onset of clustering, and second, there is further clarification on

the role of noise within the D-τ interplay inducing the cluster states.

5.6 The MF model and clustering

Appreciating the all-to-all coupling scheme, one is led to develop a MF

approximation to the exact model (7.1), an approach where the thermo-

dynamic limit N → ∞ on the population size enters in a natural way. In

general, the MF treatment consists in reducing the original set of SDDE

to a novel system of DDE in terms of cumulants or the moments of distri-

bution describing deviations around the ensemble averages. In either case,

the equation for the quantity of arbitrary order may involve a number of

higher orders, leaving an issue of how to truncate the series that may ap-

pear unclosed [67]. In this sense, the cumulant method is more convenient
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for it provides a plausible closure hypothesis within the Gaussian approxi-

mation, which states that the instantaneous distributions of local variables

are Gaussian and that the ensemble averages at any given moment coincide

with the expectation values of the appropriate distributions. If these two

conditions are met, all the cumulants above second order are supposed to

vanish. The detailed derivation based on these broad assumptions has been

presented in Section 5.6, whereas the final result reads

ϵ
dX(t)

dt
= X(t) − X(t)3/3 − X(t)

2

{
1 − c − X(t)2 +

√
[c − 1 + X(t)2]2 + 4D

}
− Y(t) + c[X(t − τ) − X(t)],

dY(t)
dt
= X(t) + b, (5.8)

The particular form of the system (7.8) is a corollary of an observation

exclusive to the problem at hand, which establishes the characteristic time

scales of the second-order cumulants to be much longer than those of the

first-order ones.

Though a simplification, the MF model should still reflect, at least qual-

itatively, the dynamical regimes of the exact system. The previously car-

ried out analysis on local bifurcations displayed by the approximate system

with respect to D and τ as control parameters [139, 143] has revealed a suc-

cession of supercritical and subcritical Hopf bifurcations under increasing

delay if past the noise amplitude D ≈ 0.0025. This is corroborated in

Fig. 5.14 numerically by means of the DDE-biftool [182, 183], an adapt-

able package of Matlab routines suitable for handling the sets of DDE with

constant delays. There is a clear interpretation on these results. The super-

critical Hopf bifurcations account for the transitions between the stochas-

tically stable fixed point and the stable limit cycle, the latter implying the

existence of the parameter regions where the exact system becomes equiva-

lent to the deterministic one. Likewise, the subcritical bifurcations suggest

how introducing specific delays may put out the global coherent oscilla-
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Figure 5.14: Sequence of Hopf bifurcation curves for the MF model under increasing
D and τ. Though the curves can account for the transitions between the stochastically
stable fixed point and the stable limit cycle, one cannot associate them with the cluster
formation.

tions. Nonetheless, all the implicated noise amplitudes are D & 0.0025,

too far up on the values where the cluster states are seen to kick in, which

makes it legitimate to rule out any of the local bifurcations of the approxi-

mate system as linked to the phenomenon.

However, an important point we pursue is that the MF model is capa-

ble of anticipating the onset of cluster states in a range of small D, c and

τ. In particular, one finds the system (7.8) to undergo a global bifurca-

tion at the parameter values around τ = 2,D = 0.00025, c = 0.08. Under

the given D and τ, for c < 0.08 there is only the equilibrium, whereas

about c ≈ 0.08 a large and a small limit cycle are born via the fold-cycle

scenario. On the latter, note how the phase portrait for the MF system in

Fig. 5.15(a) acquires the form reminiscent of the one for the exact system,

viz. Fig. 7.5(a). The two discernable segments on the orbit are supposed

to mirror the action of the subsets emerging within the actual population.

This structure of the limit cycle goes unstable with increasing c and τ, in

both cases suffering from the stronger impact of the interaction term. An

interesting point on the MF model is that the complex-shaped limit cycle

coexists with the fixed point, a behavior apparently absent in the exact sys-
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tem. However, mapping the respective basins of attraction in Fig. 5.15(b)

yields that the equilibrium is nested very close to their boundary, meaning

it is stochastically unstable and therefore unobservable in the exact model

for an arbitrarily small noise. On the particular choice of initial function

for the mean-field variables X and Y , the evolution within the time interval

t ∈ [−τ, 0] is obtained by numerically integrating the set (7.8) for c = 0

starting off from X0 and Y0. Making an analogy to the exact system, this is

equivalent to assuming that all the neurons act as noninteracting elements

for t ∈ [−τ, 0]. Nonetheless, it is found that the main result on the equi-

librium lying close to the boundary between its attraction basin and that of

the limit cycle, also stands for other forms of the initial function.

Though the approximate system is less likely to provide accurate pre-

dictions once D and τ are enhanced, one can still gain some insight on

the nature of their coaction and its influence on the dynamics of the real

system. This especially refers to setups with larger τ which admit clus-

tering. Under these conditions, the equilibrium appears as pseudo-stable

in the MF dynamics, that is the limit cycle orbits remain too long nearby

the fixed point, rendering the population periods longer than in the actual

model, see Fig. 5.15(c). Extending the last analogy, such a behavior may

be interpreted as exaggerating the likelihood for the ”skip to fire” events, or

in other words, overestimating the possibility to observe in the real system

the minor oscillations around its fixed point. The distinct phenomena due

to the lack of stochastic effects in the MF approximation can in fact pose

”fortunate failures”, since they might help us pinpoint the role played by

the noise in the exact model. Here it is suggested how noise may be con-

structive in maintaining the cluster partition by keeping the neurons from

mingling outside their subsets, i.e. it is assumed to suppress the excessive

cluster exchange by cutting on its leading contribution from the ”skip to

fire” mechanism. The two discussed instances at small and moderate D

and τ demonstrate that the MF approximation can be sensitive enough to
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Figure 5.15: Behavior of the MF model in the parameter domains related to clustering.
(a) and (b) illustrate bistability observed for D = 0.00025, τ = 2 at c = 0.1. (a) shows the
examples of trajectories converging either to the fixed point or the limit cycle, contingent
on the initial conditions. In (b) are mapped the corresponding basins of attraction, with
the equilibrium (EQ) found to lie very close to their boundary. (c) refers to the ”fortunate
failure” of the approximate model under the increased D and τ. The time series and the
phase portrait are provided for (D, τ, c) = (0.0005, 6, 0.1).

account, both qualitatively and quantitatively, for the complex phenomena

in the collective dynamics of the actual model. Nevertheless, in terms of

reaching an explanation, its application is not a straightforward one, with

the pitfalls related to establishing the proper analogies between the behav-

iors the given two systems display.

5.7 Chapter summary and discussion

We have studied the dynamics of a collection of stochastically perturbed

Fitzhugh-Nagumo excitable units with time-delayed diffusive couplings.
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In particular, our interest has lied in analyzing the spontaneous formation

of clusters, whereby the neurons within each subset are synchronized, but

different clusters become active at different phases of the population oscil-

lation. Apart from discussing the means to characterize the cluster states

and their dependence on the parameter set, we have gained an insight into

the dynamical mechanism responsible for clustering. In conditional terms,

i.e. having fixed the excitability property of neurons, the adjustment be-

tween noise intensity and time delay is found to provide the sufficient and

necessary conditions that allow for the cluster states to emerge. The lat-

ter refers to the demonstrated resonant character of the clustering effect in

general, rather than making a claim on the particular set of parameter val-

ues that admit clustering. No heterogeneity in the coupling scheme or the

distribution of the intrinsic neuronal parameters is required for the clusters

to emerge. Nevertheless, the two-cluster partition has been verified to be

robust if a small disparity of these model parameters is introduced.

Several techniques have been employed to describe and understand the

synchronization clustering, starting off with the methods to detect and vi-

sualize the clusters. To that end, the pairwise coherence κi j (7.2) was used.

In fact, after applying a convenient transformation, the matrix κi j assumes

a block-matrix form where the diagonal blocks mirror the clusters, and

the off-diagonal blocks present the inter-cluster correlations. Two- and

three-cluster distributions have been observed for different parameter val-

ues. Global coherence κ, obtained as the average of κi j, is used to study

the dependence of the cluster formation on the parameters D, τ and c, viz.

the noise intensity, time-lag and the coupling strength, respectively. In or-

der to investigate the dynamical properties of clusters, we have considered

the distribution of local jitters (7.3), turning out to be quite useful in high-

lighting the differences between the dynamical properties of the two- and

three-cluster regimes. The long-term behavior and the asymptotic dynam-

ics as the population size N is increased have also been discussed. On the
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former, the two-cluster partition has been established as stable, whereas

the internal structure of the three-cluster states has been found to involve a

two-cluster nucleus and a non-negligible fraction of neurons jumping be-

tween the hard cores. The difference between the dynamical behaviors of

two- and three-cluster states (stationary against the dynamical clustering)

is also reflected in the dynamical correlation coefficient (7.6). Following

on that, we turned to an explanation of the mechanism behind clustering,

based on treating the evolution of the neuronal fast variables as if it referred

to the motion of particles subjected to a double-well potential (7.7). A lo-

cal manifestation of clustering is shown to be the kink formation nearby

the knee of the refractory branch of the individual neuron orbit, a finding

one can use to provide the qualitative explanation on the conditions nec-

essary for the occurrence of clusters. Finally, we have demonstrated that

a global fold-limit cycle bifurcation in the approximate MF model can in-

dicate the onset of the cluster states, further elaborating on how the proper

interpretation of the reasons for some of the apparently artificial behavior

displayed by the MF may serve to clarify the roles played by the particular

parameters in the exact system.

Numerous recent studies have revealed formation of synchronization

clusters in networks of oscillators or excitable neurons [13, 21]. However,

for the most part the phenomenon is seen to arise due to the locally vari-

able parameters, viz. [184, 185] or as induced by the dynamically varying

couplings, e.g. [186]. The collection of neurons studied here is completely

structureless, so that the synchronization clusters are formed by the subtle

interplay of noise, interaction time-delay and the excitable nature of the

units. Nevertheless, at least some of the spontaneous clustering is shown

to be stable under small perturbations of the local parameters and the pat-

tern of neuron interconnections. Such resilience may be interpreted as

further indicator of possible real world applications, in particular in the

context of facilitating the neural encoding or improving its capacity. Most
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prominently, this refers to cognitive processes of binding and segmenta-

tion. In the former instance, multiple representations of the same object

may be bound into a cluster state, whereas in the latter, clustering is sup-

posed to contribute in discriminating between the distinct perceptual enti-

ties [21, 187]. At variance with the beneficial roles, certain pathological

brain rhythms linked to the epileptic seizures involve a high frequency fir-

ing of neural populations that might emerge through the interspersed action

of several clusters [13]. On the formal side, it would be interesting to in-

vestigate whether the spontaneous synchronization clustering also occurs

in networks of excitable systems with a different type of excitability.
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Chapter 6

Mean field approximation of two
coupled populations of excitable units

Chapter abstract The analysis on stability and bifurcations in

the macroscopic dynamics exhibited by the system of two cou-

pled large populations comprised of N stochastic excitable units

each is performed by studying an approximate system, obtained

by replacing each population with the corresponding mean-field

model. In the exact system, one has the units within an en-

semble communicating via the time-delayed linear couplings,

whereas the inter-ensemble terms involve the nonlinear time-

delayed interaction mediated by the appropriate global variables.

The aim is to demonstrate that the bifurcations affecting the sta-

bility of the stationary state of the original system, governed by

a set of 4N stochastic delay-differential equations for the micro-

scopic dynamics, can accurately be reproduced by a flow con-

taining just four deterministic delay-differential equations which

describe the evolution of the mean-field based variables. In par-

ticular, the considered issues include determining the parameter

domains where the stationary state is stable, the scenarios for

the onset and the time-delay induced suppression of the collec-
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tive mode, as well as the parameter domains admitting bistabil-

ity between the equilibrium and the oscillatory state. We show

how analytically tractable bifurcations occurring in the approx-

imate model can be used to identify the characteristic mecha-

nisms by which the stationary state is destabilized under differ-

ent system configurations, like those with symmetrical or asym-

metrical inter-population couplings.

The onset and mutual adjustment of collective rhythms are regarded as

the dynamical paradigm for the macroscopic phenomena in a wide range

of biological and inorganic systems. Such a framework has already proven

indispensable for understanding the normal and pathological patterns of

brain activity [12–14, 21], coordination of cellular clocks governing the

circadian rhythms [11], the mechanisms regulating heartbeat [188] or ly-

ing behind certain forms of social behavior [15, 16], entrainment of elec-

trochemical oscillators [9], as well as the dynamics of Josephson junc-

tion circuits [7] and the arrays of coupled lasers [8]. The emergence of

macroscopic rhythms in ensembles of oscillating units is mediated by the

synchronization based self-organization [17, 189]. The latter is often in-

fluenced or facilitated by noise on one hand [29, 57, 143, 190], while on

the other hand, the interaction over the appropriate communication chan-

nels is typically susceptible to transmission delays or there may be a time

lag due to the system components’ latency in response to input variations

[67, 136, 137, 144, 146, 147]. A pervasive idea in nonlinear dynamics

is to treat an assembly exhibiting a collective mode as a macroscopic os-

cillator [3], which could in turn be subjected to an external drive or be

exposed to a single or multiple collective rhythms from other populations.

In this context, an important issue is to consider the relationship between
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the ensemble’s global variable and the external forcing or the relationship

between the corresponding global variables.

In terms of the dynamical complexity of the observed behavior and the

methods available for the analytical study, one has to make a distinction

between the cases where the populations are built of self-sustained (au-

tonomous) oscillators or the excitable units. In the former instance, it is

possible to obtain a more compact description of the interacting ensembles’

dynamics by applying the phase reduction techniques [25, 104, 191–193].

Given that the phase cannot be attributed to the system residing at the equi-

librium, excitable populations are not amenable to such methods. Nonethe-

less, on the level of elementary behavior associated with the macroscopic

variables, populations consisting of excitable or self-oscillating units un-

dergo qualitatively similar forms of dynamics. In particular, the ensuing

collective modes may synchronize [30, 31], become phase-locked or get

suppressed by the action of the coupling delay (delay-induced amplitude

death) [1]. Beyond such simple cases, there are more complex forms of

collective behavior tied exclusively to populations of interacting oscilla-

tors. A few prominent examples include the self-organized quasiperiod-

icity [3] and the partially synchronous chimaera states [45, 128], which

have been found to emerge in systems of identical phase oscillators un-

der the action of the external forcing or by coupling to another population,

respectively. The former regime is characterized by the frequency of the

collective mode being distinct from that of the single elements, while the

other involves a broken symmetry between the dynamics of two interacting

populations.

In this study, the focus lies with the two delay-coupled populations

of identical excitable units modeled by the Fitzhugh-Nagumo elements.

The behavior of the latter is representative for the type II excitability [75],

which in contrast to type I, lacks a sharp threshold in a sense that the am-

plitude of the response depends continuously on the size of the applied
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stimulus. Though the considered framework is quite general, the basic

motivation admittedly draws from the observations on neuronal assem-

blies, with the adopted model of local activity typically invoked in such

a context. The analysis of the underlying system dynamics may be ap-

proached from two different angles. For one, a numerical study can be

carried out to look for the states of the increasing dynamical complexity.

Instead, we take on a strategy that consists in examining how well is the

behavior of the exact system matched by that of the coupled mean-field

(MF) systems, having derived the MF model as an approximation for the

activity of a single ensemble. The concept aims to fully exploit the anal-

ogy between the assemblies and the macroscopic oscillators, such that the

original set of equations for the microscopic dynamics is reduced to a flow

which describes the evolution of the global variables, incorporating the

cross-population interaction in a natural way. An important ingredient for

the setup is that both the intra- and the cross-population coupling terms

include the transmission delays. Note that the layout with two populations

may constitute a paradigm, or rather serve as a nucleus for the ”network of

networks” [31, 128, 194], which can be realized as a hierarchy of multiple

networks, or it could be thought of as an idealization for a single network

with a strong modular structure and a large number of elements in each

community (subnetwork). Both configurations are common in biological

systems [31], ranging from the cellular level to the distributed anatomical

areas of the brain, and also encompassing the populations of cells respon-

sible for the rhythmic activity in heart, kidney, pancreas, to name but a

few. As for the comparison with the MF model, the attempts at providing a

reduced description instead of using the complete set of equations for each

and every population constituent, have a particularly long history within

the neuroscience [67, 103, 195–197]. Apart for the gains on the modeling

side, they have initially been instigated by the finding that the EEG and

MEG recordings may be linked to an average behavior, viz. the massively
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summed action potentials emitted within the strongly coupled, but remote

cortical areas [135, 197]. Though the given approach inevitably includes

simplifying assumptions that eventually constrain the repertoire of possible

system behaviors just to periodic motion, some of the realism may readily

be sacrificed for a more parsimonious representation if the emergence of

the collective mode and the related dynamics are reproduced with sufficient

fidelity.

So far, the MF models have proven at least partially successful when

handling the isolated population dynamics [5, 198, 199], but have rarely

considered the scenarios with combined presence of noise and coupling

delay [138, 139, 195]. Nonetheless, the rigorous results on interacting

ensembles, especially those made up of excitable units, are still lacking.

Hence, the key set of issues addressed in this study amounts to identifying

the conditions for the stability of the stationary state, the onset of the col-

lective mode, bistability between the equilibrium and the oscillation state,

as well as the time-delay induced suppression of the collective mode. One

notes that the applied term ”collective mode” here implies the existence of

a limit cycle for the total system of interacting populations. Though the in-

tention is not, or rather cannot be to account for any experimental observa-

tion of such phenomena, some elementary comparison can still be drawn.

For instance, the notion that the emergence and the synchronization prop-

erties of collective rhythms arising in the macroscopic neural populations

are critically influenced by the coupling strength and the interaction delay

[135] has its clear analogue in the results we arrive at. Consistent with the

stated objectives, the study of the approximate system is concerned with

the local bifurcation analysis, carried out analytically and corroborated by

the numerical means, to determine i) the parameter domains of stability of

the steady states, ii) the scenarios for the emergence or the suppression of

the collective mode, and iii) the parameter domains admitting the bistabil-

ity between the equilibrium and the oscillatory state.
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The chapter is organized as follows. In Section 6.1, the details of the ex-

act model of interacting populations are laid out in parallel with the deriva-

tion of its MF counterpart. Section 6.2 is focused on the local bifurcation

analysis of the approximate model, providing for the analytical results. In

Section 6.3, we demonstrate that the approximation based on two coupled

MF systems is able to accurately predict the behavior of the exact system

in terms of the stability of the equilibrium, as well as the onset and the

suppression of the collective mode. It is also pointed out how different

system configurations affect the scenarios for the emergence of the oscilla-

tory state and influence the parameter domains supporting its coexistence

with the equilibrium. The results are briefly summarized and discussed in

the concluding section.

6.1 Background on the exact model and derivation of its
MF counterpart

6.1.1 Details of the exact model

Each population comprises a collection of N identical Fitzhugh-Nagumo

elements [75, 125, 126], whose dynamics is given by

ϵdxi,1 = (xi,1 − x3
i,1/3 − yi,1 + I1)dt +

gin,1

N

N∑
j=1

[x j,1(t − τin,1) − xi,1(t)]dt

+ gc,1 arctan[X2(t − τc,1) + b2]dt,

dyi,1 = (xi,1 + b1)dt +
√

2D1dWi,1

ϵdxi,2 = (xi,2 − x3
i,2/3 − yi,2 + I2)dt +

gin,2

N

N∑
j=1

[x j,2(t − τin,2) − xi,2(t)]dt

+ gc,2 arctan[X1(t − τc,2) + b1]dt,

dyi,2 = (xi,2 + b2)dt +
√

2D2dWi,2, (6.1)
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where the subscripts k = 1, 2 specify the population, indices i = 1, ..N de-

note a particular unit within the population, and Xk = (1/N)
N∑

i=1
xi,k stand for

the macroscopic variables that typify the global population behavior. The

small parameter ϵ = 0.01 imposes a wide separation between the char-

acteristic time scales for the evolution of xi,k and yi,k. In the context of

neuronal activity the set of fast variables embodies the membrane poten-

tials, whereas the slow-variable set is supposed to account for the gross

kinetics of the potassium ion-gating channels. In the absence of an exter-

nal stimulation I1 = I2 = 0 applies. The impact of a noisy background

activity is reflected by the
√

2DdWi terms, which represent the stochas-

tic increments of the independent Wiener processes specified by the noise

amplitude D, expectation values ⟨dWi⟩ = 0 and the correlations that satisfy

⟨dWidW j⟩ = δi jdt for each population.

Owing to the system configuration, the local dynamics involves two

types of interactions, each characterized by the coupling strength and the

delay. The respective parameters associated with the intra-ensemble terms

are gin,k and τin,k, and those related to the cross-population terms are gc,k

and τc,k. Within the populations, the elements communicate via the simple

linear (diffusive) couplings, such that τin may account for the transmis-

sion delays due to finite rate of signal propagation or the latency in unit

responses. Given the objectives stated in the Introduction, it is not un-

justified to make use of some simplifying assumptions, like the all-to-all

pattern of interconnections and the uniformity of coupling strengths inside

the ensembles, which are the abstractions often invoked in the relevant lit-

erature [27, 127]. As for the cross-population interactions, at the current

stage no particular model is considered to be preferred over the others.

However, we make use of an analogy to neural systems by noting how

a variety of models display a common feature. In particular, the evoked

postsynaptic potentials can be expressed in a symbolical form h = s ⊗ m,

where m refers to an average density of presynaptic input arriving from the
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transmitter population, and s presents the threshold-like response of the

neurons of the receiving population [135]. Adhering to this concept, the

output of the transmitter population is integrated by the macroscopic vari-

ables Xk = (1/N)
N∑

i=1
xi,k, which reflect the global behavior in a sense that

the better the synchronization among the constituent elements, the larger

the amplitudes of Xk. In terms of the nonlinear threshold function, there

is a degree of arbitrariness, so the arctan form applied here is as good a

choice as any. Unlike the interactions within the populations, which are

characterized by the specific strengths per link, the inter-population terms

involve the cumulative strengths, consistent with the idea of viewing each

population as a single macroscopic oscillator. The bidirectional couplings

between the ensembles, being either symmetrical or asymmetrical, may be

important from the aspect of neuroscience, given that the brain connectiv-

ity patterns are known to exhibit a large portion of reciprocal interactions

[197]. Note that the parameters bk, assumed to be uniform within each

population, appear in (7.1) in two different contexts, one related to the

single unit dynamics, and the other associated with the cross-population

coupling. On the former, bk plays the key role in modifying the unit’s

excitability. Given an isolated unit in the noiseless case, it is known that

the condition |bk| = 1 determines the Hopf bifurcation threshold, above

which the system possesses a unique equilibrium, whereas below it one

finds a limit cycle [77, 79]. Setting bk slightly above 1, the population el-

ements are poised close to the Hopf threshold. This gives rise to excitable

behavior, meaning that an adequate stimulation, be it by the noise or the

interaction terms, may evoke large transients in the phase space before the

orbit converges back to the rest state. Here we keep the discussion general

by allowing for b1 , b2, whereas the results in Section 6.3 are provided

for b1 = b2 = 1.05. The role of bk in the cross-population coupling terms

is explained as follows. First note that the x-coordinate of equilibrium of

each element within a population is given by xi,k = −bk, as implied by the
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equations for yi,k. Consequently, for the equilibrium of the system of global

variables holds Xk,EQ = −bk. Then, the argument of the inter-population

coupling is defined in the form Xk−Xk,EQ = Xk+bk, so that the impact of the

global state Xk is felt stronger if it lies further away from the equilibrium.

6.1.2 Note on how the MF model is obtained

Here we only make a few brief remarks on how the appropriate MF model

is obtained, given that the procedure leans almost entirely on what has al-

ready been laid out in 5.6. This is so because the cross-population coupling

terms involve only the average dynamics of the respective transmitter pop-

ulations. In terms of building the approximate system, the latter implies a

two step derivation, such that the focus first lies with the internal dynamics

of the ensembles, treating them temporarily as if they were independent,

whereas the inter-population interaction is included in the second step. In

particular, continuing from (2.17), which finalizes the first step, the MF

approximation for the dynamics of the two interacting populations is com-

pleted by taking into account the cross-population terms, arriving at the
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following set of four equations

ϵ
dmx,1(t)

dt
= mx,1(t) − mx,1(t)3

3
− mx,1(t)

2
(1 − gin,1−

mx,1(t)2 +

√
(gin,1 − 1 + mx,1(t)2)2 + 4D1)−

my,1(t) + gin,1(mx,1(t − τin,1) − mx,1(t))+

gc,1 arctan(mx,2(t − τc,1) + b2)
dmy,1(t)

dt
= mx,1(t) + b1

ϵ
dmx,2(t)

dt
= mx,2(t) − mx,2(t)3

3
− mx,1(t)

2
(1 − gin,2−

mx,2(t)2 +

√
(gin,2 − 1 + mx,2(t)2)2 + 4D2)−

my,2(t) + gin,2(mx,2(t − τin,2) − mx,2(t))+

gc,2 arctan(mx,1(t − τc,2) + b1)
dmy,2(t)

dt
= mx,2(t) + b2 (6.2)

Note that the adopted form of the MF system describing a single population

activity incorporates the additional adiabatic-like approximation already

explained in Chapter 2, since the intention is to construct a model that

is fully tractable analytically. As to be expected, for D1 = D2 = 0, the

obtained system strongly resembles the case of two interacting Fitzhugh-

Nagumo elements subjected to delayed feedback.

Before proceeding to the main results, several brief remarks on the ap-

plied numerical integration schemes are in order. The time series for both

the exact and the approximate models are obtained by implementing the

Euler method with the fixed time step ∆t = 0.005 in the former, and

∆t = 0.01 in the latter case, having verified that no changes occur for

the smaller ∆t. Also, on either occasion, we have adopted the standard

and physically plausible initial functions, based on the assumption of the

units evolving independently within the time interval t ∈ [−τmin, 0], where

τmin = min{τin,1, τin,2, τc,1, τc,2}. This effectively amounts to integrating the
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systems (7.1) and (7.8) by disregarding any interaction for t ∈ [−τmin, 0],

with the initial conditions in each instance taken in the vicinity of the fixed

point. The results for the exact model refer to populations made up of

N = 200 elements, but have been verified to persist if the larger assemblies

are considered.

6.2 Analytical results of the local bifurcation analysis of
the approximate system

In the two following sections, we first provide the details of the local bi-

furcation analysis performed on the approximate system and then examine

whether and how well do these results match the behavior of the exact

system, whereby the latter dynamics is represented by the typical sam-

ple paths obtained from numerical integration of (7.1) for the sufficiently

large N with D1,D2 , 0. On the first part, the analysis covers the stabil-

ity of the attractor states for the total system of coupled populations, such

that both of them are either found lying in the equilibrium or exhibiting

oscillations. The main focus is on the stability of the fixed point and its

destabilization under variation of the cross-population coupling strengths

and delays. Apart for the onset of the oscillatory state, it is also consid-

ered how the coherent rhythms may become suppressed, this primarily at-

tributed to the action of the inter-ensemble time lags. As a final matter, we

demonstrate the existence of the parameter domains admitting the bistable

regime, where the stationary and the oscillatory state coexist. Altogether,

an inference confirmed later on is that the MF approximation can capture

the behavior of the exact system much better if the collective dynamics is

such that the deterministic component, controlled by the coupling strength

and time delay, prevails over the stochastic component. The points enu-

merated above exhaust the corpus of problems that may approximately be

treated by the local bifurcation theory, in a sense of explaining the qualita-
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tive changes arising in the system’s asymptotic dynamics due to parameter

variation. Outside the scope remain the more complex phenomena oc-

curring for larger D-s and τ-s, which could cause the behavior of single

units within the populations to become substantially stratified. Such is-

sues would fall under the notion of stochastic bifurcations [134], meaning

that one should consider how the parameter modification influences the

changes of the respective stationary distributions of the local variables.

Since we discuss the scenarios with symmetrical and asymmetrical cross-

population couplings, as well as the setups where the inherent ensemble

dynamics is the same or distinct, the analytical results of the local bifurca-

tion analysis on the system of interacting MF models are presented in most

general terms with respect to the system parameters. First, it is established

that the system (7.8) possesses a unique equilibrium given by

mx,k = −bk; my,k =
bk

2
[1 +

b2
k

3
+ gin,k −

√
(gin,k − 1 + b2

k)2 + 4Dk] (6.3)

with k = 1, 2. The local stability of (7.9) depends on the roots of the char-

acteristic equation of the system (7.8). To obtain the latter, one linearizes

(7.8) around the equilibrium, assuming that the deviations are of the form

δmx,k(t) = Akeλt, δmy,k(t) = Bkeλt and δmx,k(t − τin,k) = Akeλ(t−τin,k). This

results in a set of algebraic equations for the coefficients Ak and Bk, which

has a nontrivial solution only if

∆1(λ)∆2(λ) − λ2gc,1gc,2e−λ(τc,1+τc,2) = 0 (6.4)

is fulfilled, where∆k(λ) = −λFk+ϵλ
2−gin,kλe−λτin,k+1 with Fk = Fk(gin,k, bk,Dk).

The condition (7.10) poses the desired characteristic equation, whose be-

ing transcendental reflects the presence of (multiple) time delays in (7.8).

Though (7.10) has an infinite number of roots, it is well known how there

may be only a finite number of exceptional roots equal to zero or with a

zero real part [200, 200–202]. One recalls that tangent to the subspace
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spanned by the associated eigenvectors lies the center manifold [203, 204],

where the qualitative features of the system’s dynamics, such as the local

stability, are contingent on the nonlinear terms.

Bifurcations of the stationary state take place for the parameter values

where the roots of (7.10) cross the imaginary axis. Given that Eq. (7.10)

does not admit the possibility λ = 0, we look for the pure imaginary roots

of the form λ = ıω, adopting ω to be real and positive. Substituting for λ

in (7.10), one obtains

[−ıω(F1 − ıϵω + gin,1(cosωτin,1 − ı sinωτin,1)) + 1]×
[−ıω(F2 − ıϵω + gin,2(cosωτin,2 − ı sinωτin,2)) + 1]+

ω2gc,1gc,2(cos(ω(τc,1 + τc,2)) − ı sin(ω(τc,1 + τc,2))) = 0 (6.5)

which, after equating both the real and the imaginary parts with zero, pro-

vides for the implicit relations of ω and the system parameters

−ω2P1P2 + Q1Q2 = −ω2gc,1gc,2 cos(ω(τc,1 + τc,2))

ωP1Q2 + ωP2Q1 = ω
2gc,1gc,2 sin(ω(τc,1 + τc,2)), (6.6)

where

Pk = Fk + gin,k cos(ωτin,k)

Qk = ϵω
2 + gin,kω sin(ωτin,k) − 1 (6.7)

applies for k = 1, 2. Squaring and adding the relations (6.6), one arrives at

(ω2P1P2 − Q1Q2)2 + ω2(P1Q2 + P2Q1)2 = ω4g2
c,1g2

c,2, (6.8)

which can be used to express the cross-population coupling strengths in

terms of ω, while keeping the values for the subset of the intrinsic parame-

ters gin,k, τin,k, bk and Dk fixed. Obtained in a similar fashion, the analogous

result for the critical cross-population coupling delays may be written in
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the compact form

τc,1 + τc,2 =
1
ω

arctan(
ωP1Q2 + ωP2Q1

ω2P1P2 − Q1Q2
). (6.9)

The last two equations combined define the curves in the appropriate delay-

strength parameter plane. Bear in mind that Eq. (6.9) actually defines mul-

tiple branches of the Hopf bifurcation curves, these given by τc,1+τc,2+ jπ,

where j = 0, 1, 2.... Naturally, the above relations further simplify once

the inter-ensemble couplings are taken to be symmetrical and/or the pop-

ulations’ intrinsic parameters are assumed to be identical. Note that the

expressions such as these could not be obtained if we were to retain the

initial MF model (7.7) containing the full dynamics of the second order

cumulants. As for the type of bifurcations whose location is indicated by

(6.9), the very form of the solution adopted for the characteristic equation

is consistent with the Hopf bifurcations, though a rigorous proof would re-

quire one to verify whether the conditions on non-hyperbolicity, transver-

sality and genericity are satisfied [75, 201, 202, 204]. Without entering into

unnecessary details, it suffices to say that the system (7.8) admits both the

supercritical and subcritical Hopf bifurcations, whereby the former (lat-

ter) result in the creation of a stable (unstable) limit cycle. In addition,

recall that either of these types can be direct or inverse [203], depending

on whether an unstable two-dimensional manifold for the fixed point (7.8)

appears or vanishes when crossing the bifurcation curve, respectively, hav-

ing the fixed point unfold on the unstable or the stable side. The results

derived analytically are corroborated numerically by means of the DDE-

biftool [182, 183], an adaptable package of Matlab routines suitable for

handling the sets of DDE with constant delays.
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6.3 Qualitative comparison between the dynamics of the
exact and the approximate system

For the systematic study, we first consider the layout with two populations

made up of independent excitable elements (gin,1 = gin,2 = 0) subjected

to a common, comparably small noise (D1 = D2 = 0.0001), whereby the

cross-population coupling terms are taken to be symmetrical, so one may

introduce gc,1 = gc,2 = gc and τc,1 = τc,2 = τc. The parameters are such

that for gc = 0, the populations exhibit the asymptotically (stochastically)

stable equilibrium in the MF (exact) model. Though it appears marginal at

first sight, the described setup is still important, since the MF model is here

strongly indicated to match the behavior of the real system. In a sense, this

scenario is reminiscent of a null-hypothesis, given that the stated parame-

ters are fully compliant with the nominal conditions for the validity of the

MF approximation. One would further expect to gain some insight into

the phenomena occurring for the more complex system configurations, or

may at least obtain a reference point to isolate the effects of certain pa-

rameters, such as gin or τin. In the remainder, the bifurcation diagrams are

accompanied by the close-up views focused on the most relevant parameter

domains, having those referred to in the text indicated by the representa-

tive symbols. Also, to distinguish between the different bifurcation curves,

each is denoted by two types of indices. The +/− sign specifies whether

the curves coincide with the direct or inverse bifurcations, respectively,

while the numerical index points to the order in which the given branches

are encountered as the inter-population coupling delay is increased.

From the bifurcation diagram in Fig. 7.1(a), a major point concerns the

prediction on the existence of the critical strength g0 for the instantaneous

couplings (τc = 0), where the stationary state loses stability. Figure 7.1(b)

presents a zoom in of Fig. 7.1(a), focussed on the parameter region where

equilibrium changes stability. In particular, for gc < g0, viz. the open circle
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Figure 6.1: First few branches of the Hopf bifurcation curves τc(gc) for the MF based
approximation of the system of two symmetrically coupled (gc,1 = gc,2 = gc, τc,1 = τc,2 =

τc) populations, each made up of noninteracting units (gin,1 = gin,2 = 0). In (b) is shown
the enlarged section of (a), where the equilibrium changes stability. The equilibrium is
destabilized via the supercritical Hopf bifurcation, but the form of the collective mode
is found to be influenced by the interplay with the global fold-cycle bifurcation. All the
units are subjected to noise of the amplitude D = 0.0001.

in Fig. 7.1(b), the equilibrium is stable, whereas for gc > g0 (solid circle)

there is only the oscillatory state. The bifurcation scenario coincides with

the direct supercritical Hopf bifurcation, and the numerical simulations im-

ply that the unstable manifold for the equilibrium mx,1 = mx,2 = mx and

my,1 = my,2 = my around gc = g0 supports the oscillations in-phase, this

being an example of synchronization between the units due to a common

input. By the term ”oscillations in-phase”, it is meant that the MF ap-

proximation indicates a solution with the exact synchronization between

the global variables, which is stochastically perturbed in the exact system.

What is described applies not only for τc = 0, but also holds in any instance
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6. Mean field approximation of two coupled populations of excitable units

when the curve τ1,− is crossed in the direction of increasing gc with τc kept

fixed. However, note that there is an additional subtlety to this transition

derived from an interplay with the fold-cycle bifurcation, a global event

which cannot be accounted for by the present type of analysis. Such an

interplay is reflected in the form of the collective mode exhibited by the

system. In this context, one may identify four distinct domains of gc val-

ues, characterized by the stable solutions of the system’s dynamics. The

latter are illustrated in Fig. 7.2 by the corresponding mx(t) series, demon-

strating the changes of the attractors with increasing gc as follows. For the

sufficiently small gc, the equilibrium is the unique stable solution, see Fig.

7.2(a), such that any excitation eventually dies out. Then, for gc ≈ 0.055,

the system undergoes a global fold-cycle bifurcation, which gives rise to

an unstable and a large stable limit cycle. This points to an interval gc < g0

where the stationary and the oscillatory state coexist, viz. Fig. 7.2(b), with

their attraction basins separated by the unstable limit cycle. Above g0, the

incipient limit cycle born via the Hopf bifurcation emerges around the for-

mer position of the equilibrium. The large limit cycle remains unaffected

by the local bifurcation, so that there exists a narrow gc interval around τ1,−

corresponding to a bistable regime with a small and a large amplitude limit

cycle, viz. the solid diamond in Fig. 7.1(b). The two distinct limit cycles

are illustrated by the time series in Fig. 7.2(c). Note that the described

bistability may be difficult to observe in the exact system due to sensitiv-

ity of the incipient cycle to stochastic perturbation, as even the very small

noise amplitudes can be sufficient to force the ensuing orbits away from its

neighborhood. Nonetheless, it also turns out that the incipient cycle cannot

fully grow with the supercriticality because it is enclosed by the unstable

limit cycle created in the global bifurcation. This implies that with increas-

ing gc, there is a point where the stable cycle of small amplitude and the

unstable limit cycle eventually collide and disappear in an inverse fold-

cycle bifurcation. Therefore, for gc >> g0, all the trajectories are drawn to
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Figure 6.2: Time series mx(t) illustrating four characteristic types of stable solutions ex-
hibited by the setup analyzed in Fig. 7.1 under increasing gc at τc = 0. Moving from (a)
to (d), gc assumes values gc = 0.05, gc = 0.07, gc = 0.083 and gc = 0.1, respectively. (a)
For gc << g0, the unique attractor of the system is the fixed point. (b) In the intermedi-
ate region, the global fold-cycle bifurcation gives rise to a large stable limit cycle, which
coexists with the stable equilibrium. The corresponding series are indicated by the blue
(dark grey) and orange (light grey) lines, respectively. (c) In a relatively narrow interval
around gc & g0, the large limit cycle born via global bifurcation coexists with the incipient
(small amplitude) cycle from the Hopf bifurcation. The mx(t) series corresponding to the
former is shown by the blue (dark grey) line, and the latter by the orange (light grey) one.
(d) Following an inverse fold-cycle bifurcation, where the incipient cycle annihilates with
the unstable one, the sole attractor of the system is the large limit cycle, first seen in (b).

the large limit cycle, derived from the global bifurcation. The mx(t) series

typical for this gc domain is shown in Fig. 7.2(d).

To proceed with, we consider the effects of increasing τc under fixed

coupling strength gc > g0. Crossing the first bifurcation curve from below

τc > τ1,−, viz. the domain indicated by an open triangle in Fig. 7.1(b),

the equilibrium is seen to regain stability via the inverse supercritical Hopf

bifurcation. Given the analogy of the underlying mechanisms, this could

have been interpreted as a genuine example of the delay-induced ampli-

tude death, if there were not for the large limit cycle which is unaffected
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by the local bifurcation. Instead, this stability domain is characterized by

the coexistence between the stationary and the oscillatory state. Nonethe-

less, enhancing the delay above τ2,+ gives rise to a region of instability,

represented by the solid triangle in Fig. 7.1(b), where one encounters only

the two populations oscillating in phase. Such an outcome is due to a su-

percritical Hopf bifurcation, which is reflected by the equilibrium gaining

an unstable plane. Note that the analysis cannot extend to larger delays,

since the underlying phenomena do not fall within the framework of the

current study. It should be emphasized that the oscillation frequency of

the MF model has been verified to match the one of the exact system al-

most perfectly. This point applies for two parameter domains highlighted

by the solid circle and the solid triangle in Fig. 7.1(b). Under τ1,−, the

respective oscillation period of the approximate model is T•,MF = 3.664 in

arbitrary units, whereas the associated average period for the exact system

is T•,EX = 3.668. Likewise, in the domain instantiated by the solid trian-

gle, TN,MF = 3.874 and TN,EX = 3.869. The cited data indicate that the MF

model is able to predict the average frequency of macroscopic oscillations

of the exact system with remarkable accuracy. Regarding the comparison

between the real and the approximate systems, one should also look back

at the values of the critical strength g0. The agreement here is weaker,

whereby the MF model is found to overestimate the value. This is not un-

expected, given that the local phenomena are mediated by the background

global bifurcation. Still, the tendency and rate by which g0 decreases with

enhancing D is reflected reasonably well by the MF model.

The main results in this Section concern the canonical setup involving

two identical populations of interacting excitable neurons (gin,1 = gin,2 =

0.1), whereby the cross-population couplings are taken to be symmetrical

[30, 128]. The intrinsic ensemble parameters D = 0.0001, τin = 0.3 war-

rant that the equilibrium is the only asymptotically (stochastically) stable

state for the approximate (exact) model. Inspecting the appropriate bifur-
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cation diagram in Fig. 7.3(a), one readily realizes how, at variance with the

previously discussed case, there is not one, but two scenarios for the desta-

bilization of equilibrium. Which of the scenarios actually applies is con-

tingent on the inter-population coupling strength gc: if gc < g′0, viz. Fig.

7.3(b), the equilibrium goes unstable via the direct supercritical Hopf bi-

furcation, while for gc > g′0, the onset of the collective mode rests with the

direct subcritical Hopf bifurcation. In the latter instance, where gc notably

outweighs gin, an unstable limit cycle collapses at the fixed point making it

unstable. Away from criticality, in the domain marked by the solid circle in

Fig.7.3(b), the system’s trajectory eventually gets drawn to a distant limit

cycle attractor. Again, both the stable and the unstable limit cycle derive

from the fold-cycle bifurcation, whereas the numerical simulations confirm

that the unstable manifold of the equilibrium at (gc, τc) = (g′0, 0) supports

the symmetrical oscillatory state. Below the curve τ1,−, which is barely

distinguishable from the gc-axis in Fig. 7.3(b), one finds a narrow interval

of coupling strengths gc & g0 where the emanating branch of the unsta-

ble solutions apparently folds back. As a corollary, the system of coupled

MF models is seen to exhibit a bistable regime, such that the equilibrium

and the collective mode coexist. However, such bistability is difficult to

observe in the dynamics of the full system for the sensitivity of the equi-

librium to stochastic perturbation. Interestingly, the approximation for the

critical coupling strength g′0 is significantly improved when compared to

the previous system configuration, this possibly owing to the influence of

the inter-ensemble interactions that were excluded earlier on. Crossing

into the domain τ1,− < τc < τ2,+ represented by the open square in Fig.

7.3(b), the MF system undergoes an inverse subcritical Hopf bifurcation,

such that the fixed point loses an unstable plane. Looking in a more general

picture, this region of parameter space is supposed to be bistable between

the equilibrium and the large limit cycle born via the global bifurcation. In

parallel, the unstable limit cycle from the Hopf bifurcation should act like
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Figure 6.3: Hopf bifurcation curves τc(gc) in case of two identical, symmetrically cou-
pled populations, each comprised of globally connected elements whose interactions are
characterized by τin = 0.3 and gin = 0.1. The two latter parameter values, together
with D = 0.0001, warrant that the isolated populations (single MF systems) exhibit the
stochastically (asymptotically) stable stationary state. (b) presents a close-up view of (a),
focused on the parameter region where the stability of the equilibrium changes. Depend-
ing on gc, the equilibrium is destabilized either by the supercritical or the subcritical Hopf
bifurcation. As in Fig. 7.1, the exhibited collective mode is found to be a result of the
interplay between the local bifurcations and the global fold-cycle bifurcations.

a threshold for switching between the two solutions. However, the stochas-

tic component in the underlying dynamics prevents us from observing the

bistable regime in the exact system. Above τ2,+, the equilibrium loses sta-

bility, giving way to the limit cycle as the sole attractor of the system’s

dynamics.

Next we turn to the sequence of bifurcations obtained for gc < g′0, which

is a physically more plausible range since gc lies closer to gin. Below τ3,+,

the stationary state is stable for both the real and the approximate system,

with the appropriate parameter domain highlighted by the open up-triangle
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in Fig. 7.3(b). Crossing τ3,+ from below, the system undergoes the super-

critical Hopf bifurcation, such that the equilibrium becomes unstable, and

the emerging oscillations are symmetrical. An interesting point for the

transition between the domains marked by the open and solid up-triangles

in Fig. 7.3(b) is that for the moderate coupling strength, under not too

large a noise the time lag turns out to be a necessary ingredient should the

equilibrium be destabilized. For the more comprehensive view, one again

has to consider the effects of the interplay with the global fold-cycle bi-

furcation, whereby a general remark is that everything stated on the direct

supercritical Hopf bifurcation regarding the diagram in Fig. 7.1(b) can

carry over to this case. In brief, apart for the equilibrium, the system’s

phase space below τ3,+ also exhibits an unstable limit cycle enclosing the

fixed point and a large stable limit cycle. Above the latter curve, the incipi-

ent limit cycle grows only until colliding with the unstable one, both being

annihilated in an inverse fold-cycle bifurcation. Then, all the trajectories

are eventually drawn to the large limit cycle, left as the sole attractor. As

for the predictions of the approximate system, one stresses that there is an

excellent agreement between the oscillating waveforms, in particular when

comparing the anticipated frequency with the average one for the real sys-

tem, viz. TN,MF = 3.836 vs. TN,EX = 3.833. This is illustrated in Fig. 7.4,

showing side-by-side the sequences from the time series mx,i(t) and Xi(t)

for i = 1, 2 below (top row) and above (bottom row) the curve τ3,+.

Further enhancing τc to step into the domain highlighted by an open

down-triangle in Fig. 7.3(b), one encounters the bistable dynamics, such

that the system, depending on the initial conditions, may display either the

stationary or the oscillatory state. The area is bounded by τ4,− from be-

low and τ5,+ from above. The found bistability regime is the consequence

of the inverse subcritical Hopf bifurcation, where the emanating unstable

cycle effectively acts to stabilize the fixed point, allowing for it to coexist

with the collective mode, the latter present due to the global bifurcation.
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Figure 6.4: The exact (left column) and the approximate system (right column) are
demonstrated to undergo the direct supercritical Hopf bifurcation when crossing the curve
τ1,+ from Fig. 7.3(b). (a) and (b) show that below the curve (gc = 0.16, τc = 0.06), the
fixed point is stochastically stable for the exact, and asymptotically stable for the approxi-
mate system, respectively. The onset of oscillations above the curve (gc = 0.16, τc = 0.14)
is illustrated for the exact system in (c), and the approximate system in (d). The intrinsic
population parameters are set to D = 0.0001, gin = 0.1 and τin = 0.3.

The possibility of observing bistability in the exact system is likely facili-

tated by the unstable limit cycle, whose amplitude is sufficient to separate

more clearly between the attraction basins of the oscillatory solution and

the equilibrium in spite of the stochastic perturbations induced by the rel-

atively small, but non-negligible noise. The bistable regime is illustrated

in Fig. 7.5, which demonstrates the coexistence of the stationary (top row)

and oscillatory states (bottom row) for both the exact model and the MF

approximation. Note that the change in oscillating frequency in the real

system, associated with crossing τ4,− from below, is well matched by the

approximate system. Stepping into the domain τ5,+ < τc < τ6,−, marked by

the solid down-triangle in Fig. 7.3(b), the key change consists in the switch

from the bistable to a monostable regime, the latter characterized by the os-

cillatory state with the synchronization in-phase. The switch occurs as the
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Figure 6.5: Illustration of how the same bistable regime, characterized by coexistence
between the stationary and the oscillatory state, is exhibited both by the exact (left
column) and the approximate system (right column). The top row indicates the cor-
responding stochastically and asymptotically stable fixed point, whereas the bottom
row shows the two populations oscillating in-phase. The coupling strength and delay
(gc, τc) = (0.14, 0.22) lie within the domain highlighted by the open down-triangle in
Fig. 7.3(b). The values for the intrinsic parameter subset are D = 0.0001, gin = 0.1 and
τin = 0.3.

system undergoes the direct supercritical Hopf bifurcation, which adds un-

stable directions, altering the stability of the fixed point. The change from

the bistable to the monostable regime occurs in the same fashion for the

MF and the exact system. Setting τc above τ6,−, see the domain repre-

sented by the open diamond in Fig. 7.3(b), one finds the bistability regime

reinstated. However, the transition is accompanied by the modulation of

the oscillating frequency, the point well reflected by the approximate sys-

tem, viz. T⋄,EX = 4.097 against T⋄,MF = 4.119. In general, the increase of

coupling delay is biased toward reducing the oscillating frequency.

Note that the qualitatively similar sequence of bifurcations is verified to

persist in a range of gin values, if D and τin are set so to admit the stable

stationary state as the sole attractor for the isolated populations. Nonethe-
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less, in order for this framework to reflect accurately the behavior of the

exact system, one should not consider too large noise amplitudes. The

perturbation from larger D may be envisioned as if leading to an effective

broadening of the bifurcation curves for the real system, which renders

the entire sequence smeared, and the underlying qualitative changes dif-

ficult to discern. The question of assessing what noise amplitude is ”too

large” comes down to determining the D value which causes the failure of

the Gaussian approximation, the ground assumption for the validity of the

mean-field model. However, the actual value where this occurs depends on

all the members of the parameter set (gc, τc, gin, τin). The discussion here

is focused on the set (gc, τc, gin, τin) = (0.16, 0.14, 0.1, 0.3) associated with

Fig. 7.4(c), but the suggested means of analysis can be applied for an ar-

bitrary set of values. In this context, one may first compare the stationary

probability density for the global variables P(X,Y) of the exact system with

that for the mean-field variables P(mx,my) of the approximate model as D

is increased. The two stationary distributions can be approximated numer-

ically by observing the respective systems’ evolution for the sufficiently

long time period. In particular, the applied method consists in counting the

number of representative points that fall within each cell of a 110 × 110

grid, obtained by partitioning the relevant ranges of X and Y , as well as mx

and my values into 110 bins each. It may be shown that there is an excellent

match between the corresponding distributions for D = 0.0001, the value

considered in Fig. 7.4(c), whereas P(mx,my) begins to appreciably depart

from P(X,Y) around D ≈ 0.0014. The latter may serve as a rough estimate

for the noise amplitude where the mean field approximation breaks down.

This conclusion is further supported by examining how close are the

properties of the exact system to satisfying the Gaussian approximation

when D is increased. Should the exact system conform to this requirement,

the distribution P(x⃗) for the potentials of single neurons within each popu-

lation x⃗ = (x1, ..., xN)T at any moment of time is supposed to remain close
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to Gaussian. This means that its third and fourth order semi-invariants

should lie around zero, I3 = M3 ≈ 0 and I4 = M4 − 3M2
2 ≈ 0. Here, Mk

refers to the k-th moment of the centered distribution. Then, monitoring the

values of I3 for the numerically determined P(x⃗) distributions in the suf-

ficiently long time period, one can obtain the appropriate histograms and

calculate the mean values < I3 >, characteristic for each given noise value

D. It is found that the histograms P(I3) are expectedly centered around

zero for small D, whereas their profiles exhibit tails as D is increased.

The latter point reflects the discrepancy from the Gaussian approximation.

Following the tendency of increasing positive fluctuations from the mean

value, P(I3) eventually becomes a bimodal distribution for large D. The

noise value where the tails become visible again turns out to be around

D ≈ 0.0014, corroborating the previously stated result on the breakdown

of the mean-field approximation. As a measure of how distinct the P(I3)

distributions at mentioned D values really are, one may compare the mean

values for the third order semi-invariants < I3 > (D = 0.0001) = −0.0032

vs < I3 > (D = 0.0014) = −0.0245 or their fourth-order counterparts

< I4 > (D = 0.0001) = −0.0305 vs < I4 > (D = 0.0014) = 0.1471.

Finally, the conclusions so far can also be confirmed by determining the

dependence of the time-averaged skewness and kurtosis for the P(x⃗) dis-

tributions in terms of noise. It can be demonstrated that such plots exhibit

a sharp increase at values around D ≈ 0.0014, again indicating where the

significant deviation from the Gaussian approximation occurs for the given

(gc, τc, gin, τin) parameter set.

A question that naturally arises is whether and how is the physical pic-

ture so far modified by taking the asymmetrical, rather than the symmet-

rical cross-population coupling terms. We have examined two different

scenarios: by one, the couplings in either direction retain a common time

lag, but attain different strengths, whereas in the other, strengths are the

same, but the transmission delays are disparate. In the former case, the

144



6. Mean field approximation of two coupled populations of excitable units

τ
1,+

Figure 6.6: Results of the local bifurcation analysis of the approximate system for
the two cases of the asymmetrical cross-population couplings, presented in the delay-
strength parameter plane. (a) refers to the setup with the disparate coupling strengths,
holding gc,1 = 0.05 and letting gc,2 vary continuously. (b) is obtained for the uneven
time lags, with τc,1 = 0.6 fixed and τc,2 allowed to change. The intrinsic parameters
D = 0.0001, τin = 0.3, gin = 0.1 are identical for both populations and warrant that the
corresponding isolated system would exhibit the stationary state.

coupling strength in one direction, say gc,1 is kept fixed, while gc,2 varies

continuously. The bifurcation diagram in the τc-gc,2 plane is plotted in Fig.

7.6(a), whereby the intrinsic population parameters are identical to those

stated in the caption of Fig. 7.3. One may immediately raise the issue of

why is the bifurcation sequence profile much simpler compared to that in

Fig. 7.3(a). The possible reason lies in that for the cross-population cou-

plings asymmetrical by strength, the system’s behavior is predominantly

influenced by the global bifurcation phenomena dependent on gc,1 and gc,2.

Nonetheless, one cannot neglect some qualitative resemblance between the

dynamics of the MF and the exact system. For instance, below τ1,+ in Fig.
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7.6(a), the equilibrium is stable for either system, but participates in the

bistable regime. Along with the stationary state, one also finds an oscilla-

tory state where the two populations are locked with a constant phase shift.

This collective mode can only be attributed to the global bifurcation events.

Crossing τ1,+ from below results in the creation of a limit cycle, leaving the

equilibrium unstable. Both the real and the approximate model exhibit a

single attractor supporting the phase-locked oscillations between the two

populations, whereby the underlying frequencies are well matched, viz.

T•,MF = 4.281 against T•,EX = 4.302. Notably, the oscillation waveforms

above τ1,+ are more complex than those below, and bear the initial signa-

tures of the quasiperiodic behavior. It has to be stressed that the qualitative

resemblance between the dynamics of the exact and the approximate sys-

tem heavily depends on how close is gc,1 to gin. In Fig. 7.6(a), gc,1 = 0.05

is comparably small to gin = 0.1. Should gc,1 approach gin or exceed it, the

effects of the global bifurcation phenomena become overwhelming, spoil-

ing the predictions made by MF-based approximation.

We also briefly touch upon the setup where the cross-population cou-

plings exhibit the disparate time lags, but attain the same coupling strength.

Again, all the internal population parameters are equal to those linked to

Fig. 7.3, whereas the notation on the asymmetrical coupling parameters

is analogous to that used in the previous layout. The appropriate bifurca-

tion diagram in the τc,2-gc plane is displayed in Fig. 7.6(b). Compared to

Fig. 7.3(a), we learn how the main difference between this case of asym-

metrical couplings and the case with symmetrical interaction lies in the

domain of small delays. In particular, the destabilization of equilibrium

occurs solely via the supercritical Hopf bifurcation, whereas the scenario

involving the subcritical Hopf bifurcation is absent. This picture seems to

be independent on the relation between the fixed time lag τc,1 and τin.

Though it is not within the scope of the current study, one should still

mention that the methods discussed can also be implemented for the sce-
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narios where the two populations exhibit different types of kinetics, e.g.

if one is made up of excitable, and the other of self-oscillating units. In

this scenario, one effectively examines the interaction between the noise-

induced and the noise-perturbed oscillations. The corresponding bifurca-

tion diagram is not too distinct from the one in Fig. 7.6(b), except that the

pattern of bifurcation curves is less dense. The critical coupling strength

analogous to g0 is naturally smaller than the one for the interacting ex-

citable populations. Nevertheless, this setup is distinguished from those

considered earlier in that the unstable manifold of the equilibrium sup-

ports the onset of the collective mode with the phase-locked rather than

the in-phase oscillations, such that the firing of the ensemble with self-

oscillating neurons precipitates the firing of the ensemble containing the

excitable neurons.

6.4 Chapter summary and discussion

In the present chapter, we have pursued the analysis of the MF based ap-

proximation intended to accurately reflect the macroscopic behavior of two

delay-coupled populations of stochastic excitable units in terms of the sta-

bility of the stationary state, the scenarios for the onset and the suppres-

sion of the collective mode, as well as the possibility of admitting bistable

regimes, where the equilibrium and the oscillatory state are found to co-

exist. The described layout deserves attention, since it can be interpreted

as the minimal model for the ”network of networks”, the configuration of-

ten brought into context of biological systems whose function relies on

generation and adjustment between the multiple collective rhythms. The

important ingredients of the exact system we consider include two types of

delayed interactions, whereby those within the ensembles are assumed to

be linear, and the inter-ensemble ones, mediated by the appropriate global

variables, are taken to be nonlinear. The corresponding approximate sys-
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tem is built by coupling the two MF models, derived to describe the activity

of single populations. Such a framework follows the general idea that any

ensemble of oscillating units exhibiting the collective mode can be treated

as the macroscopic oscillator. The MF model integrates the cumulant ap-

proach with the Gaussian approximation, whereby the latter holds exactly

for an arbitrary system if three conditions are satisfied. These include the

thermodynamic limit N → ∞ regarding the ensemble size, the negligible

noise amplitude D << 1, as well as the negligible interaction between the

units gin << 1. Naturally, the term negligible does not allude to asymptotic

limits D→ 0 or gin → 0, but refers to very small values of these parameters

which correspond to an idealized, rather than the realistic setup. However,

depending on the particular system, it often turns out that the validity of

the MF based approximation extends beyond the initially prescribed pa-

rameter range, getting closer to the more realistic parameter values. This

holds true in our case, where we have demonstrated that the approximate

system is able to predict with sufficient accuracy the behavior of relatively

large, but finite populations (N ∼ 100) with the non-negligible internal in-

teractions (gin ∼ 0.1), provided that the understandable requirement for not

too large a noise amplitude is met. Regarding the latter, see the remarks on

page 143 following the discussion on the setup with symmetrically coupled

populations.

By stating the results in broad terms, the intention has been to stress

their applicability to the class of systems made up of type II excitable units.

Nonetheless, one recognizes that valuable motivation for the study comes

from the field of neuroscience, which goes beyond the adopted model of

local dynamics or the fashion in which the interactions are introduced.

The methods for providing the reduced descriptions of the behavior of

large neural assemblies are typically cast in the categories of the neural-

mass and the MF models, whereby the former neglect, and the latter take

into account the distribution of individual neuron states over the ensem-
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ble. In these terms, the model considered here interpolates between the

two classes. Recall that we have introduced an additional approximation

on the second order moments to translate the five-variable MF system for

a single population (2.16) into the two-variable form incorporated within

(7.8), the latter being preferred as it allows for the appropriate bifurcation

diagrams to be obtained analytically.

An inference from such an analysis is that the approximate system can

undergo direct and inverse supercritical or subcritical Hopf bifurcations,

such that the direct (inverse) ones lead to the destabilization (stabilization)

of the stationary state. The complex bifurcation sequence under variation

of cross-population coupling strengths and delays is found to depend on

the details of the system configuration, like the symmetrical or asymmet-

rical character of the bidirectional interaction between the ensembles. The

main set of results refers to the symmetrical case, where it is demonstrated

that the equilibrium may lose stability according to two different scenarios.

One involves a direct supercritical Hopf bifurcation and can be achieved for

instantaneous couplings solely by increasing gc, whereas the other scenario

unfolds via the direct subcritical Hopf bifurcation. The latter involves an

interesting point that for strengths gc ≃ gin one finds a time-lag threshold

necessary to destabilize the equilibrium. Increasing τc, there are param-

eter domains bounded from below (above) by the curves indicating sub-

critical (supercritical) bifurcations, where the stability of stationary state

is regained. In many of such instances, the system is actually bistable,

exhibiting coexistence between the equilibrium and the oscillatory state.

This is a corollary of an interplay with the global fold-cycle bifurcation, as

the large stable limit cycle born in this way remains unaffected by the local

phenomena. Note that the global events may influence the system dynam-

ics in several other instances. In particular, an unstable limit cycle created

in a fold-cycle bifurcation may destabilize the fixed point in a direct sub-

critical Hopf bifurcation or may limit the growth of an incipient limit cycle
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following the direct supercritical Hopf bifurcation. By numerical simula-

tion, we have verified that the parameter domains of stability or instability

of equilibrium for the exact system are reproduced by the approximate one

with high accuracy. In addition, it has been shown that the average oscilla-

tion frequency for the global variable of the exact system is well matched

by that of the corresponding MF variable. In the exact system, the abil-

ity to observe the bistable regimes, where the unstable limit cycle act as

a threshold between the equilibrium and the large cycle, is contingent on

the noise amplitude. In general, the predictions of the approximate sys-

tem are better if the deterministic component, governed by the coupling

strengths and delays, prevails over the stochastic component in the dynam-

ics of the exact system. An interesting study complementary to the present

one would be to examine whether the MF based model may reproduce

the forms of synchronization between the generated collective rhythms the

way they are exhibited by the exact system. These could include the in-

phase and antiphase synchronization or the phase-locked states, as well as

their coexistence. The preliminary results implementing the H-function

approach suggest that the approximate system may account for the stabil-

ity of the synchronization regimes and provide indications on the possible

multistability.
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Chapter 7

Stability, bifurcations and dynamics of
global variables of a system of bursting
neurons

Chapter abstract The analysis is focused on macroscopic be-

havior of an ensemble of delay-coupled Hidmarsh-Rose burst-

ing neurons modulated by noise, having described the global

coarse-grained dynamics in terms of collective averaged vari-

ables. Implementing the typical mean-field assumptions, we de-

rive an approximate model constituting the set of nine determin-

istic delay-differential equations for the first and the second mo-

ments of the collective variables. Bifurcations observed in the

global dynamics of the exact system under variation of different

parameters, characterizing the time-lag, interaction strength and

noise intensity, are compared to those displayed by the approx-

imate model. Bifurcation analysis of the latter is carried out by

numerical continuation. It is demonstrated that the domains of

parameter space corresponding to stable quiescent behavior or

to bursting collective mode of the exact system are correctly es-

timated by the much simpler approximate model.
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Bursting is an important dynamical state of a real neuron and of collec-

tions of such neurons. It is believed that a burst of spikes is more reliable

than a single spike in producing responses in postsynaptic neurons [75].

Small parts of the brain cortex may contain thousands of morphologically

and functionally similar interconnected bursting neurons, and each of them

is mathematically modeled by few nonlinear differential equations[75, 205,

206]. Dynamics of such neuronal network is crucially influenced by the in-

teraction, i.e. synaptic delays [29, 57, 136, 137, 168, 169] (and [143] and

the references therein), and by small perturbations of various origin which

are commonly treated as noise [55, 67, 164, 166, 167, 207].

It is clear that relatively detailed mathematical model of a small part

of realistic cortex should involve an extremely large system of nonlinear

stochastic delay-differential equations (SDDE). Analysis of such complex

models is impossible, even with the help of modern supercomputers, with-

out more or less severe approximations. Our main goal in this chapter is to

develop an approximation of large ensemble of coupled bursting neurons

and to demonstrate that bifurcation analysis of the approximate model is

possible and provides useful information about the exact large system.

Delay-differential equations with noise do not satisfy the Markov as-

sumption [141, 208] which complicates their analysis. Stability of such

SDDE’s has been studied using extensions of the Lyapunov method long

time ago [208], but with little influence in applications apart from mod-

els of mechanical devices. More recently, stability of synchronization in

systems with noise involving DDE was studied analytically in the context

of coupled realistic and formal neural networks. Liao and Mao [209](see

also [141]) have initiated the study of stability in stochastic neural net-

works, and this was extended to stochastic neural networks with discrete

time-delays in references [210, 211]. Some analytical techniques relevant
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for delayed systems with noise have also been used in the study of coupled

bistable systems with delays [212], and in noisy oscillators with delayed

feedback [146, 213–217]. Small world and scale free networks of various

neuronal models with noise and synaptic delays have been studied numer-

ically for example in [147, 218–222]

Our approximation is based on ideas and assumptions of the mean field

approach. The mean field approximation has been applied on systems of

excitable neurons with noise but with no time-delay for example in [67,

111, 112, 129]. Otherwise a type of MFA was devised in [223] and [64] and

applied on large clusters of noisy neurons with time-delayed interaction in

[195]. Global dynamics of a system of delayed coupled noisy 1D elements

was recently studied using the mean field approach in [224]. Recently an

analytically tractable MFA for delayed-coupled noisy excitable FitzHugh-

Nagumo neurons was developed [138] and used [139]. The mean field

approximate model developed here, in section 7.1, is still too complicated

for an analytic treatment, but the numerical bifurcation analysis, presented

in section 7.2, is possible and the results of such analysis are the main topic

of our chapter.

7.1 The exact large system and it’s approximate model

Different types of bursting activity have been observed in real single neu-

rons and collections of neurons [75]. Typical example of bursting dynam-

ics is provided by the three dimensional model proposed by Hindmarsh

and Rose (HR) [99]

dx/dt = Fx = y + 3x2 − x3 − z + I,

dy/dt = Fy = 1 − 5x2 − y,

dz/dt = Fz = −rz + rS (x −Cx). (7.1)
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where x is the membrane potential, y represents the fast current, like N+a
or K+, and z represents the slow current, for example Ca2+. r, S and

b are parameters which are in this chapter set to constant typical values

r = 0.0021, S = 4,Cx = −1.6. The HR equations (7.1) describe the dy-

namics of a single neuron subjected to an external stimulus I. Depending

on the values of the parameters r, S ,Cx and the current I the model can have

qualitatively different attractors corresponding to quiescent state, periodic

firing and bursting with regular or chaotic sequences of bursts [225, 226].

The bursting dynamics is driven by the oscillations of the slow z variable,

and occurs once they acquire sufficiently large amplitude, which is prefer-

ably induced by supplying an appropriate external stimulus I. The bursts

of spikes endure during the period when z is increasing and the stable qui-

escent state is observed while dz/dt < 0.

In this chapter we shall analyze the bursting dynamics of collective

variables in an ensemble of HR neurons. The model explicitly includes

the interaction delays and stochastic perturbation represented by additive

white noise, and is given by the following system of 3N stochastic delay-

differential equations (SDDE)

dxi = [Fx(xi, yi, zi) −
1
N

N∑
j

c(xi − x j(t − τ)]dt +
√

2DdW

dyi = Fy(xi, yi, zi)dt,

dzi = Fz(xi, yi, zi)dt, i = 1, 2 . . .N. (7.2)

where Fx, Fy, Fz are given by Eq. (7.1). There are two major types of

inter-neuronal couplings: the chemical and the electrical synapses. Time-

delay τ is important especially in the first type of synapses but plays also

an important role in the electrical junctions and in the transmission of an

impulse through the dendrite. In Eq. (7.2) we use the electrical coupling

with the time-lag τ and the strength c that is equal for all pairs of neurons.

The assumption that all internal neuronal parameters and all coupling con-
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stants are equal is plausible if the neurons are found in a small patch of

the brain cortex. The collective dynamics of such an ensemble of closely

placed neurons would then be monitored by a single electrode in an EEG

recording.

The terms
√

2DdWi represent stochastic increments of independent Wiener

processes, i.e. dWi satisfy

E(dWi) = 0, E(dWidW j) = δi, jdt, (7.3)

where E(·) denotes the expectation over many realizations of the stochastic

process. The intensity of the noise D and the stochastic properties of the

noise are assumed to be the same for all neurons, but, of course, single

realizations of the Wiener processes in the equations for xi need not be the

same functions of t for all i. Noise could be added also in the other equation

of the fast subsystem. It is known that, in the case of excitable systems,

the noise in the dxi equation or in the dyi equation produce different types

of stochastic coherence effects [77]. The mean field approach, presented

in this chapter, could be applied equally with almost no modification if

the noise term was in the dyi equation or in both dxi and dyi equations.

Nevertheless, we arbitrarily decided to treat the case with the noise in the

dxi equation.

Before we start with the analysis of the system (7.2) with a large num-

ber of units it is instructive to recapitulate the synchronization properties of

the system with only two neurons [57, 214, 227]. Transition from the qui-

escent or simple oscillatory state to bursting dynamics of two HR neurons

can be induced either by increasing the external parameter I, the coupling

strength |c|, the noise D or the time-lag τ. The bursting of the two neurons

can be exactly synchronous, i.e. x1(t) = x2(t), approximately synchronous

x1(t) ≈ x2(t) or completely asynchronous. Sufficiently strong coupling

with zero or small delay usually induces synchronization, which remains

an approximate one as long as the noise is not too large. Non-zero time-
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lag in a specific interval can induce synchronization of weakly coupled

deterministic bursters but the synchronization completely disappears with

the addition of a very small noise if the coupling remains weak. As for

the synchronization in systems with a large number of noiseless and in-

stantaneously coupled bursters, it is known that the synchronization can

be achieved with weak coupling if each of the neurons is connected with

(equal) sufficiently large number of other neurons [101]. As we shall see

these facts are reflected in the properties of global bursting dynamics of the

system with large N.

7.1.1 The mean field approximation

We are interested in the dynamics of the global averaged variables of the

large system (7.2). These are defined as the space averages:

mx(t) = 1/N
N∑
i

xi(t) ≡< xi(t) >,

mx(t − τ) = 1/N
N∑
i

xi(t − τ) ≡< xi(t − τ) >,

my = 1/N
N∑
i

yi ≡< yi >,

mz = 1/N
N∑
i

zi ≡< zi > . (7.4)

In order to obtain a closed system of equations for the spatial averages

and correlations we need several assumptions typical of the mean field ap-

proach. The assumptions are formulated using the centered first moments:

nxi(t) = mx(t) − xi(t), nyi(t) = my(t) − yi(t),

nzi(t) = mz(t) − zi(t), (7.5)

and assume that they are statistically independent in different units. Next,

156



7. Stability, bifurcations and dynamics of global variables of a system of bursting
neurons

mean square deviations:

sx(t) =< n2
xi

(t) >, sy(t) =< n2
yi

(t) >, sz(t) =< n2
zi
(t) >, (7.6)

and cross-cumulants:

uxy =< nxinyi >, uxz =< nxinzi > uyz =< nyinzi > (7.7)

are introduced.

Next we shall assume that for sufficiently large N the global space aver-

ages (7.4) of local quantities, say mx(t), are equal to the expectations with

respect to distribution of the corresponding variable E(xi(t)). Because of

the assumed Gauss distribution of each variable the first and the second or-

der cumulants of the deviations (7.5) are equal to the first and second order

centered moments of the variables xi, etc. . . . Due to the same Gaussian

assumption cumulants of order higher than second are equal to zero.

The well known formulas of the cumulant expansion up to the fourth or-

der [124] are used to obtain, after some algebra, the expressions for higher

order auto-correlations. In particular:

< x2
i (t) > = sx(t) + m2

x(t)

< xi(t)3 > = m3
x(t) + 3mx(t)sx(t)

< x4
i (t) > = m4

x(t) + 6m2
x(t)sx(t) + 3s2

x(t)

< xi(t)yi(t) > = uxy(t) + mx(t)my(t)

< x2
i yi > = mysx + mym2

x + 2mxuxy

< x3y > = 3sxuxy + 3sxmxmy + 3m2
xuxy + mym3

x

< xyz > = Uxymz + uyzmx + uxzmy + mxmymz

< x2yz > = sxmymz + m2
xuyz + m2

xmymz + 2uxzuxy

+ 2uxzmxmy + 2mxmzuxy + sxuyz. (7.8)

Using the first three equations (7.8) and the assumption that the spatial
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average for large N is equal to the stochastic average, the spatial average

of Eq. (7.2) becomes

ṁx(t) = −(m3
x(t) + 3mx(t)sx(t)) + 3(sx(t) + m2

x(t))

+ my(t) − mz(t) + I + c(mx(t − τ) − mx(t))

ṁy(t) = 1 − 5(sx(t) + m2
x(t)) − my(t)

ṁz(t) = r(S (mx(t) −Cx) − mz(t)). (7.9)

In order to close the system (7.9) we need the evolution equations for

sx(t). This involves other second moments, and the corresponding evolu-

tion equations are obtained using the Ito chain rule [124] and the equations

(7.8). The second moments satisfy

ṡx(t)/2 = sx(t)[6mx(t) − 3m2
x(t) − 3sx(t) − c]

+ uxy(t) − uxz(t) + D,

ṡy(t)/2 = −10mx(t)uxy(t) − sy(t),

ṡz(t)/2 = S ruxz(t) − rsz(t),

u̇xy(t) = uxy(t)[6mx(t) − 3sx(t) − 3m2
x(t) − 1 − c]

− 10mx(t)sx(t) + sy(t) − uyz(t),

u̇xz(t) = uxz(t)[6mx(t) − 3sx(t) − 3am2
x(t) − r − c]

− sz(t) + rS sx(t),

u̇yz(t) = rS uxy(t) − uyz(t)(1 + r) − 10mx(t)uxz(t). (7.10)

Following the next step in the analogous analysis of the large system of

excitable two dimensional FitzHugh-Nagumo neurons [138]( see also the

analysis of the FitzHugh-Nagumo neurons without the time-delay in [67,

129]) would consists in substitution of the stationary values for the second

moments (7.10) into the equations (7.9) of the first moments. However,

due to relatively complicated form of the right-hand sides of Eq. (7.10) the

resulting three equations for the first moments would still be quite difficult
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to analyze. Instead, we shall use the numerical continuation method to

perform bifurcation analysis of the system of 9 DDEs (7.9) and (7.10).

Predictions of this analysis will then be compared with numerical solutions

of the exact large system.

7.2 Numerical stability and bifurcation analysis of the
approximate system

Our goal in the next section will be to demonstrate that the qualitative agre-

ment of the approximate and the exact system extends over a large range

of parameters I, c, τ and for relatively small noise D, so that qualitatively

different types of the exact dynamics are correctly reproduced by the ap-

proximate system. Let us stress that our claim will not be that the time

series produced by the exact and the approximate equations are quantita-

tively similar but we shall claim that the approximate equations correctly

predict the qualitative type of dynamics for parameters in the specified do-

mains.

Given that the complexity of the approximate model seriously compro-

mises, if not precludes an analytical treatment, one is compelled to con-

sider some means of numerical bifurcation analysis. Before turning to

details, let us point out that the destabilization of equilibrium generically

occurs via the subcritical Hopf bifurcation. However, this does not rule

out the existence of the more subtle secondary bifurcation phenomena in

certain parameter domains, viz. the Bogdanov–Takens point is indicated

for very small weights under the moderate stimuli and delays. Focussing

on the subcritical Hopf bifurcation, the destabilization scenario consists

in that an unstable limit cycle collapses on a stable fixed point making

it unstable, whereas passed the bifurcation parameter value the trajectory

moves over to a stable limit cycle, located further away in the phase space.

Within this setup, the onset of bursting coincides with a pair of conjugate
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Figure 7.1: Bifurcation diagrams for the approximate model reflecting the destabilization
of equilibrium via the Hopf bifurcation. Subfigures (a), (b) and (c) focus on the τ(c), I(c)
and D(c) dependencies, respectively. The fixed point is stable (unstable) below (above)
each of the curves. The remaining parameter values are I = 1.25, D = 0 in (a), τ = 8 and
D = 0.001 in (b), as well as I = 1.29, τ = 10 in (c).

characteristic roots crossing the imaginary axes. The numerical analysis is

carried out by implementing the DDE-biftool, which is a package of flex-

ible Matlab routines appropriate for handling the systems of differential

equations with constant delays [182, 183]. The calculation of the stability-

determining characteristic roots itself involves two stages: the first, posing

the approximation by the linear multi-step method, and the correction one,

that rests on the Newton iteration method. Most notably, the software al-

lows for numerical continuation over the Hopf bifurcation point, making it

possible to switch to an emanating branch of periodic solutions.

The derived bifurcation curves, displayed in Fig. 7.1, are intended to

demonstrate how the interplay of I, c, D and τ affects the destabilization of

equilibrium for the approximate model, whereby the fixed point is stable

(unstable) below (above) each of the curves. For instance, from Fig. 7.1(a)
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one reads that under the action of small stimuli only excessive delays give

rise to destabilization if |c| is decreased. Nonetheless, at moderate τ, the

bifurcation values of I show a sharp rise for smaller c, whereas they virtu-

ally reach saturation in the absence of noise (not shown), or exhibit a very

slow growth once a small amount of noise is introduced, see Fig. 7.1(b).

Finally, from Fig. 7.1(c) we learn that for intermediate I and τ the stronger

the weights become, the larger D is required to destabilize the equilib-

rium. To reiterate, the formulation of the approximate model is justified

if it yields the correct stability behavior of the equilibrium as compared to

the exact system, a point witnessed later on by plotting the corresponding

factual time series for the parameter values below and above the obtained

bifurcation curves.

7.3 Numerical illustrations

For most part of our computations we have applied the Euler method of nu-

merical integration, though at some instances the Runge-Kutta fourth and

fifth order routines for the deterministic part of (7.2) have also been imple-

mented. The results are compared with those obtained by the ready made

programs for solving SDDE provided in the XPP package [228]. Many

sample paths of (7.2) for the same parameter values have been computed,

but in figures we represent the global variable X(t) along parts of only one

typical sample path, and compare these with numerical solutions of the

approximate system of DDDEs (7.9),(7.10).

A system of delay differential equations with the time-lag τ is an infi-

nite dynamical system, and the corresponding initial conditions are given

by continuous functions on the interval [−τ, 0]. In what follows we shall

always use as the initial functions the solutions of (7.2) or (7.9),(7.10) with

c = 0 and with specified values of the variables at t = 0. If the values of a

given local variable at t = 0 are equal for all i we shall say that the initial
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Figure 7.2: Examining whether there are parameter regions that favor precise matching
between X(t) and Xapp(t), provided the initial conditions are analogous. Throughout the
chapter we adhere to a representation scheme where the exact series are shown by the
black solid lines, while the approximate data are displayed by the dotted lines, coded or-
ange (light gray). Contrary to the common logic, there are instances of close quantitative
agreement of the data sets even under large D. Here, the parameter values are N = 200,
I = 1.3, c = 1, τ = 10 and D = 0.04.

data are equal, and if the local values at t = 0 are Gauss distributed we

shall say that the initial data are Gauss distributed. In this case the initial

data for Eq. (7.9),(7.10), i.e. the values of the first and the second moments

at t = 0 are fixed by the Gaussian distribution of the local variables.

Of course, the dynamics of the global variables along the sample paths

of the exact system (7.2), which is stochastic for D , 0, can not be

exactly reproduced by the orbits of the deterministic approximate model

(7.9),(7.10). However, the qualitative dependence on the parameters and

their bifurcation values are still well predicted. Furthermore, the difference

between the values of the global variables on different sample paths for the

same values of the parameters is already at D = 0.001 of the same order as

the difference between the values given by the approximate model and any

of the sample paths.

Apart from the qualitative agreement between the exact system and the

approximate model in terms of equilibrium destabilization, an additional
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gain would be to determine whether there are parameter regions that war-

rant the close quantitative match between the corresponding time series

of global potentials, designated X and Xapp in the remainder of the chap-

ter. By common logic, one expects this to be fulfilled in the absence of

noise. However, the comparison of the data obtained for the exact system

extended to N = 200 neurons and the approximate model (Fig. 7.2) under

the analogous initial conditions sees the two series converging irrespective

of the large D. Here it should be cleared out that the exhibited tendency

persists beyond the displayed time interval. Such an outcome makes it ex-

plicit how the possible overlap between X(t) and Xapp(t) is also influenced

by the parameters other than noise, notably the stimulation current. What

matters about the particular value I = 1.3 is that it would be sufficient to in-

duce bursting in the noiseless case if the rest of parameters were to remain

as in Fig. 7.2.

In view of the stated above, we proceed to the analysis of the sets of

data provided by the exact system and the approximate model under the

analogous initial conditions. The results are compared for the parameter

values lying below and above the bifurcation curves from Fig. 7.1. The

validity of the τ(c) dependence displayed in Fig. 7.1(a) is exemplified by

the time series in Fig. 7.3, where the delay is gradually increased keep-

ing the remaining parameters fixed. For τ below the bifurcation threshold,

there are only relaxation oscillations of the global potentials X and Xapp,

whereas just above it one encounters the fixed point destabilized, as the

regime of periodic spiking sets in. Further enhancement of τ leads to an

onset of bursting. Aside from the fact that the approximate model repro-

duces all of the major regimes exhibited by the exact system, it strikes that

the approximate series seem to best fit the exact one for very large τ = 50.

Figure 7.4 illustrates the qualitative agreement between the data ob-

tained and the I(c) dependence from Fig. 7.1(b). Again, we find the

damped oscillations below the bifurcation current and the bursting regime
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Figure 7.3: Destabilization of equilibrium under the increase of τ. We argue for the
qualitative agreement between the approximate model and the exact system in a sense that
their time series should reflect how the fixed point is stable (unstable) for the parameter
values lying below (above) the bifurcation curve in Fig. 7.1(a). For sub-bifurcation delay
τ = 2 in (a) the quiescent behavior is asymptotically stable. Once above the bifurcation
value, the neurons first engage in periodic bursting, as seen at τ = 9 in (b), whereas further
enhancing the delay gives rise to bursting shown for τ = 25 in (c) and τ = 50 in (d). The
remaining parameters take values I = 1.25, c = −0.8, D = 0 and N = 70.

taking place above it. In the former case, X(t) and Xapp(t) provide an excel-

lent match under the analogous initial conditions, whereas they are slightly

shifted in the latter. On the qualitative side, the above argument also holds

up for the displayed in Fig. 7.5 that relates to the D(c) bifurcation diagram

in Fig. 7.1(c). However, the greatest departing so far between the approxi-

mate model and the exact system deserves some additional attention. The

reason behind this lies in the stimulus value I = 1.29, which, connoted

with the remaining set of parameters, makes the induced bursting exclu-

sively noise-driven. With this in mind, one cannot expect the deterministic

approximate system to replicate the exact dynamics of the stochastic one
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Figure 7.4: System dynamics undergoes transition from asymptotically stable quiescence
to bursting under the increase of I in correspondence to the bifurcation diagram displayed
in Fig. 7.1(b). X(t) and Xapp(t) under the analogous initial conditions are obtained for
I = 1.29 in (a) and I = 1.32 in (b), with the rest of parameters being τ = 8, c = 1,
D = 0.001 and N = 70.

with any significant fidelity. On a final note, the proposed approximate

model is put to the test by considering the noiseless and the delay-free

case, where the perfect match with the exact series should occur. To this

end, we compared the data obtained for the damped oscillations and the

bursting regime, recovering a complete agreement in either event, see Fig.

7.6.

All the examples of the different dynamical phenomena illustrated so

far have been obtained for relatively strong coupling c = 1 or c = −0.8

between the neurons. Figure 7.7 is intended to illustrate the changes in-

troduced by decreasing the coupling. Strong coupling prompts synchro-

nization between the neurons which is only slightly perturbed by small

noise. Thus, the local bursters discharge in an almost synchronous fash-

ion and the global averages also display clear burst with large amplitude.
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Figure 7.5: Prompted by the increasing noise, the system dynamics undergoes transition
from stable quiescent behavior to bursting, as anticipated by the bifurcation diagram in
Fig. 7.1(c). The noise values are D = 0.01 in (a) and D = 0.057 in (b), with the remaining
parameters set at I = 1.29, τ = 10 and N = 70. X(t) and Xapp(t) depart from each other,
in particular for the ascending and the descending sections of bursts being much sharper
in the latter, as the observed transition is exclusively driven by noise.

This is illustrated in Figs. 7.7(a), (b) and (c) by showing only one burst

in the exact dynamics of X(t), the dynamics of its approximation Xapp(t)

and x1(t) versus x8(t). Xapp(t) is qualitatively similar to X(t), and all pairs

of local bursters xi(t), x j(t) are almost synchronous. On the other hand,

weak coupling also implies synchronous dynamics of local bursters with

zero noise, but this synchrony is completely destroyed by arbitrarily small

noise. Because of this noise induced de-synchronization the global vari-

ables only display dumped bursting as is illustrated in Fig. 7.7(d). The

stationary state is unstable, but the individual bursting is de-synchronized

so that spatial averaging only produces dumped bursting in global vari-

ables. The approximate model correctly predicts that the stationary state is

unstable, but it undergoes clear bursting dynamics which is quantitatively
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Figure 7.6: Comparison between X(t) and Xapp(t) under the analogous initial conditions
in the noiseless and the delay-free case. Increasing I, there is an excellent agreement
both for the damped oscillations and the bursting regime. The results are presented for
I = 1.265 in (a) and I = 1.272 in (b), with the remaining parameters being c = 1 and
N = 70.

different from the exact system global variables. Figure 7.7(f) shows that

the weakly coupled local bursters are completely de-synchronized by the

small noise.

It is expected that the estimates of the critical parameter values cor-

responding to different bifurcations that are provided by the approximate

model (7.9),(7.10) become more accurate as the number of units of the

exact system is increased. For example, consider the transition from the

bursting dynamics (with the unstable stationary state) that occurs in the ap-

proximate system for the fixed parameter values τ = 8, c = 1, D = 0.001

somewhere between I = 1.275 (stable, no bursting) and I = 1.295 (un-

stable, bursting). This transition occurs in exact system with N = 70 for

the same parameter values and in the indicated interval of I. This is illus-

trated in Fig. 7.8. On the other hand, the exact system with N = 65 for
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Figure 7.7: Illustration of the influence of coupling strength c on the bursting global
dynamics in the case when the parameters I = 3, τ = 0,D = 0.001 are such that each
individual neuron is bursting. In a) (exact) and b) (approximate) c = 1, and in d) (exact)
e) (approximate) c = 0.1. In c) c = 1 and f) c = 0.1 x1(t) vs. x8(t) are shown.

the same fixed parameters and for I = 1.275 has an unstable stationary

state and the global dynamics displays bursting. For N = 65 the cessa-

tion of bursting and stabilization of the stationary state occurs somewhere

between I = 1.22 (stable, no bursting) and I = 1.23 (unstable, bursting).

The critical value of I for N = 50 is between I = 1.2 (stable, no burst-

ing) and I = 1.22 (unstable, bursting), which is even further away from

the value estimated with the approximate system than in the N = 65 case.

For N = 10 the transition occurs between I = 1.15 (stable, no bursting)

and I = 1.17 (unstable bursting). We see that, as expected, the estimated

critical value becomes more accurate as the number of units in the exact

system is increased.
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Figure 7.8: Illustrating the point that for N = 70 the bifurcation value of the parameter
I, which implies destabilization of the stationary state and the transition to the bursting
dynamics of the global variables in the exact system (a), is predicted by the approximated
model (b) with the accuracy better than two percent. Accuracy for smaller N is com-
mented in the main text. The parameters are I = 1.275 (dotted), I = 1.295 (full) and
c = 1,D = 0.001, τ = 8.

7.4 Chapter summary and discussion

We have studied stability and bifurcations that induce the bursting dynam-

ics of the global variables of a large ensemble of coupled bursting neu-

rons. Each of the neurons is represented by Hidmarsh-Rose model which

is known to be able to display the bursting dynamics for sufficiently strong

external perturbation. Influence of noise is modeled by additive white noise

in each neuron. It is supposed that each neuron is coupled to all other neu-

rons by electrical junctions and the synaptic delays are explicitly included.

It is also assumed that all neurons are equal and interact via synapses of

equal efficiency. This is justified if the neurons are assumed to occupy

nearby positions in the brain cortex. For example, such a collection of

similar neurons would be found in a patch of the brain cortex monitored

by a single electrode of an EEG measurement. Another possibility, which

could also be analyzed by the methods of this chapter, would be to as-

sume random uniform distributions with small fluctuations of the internal

parameters, the interaction constants and the time-lags.
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Thus, the model is given by a large set of stochastic delay-differential

equations. We have focused on the dynamics of the collective variables

represented as the spatial averages of the local ones.

Typical assumptions of the mean field approach are used to derive the

set of nine deterministic delay-differential equations for the first and the

second moments of the collective variables. The main assumption in the

derivation is that the system represents an ensemble of Gaussian distributed

independent random variables. One expects this to be a plausible assump-

tion if the intensity of the noise and the coupling are not very large.

Various bifurcations due to variations of different parameters I, c, τ,D

are observed in the dynamics of global variables of the exact system with

large number of units, and the bifurcation values are compared with those

predicted by the approximate model with only nine deterministic equa-

tions. It is observed that variations of any of the parameters I, c, τ,D can

destabilize the quiescent global behavior and introduce bursting. Domains

in the parameter space corresponding to stable quiescent behavior or to the

bursting of the collective variables of the large exact system are correctly

predicted by the approximate model. The predictions of the approximate

model become more accurate as the number of units is increased. In this

sense the approximate model represents a very useful tool for an efficient

numerical treatment of the global dynamics of the large system of delayed

coupled noisy bursters.

It would be interesting to extend this type of analysis on the system of

bursters coupled by some model of the chemical synapse.
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Chapter 8

Conclusion

The main topic of the present thesis has been the analysis of the self-

organization phenomena emerging due to synchronization in large pop-

ulations of stochastic excitable or bursting units subjected to interaction

delays. Apart from considering the scenarios for the onset of the spik-

ing and bursting collective modes, we have also reported on the novel

paradigm for cluster synchrony, reflected in the spontaneous splitting of

structureless assemblies of excitable units into subsets whose members are

approximately synchronized in phase, whereas the subsets themselves may

display constant or variable phase differences. Throughout the thesis, the

local excitable dynamics has been represented by the Fitzhugh-Nagumo

model, canonical for type II excitability, while the activity of bursting units

has been described by the Hindmarsh-Rose model, typically generating

square-wave bursts. Though both models derive from the field of neu-

roscience, their potential range of applications spans a variety of systems,

from assemblies of cardiac cells to kinetics of electrochemical reactions. In

terms of interaction patterns, for the most part we have considered the fully

connected networks, this being a preferred approach if one is interested

into building minimal models that may capture some forms of collective

behavior. What makes this approximation appealing is that one may treat

each unit as if it is driven by the mean-field, produced by all the members of

the assembly. Regarding macroscopic phenomenology, another important
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point is that the effects of noise and delay are not perceived as detrimental

or destabilizing, but rather as potentially biased toward creating dynami-

cal structures in networks homogeneous both with respect to connection

topology and the local parameters.

Our study incorporates two complementary lines of research: one aimed

at determining if and how can the complex forms of collective behavior

displayed by the populations of autonomous oscillators be generalized to

systems of coupled excitable units, whereas the main contribution from the

other line of research lies in developing mean-field based approximations

to collective dynamics of systems microscopically described by large sets

of SDDEs. Regarding the first line, we have discussed in detail the phe-

nomenon of cluster formation in assemblies of excitable units, showing

that its mechanism rests solely on the interplay of excitability feature, noise

and interaction delay. In this context, one recalls that clustering presents

a fairly common occurrence in populations of self-sustained oscillators.

Nevertheless, cluster states we have found emerge via the distinct mech-

anism, and are further distinguished by the fact that they always coexist

with the homogenous states. On a conceptual side, the given phenomenon

is important for several reasons. The setup itself is different from most

other models exhibiting cluster synchrony because it does not involve het-

erogeneity in the local parameters or connectivity patterns. On the other

hand, it underlies the point that the inclusion of interaction delays signifi-

cantly alters the physical picture on the excitable media established so far.

The latter, reflecting solely the effects of noise, has been built on the idea

that under increasing noise intensity excitable media switch between three

generic regimes, namely the non-oscillatory state, the coherent oscillatory

state and the incoherent (chaotic) oscillatory state. It is also noteworthy

that given the spontaneous character of the considered phenomenon, one

may expect it to occur under real-world conditions, especially in certain

biophysiological systems.
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With respect to long-term behavior, the cluster states we have found

may be cast either as asymptotically stable ones, where the units are firmly

bound to their subsets, or dynamical, where the units may exchange sub-

sets. It turns out that the two-cluster states generically fall into the former

class, while the three-cluster states belong to the latter. The stability of

cluster partition is reflected in the relative phase differences between the

subsets’ activities. In the two-cluster case, an approximately constant π

phase-shift is maintained, such that if one cluster is active, the other one

is resting. On the other hand, in case of three-cluster partitions, the ap-

proximately constant phase difference cannot be maintained. Intuitively,

the existence of only two- and three-cluster states may be understood as

a consequence of the excitability feature and the strong time-scale separa-

tion between the fast and slow variables. Put briefly, the two-cluster states

may be seen as reflecting the existence of two stable branches of the slow

manifold, where the refractory and spiking states lie. Regarding the sta-

bility of the two-cluster partition, one invokes the point that in the limit

ϵ → 0 for D ≃ 0, the two branches virtually act as attractors. As for the

three-cluster partition, the excitable state comes into play as well, with the

possibility for some fraction of units to become frustrated in the vicinity of

the equilibrium. The ensuing inability to maintain approximately constant

phase differences between the subsets may be linked to variable longevity

of the excitable states.

In order to characterize the structure of the cluster states and determine

the parameter domains admitting clustering, several tools have been ap-

plied. The basic description rests on the notion of pairwise coherence,

employed to construct the appropriate coherence matrices, as well as the

binary or weighted functional (”coherence”) networks. Within the latter,

a link between the two units is defined in such a way that its presence or

strength indicates the degree of long-term coordination of the units’ activ-

ity patterns. While the properly arranged coherence matrices can be used
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to assess and conveniently visualize the structure of the cluster states, the

properties of functional networks, like the distribution of connectivity de-

grees, may allow one to distinguish more easily between the dynamical

cluster states and some complex incoherent states. The phenomenon of

dynamical clustering has further been analyzed by introducing the method

of dynamical correlation coefficients. From their evolution and the long-

tail feature of the distribution of local jitters, one may infer that the three-

cluster partition involves two core subsets and a cluster of itinerant units,

jumping between the cores. Note that in statistical terms, the jumping

events of different itinerant units are highly correlated.

Given the stable character of two-cluster partitions for relatively large

network sizes, we have been interested into verifying two additional points:

(i) whether one can demonstrate the persistence of clustering in the ther-

modynamic limit N → ∞, and (ii) whether the two-cluster states are robust

against heterogeneity in local parameters or the connectivity pattern. Re-

garding (i), the quantity relevant for examining the asymptotic behavior of

the two-cluster states in the limit N → ∞ turned out to be the synchrony

measure χ2(N), defined as the ratio of the time-averaged fluctuations of

X(t) vs the sum of the averaged fluctuations of xi(t). Apart from explicitly

demonstrating the existence of the asymptotic component χ2(∞), which

is known to warrant the persistence of two-cluster states in the thermody-

namic limit, we have verified that the convergence toward the asymptotic

behavior with increasing N is a fast one, with χ2(N) approaching χ2(∞)

already for N ∼ 102. With respect to (ii), the two-cluster states have been

shown to persist under heterogeneity of the local excitability parameters

bi, if their values are drawn from a uniform distribution keeping notice that

all of the units remain excitable (bi > 1). Nonetheless, two-cluster states

have also been found in systems of network-coupled, rather than globally

coupled excitable units. In particular, we have verified that clustering may

occur in scale-free and random diluted networks, provided that the connec-
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tivity degrees of individual units do not become too small. The scale-free

networks have been generated via the modified Barabasi-Albert algorithm,

whereby the scaling exponent γ ≈ 2 lies close to values seen in certain

biophysiological systems. Though the intention has been to outline only

the key ingredients behind clustering, rather than examine the less salient

effects, such as the dependence on network topology, the obtained results

seem to corroborate the claim that the clustering phenomenon persists in

networks with more realistic connectivity patterns.

To gain insight into the parameter domains admitting clustering, we

have monitored the dependence of the global coherence κ on τ and D. This

is based on the notion that for the cluster states κ-values lie around κ ≃ 0.5,

which is substantially smaller from what is obtained for the homogenous

coherent states (κ & 0.8) and significantly above the values typical for the

homogeneous incoherent states (κ . 0.35). The non-trivial character of

the parameter domains supporting the cluster states is manifested by the

fact that clustering takes place for the parameter values around the local

minima of the κ(τ) and κ(D) families of curves. Overall, the system’s be-

havior may be understood in terms of collective dynamics occurring on

two characteristic time-scales, the noise-driven and the delay-driven one,

which results in the competition between two types of collective modes.

The oscillation period T0(D) of the noise-driven mode corresponds to the

delay-free case τ = 0, whereas the period of the delay-driven mode scales

with τ. We have explicitly demonstrated that clustering bears the features

of a resonance phenomenon with respect to τ, such that the delay-resonant

intervals are centered around τr ≈ T0/2 + n ∗ T0 with n = 0, 1, 2. On the

level of competition between the two modes, one may explain this as fol-

lows. For the most part, the delay-driven mode wins over, giving rise to the

homogeneous (coherent) states. On the other hand, the onset of the cluster

states coincides with the parameter domains where the delay-driven mode

gives way to the noise-driven one. This is corroborated by the fashion
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in which the scaled average ISI intervals ⟨TX⟩/⟨T0⟩ and ⟨TX⟩/⟨τ⟩ for the

global variable X depend on τ. Proximity to the ”center” of the resonant

delay interval is found to influence the properties of the cluster partition:

close to the center, the symmetrical split involving almost even fractions

is preferred, whereas approaching the interval’s boundaries, the partition

becomes increasingly asymmetrical.

Note that the approximate relation for τr is reminiscent of the expres-

sion already seen in systems of coupled phase oscillators, but is distinct

in that it holds an implicit dependence on D. The intervals of noise val-

ues which support clustering for τ ≈ τr are relatively narrow. This indi-

cates that clustering in excitable systems is a result of the noise-delay co-

effect, viz. that it requires fine tuning between the two parameters. Though

the impact of coupling strength c on cluster states appears marginal, one

should still mention that its values should not be overly large, since that

would suppress the influence of noise-driven mode altogether.

From the microscopic perspective, the mechanism behind the onset of

cluster states and the fashion in which they are maintained can be explained

by drawing analogy between the motion of a representative unit and a

particle subjected to a double-well potential. Within such a framework,

noise provides for the thermal fluctuations eliciting jumps between the two

branches of the slow manifold, whereas the delay influences the height of

the potential barrier which the particle has to overcome when executing

the jump. One may state that for most parameter values, the escape rates

become adjusted with τ, whereas for the cluster-resonant delay intervals

the rates are in fact noise-dependent, as if τ = 0.

Having summarized the results on the first line of research covered

within the thesis, we turn to the main points regarding the second line. The

latter has been concerned with building the mean-field based approximate

models describing the evolution of global variables for systems whose mi-

croscopic dynamics is given in terms of large sets of SDDEs. Given that
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such systems are not susceptible to analysis within the Fokker-Planck for-

malism, the models we have derived rest on the cumulant approach com-

plemented with the Gaussian approximation. The principal gain consists in

that the collective dynamics of the exact system, comprised of kN coupled

equations where k refers to the number of local variables per each unit,

may be represented by only k(k+3)
2 deterministic DDEs for the mean-fields

and the related variances and covariances. By doing so, the yet unresolved

problem of treating the stochastic bifurcations of the original system is

translated into the framework of bifurcation analysis on the approximate

system, where D may act as a control parameter. It is reasonable to infer

that the correspondence between the dynamics of the exact and approxi-

mate models is enhanced if the deterministic, delay-driven component in

the collective behavior prevails over the stochastic one. Nevertheless, the

mean-field model provides accurate predictions on the following set of is-

sues:

i) the conditions for the stability of the stationary state,

ii) the scenarios affecting the onset of the collective mode or its suppres-

sion via time-delay,

iii) the regions of bistability, characterized by coexistence between the

equilibrium and the collective mode, or between two collective modes.

These points are qualitatively satisfied independent of the form of local

dynamics, be it excitable or bursting. Note that the scenarios for the onset

and the suppression of collective modes involve the approximate system

undergoing direct and inverse Hopf bifurcations, respectively. The appro-

priate diagrams, indicating sequences of such bifurcations under increas-

ing τ, have been obtained both in (D − τ) and (c − τ) parameter planes.

On the quantitative side, the average ISI interval of the global variable for

the assembly of excitable units is matched well by the oscillation period

of the corresponding mean-field variable. The similar point holds in case
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of the bursting collective mode regarding the duration of the average cycle

exhibited by the exact system and the cycle displayed by the approximate

model.

Apart from single populations, we have also considered the setup where

two populations of excitable units interact in a nonlinear fashion, such that

the corresponding threshold-like coupling function depends explicitly on

the respective global variable. The exact system involves noise acting

locally within each assembly, as well as two types of interaction delays,

namely the intra- and inter-population ones. Consistent with the notion that

population exhibiting a collective mode may be treated as a macroscopic

oscillator, the approximate system has been built by coupling the two ap-

propriate mean-field models. Our main result concerns the typical case

of two symmetrically coupled populations, where the approximate system

has been demonstrated to accurately predict the two scenarios giving rise

to the collective mode of the total system. In particular, the oscillatory

solution can emerge via

i) direct supercritical Hopf bifurcation, which may occur for zero inter-

population coupling delay τc solely due to increasing the coupling

strength gc between the populations;

ii) direct subcritical Hopf bifurcation, which occurs only above a certain

threshold value of τc.

Apart from the results on the local bifurcation analysis, an interesting point

is that the mean-field model also anticipates the parameter domains where

the exact system undergoes a global fold-cycle bifurcation. The latter has

been shown to influence the collective behavior in two ways, both tied to

the appearance of the saddle cycle. In particular, the saddle cycle emerging

from fold-cycle bifurcation may induce subcritical Hopf bifurcation of the

equilibrium, or may limit the growth of the incipient limit cycle born via

supercritical Hopf bifurcation. Note that the effects of global bifurcation
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are also considered in the context of single populations, where the for-

mer is found to immediately precede the onset of two-cluster states under

variation of the appropriate system parameters. Regarding the setup with

two populations, the oscillation period of the mean-field model shows re-

markable agreement with the mean ISI interval of the exact system for all

the considered configurations. Nevertheless, the results on properties of

the collective mode and the bifurcation diagrams obtained for the config-

uration with symmetrical couplings between populations are significantly

modified by introducing asymmetry in coupling functions or if the setup

is changed such that one population consists of excitable, and the other of

self-oscillating units.

From the theoretical standpoint, an important part of the study concerns

determining the parameter domains where the mean-field models accu-

rately reflect the behavior of the respective exact systems, which translates

into the issue of examining the conditions under which the mean-field as-

sumptions hold. In these terms, the behavior of populations made up of

bursting or excitable units is somewhat distinct. In a sense, the mean-field

models built in the former case are more conventional, given that the con-

ditions for their validity may be stated as simple requirements for weak in-

teractions and small noise intensity. This does not apply for the assemblies

of excitable units, where the mean-field assumptions, namely the quasi-

independence and Gaussian one, need to be adapted to the strong time-

scale separation ratio and the significant impact of noise. Having refined

the formulation of these two assumptions, we have been able to identify

the generic scenarios for their validity, which reflect the properties of local

and global dynamics. In particular, the assumptions hold if both the local

and global dynamics converge to a unique attractor of the same type, either

the fixed point or the limit cycle, provided that D is not excessive. Con-

versely, if the local and global motion follow different attractors or display

multistability, at least one, if not both mean-field assumptions fail. Note
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that these qualitative requirements may be satisfied for parameter domains

spanning intermediate c and D ranges. This implies that for assemblies of

excitable units, the commonly stated requirements on small c and D would

effectively understate the range of mean-field model’s applicability. Such

an outcome is partly due to the impact of interaction delays.

What makes our approach interesting is the ability to estimate the rate

in which the fulfilment of the mean-field assumptions deteriorates with in-

creasing noise. This is especially useful given the relationship between the

mean-field model and the results of the bifurcation analysis: even if the

mean-field assumptions are not satisfied in the absolute terms, the predic-

tion regarding the stability of equilibrium and the onset of the collective

mode may still be qualitatively correct. With respect to the fulfilment of

the Gaussian approximation in populations of excitable units, the increase

of noise intensity is most strongly felt in stochastic phase fluctuations be-

tween the different realizations of the stochastic process. Nonetheless,

the validity of the quasi-independence assumption has been tested by two

methods: (i) an indirect one, verifying whether the distribution of the col-

lective variables for different realizations of the stochastic process is Gaus-

sian; (ii) a direct one, examining the synchronization properties between

the units’ activities. The rationale for (i) derives from the central limit the-

orem, by which the sum of independent equally distributed random vari-

ables is a Gaussian variable. As for (ii), it has been shown that the coupling

term involving the interaction delay may cause the dynamics of two units

to appear virtually independent if their activities are synchronized, even

in spite of the potentially large c. The method described under (ii) has

enabled us to draw additional conclusions on the intervals of τ where the

mean-field assumptions are satisfied. A set of minor results concern the

statistical properties of local and global oscillations. For the delay-driven

dynamics, both in case of local variables and the collective mode, it has

been shown that the effective phase description may be applicable. The
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same inference can be made for the noise-driven dynamics, provided that

D is not too large. Last but not the least, we make a remark on the validity

of mean-field assumptions for assemblies of excitable units by looking into

the relation with the behavior of the mean-field model itself. In particular,

one can demonstrate that if the latter exhibits bistability, involving coexis-

tence of the fixed point and the limit cycle or the two cycles, one born via

Hopf and the other via fold-cycle bifurcation, the mean-filed assumptions

break down. This is explained by the fact that in the exact system, the

corresponding orbits effectively engage in stochastic switching between

the attractors given by the mean-field model, hence explicitly violating the

above requirements for the assumptions’ validity. Therefore, behavior of

the mean-field model may be used to predict the domains where the mean-

field assumptions fail in the self-consistent fashion.

Having provided the summary of the results obtained, putting them in

the appropriate context and commenting on their relevance from the theo-

retical point of view, we briefly outline the scenarios for potential practical

application, further touching upon suggestions for future research. As al-

ready iterated, the forms of local dynamics studied within the thesis are

typical for the biophysiological systems, though excitability is seen in a

wider range of fields. On the other hand, areas where systems on a variety

of spatial and temporal scales generate coherent rhythms and communicate

by adjusting them are ubiquitous in nature. Nonetheless, the setup involv-

ing two interacting populations is important since it may serve as paradigm

for the ”network of networks” [127, 128] or may represent the basic ele-

ment of a highly modular network [194]. With respect to self-organization

phenomena in complex networks, cluster states are also a common occur-

rence. For instance, in the field of neuroscience, clustering is found to

accompany the cognitive processes of feature binding and segmentation

[21, 187]. On the former, multiple representations of the same object may

be bound together into a cluster state, whereas in the latter case, cluster-
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ing is likely to contribute to discriminating between the different items

perceived. Apart from the beneficial side, cluster states may also play a

role in the onset of certain pathological brain rhythms linked to epileptic

seizures [13].

The results obtained on clustering phenomena in assemblies of excitable

units justify pursuing further the research on analogies between the com-

plex forms of self-organization in populations of excitable units and those

made up of autonomous oscillators. In particular, it would be interesting

to determine the conditions for the onset of chimera states, especially fo-

cussing on the issue of whether they may exist in presence of coupling

delays [47, 229]. From the neuroscience perspective, chimeras pose the

dynamical paradigm behind the so called ”bump states” [230–233], occur-

ring in macroscopic systems that allow for some regions to exhibit coher-

ent oscillations, while other remain in the asynchronous regime. As a more

distant goal, it would be interesting to examine whether an effective phase

description can be developed for the assemblies of excitable units. Note

that certain promising results in this direction, though only for a single unit,

have already been reported [4, 81]. In terms of the mean-field based ap-

proximations, one may address the issue of improving the models derived

here in several ways. For instance, an attempt can be made to refine the

models by abandoning the quasi-independence approximation altogether

[103]. At a first glance, such an approach is certain to provide better ac-

curacy by accounting for the correlations between the local variables, but

would also reopen the problem of treating the impact of interaction delay

[195]. A more easily obtainable goal concerns adapting the present mean-

field models to apply when more realistic network topologies, such as the

small-world or scale-free, are considered. Apart from including hetero-

geneity in the connectivity patterns, it would also be interesting to examine

how the collective behavior is modified by introducing heterogeneity in the

excitability parameter, thus arriving at mixed populations of excitable and
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self-oscillating units.
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